@Jtechnologies

The definitive guide to JProfiler

All you need to know as a performance professional

© 2024 ej-technologies GmbH. All rights reserved.

Index

Introduction

Architecture

Installing

Profiling a JVM

12

27

Recording data

Snapshots

Telemetries

CPU profiling

Method call recording

Memory profiling

40
45
53
66
7

The heap walker

8l

Thread profiling

Probes

GC analysis

MBean browser

Offline profiling

Comparing snapshots

IDE integrations

A Custom probes
A.l Probe concepts

A.2 Script probes

A3 Injected probes

A.4 Embedded probes

B Call tree features in detail

98
105
119
125
129
134
141

151
151
158
162
167

17

B.1 Auto-tuning for instrumentation

171

B.2 Async and remote request tracking
B.3 Viewing parts of the call tree

B.4 Splitting the call tree

B.5 Call tree analyses

C Advanced CPU analysis views

C.1 Outlier detection

174
180
185
189

194
194

C.2 Complexity analysis

C.3 Call tracer

C.4 Javascript XHR

D Heap walker features in detail

D.1 HPROF snapshots

D.2 Minimizing overhead

D.3 Filters and live interactions

D.4 Finding memory leaks

198
200
202

205
205
207
209

212

E JDK Flight Recorder (JFR)

E.1 JFR overview

E.2 Recording JFR snapshots

219
219
221

E.3 JFR event browser

E.4 JFR views

F Configuration in detail

F.1 Trouble shooting connection problems
F.2 Scripts

F.3 Custom help

F.4 Profiling settings at startup

G Command line reference

G.1 Executables for profiling

G.2 Executables for snapshots
G.3 Gradle tasks

G.4 Ant tasks

225
232

239
239

241
245
246

249
249
252

261
265

Introduction To JProfiler

What is JProfiler?

JProfiler is a professional tool for analyzing what is going on inside a running JVM. You can
use it in development, for quality assurance and for firefighting missions when your
production system experiences problems.

There are four main topics that JProfiler deals with:

 Method calls

This is commonly called "CPU profiling". Method calls can be measured and visualized
in different ways. The analysis of method calls helps you to understand what your
application is doing and find ways to improve its performance.

« Allocations

Analyzing objects on the heap with respect to their allocations, reference chains and
garbage collection falls into the category of ‘memory profiling”. This functionality enables
you to fix memory leaks, use less memory in general and allocate fewer temporary
objects.

« Threads and locks

Threads can hold locks, for example, by synchronizing on an object. When multiple
threads cooperate, deadlocks can occur and JProfiler can visualize them for you. Also,
locks can be contended, meaning that threads have to wait before they can acquire
them. JProfiler provides insight into threads and their various locking situations.

+ Higher level subsystems

Many performance problems occur on a higher semantic level. For example, with JDBC
calls, you probably want to find out which SQL statement is the slowest. For subsystems
like that, JProfiler offers "probes” that attach specific payloads to the call tree.

JProfiler's Ul is delivered as a desktop application. You can interactively profile a live JVM
or profile automatically without using the UL. Profiling data is persisted in snapshots that
can be opened with the JProfiler Ul. In addition, command line tools and build tool
integrations help you with automating profiling sessions.

How do | continue?

This documentation is intended to be read in sequence, with later help topics building on
the content of previous ones.

First, a technical overview over the architecture [p. 6] will help you to understand how
profiling works.

The help topics on installing JProfiler [p. 8] and profiling JVMs [p. 12] will get you up and
running.

Following that, the discussion of data recording [p. 27] and snapshots [p. 40] take you to
a level of understanding where you can explore JProfiler on your own.

Subsequent chapters build your expertise with respect to different functionality in JProfiler.
The sections at the end are optional readings that should be consulted if you need certain
features.

We appreciate your feedback. If you feel that there's a lack of documentation in a certain
area or if you find inaccuracies in the documentation, please don't hesitate to contact us
at support@ej-technologies.com.

mailto:support@ej-technologies.com

JProfiler Architecture

The big picture of allimportant interactions involving the profiled application, the JProfiler
Ul and all command line utilities is given below.

jpexport
jpcompare
jpanalyze JProfiler Ul

[jpcontroller]

—> Snapshots

Lremoteorlocal e e e
local . .
transmits | connects via connects
data socket via JMX
e A
p N loadsvia
. attach JProfiler publishes JProfiler
jpenable
agent MBean
(. _J
A
P . takes HPROF
. heap dump "
— F——— o
jpdump Profiled JVM @
|\ J
loads with controls with
-agentpath offline profiling
Command line arguments
|\ J
—» loads the profiling agent () command line tool
——3 controls recording D process component
——» profiling data [1] data
The profiling agent

The "JVM tool interface” (JVMTI) is a native interface that a profiler uses to gain access to
information and add hooks for inserting its own instrumentation. This means that at least

part of the profiling agent must be implemented as native code and so a JVM profiler is
not platform-independent. JProfiler supports a range of platforms that are listed on the

web site (1)'

A JVM profiler isimplemented as a native library that is loaded either at startup or at some
point later on. To load it at startup, a VM parameter - agent pat h: <path to native
I'i brary>isadded tothe command line. You rarely have to add this parameter manually,
because JProfiler will add it for you, for example, in an IDE integration, an integration wizard
or if it launches the JVM directly. However, it's important to know that this is what enables
profiling.

If the JVM succeeds in loading the native library, it calls a special function in the library to
give the profiling agent a chance to initialize itself. JProfiler will then print a couple of
diagnostic messages prefixed with JProf i | er > so you know that profiling is active. The
bottom line is that if you pass the - agent pat h VM parameter, the profiling agent is either
loaded successfully or the JVM does not start.

Once loaded, the profiling agent asks the JVMTI to be notified of all kinds of events, such
as thread creation or class loading. Some of these events directly deliver profiling data.
Using the class loading event, the profiling agent instruments classes as they are loaded
and inserts its own bytecode to perform its measurements.

JProfiler can load the agent into an already running JVM, either by using the JProfiler Ul,
orwith the bi n/ j penabl e command line tool. In that case, a substantial number of already
loaded classes may have to be retransformed in order to apply the required
instrumentation.

Recording data

The JProfiler agent only collects the profiling data. The JProfiler Ul is started separately
and connects to the profiling agent through a socket. For secure connections to remote
servers, you can configure JProfiler to automatically create SSH tunnels.

From the JProfiler Ul, you can instruct the agent to record dataq, display the profiling data
in the Ul and save snapshots to disk. As an alternative to the Ul, the profiling agent can be
controlled through its MBean @) A command line tool that uses this MBean is bi n/
jpcontroller.

Yet another way to control the profiling agent is with a predefined set of triggers and
actions. In that way, the profiling agent can operate in unattended mode. This is called
"offline profiling" in JProfiler and is useful for automating profiling sessions.

Snapshots

While the JProfiler Ul can show live profiling data, it is often necessary to save snapshots
of all recorded profiling data. Snapshots are either saved manually in the JProfiler Ul or
automatically by trigger actions.

Snapshots can be opened and compared in the JProfiler Ul. For automated processing,
the commmand line tools bi n/ j pexport and bi n/ j pconpar e can be used to extract data

and create HTML reports from previously saved snapshots.

A low-overhead way of obtaining a heap snapshot from a running JVM is to use the bi n/
j pdunp command line tool. It uses the built-in functionality of the JVM to save an HPROF
snapshot that can be opened by JProfiler and does not require the profiling agent to be
loaded.

(1) https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html
2 https://en.wikipedia.org/wiki/ Java_Management _Extensions

7

https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html
https://en.wikipedia.org/wiki/Java_Management_Extensions

Installing JProfiler

Executable installers are provided for Windows and Linux/Unix that lead you step-by step
through the installation. If a previous installation is detected, the installation is streamlined.

© Setup - JProfiler - O X

Welcome to the JProfiler Setup Wizard

This will install JProfiler on your computer,

A previous installation has been detected. Do you wish to update that
installation?

@® fes, update the existing installatior: @
() Mo, installinto a different directory

Click Next to continue, or Cancel to exit Setup.

Install Cancel

On macOs, JProfiler uses the standard installation procedure for Ul applications: a DMG
archive that you can mount in the Finder by double-clicking on it, then you can drag the
JProfiler application bundle tothe/ Appl i cat i ons folder. That folder is visible as a symbolic
link in the DMG itself.

[N] | JPrafiler

JProfiler

On Linux/Unix, installers are not executable after download, so you have to prepend sh
when executing them. The installer performs a command line installation if you pass the
parameter -c. Completely unattended installations for Windows and Linux/Unix are
performed with the parameter - q. In that case, you can pass the additional argument
-dir <directory>inorderto choose the installation directory.

@ S @ ingo@ubuntu: ~/Downloads

ingo@ubuntu:~/Downloads$S sh jprofiler_linux_18_©_2.sh -c
Starting Installer ...

This will install JProfiler on your computer.

0K [o, Enter], Cancel [c]

A previous installation has been detected. Do you wish to update that installati
on?

Yes, update the existing installation [1, Enter]

No, install into a different directory [2]

After you run an installer, it will save a file . i nst al | 4j / r esponse. varfi | e that contains
the entire user input. You can take that file and use it to automate unattended installations
by passing the argument -varfile <path to response.varfile>on the command
line.

To set licensing information for unattended installations, pass - Vj profil er. | i censeKey=
<license key> -Vjprofiler.licenseName=<user nane>andoptionally-Vjprofiler.
| i censeConpany=<conpany name> as command line arguments. If you have a floating
license, use FLOAT: <server nanme or | P address> instead of the license key.

Archives are also provided as ZIP files for Windows and as .tar.gz files for Linux. The
command

tar xzvf filename.tar.gz

will extract a .tar.gz archive into a separate top-level directory. To start JProfiler, execute
bi n/j profiler inthe extracted directory. On Linux/Unix, the file j prof i | er. deskt op can
be used to integrate the JProfiler executable into your window manager. For example, on
Ubuntu you can drag the desktop file into the launcher side bar in order to create a
permanent launcher item.

Distributing the profiling agent to remote machines

JProfiler has two parts: The desktop Ul together with the command line utilities that operate
on snapshots, on the one hand, and the profiling agent together with the command line
utilities that control the profiled JVM, on the other hand. The installers and archives that
you download from the website contain both parts.

For remote profiling, however, you only need the profiling agent to be installed on the
remote side. While you can simply extract an archive with the JProfiler distribution on the
remote machine, you may want to limit the number of required files, especially when
automating a deployment. Also, the profiling agent is freely redistributable, so you can
ship it with your application or install it on customer machines for trouble-shooting.

To get a minimal package with the profiling agent, the remote integration wizards shows
you the download link for the appropriate agent archive as well as the download page
with the agent archives for all supported platforms. In the JProfiler GUI, invoke
Session->Integration Wizards->New Server/Remote Integration, select the "Remote” option
and then proceed to the Remote installation directory step.

9

@ Integration Wizard - [Generic application] on Remote Linux X86/AMDG4 >

1. Choose wizard Specify the remote installation directory
2. Local or remote
3. Profiled JVM The profiling agent must be available on the remote Linux X86/AMD&4

4, Startup mode machine.

5. Remote connection
6. Remote installation directory
7. Choose profiling port

Please specify the JProfiler installation directory on the remote machine, for
example "/opt/jprofilerid”.

8. Perform modifications
9. Finished

Remote installation directory: | /opt/jprofilerld

If JProfiler is not installed, you can download the profiling agent and extract it
on the remote machine in the above directory.

Direct Download Copy URL To Clipboard

A web page with agent downloads for all suppoerted platforms is also available.

Download Overview Copy URL To Clipboard

4 Back Mext P Finis Cancel

The URL for the HTML overview page for a particular JProfiler version is

https://ww. ej -t echnol ogi es. com downl oad/ j profi |l er/ agent ?versi on=14.0.5

The format of the download URLs for the single agent archives is

htt ps: //downl oad. €] -t echnol ogi es. coni j profiler/jprofiler_agent_<platfornm_14 0 5. <extensi on>

where pl at f or m corresponds to the agent directory name in the bi n directory and
ext ensi on is zi p on Windows, . t gz on macOS and . t ar . gz for Linux/Unix. For Linux, x86
and x64 are grouped together, so for Linux x64 the URL is

htt ps://downl oad. ej -t echnol ogi es. confj profiler/jprofiler_agent_linux-x86_14 0 5.tar.gz

The agent archive contains the required native agent libraries together with the j penabl e,
j pdunp andj pcontrol | er executables. The executables in the archive only require Java
6 as a minimum version, while the profiling agent works with Java 5 or higher.

The sub-directories that you see after extracting the agent archive on the remote machine
are described below. They are a subset of a full JProfiler installation on the respective
target platform.

top-level directory after extraction

Anstall4j --=-mmmmmmmmmmenemeeeed > runtime for launchers
— bin oo > agent JAR file and helper executables
': <platform-64> ---=-=-3 > native libraries for 64-bit JVMs
<platform-32> =-------1 > native libraries for 32-bit JVMs
|| T > support libraries for attach functionality

10

Supported platforms

Because JProfiler utilizes the native profiling interface of the JVM (JVMTI), its profiling agent
is a native library.

JProfiler supports profiling on the following platforms:

os Architecture | Supported JVMs | Versions
windows 11/10/8/7 | x86 Hotspot (OpenJDK) |15 - 23
Windows Server x64/AMD64 | IBM/OpenJ9 15 - 23
2022/2019/2016/2012
macO0S 10.12 - 15 Intel, Apple | Hotspot (OpenJDK) | 1.8 - 23
IBM/OpenJ9 1.8 - 23
Linux x86 Hotspot (OpenJDK) |15 - 23
x64/AMD64 | IBM/OpenJ9 15-23
Linux PPCBA4LE Hotspot (OpenJDK) |15 - 23
IBM/OpenJ9 15 - 23
Linux ARMV7 Hotspot (OpenJDK) |1.8-23
ARMvVS
FreeBSD 13 AMDG4 FreeBSD 1.8 - 23
AIX72-7.3 PPC64 IBM/OpenJ9 1.8 - 23

The JProfiler GUI frontend needs a Java 11 or a Java 17 VM to run. A Java 17 JRE is bundled
with JProfiler for that purpose on Windows and macOS. The attach command line tools
jpenable, jJdump and jpcontroller only require a Java 6 VM.

il

Profiling A JVM

To profile a JVM, JProfiler's profiling agent has to be loaded into the JVM. This can happen
in two different ways: By specifying an - agent pat h VM parameter in the start script or by
using the attach API to load the agent into an already running JVM.

JProfiler supports both modes. Adding the VM parameter is the preferred way to profile
and is used by the integration wizards, the IDE plugins, and session configurations that
launch a JVM from within JProfiler. Attaching works both locally as well as remotely over
SSH.

-agentpath VM parameter

It is useful to understand how the VM parameter that loads the profiling agent is composed.
- agent pat h is a generic VM parameter provided by the JVM for loading any kind of native
library that uses the JVMTI interface. Because the profiling interface JVMTI is a native
interface, the profiling agent must be a native library. This means that you can only profile
on the explicitly supported platforms M, 32-bit and 64-bit JVMs also need different native
libraries. Java agents, on the other hand, are loaded with the - j avaagent VM parameter
and only have access to a limited set of capabilities.

After - agent pat h:, the full path name to the native library is appended. There is an
equivalent parameter - agent | i b: where you only specify the platform-specific library
name, but then you have to make sure that the library is contained in the library path.
After the path to the library, you can add an equals sign and pass options to the agent,
separated by commas. For example, on Linux, the whole parameter could look like this:

-agentpath:/opt/jprofilerl4/bin/linux-x64/1ibjprofilerti.so=port=8849, nowai t

The first equals sign separates the path name from the parameters, the second equals
sign is part of the parameter por t =8849. This common parameter defines the port on
which the profiling agent is listening to connections from the JProfiler GUI. 8849 is actually
the default port, so you can also omit that parameter. If you want to profile multiple JVMs
on the same machine, you have to assign different ports, though. The IDE plugins and the
locally launched sessions assign this port automatically, for integration wizards you have
to choose the port explicitly.

The second parameter nowai t tells the profiling agent not to block the JVM at startup and
wait for a JProfiler GUI to connect. Blocking at startup is the default because the profiling
agent does not receive its profiling settings as command line parameters but from the
JProfiler GUI or alternatively from a config file. The command line parameters are only for
bootstrapping the profiling agent, telling it how to get started and for passing debug flags.

Under some circumstances, setting the profiling settings at startup [p. 246] is required and
some manual work may be required to achieve this.

By default, the JProfiler agent binds the communication socket to the loopback interface.
You can add the option addr ess=[| P addr ess] in order to select a specific interface or
addr ess=0. 0. 0. 0 to bind the communication socket to all available network interfaces.
This can be necessary if you want to publish the profiling port from a docker container.

Locally launched sessions

Like "Run configurations” in an IDE, you can configure locally launched sessions directly in
JProfiler. You specify the class path, the main class, working directory, VM parameters and

0 https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html

12

https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html

arguments, and JProfiler launches the session for you. All the demo sessions that ship with
JProfiler are locally launched sessions.

@ Session Settings X
| Application Settings Session name: | Animated Bezier Curve Demo Id: 101 @
Session Type
Profiled VM ‘ Attach to an already running HotSpot/Open)9 JVM and profile it
Code Editor Attach Select from all lecal IVMs Attach to remote JVM Kubernete
Call Tree Recording o.’.}, Launch a new JVM and profile it

Launch Launch type: |) Application ‘Web Start

Application Settings

' Call Tree Filters

| Trigger Settings Java VM: 17 [C\Users\ingo'jdksjbrsdk-17-b1351] Configure JREs
Working directory: [startup directery]

; Databases VM options: (7]
Main class or executable JAR: | bezier.BezierAnim

Q HTTP, RPC & JEE
Program arguments: block @

° JVM & Custom Probes Open browser with URL

L Java File Path
@" Advanced Settings

derno\bezier\classes o

© Class path
Source path)

Library path (7]

General Settings Copy Settings From “ Cancel

A special launch mode is "Web Start” where you select the URL of the JNLP file, and JProfiler

will launch a JVM to profile it. This feature supports OpenWebStart (2), legacy WebsStart
from pre-Java 9 Oracle JREs is hot supported.

(2)

https://openwebstart.com/

13

https://openwebstart.com/

@ Session Settings X

Application Settings Session name: | Web Start Session Id: 162 0
Session Type
Profiled JVM ‘ Attach to an already running HotSpot/Open)9 JVM and profile it
Code Editor Attach Select from all local JVMs Attach to remote JVM Kubernete
Tg Call Tree Recording O-’.?; Launch a new JVM and profile it
Launch Launch type: Application |) Web Start]
' Call Tree Filters
Web Start Settings
| Trigger Settings URL of the JNLP file: | http://www jgoodies.com/download/jdiskreport2/jdiskreport.jnlp
WebStart sessions require that OpenWebStart is installed.
; Databases Java File Path
Mote: the classpath is used for the bytecode viewer only.
Q HTTP, RPC & JEE &
° JVM & Custom Probes © Class path
Source path @)
@"' Advanced Settings
General Settings Copy Settings From “ Cancel

Locally launched sessions can be converted to standalone sessions with the conversion
wizards by invoking Session->Conversion Wizards from the main menu. Convert Application
Session to Remote simply creates a start script and inserts the - agent pat h VM parameter
into the Java call. Convert Application Session to Offline creates a start script for offline
profiling [p. 129] which means that the config is loaded on startup and the JProfiler GUl is
not required. Convert Application Session to Redistributed Session does the same thing,
but creates a directory j profi |l er _redi st next to it that contains the profiling agent as
well as the config file so you can ship it to a different machine where JProfiler is not installed.

§ 7 New Session
@ Quick Attach
] Integration Wizards

Open Session
Export Session Settings
Import Session Settings

Open Snapshot
Recent Snapshots

.

General Settings

IDE Integrations

q ™ Close Window
Exit JProfiler

VM & Custom Probes

Centg T Compare Snapshots in New Window ~ Fo/@nas TrEckng " Bookmar

o
Conversion Wizards 13

m View Profiling Window Help IProfiler - m} X
B B Start Center Ctrl+0 9
Starl = New Window Ctri+Alt+0 |, Crart Add
A Run GC . n Help

Ctrl+M
Crl+ Alt+A

4

Convert Application Session to Remote
Convert Application Session to Offline
Convert Application Session to Redistributed Session

@ Start a profiling session or open a snapshot to view data

Ctrl+F12

Ctrl+W
Ctrl+Al+X

& Detached

14

If you develop the profiled application yourself, consider using an IDE integration [p. 141]
instead of a launched session. It will be more convenient and give you better source code
navigation. If you do not develop the application yourself, but already have a start script,
consider using the remote integration wizard. It will tell you the exact VM parameter that
you have to add to the Java invocation.

Integration wizards

JProfiler's integration wizards handle many well-known third party containers with start
scripts or config files that can be modified programmatically to include additional VM
parameters. For some products, start scripts can be generated where VM parameters are
passed as arguments or via environment variables.

@ Integration Wizard *
1. Choose wizard Choose integration wizard

2. Local or remaote

3. Profiled JVM This wizard integrates your application server or remote application with

4. Startup mode JProfiler. Choose the appropriate wizard from the list below.

If your application server is not listed, choose "[Generic application server]" to
get step by step instructions for manual integration

& [Generic application server]
mg [Generic application]

4 installdj/exed] project
@jwc service

B coldrusion

Glassfish

JBoss

Jetty

i Jonas

Netbeans RCP application
A Resin

Next P Cancel

In all cases, you have to locate some specific file from the third-party product, so JProfiler
has the necessary context to perform its modifications. Some generic wizards only give
you instructions on what you have to do in order to enable profiling.

@ Integration Wizard - Tomeat X
1. Choose wizard Locate start script

2. Local or remote

3. Profiled JVM Please locate the start script for Tomcat below.

4, Startup mode

5. Locate start script c\Users\Bob\appserversitomcatibin\startup.bat

6. Choose profiling port

7. Check modifications Mote: the usual name of the start script is:

8. Finished startup.bat

The chosen startup script will not be medified. A new startup script for profiling
will be generated in the same directory.

4 Back MNext p Cancel

The first step in each integration wizard is the choice whether to profile on the local machine
or on a remote machine. In the case of the local machine you have to provide less
information, because JProfiler already knows the platform, where JProfiler is installed and
where its config file is located.

15

@ Integration Wizard

1. Choose wizard
2. Local or remote
3. Profiled JVM

4, Startup mode

>

Where is the profiled application located?
The profiled application can either run on this computer or on a remote
computer. If the "remote computer” option is selected, JProfiler must be
installed on that computer.
The profiled application is located:
© On this computer

On a remote computer

4 Back Next P Cancel

An important decision is the "startup mode” that was discussed above. By default, the
profiling settings are transmitted from the JProfiler Ul at startup, but you can also tell the
profiling agent to let the JVM start immediately. In the latter case, the profiling settings
can be applied once the JProfiler GUI connects.

@ Integration Wizard

1. Choose wizard

2. Local or remote
3. Profiled JVM

4. Startup mode

Choose whether to wait for the JProfiler GUI

Please choose whether you would like your profiled JVM to wait for a
connectien from the JProfiler GUI frontend before starting up:

Wait for a connection from the JProfiler GUI

[Easy] Profiling settings are transmitted directly by the JProfiler GUI at
startup. With this option you can profile the startup phase of your
application.

I() Startup immediately, connect later with the JProfiler GUII

[Easy] Profiling settings are transmitted directly by the JProfiler GUl ence
you connect.

Profile offline, IProfiler GUI cannot connect

[Advanced] You have to configure triggers that record data and save
snapshots that can be opened with the JProfiler GUI later on.

4 Back Next P Cancel

However, you can also specify a config file with the profiling settings, which is much more
efficient. This is done on the Config synchronization step. The main problem in this case
is that you have to synchronize the config file with the remote side each time you edit the
profiling settings locally. The most elegant way is to connect to the remote machine via
SSH on the Remote address step, then the config file can be transferred automatically via

SSH.

16

@ Integration Wizard - [Generic application server] on Remote Linux X26/AMD64 *

1. Choose wizard Choose how to synchronize profiling settings
2. Local or remote
3. Profiled VM The profiling agent can receive its profiling settings when the connection is made from

4, Startup mode the JProfiler GUI

5. Remote address
6. Remote installation directory
7. Config synchronization

However, class retransfermations can take a lot of time. For fast connectiens, you can
specify the configuration at startup.

8. Choose profiling port Apply configuration when connecting with the JProfiler GUI
?.D‘P:;\‘J:’:r;;nudlﬁcatmns o Apply configuration at startup

Directory for config file on remote computer: | /heme/build/config
Manual synchronization (7]
Io Copy with 55H to remote dlrectoryl (7]

Copy config file to directory: (7]

Execute command: Q

4 Back Next b Finish Cancel

At the end of the integration wizard, a session will be created that starts profiling and - in
the non-generic cases - also starts the third party product, such as an application server.

@ Integration Wizard - [Generic application server] on Remote Linux X86/AMDG4 X
1. Choose wizard Integration is completed

2. Local or remote

3. Profiled VM The integration of your profiled VM has been completed successfully.

4, Startup mode

5. Remote address

6. Remote installation directory
7. Config synchronization

8. Choose profiling port Io Yes, start the session and wait for the profiled JVM.I
9. Perform modifications
10. Finished

To profile, you have to manually start your profiled JVM first.

When you click on Finish, the remote session can be started immediately.

Mo, | will start the session later
Edit Session And Synchrenize Config

The created session has been named

Application server on demo

Finish

External start scripts are handled by the Execute start script and Execute stop script options
on the Application settings tab of the session configuration dialog and URLs can be shown
by selecting the Open browser with URL check box. This is also the place where you can
change the address of the remote machine and the config synchronization options.

@ Session Settings X

3 Application Settings Session name: Application server on demo 1d: 162 @

Session Type
Profiled JVM

‘ Attach to an already running HotSpot/Openl9 JVM and profile it
Code Editor Attach Aftach type: Select from all local IVMs (€) Attach to remote JVM Kubernetes
. P Launch a new JVM and profile it
M Call Tree Recordin =
E‘ d o
Launch .
“ Call Tree Filters
Profiled JVM Settings
. . If you have not yet prepared a WM for profiling, it is recommended to run an integration wizard, It will
Trigger Settings create the remote session for you.
; Datobases SSH tunnel v | | Direct 5H to demo:8849 it | @
Use SOCKS proxy
@ HTTP, RPC & JEE 7 Execute start command cUsers\bobh\appserver\startServer.bat - &
[Execute stop command| | c\Users\bob\appserver\stopServer.bat - | @
@ JVM & Custemn Probes
[Open browser with URL | | http://localhost:8080 (7]
Connection timeout: B0 | ¥ | seconds Config Synchronization Options

{Q Advanced Settings

Java File Path

Mote: the classpath is used for the bytecode viewer only.

© Class path
Source path @

General Settings Copy Settings From “ Cancel

The integration wizards all handle cases where the profiled JVM is running on a remote
machine. However, when a config file or start script has to be modified, you have to copy
it to your local machine and transfer modified versions back to the remote machine. It
may be more convenient to directly run the command line tool j pi nt egr at e on the remote
machine and let it perform its modifications in place.j pi nt egr at e requires a full installation
of JProfiler and has the same JRE requirements as the JProfiler GUI.

@S ® ingo@ubuntu: ~

ingo@ubuntu:~$ jprofiler10/bin/jpintegrate
Welcome to the JProfiler console integration wizard!

How do you want to find your integration wizard?
search by keyword [1, Enter], List all wizards [2]
ol
Please enter a number of keywords separated by spaces (for example: Tomcat 5)
Websphere
Please choose one of the following integration wizards:
IBM Websphere 9.x Application Server [1]
Websphere 8.x Application Server [2]

Websphere 7.0 Application Server [3]
Websphere 6.1 Application Server [4]
WebSphere Community Edition 2.x [5]

When an error occurs while starting a remote profiling session, see the trouble-shooting
guide [p. 239] for a checklist of steps that you can take to fix the problem.

18

IDE integrations

The most convenient way to profile an application is through an IDE integration. If you
usually start your application from your IDE during development, the IDE already has all
the required information and the JProfiler plugin can simply add the VM parameter for
profiling, start JProfiler if necessary and connect the profiled JVM to a JProfiler main window.

All IDE integrations are contained in the i nt egr at i ons directory in the JProfiler installation.
In principle, the archives in that directory can be installed manually with the plugin
installation mechanisms in the respective IDEs. However, the preferred way to install IDE
integrations is to invoke Session->IDE integrations from the main menu.

@ General Settings X

Ul Session Defaults Snapshots IDE Integrations Updates External Programs

IDE Integration

To integrate JProfiler with an IDE, choose the target IDE and click on "Integrate” below.

Intellil IDEA v

Integrate | | @

Profiling sessions from the IDE do not get their own session entry in JProfiler, because such
a session could not be started from the JProfiler GUI. Profiling settings are persisted on a
per-project or a per-run-configuration basis, depending on the settings in the IDE.

When connected to an IDE, JProfiler shows a window switcher in the tool bar that makes
it easy to jump back to the associated window in the IDE. All the Show Source actions now
show the source directly in the IDE instead of the built-in source viewer in JProfiler.

IDE integrations are discussed in detail in a later chapter [p. 141].

Attach mode

You do not necessarily have to decide beforehand that you intend to profile a JVM. With
the attach functionality in JProfiler, you can select a running JVM and load the profiling
agent on the fly. While attach mode is convenient, it has a couple of drawbacks that you
should be aware of:

« You have to identify the JVM that you want to profile from a list of running JVMs. This
can sometimes be tricky if a lot of JVMs are running on the same machine.

+ There is additional overhead because potentially many classes have to be redefined
to add instrumentation.

« Some features in JProfiler are not available in attach mode. This is mostly because
some capabilities of the JVMTI can only be switched on when the JVM is being initialized
and are not available in later phases of the JVM's lifecycle.

+ Some features require instrumentation in a large fraction of all classes. Instrumenting
while a class is being loaded is cheap, adding instrumentation later on when the class

19

has already been loaded is not. Such features are disabled by default when you use
attach mode.

« Attach functionality is supported for OpenJDK JVMs, Oracle JVMs with version 6 or higher,
recent Opend9 JVMs (8u281+, 11.0.11+ or Java 17+) or IBM JVMs that are based on such
a release. The VM parameters - XX +Perf Di sabl eSharedMem and -XX
+Di sabl eAt t achMechani sm must not be specified for the JVM.

The Quick Attach tab in JProfiler's start center lists all JVMs that can be profiled. The
background color of the list entries indicates whether a profiling agent has already been
loaded, whether a JProfiler GUI is currently connected or if offline profiling has been
configured.

When you start a profiling session, you can configure profiling settings in the session
settings dialog. When you repeatedly profile the same process, you do not want to re-enter
the same configuration again and again, so a persistent session can be saved when you
close a session that has been created with the quick attach feature. The next time you
want to profile this process, start the saved session from the Open Session tab instead of
the Quick Attach tab. You will still have to select a running JVM, but the profiling settings
are the same ones that you have already configured before.

@ Session Settings X
] Application Settings Session name: | Local Attach Session Id: 162 @
Session Type
Profiled JVM q Attach to an already running HotSpot/Openl9 IVM and profile it
Code Editer Attach Attach type:) Select from all local WMz Attach to remote VM Kuberne
E: Call Tree Recording c}'i? Launch a new JVM and profile it
Launch
Y Call Tree Filters
Local Attach
Trigger Settings When you start this session, a list of locally started JVMs is shown.
Mote that it is more efficient to run an integration wizard. [t will medify the start script se that the
; Databases profiling agent is loaded at startup.
Java File Path
._ HTTP, RPC & JEE
Mote: the classpath is used for the bytecode viewer only.
@ VM & Custom Probes +
© Class path
1:;3} Advanced Settings Source path @)
General Settings Copy Settings From “ Cancel

Attaching to local services

The attach APl in the JVM requires that the invoking process runs as the same user as the
process that you want to attach to, so the list of JVMs that are displayed by JProfiler is
limited to the current user. Processes launched by different users are mostly services. The
way to attach to services differs for Windows, Linux and Unix-based platforms.

On Windows, the attach dialog has a Show Services button that lists all locally running
services. JProfiler launches bridge executables to be able to attach to those processes
no matter what user they are running with.

20

@ IProfiler Start Center X

Start Center

o On this computer On another computer On a Kubernetes cluster

| 4

Open Container: | [[] Mone, showing top level processes Select Container

Session
Status: All detected HotSpot/Open)9 IWMs
‘ PID Process Mame

Quick 17804 ChUsershingo\AppData'Local\JetBrains\ Toolbox\apps\IDEA-U'\ch-01232.8660.185\jbr
Attach 18228 org.jetbrains jps.crndline.Launcher C:/Users/ingo/AppData/Local/letBrains/Toolbox/apps/IDEA-...
21712 org.jetbrains.kotlin.daemon.KetlinCompileDaemon --daemon-runFilesPath ChUsers\ingo\AppD...
[® il 22236 org.gradle.wrapper.GradleWrapperMain --daemon screenshotsLightEn
25664 org.jetbrains.idea.maven.server.RemoteMavenServer36
Mew 26084 org.jetbrains.kotlin.daemon.KotlinCompileDaemen --daemon-runFilesPath Ch\Users\inge\AppD...
Session 27736 C:\Users\ingo\AppData\Local\JetBrains\ Toolbox\ bintjre
28888 org.gradle.launcher.daemon.bootstrap.GradleDaemon 8.3
Open
Snapshots
Legend: Profiling agent loaded JProfiler GUI connected Offline mode JFR running
Start Heap Dump Only Start JFR Close

On Linux, JProfiler supports switching the user directly in the Ul through PolicyKit that is
part of most Linux distributions. By clicking Switch user in the attach dialog, you can enter
a different user name and authenticate with the system password dialog.

Start Center

D On this computer On another computer On a Kubemnetes cluster

r
Open leer: s Current user Switch User I
Session
Container: | [l Mone, showing top level processes Select Container
‘ Status: All detected HotSpot/Open9 WMs
E;:E: PID Process Mame
17804 ChUsershingo\AppDatatLocal\JetBrains\Toolbox\apps\IDEA-UNch-00232.8660.185\ jbr
o= 18228 org.jetbrains jps.cmdline.Launcher C:/Users/ingo/AppData/Local/JetBrains/Toolbox/apps/IDEA-...
21712 org.jetbrains kotlin.daemon.KotlinCompileDaemon --daemen-runFilesPath C:\Users\ingo\AppD...
New 22236 org.gradle.wrapper.GradleWrapperMain --daemon screenshotsLightEn
Session 25664 org.jetbrains.idea. maven.server.RemoteMavenServer36

On Unix-based platforms including macOS, you can execute the command line tool
i penabl e as a different user with su or sudo, depending on your Unix variant or Linux
distribution. On macOS and Debian-based Linux distributions like Ubuntu, sudo is used.

With sudo, call

sudo -u userNane jpenabl e

with su, the required command line is

su user Nane -c jpenabl e

j penabl e will let you select JVMs and tell you the port on which the profiling agent is
listening. After that you can either connect with a local session from the JProfiler Ul or an
SSH connection that directly connects the port given by jpenable.

21

Attaching to JVMs on remote machines

The most demanding setup for profiling is remote profiling - the JProfiler GUI runs on your
local machine and the profiled JVM on another machine. For a setup where you pass the
-agentpath VM parameter to the profiled JVM, you have to install JProfiler on the remote
machine and set up a remote session on your local machine. With the remote attach
functionality in JProfiler, no such modifications are required. You just need SSH credentials
to log into the remote machine.

The SSH connection enables JProfiler to upload the agent package that was discussed in
the "Installing JProfiler" [p. 8] help topic and execute the contained command line tools
on the remote machine. You don't need SSH to be set up on your local machine, JProfiler
ships with its own implementation. In the most straightforward setup you just define host,
user name and authentication.

With an SSH connection, JProfiler can perform an automatic discovery of running JVMs or
connect to a specific port on which a profiling agent is already listening. For the latter
case, you can usej penabl e orj pi nt egr at e on the remote machine as described above
and prepare a special JVM for profiling. Then, the SSH remote attach can be configured
to directly connect to the configured profiling port.

© Edit 55H Tunnel X

1. Tunnel mode Configure the SSH host

2. Configure S5H host

3. 55H options IProfiler will tunnel its connection to the profiling agent through the 55H connection
configured below.

User name: build
Host: demo
SSH port: 22 Default
Authentication: Password
© Private Key | C\Users\ingo'.sshiid_rsa

Discover running JWMs and attach to selected process @)
I:'_': Manually specify profiling port IQ

Profiling port: | 31775 Default

4 Back Next b Finish Cancel

Automatic discovery will list all JVMs on the remote machine that have been started as
the SSH login user. In most cases, this will not be the user that has started the service that
you would like to profile. Because users that start services usually are not allowed for SSH
connections, JProfiler adds a Switch User hyperlink that lets you use sudo or su to switch
to that user.

22

@ Attach To Running JVM X

Remote user: e root (via sudo)

Remote container: | [l Mone, showing top level processes Select Container
Status: Not profiled -

PID Process Name

788 installdj.com.gjt.license.Service start

793 Just/share/jetty/start jar jetty.state= var/lib/jettyd/jetty.state jetty-started xml

799 installd).com.perfino.server.ServerMain_perfino_service start

904 org.apache.catalina.startup.Bootstrap start

1218 install4j.com.perfino.server.ServerMain_perfino_service start

1233 installdj.com.gjt.demo.server.PerfinoDemoServerStarter_demo_service start

1481 standalone_demo_service
Legend: Profiling agent loaded JProfiler GUI connected Offline mode JFR. running

Cancel

In complex network topologies, you sometimes cannot connect directly to the remote
machine. In that case, you can tell JProfiler to connect with a multi-hop SSH tunnel in the

GUI. At the end of the SSH tunnel you can make one direct network connection, usually to
"127.0.0.1.

@ Edit 55H Tunnel

1. Tunnel mode
2. Configure S5H tunnel
3. 55H options S5H tunnel steps:

Configure the SSH tunnel

55H to gateway.mycorp.com:22 [private key CA\Users\ingo\.ssh\id_rsa] E‘}
S5H to demo:22 [private key C:\Users\ingo\.ssh\id_rsa] x
User name: build

Host: demo

S5H port: 22 Default

Authentication: Password

O Private Key ~ C:\Users\ingo'.sshiid_rsa

After exiting from the 5SH tunnel, connect to: | 127.0.0.1
© Discover running IVMs and attach to selected process €

Manually specify profiling port (7]
4 Back Next P Finish Cancel

HPROF snapshots can only be taken for JVMs that were started with the SSH login user.
This is because HPROF snapshots require an intermediate file that is written with the access
rights of the user that has started the JVM. For security reasons, it is not possible to transfer

file rights to the SSH login user for download. No such restriction exists for full profiling
sessions.

Attaching to JVMs running in Docker containers

Docker containers usually do not have SSH servers installed, and while you can use jpenable

in a Docker container, the profiling port will not be accessible from the outside unless you
have specified it in your Docker file.

In JProfiler, you can attach to a JVM running in a local Docker Desktop installation in
Windows or macOS by selecting the Docker container in the quick attach dialog. By default,
JProfiler detects the path to the docker executable automatically. Alternatively, you can
configure it on the "External tools" tab of the general settings dialog.

23

@ IProfiler Start Center »

Start Center

O On this computer On another computer On a Kubernetes cluster
|
Open I’:Dntainer: [l None, showing top level processes Select Container I
Session
Status: All detected HotSpot/Open)9 IWMs ~ Show Services
‘ PID Process Mame
Quick 17804 ChUsershingo\AppData'Local\JetBrains\ Toolbox\apps\IDEA-U'\ch-01232.8660.185\jbr
Attach 18228 org.jetbrains jps.crndline.Launcher C:/Users/ingo/AppData/Local/letBrains/Toolbox/apps/IDEA-...
21712 org.jetbrains.kotlin.daemon.KetlinCompileDaemon --daemon-runFilesPath ChUsers\ingo\AppD...
[® il 22236 org.gradle.wrapper.GradleWrapperMain --daemon screenshotsLightEn
25664 org.jetbrains.idea.maven.server.RemoteMavenServer36
Mew 26084 org.jetbrains.kotlin.daemon.KotlinCompileDaemen --daemon-runFilesPath Ch\Users\inge\AppD...
Session 27736 C:\Users\ingo\AppData\Local\JetBrains\ Toolbox\ bintjre
28888 org.gradle.launcher.daemon.bootstrap.GradleDaemon 8.3
Open
Snapshots
Legend: Profiling agent loaded JProfiler GUI connected Offline mode JFR running
Start Heap Dump Only Start JFR Close

After you select the container, all JVMs that run inside the Docker container will be shown.
When you select a JVM, JProfiler will use Docker commands to automatically install the

profiling agent in the selected container, prepare the JVM for profiling and tunnel the
profiling protocol to the outside.

For remote Docker installations, you can use the SSH remote attach functionality and then
select a Docker container on the remote machine. If the login user is not in the docker
group, you can first switch the user as described above.

€ Attach To Running JVM X

Remote user: e root (via sudo)

Remote container: m Mone, showing top level processes Select Container

Status: Not profiled -

FID Process Name

788 install4j.com.gjt.license.Service start

793 Sust/share/jettyd/start jar jetty state=/var/lib/jetty/jetty.state jetty-started xml

799 installdj.com.perfino.server.ServerMain_perfino_service start

a04 org.apache.catalina.startup Bootstrap start

1218 installd).com.perfino.server.ServerMain_perfino_service start

1233 install4).com.gjt.demo.server.PerfinoDemoServerStarter_demo_service start

1491 standalone_demo_service

Legend: Profiling agent loaded IProfiler GUI connected Offline mode JFR running
Start Heap Dump Only Start JFR Cancel

With the Select container hyperlink in the remote attach dialog you can choose a running
Docker container and show all JVMs that are running in it.

Attaching to JVMs running on Kubernetes clusters

To profile a JVM that is running on a Kubernetes cluster, JProfiler uses the kubect|

command line tool, both for discovering pods and containers, as well as to connect to a
container, list its JVMs and finally to connect to a selected JVM.

The kubect | command line tool may be available on your local computer or alternatively
on a remote machine to which you have SSH access. JProfiler directly supports both

24

scenarios. For local installations, JProfiler will try to detect the path to kubect | automatically,
but you can configure an explicit path on the "External tools” tab of the general settings
dialog.

@ JProfiler Start Center X

Start Center

On this computer On another computer) On a Kubernetes cluster

r

Open Where is kubectl located?
Session) kubectl is on this computer
‘ kubectl is on ancther computer
Quick

Attach

O

New
Session

Open

Snapshots

JProfiler lists all detected containers in a tree with three levels. At the top are namespace
nodes that contain child nodes with the detected pods. The leaf nodes are the containers
themselves and one of them has to be chosen to proceed to the selection of a running
JVM.

@ Select Remote Container *
Opticns for kubectl: | Mone Change

Remember across restarts O

default [name
openjdk-app d]
openjdk-app

Filter:

Cancel

kubect| may require additional command line options for authentication in order to be
able to connect to the Kubernetes cluster. These options can be entered at the top of the
container selection dialog. Because these options may be sensitive information, they are
only saved to disk if you explicitly select the checkbox to remember them across restarts.
Deselecting this checkbox will clear any previously saved information immediately.

25

Setting the display name of running JVMs

In the JVM selection table, the displayed process name is the main class of the profiled
JVM together with its arguments. For launchers generated by exe4j or install4j, the
executable name is displayed.

If you wish to set the displayed name yourself, for example, because you have several
processes with the same main class that would otherwise be undistinguishable, you can
set the VM parameter - Dj prof i | er. di spl ayName=[nane] . If the name contains spaces,
use single quotes: - Dj profi | er. di spl ayNane=" My name with spaces' and quote the
entire VM parameter with double quotes if necessary. In addition to -Dj profiler.
di spl ayNane JProfiler also recognizes - Dvi sual vm di spl ay. nane.

26

Recording Data

The main purpose of a profiler is to record runtime data from various sources that is useful
for solving common problems. The principal problem with this task is that a running JVM
generates such data at an enormous rate. If the profiler always recorded all types of dataq,
it would create an unacceptable overhead or quickly use up all available memory. Also,
you often want to record data around a particular use case and not see any unrelated
activity.

This is why JProfiler offers fine-grained mechanisms for controlling the recording of
information that you are actually interested in.

Scalar values and telemetries

From a profiler's viewpoint, the least problematic form of data is scalar values, for example,
the number of active threads or the number of open JDBC connections. JProfiler can
sample such values with a fixed macroscopic frequency - usually once per second - and
show you the evolution over time. In JProfiler, views that show such data are called
telemetries [p. 45]. Most telemetries are always recorded because the overhead of the
measurement and the memory consumption are small. If data is recorded for along time,
older data points are consolidated so that memory consumption does not grow linearly
with time.

|
&
’ Telernetries 010 0:20 :30 0:40 Dt
50
Overview 4 } I I
Memeory } I I
Recorded Objects 40 \ | |
Recorded Throughput
GC Activity 10]
Classes
Threads 0:17.1 [Jun 21, 2023 3:23:37 PM]
20] B Runnable threads: 1
CPU Lozd 4 mm Blocked threads: 1
12] 3 Threads in Net 1/0: 2
10 = Waiting threads: 10
‘i:l- Live Memory] e W Total number of threads: 14
1 ‘L .

.
ﬁ Heap Walker

== Runnable threads: 0 ™M Blocked threads: 0 3 ThreadsinNet/Q: 9 =2 7% & | 5)_ '|
|

There are also parametrized telemetries, such as the number of instances for each class.
The extra dimension makes a permanent chronological recording unsustainable. You can
tell JProfiler to record telemetries of the instance counts of a number of selected classes,
but not of each and every class.

27

” Telernetries Objects: All objects

Show: © jeva.awt.geom.GeneralPath v
liveMemory a lrin prrrrrrra Jrorrrrra e frrrrrroa v
i':'l B 4 1:00 170 1:20 1:30 1:40
All Objects 5000
Recorded Objects] /
Allocation Call Tree 4,000
Allocation Hot Spots]
Class Tracker 3,000]
a]
'ﬁ Heap Walker q
2000 7 1102 [Jun 21, 2023 5:22:16 PM] T
] ™ = Class java.aut.geom.GeneralPath: 1,812
CPU Views 4
1,000 /\\/ i ‘
- - | |
Threads] | I
- | [
r? [T S s B Class java.awt.geom.GeneralPath: 4,439 /@ /@)"'l

To continue the previous example, JProfiler is able to show you the instance counts of all
classes, but without the chronological information. This is the "All objects” view, and it
shows each class as a row in a table. The frequency for updating the view is lower than
once per second and may be adjusted automatically depending on how much overhead
the measurement causes. Determining the instance counts of all classes is relatively
expensive and takes longer the more objects are on the heap. JProfiler limits the update
frequency of the "All objects” view so that the overhead of the measurement never exceeds
10% over time in extreme cases. You can freeze the views to temporarily stop recording.
Also, if the view is not active, data will not be recorded and there is no associated overhead.

’ Telernetries Aggregation level: | @ Classes >
MName Instance Count Size

N Jjava.awt.Rectangle I 50,265 (10 %) 1,608 kB
-’:’. L java.util. HashMapShMode I 54 (7 %) 1,201 kB
java.security. AccessControlContext [N :: 479 (6 %) 1,339 kB
All Objects sun javald.pipe.Region I 2012 (4 %) 936 kB
Jjava.awt.geom.AffineTransform I 0,030 (4 %) 1,506 kB
Recorded Objects charl] I 17,528 (3 %) 1,062 kB
e P T float[] I 5,145 (3 %) 1,225 kB
sun java2d.d3d.D3D5urfaceDatz5D... I 15,622 (3 %) 312 kB
Allocation Hot Spots int[] I 15,0432 %) 30,237 kB
Jjava.lang.String I 12142 (2 %) 315 kB
Class Tracker sun java2d.SunGraphics2D I 12937 (2 %) 2,794 kB
javaang.Integer I 12,570 (2 %) 201 kB
.'ﬁ Heap Walker javalang.ref.WeakReference I 12,153 (2 %) 388 kB
sun javald.StateTrackableDelegate... I 11,745 (2 %) 187 kB
java.lang.Object]] I 5,593 (2 %) 412 kB
I CPU Views sun.awt.EventQueuelterm I 2777 (%) 210 kB
java.awt.EventQueue$d I C 21501 %) 197 kB
— Java.util ArrayList I 7964 (1 %) 191 kB
Threads Jjava.util. HashMap I 7925 (1 %) 380 kB
—a— imnam skl Lol mmibe L ar b A A€ nlbmen 7 7R2 01 901 210 LD
Total from 1,067 rows: 479,597 (100 %) 50,151 kB

r? Monitors & Locks ~| @

Some measurements capture enum-like values, such as the execution status a thread is
currently in. This kind of measurement can be displayed as a colored time line and
consumes d lot less memory than numerical telemetries. In the cases of thread statuses,
the "Thread history” view shows the timelines for all threads in the JVM. Just like for the
telemetries with numeric values, older values are consolidated and made more
coarse-grained to reduce memory consumption.

28

. Both alive and dead Sort by start time b hd
Telemetries

Threads O:I‘ID 0:!7_0 0:‘30
'l:l' Live Memary Timer-0 [main] | i i ;
AWT-EventQueue-0 [mazin] rer rme 11 no
i Image Fetcher 0 [rmain] ‘
ﬁ bicpiiales jprofiler_ius [main] | | | |
SwingWaorker-pool-3-thread-1[main] | |
I CPU Views main [main] ' !
Image Fetcher 0 [main]
- Timer-1 [main]
2= Threads Thresd-2 [main] 1. -
Compiler Processing Task [main] I
Thread History . P
Compiler Processing Task [main] |
Thread Manitor Image Fetcher 0 [main]
Thread Dumps
r? Monitors & Locks
; Databases == Runnable ™ Waiting ™= Blocked ™ Netl/O /@ /@ b

Allocation recording

If you are interested in instance counts that have been allocated during a certain time
interval, JProfiler has to track all allocations. Contrary to the "All objects” view where JProfiler
can iterate over all objects in the heap to get information on demand, tracking single
allocations requires that additional code has to be executed for each object allocation.
That makes it a very expensive measurement that can significantly change the runtime
characteristics of the profiled application, such as the performance hot spots, especially
if you allocate many objects. This is why allocation recording has to be started and stopped
explicitly.

Views that have an associated recording initially show an empty page with a recording
button. The same recording button is also found in the toolbar.

’ Telemetries press| g% |lto record 1/10 allocations [Change rate

‘!:l- Live Memory

All Objects
Recorded Objects
Allocation Call Tree
Allocation Hot Spots

Class Tracker

.
ﬁ Heap Walker

I CPU Views

Threads

r? Menitors & Locks

Allocation recording not only records the number of allocated instances, it also records
the allocation stack traces. Keeping stack traces for each allocated recording in memory
would create excessive overhead, so JProfiler cumulates recorded stack traces into a tree.
This also has the advantage that you can interpret the data much more easily. However,
the chronological aspect is lost and there is no way to extract certain time ranges from
the data.

29

” Telemetries
’i:!' Live Memaory

All Objects
Recorded Objects
Allocation Call Tree
Allocation Hot Spots

Class Tracker

b Heap Walker
I CPU Views

Recorded allocations: Live objects at 00:09, 1/10 allocations, java.lang.String Change

Aggregation level: (@ Methods v

69.0% - 12,408 bytes - 517 alloc. java.util.concurrent. ThreadP oolExecutor§Worker.run
T 24.6% - 4,416 bytes - 184 alloc, called from call site #3 (rermote VM #1)
G50 24.6% - 4,416 bytes - 124 alloc. com.ejt.demo.server.handlers.RmiHandlerlmpl remoteOp:
g0 mm 34.6% - 4416 bytes - 184 alloc. com.ejt.demo.serverhandlers.RmiHandlerlmpl.perforn
G40 34.6% - 4,416 bytes - 184 alloc, com.ejt.demo.server.handlers.RmiHandlerlmpl.mal
() 24,6% - 4,416 bytes - 184 alloc. com.ejt.demo server handlers.HandlerHelper.m
(D 24.6% - 4,416 bytes - 184 alloc. com.ejt.demo.server.handlers.HandlerHelpe
= 19.4% - 3,480 bytes - 143 allec. java.net. HttpURLConnection.getResponst
°| 2.8% - 504 bytes - 21 alloc. java.net.URL.<init>
0 1.2% - 216 bytes - 9 alloc. java.net.URL.openConnection
W 08x- 14 bytes - 6 alloc. java.io.BufferedReader.readLine
D 04%-72 bytes - 3 alloc. java.lang.StringBuilder toString
Dm124%-2232 bytes - 93 alloc. com.gjt.demo . server.handlers.DemoHttpServerS1.handle
@l 12.0% - 2,160 bytes - 90 alloc. com.ejt.mock.servlet. MockServlet.service
@ 10.1% - 1,824 bytes - 76 alloc. HTTP: /exchangeRate
_i 13,1% - 532 bytes - 23 allec. called from call site #4 (remote VM #1)
(@13.1% - 552 bytes - 23 alloc. com.gjt.demo.serverhandlers.DemoHttpServerS2.run
D 16%- 288 bytes - 12 alloc. com.sun.net.httpsenver.HttpExchange.sendRespon

- @ 1.3%-240 bytes - 10 allec. com.gjt.demo.server.handlers.DemoHttpServertof
E§" Threads 1.3% - 240 bytes - 10 alloc. javaang String.split
PR 01050 - 94 bter < 1 allne Gava lann Stinn calief
n .
1 Monitors & Locks 1 - o
.
Memory analysis

Allocation recording can only measure where objects are allocated and has no information
on the references between objects. Any memory analysis that requires references, such
as solving a memory leak, is done in the heap walker. The heap walker takes a snapshot
of the entire heap and analyzes it. This is an invasive operation that pauses the JVM -
potentially for a long time - and requires a large amount of memory.

A more lightweight operation is marking all objects on the heap before you start a use
case, so that you can find all newly allocated objects when you take a heap snapshot
later on.

The JVM has a special trigger for dumping the entire heap to afile that is named after the
old HPROF profiling agent. This is not related to the profiling interface and does not operate
under its constraints. For this reason, the HPROF heap dump is faster and uses less
resources. The downside is that you will not have a live connection to the JVM when viewing
the heap snapshot in the heap walker and that some features are not available.

@ No snapshot has been taken.

” Telemetries
‘!:I. Live Memory

For a maximum of features:

Press to take a JProfiler heap snapshot

Heap Walker X L R . .
» The snapshot is displayed in this frame and saved together with profiling information
from other views
CPU Views + For live profiling sessions, special features are available

= Integrations with other views require this snapshot type

Threads

Press * to indicate the starting point of a use case

Monitors & Locks
= All objects that are currently on the heap will be marked as old

» When you take the next heap snapshot, new and old objects will be listed separately

Databases in the header

» You can select new or old objects only, making it easy to track down memory leaks
HTTP, RPC & JEE

e W > u m g

For a minimum of overhead:

° JVM & Custom Probes
Y

Press| we | totake an HPROF heap snapshot

P
{:,1‘ MEBeans
= The snapshot is saved separately and displayed in another frame

= Mot all features are available

« Memory and CPU overhead in the profiled VM are lower than for the JProfiler

30

Method call recording

Measuring how long method calls take is an optional recording, just like allocation
recording. Method calls are cumulated into a tree, and there are various views that show
the recorded data from different perspectives, such as a call graph. The recording for this
type of data is called "CPU recording" in JProfiler.

. Thread status: Thread selection: Aggregation level:
Telemetries
B Runnable & All thread groups @ Methods
'l' Live M /
‘l' ive Memaory I."‘ o iper
. / A= erse
'ﬁ Heap Walker | B

i | j.pers
I CPU Views ,_+
E go2
Call Tree
Hot Spots /O estHandler R N c.e.d.shandlers.RequestHandler m lpers
/@ Il 5 executedpatuery -
Call Graph self, 3inv. 1,796 ms, 471 us self, 3 inv. \ 5
A~ Y
Outlier Detection W
= I\ A
Complexity Analysis W\ > 0
\\
Call Tracer =] \ \\
o
JavaScript XHR Vo
| >3
= p \ 167 1

Threads

Under particular circumstances it may be useful to see the chronological sequence of
method calls, especially if multiple threads are involved. For these special cases, JProfiler
offers the "Call tracer” view. That view has a separate recording type that is not tied to the
more general CPU recording. Note that the call tracer produces too much data to be useful
for solving performance problems, it is only intended for a specialized form of debugging.

1,560 traces, 0 hidden element
‘ Telemetries —

. RMITCP Connection(3)-192.168.18.1 (6 traces) +0ps
Jjava.util.concurrent (1 trace) +0ps
“:' Live Memory <] Jjava.util.concurrent. ThreadP oolExecutorSWor... (1 trace) +0ps
. @ runQ +0ps
com.gt.dema.server.handlers (5 traces) +0ps
-h Heap Walker O com.gjt.demo.server.handlers.RmiHandlerimpl (3 traces) +0ps
@ remoteOperation() +0ps
@R performWork() +0ps
I CPU Views (R makeHitpCalls() +0ps
[c] com.gjt.demo.server.handlers.HandlerHelper (2 traces) +0ps
T ; pool-1-thread-2 (19 traces) + 516 ps
I RMI TCP Connection(3)-192.168.19.1 (2 traces) +82ms571 ps
Hot Spots ; pool-1-thread-2 (18 traces) + 83 ms 880 ps
2 RMI TCP Connection(3)-192.168.19.1 (2 traces) + 159 ms 682 ps

Call Graph IT pool-1-thread-2

(18 traces) + 160 ms 993 ps

PRl TR e bieen £75 AN 4E0 40 4 NEN e T e

Outlier Detection com.gjt.dema.server.handlers.RmiHandler mpl.performWork()

com.ejt.demao.server.handlers.RmiHandlerlmpl.remoteQperation()

Complexity Analysis X g
java.util.concurrent. ThreadPoolEx ecutorSWaorker.run()

Call Tracer

JavaScript XHR

Threads

The call tracer depends on CPU recording and automatically switches it on if necessary.

Another specialized view that has its own recording is the "Complexity analysis”. It only
measures the execution times of selected methods and does not require CPU recording
to be enabled. Its additional data axis is a numeric value for the algorithmic complexity
of a method call that you can calculate with a script. In this way, you can measure how
the execution time of a method depends on its parameters.

31

’ Telernetries Complexity recording: | (@ sort.Comparisen.executeBubbleSort(int]], int) v

Curve fits: Cuadratic (F°=0,997) [best fit] A

’i:l' Live Memaory
L 1
ﬁ Heap Walker 20

I CPU Views
151

Call Tree

Hot Spots

Time in ms

Call Graph
Outlier Detection
Complexity Analysis

Call Tracer s

0 1,000 2,000 3,000 4,000 5,000

JavaScript XHR 0

Threads Complexity

Monitor recording

To analyze why threads are waiting or blocking, the corresponding events have to be
recorded. The rate of such events varies greatly. For a multi-threaded program where
threads frequently coordinate tasks or share common resources, there can be an enormous
number of such events. This is why such chronological data is not recorded by default.

When you switch on monitor recording, the “Locking history graph” and the "Monitor history”
view will start to show data.

’ Telemetries Curentevent: | [{ || > | 2l 27140 @rorrarrezn

Event of interest: no nodes of interest have been marked Recording thresholds: *

‘!:l- Live Memory

A
ﬁ Heap Walker
Thread-2 main] |- | Class: bezier BezierAnim§Dema
Monitor Id: &
I CPU Views
= Threads | AWT-EventQueue-0 [main] CIass‘jav_a lang.Object
—— Monitor Id: §
r? Monitors & Locks

mm Event mmm Event involving nodes of interest mm Currently displayed event ¢

Current Locking Graph
Current Monitors

Lecking History Graph

Monitor History

Menitor Usaae Statistics

To eliminate noise and reduce memory consumption, very short events are not recorded.
The view settings give you the possibility to adjust these thresholds.

32

Probe recording

@ Monitor History Graph View Settings

Recording Timeline

Recording Threshelds
Monitor blocking threshold:

Meonitor waiting threshold:

1,000 | %

100,000 | %

ps

us

All events with a duration that is lower than the configured

threshold will be discarded.

‘Warning: If you lower the thresholds, more data will be
recorded. Please note that the associated memery overhead

grows linearly in time,

Cancel

Probes show higher-level subsystems in the JVM, such as JDBC calls or file operations. By
default, no probes are recorded and you can toggle recording separately for each probe.
Some probes will add very little or no overhead, and some will create a considerable
amount of data, depending on what your application is doing and how the probes are

configured.
@ Session View Profiling Window Help Demo server - JProfiler - a X
2 % - o m —_—
@ H 2 £ 8 T C & 2 9| e
Start Save Session Start Stop Change iy Add View Stop Probe
Center ™ Gnapshot Setfings | Recordings Recordings Trscking | U CC Bockmark | P Setfing Help 1DBC
- e . i IDBC 3
E5 Threads A Time Line B Comnections " IDBC connections and exzcution of statements
r? Manitors & Locks Both open and closed + Sort by start time ¥ -
......... EEEEEREE R RN
Physical Cennections 0:10 0:20 0:20
; Databases Jjdboidermno://remote_host/test[ID 1] 1 i i
Jjdbc:derno://remote_haost/test [0 2] HE = Em LR |
JDBC Jjdboidernoy//remote_host/test[ID 3] L} (LB] HEN |
dbcd o te_host/test[ID 4] 1 1]
IPA/Hibernate dbedemar/jremalehost/test]ID] | |
Jjdbodermno://remote_host/test[ID 5] ..| INE = im |
MongeDB Jjdbc:derno://remote_host/test[ID 5] 1 |
Jjdbc:dema://remote_host/test[ID 7] L u
Cassandra |
Jjdboderno://remote_host/test[ID 2] 1 I| 1
HBase jdbe:demo://remote_host/test[ID 3] I 1
Jjdbodemo://remote_host/test[ID 1. [] L |
@ HTTP, RPC & JEE
o JVM & Custom Probes

din
Smms MBeans
R

= |dle ™= Statement execution ™ Prepared statement execution ™ Batch exe® /@

@ 3 active recordings

€D Auto-update2 s

VM #1 00:25

@ Profiling

ki

Just like allocation recording and method call recording, probe data is cumulated and
chronological information is discarded except for time lines and telemetries. However,
most probes also have an "Events” view that allows you to inspect the single events. This
adds a potentially large overhead and has a separate recording action. The status of that
the recording action is persistent, so that when you toggle probe recording, the associated
event recording is toggled as well if you have switched it on previously.

33

@ Session View Profiling Window Help Demo server - JProfiler - a X
] iy + =
@ H =2 8 8 P C % c @ @ |5
Start Save Session Start Stop Change Add View Stop Probe | Stop | Freex]
Center P Gnapshat Setfings | Recordings Recordings Trscking | U" CC Bockmark | P Setfings Help 1DBC Events | View
- JDBC H
E5 Threads ‘eaks B Telemetrics Events " IDBC connections and execution of statements
{? Monitors & Locks All types b Filter in all text columns = | Cl- b
Start Time Event Type Duraticn Connecticn 1D Description Thread
Datab 0:01.628 [Jul... =3 Connectio.. Opsi jdbodemon/fre.. Servlet requ...
Fahases 0:01677 Jul..| _ Preparedst.] 192msli [SELECT*FROM..
0:02.317 [Jul... mmm Prepared st... 62,582 ps 1 INSERT INTQ CU... Serviet requ...
JDBC 0:02.437 [Jul... == Prepared st... 69,201 ps 1 INSERT INTO OR... Servlet requ...

§ 0:02.554 [Jul... = Prepared st... 82,797 ps 1 INSERT INTO OR... Servlet requ...
JBAkibamate 0:02.777 [Jul... =3 Connectio... Ops2 jdbcdemai/re. RMITCP Co...
MongoDE 0:02.777 [Jul... = Statement ... T75ms 2 SELECT iid, i.ava.. RMITCP Co..

0:02.782 [Jul... 3 Connectio... Ops3 jdbcdemoi/fre.. RMITCP Co..
Cassandra 0:02.782 [Jul... = Statement ... 933ms3 SELECTiid, i.ava... RMITCP Co..
0:04.405 [Jul... = Statement ... 922 ms 2 SELECT i.id, i.ava... RMITCP Co...
HBase NNd RIS THol M Statement 554 me 3 SFIFCTiid iava RMITOP
Total from 24 ... 6,840 ms
Q HTTP, RPC & JEE o Selection [m] Duration
Stack trace:
° JVM & Custom Probes javax.persistence TypedQuery.getResultlist()
com.gjt.demo.server.handlers. RequestHandler. executelpaQuery(javax. persistence. EntityManager)
r—Y com.ejt.demo.server.handlers. RequestHandler.makelpaCall()
MBeans
‘w com.ejt.demo.server.handlers.RequestHandler. performWork()
T ¢ @ 3 active recordings €D Auto-update2s VM #1 00:09 & Profilin
9 Lis 9

The JDBC probe has a third recording action for recording JDBC connection leaks. The
associated overhead with looking for connection leaks is only incurred if you are actually
trying to investigate such a problem. Just like the event recording action, the selection
state of the leak recording action is persistent.

€ Session View Profiling Window Help IDBC demao - JProfiler - a X
<+ 2 + o |
@ H 2 & 8 % © & o @ |2
Star 5 Save Session Start Stop Start amec | Aoe - Stop Probe Swp | Freez
Center " Snapshot Settings Recordings Recordings Tracking | Baokmark =7 JDBC Lesks | view
- . JDBC
/' Telemetries 4 1. Hot Spots i Connection Leaks » JDBC connections 2nd exscution of ftztements
. This view shows all virtual cennections that have been open for mere than 10 secends. Virtual cennections
":" Live Memaory are what you get frem cennection poels and block a physical connection until they are closed.
Connections of type "Unclosed collected” are definite leaks while "Unclosed” connections are strong
b Heap Walker candidates.
All types ¥ | Filterin all text columns v | i -
I CPU Views
Opened At Open Since Type Description Thread Class Name
- 008227 Jul 2] 13871 ms __Unclo. lidbchsgldbthsgl//L.. proxy2.$Proc..
Threads 0:15.880 [Jul 2 6,208 ms mm Unclo... jdbchsgldbthsgl/fl.. poel-1-threa... jdk.proxy2.SProx...

Menitors & Locks

; Databases Stack trace:

Javax.sql.DataSeurce.getConnection()
IDBC JjdbcJdbeTestWarker.call()
jdbcJdbeTestWorker.call()
java.util.concurrent. ThreadPoolExecutorSWorker.run()

n
1

JPA/Hibernate

MongeDE

4 @ 3 active recordings) Auto-update2 s VM #1 00:22 @ Profiling

Recording profiles

In many situations, you want to start or stop various recordings together with a single
click. It would be impractical to visit all the corresponding views and toggle the recording

34

buttons one by one. This is why JProfiler has recording profiles. Recording profiles can be

created by clicking on the Start Recordings button in the tool bar.

@ Session View Profiling Window Help Demo server - JProfiler - a X
2 %, - £ & —_— =
@ H 2|88 P ¢ % 2@ 9 B
Start Save Session Start Stop Change) Add View Show Stop
Center ™ Snapshot Setfings | Recordings [Recordings Trscking | U CC Bockmark | P Setfing HEP | gend CRU
1 JDBC and JNDI
‘ i] Allocations Aggregation level:
Telemetries — c - @ Methods =
I " Configure Recording Profiles
i file fil.concurrent.ThreadPoolExecutorSWorker.run
-‘:’. Live Memory winegr.demo.server.DemoServerS3.run
ventDispatchThread.run
B @l 2.6% - 226 ms - 1inv. com.ejt.deme server.gui.GuiDemoServer$151.run
'ﬁ Heap Walker

I CPU Views

Call Tree

Hot Spots

Call Graph
Outlier Detection

Complexity Analysis

Call Tracer
JavaScript XHR
Threads Ml)
T @ 3 active recordings € Auto-update5s VM #1 00:09 @ Profiling

Recording profiles define one particular combination of recordings that can be activated
atomically. JProfiler tries to give you a rough impression on the overhead that you create
by the selected recordings and tries to discourage problematic combinations. In particular,
allocation recording and CPU recording do not go well together because allocation
recording will distort the timings of CPU data significantly.

@ Configure Recording Profiles

X
Configured recording profiles:
&3 JDEC and INDI +
@ Allocations 7
CPU data all trace Complexity data
[Allocation call stacks Monitor recording Custern probes
Record database probes: [none] -
Record HTTP, RPC & JEE probes: [none] -
Record WM & custom probes: [none] -
Recording overhead: —e—
8
0 Help “ Cancel

You can activate recording profiles at any time while a session is running. Recording
profiles are not additive, they stop all recordings that are not included in the recording
profile. With the Stop Recordings button you stop all recordings no matter how they have

35

been activated. To check what recordings are currently active, hover the mouse over the
recordings label in the status bar.

]
Call Tree
Hot Spots
Call Graph
Outlier Detd The fellowing data is being recorded:
Complexity| I CPU data
A oBC
Call Tracer | S5 JNDI
JavaSeript You can start and stop recording with view-specific
— tool bar buttons or recording profiles.
Thread! \/ M7
T @ 3 active recerdings a7] Aute-update 5 s VM #1 00:10 4 Profiling

A recording profile can also be activated directly when you start profiling. The "Session
startup” dialog has an Initial recording profile drop-down. By default, no recording profile
is selected, but if you need data from the startup phase of the JVM, this is the place to
configure the required recordings.

@ Session Startup X

Settings
Call tree recording: Instrumentaticn, 1 exceptional method Edit
O For low-overhead CPU profiling, switch to sampling.
Call tree filters: 1 filter rule for method call recording Edit

O Profiled packages have been defined. If the overhead is too high, make your filters
more specific or switch to sampling.

Trigger settings: Mo active triggers Edit
Database probe settings: 5 enabled probes Edit
HTTP, RPC & JEE probe settings: | 7 enabled probes Edit
VM & custom probe settings: 5 enabled probes Edit

Startup And Exit

Initial recording profile: | JDBC and JNDI v Configure

VM exit action: Let the JW¥M exit and disconnect ¥ More -
Performance

Overhead:

The overhead is composed of the selected profiling settings and the selected recording profile.

Recording with triggers

Sometimes you want to start a recording when a particular condition occurs. JProfiler has
a system for defining triggers [p. 129] that execute a list of actions. The available trigger
actions also include changes to the active recordings.

For example, you could want to start a recording only when a particular method is executed.
In that case, you would go to the session settings dialog, activate the Trigger Settings tab
and define a method trigger for that method. For the action configuration, you have a
number of different recording actions available.

36

@ Choose an Action >

Available actions:

Record profiling data

\®] Start recording
@ Stop recording

u,[.ﬂ Start call tracer
\I_g Step call tracer
":.‘ Start monitor recerding
% Stop monitor recarding
6 Trigger heap dump
* Mark heap
& Trigger thread dump
';‘] Trigger moniter dump
Record probe data
2 start probe recording
e Step probe recording
E Start probe tracking
E Stop probe tracking

T Savesnapshots to disk

Description

OK Cancel

The "Start recording” action controls those recordings without any parameters. Usually,
when you stop and re-start a recording, all previously recorded data is cleared. For the

"CPU data” and "Allocation data” recordings, you also have the option to keep the previous
data and continue cumulating across multiple intervals.

@ Trigger Wizard - Method invocation X
1. Trigger type Configure actions for this trigger
2. Specify methods
3. Actions Configured actions:
4. Description .
5. Group D 1®) Start recording &
6. Finished Cpu data Reset data x
Allocation data eset data
Thread data
VM telemetry data

Complexity analysis

4 Back Next b Finish Cancel

Method triggers can be added conveniently in the call tree by using the "Add method
trigger” action in the context menu. If you already have a method trigger in the same
session, you can choose to add a method interception to an existing trigger.

37

Thread status: 0 Thread selection: Aggregation level:
== Runnable v | @8 All thread groups v | @ Methods ~
@ . 50.7% - 15,329 ms - 7 inv. java.util.concurrent. ThreadPoolExecutorSWorker.run

Q- 36.5% - 9,211 ms - 7 inv. com.gjt.demo.server.DemoServer$3.run
% - 3,701 ms - 4 inv, HTTP: /demo/viewd

@1 6.0% - 1,505 ms - 2 inv., HTTP: /demo/view2

@ 3.8%- 959 ms - 1 inv. HTTP: /demo/viewl

a‘ 2.7% - 690 ms - 1 inv. HTTP: /demo/view3

@ 1.4% - 346 ms - 1inv, com.ejt.dema.server.handlersJdbclobHandler.run
s.JmsHandler.onMessage

=% Show Call Graph dlers.JmsHandler.handleMessage
TF Show Threads nandlers.JmsHandler.performWork
andlers.JmsHandler.makeHttp Call

HI Add Method Trigger andlers.JrsHandler.makeRmiCall

[} @ msHandler$)msType.getDestination
(e Add As Exceptional Methad msHandler8lmsType.<clinit>

Q=< Split Methed with a Script msHandlerS)msTypevalues

G ° Intercept Method With Script Probe 1sHam:IIerSJmsT)rpe‘.getDuratiDn
[) . ~ ruestHandler.<clinit>

D2
@ o aServer§181.run
Sg Remove Selected Sub-Tree Delete

W Add Filter From Selection 3 - ®
By default, triggers are active when the JVM is started for profiling. There are two ways to
disable triggers at startup: You can disable them individually in the trigger configuration
or deselect the Enable triggers on startup check box in the session startup dialog. Durin
alive session, you can enable or disable all triggers by choosing Profiling-> EnablelDisable%
Triggers from the menu or clicking on the I trigger recording state icon in the status bar.

JavaScript XHR

Threads
T 4 D @ 3 active recordings @) Auto-update5s

Sometimes, you need to toggle trigger activation for groups of triggers at the same time.
This is possible by assigning the same group ID to the triggers of interest and invoking
Profiling->Enable Triggers Groups from the menu.

Recording with jpcontroller

JProfiler has a command line executable for controlling the recordings in any JVM that is
already being profiled. j pcontrol | er requires that the JProfiler MBean is published,
otherwise it will not be able to connect to the profiled JVM. This is only the case if the
profiling agent has already received profiling settings. Without profiling settings, the agent
would not know what to record exactly.

One of the following conditions has to apply:

* You have already connected to the JVM with a JProfiler GUI

+ The profiled JVM was started with an - agent pat h VM parameter that included both the
nowai t and the confi g parameters. In the integration wizards, this corresponds to the
Startup immediately mode and the Apply configuration at startup option in the Config
synchronization step.

« The JVM was prepared for profiling with the j penabl e executable and the -of f | i ne
parameter was specified. See the output of j penabl e - hel p for more information.

Specifically,j pcont r ol | er will not work if the profiled JVM was started only with the nowai t
flag. In the integration wizards, the Apply configuration when connecting with the JProfiler
GUI option on the Config synchronization step would configure such a parameter. For
more information, see the help topic on setting profiling settings at startup [p. 246].

38

jpcontroller presents you with a looping multi-level menu for all recordings and their
parameters. You can also save snapshots with it.

=

ingo@ubuntu: ~

ingo@ubuntu:~$ sudo -u tomcat8 jprofiler1@/bin/jpcontroller
Connecting to org.apache.catalina.startup.Bootstrap start [6125] ...
Starting JMX management agent ...

Connection established successfully.

Please select an operation:

Sstart recording [1]
Stop recording [2]

Enable triggers [3]
Disable triggers [4]

Heap dump [5]
Thread dump [6]
Add bookmark [7]
Save snapshot [8]
Quit [9]

|

Programmatic way to start recordings

Yet another way to start recording is through the API. In the profiled VM, you can call the
comjprofiler.api.controller.Controller class to start and stop recordings
programmatically. See the chapter on offline profiling [p. 129] for more information and
for how to get the artifact that includes the controller class.

If you want to control recordings in a different JVM, you can access the same MBean in
the profiled JVM that is also used by j pcont rol | er. Setting up programmatic usage of
the MBean is somewhat involved and requires quite a bit of ceremony, so JProfiler ships
with an example that you can reuse. Check the file api/sanpl es/ nbean/src/
MBeanPr ogr anmat i cAccessExanpl e. j ava. It records CPU data for 5 seconds in another
profiled JVM and saves a snapshot to disk.

39

Snapshots

Until now, we have only looked at live sessions where the JProfiler GUI obtains the data
from the profiling agent that is running inside the profiled JVM. JProfiler also supports
snapshots where all profiling data is written to a file. This can be of advantage in several
scenarios:

+ You record profiling data automatically, for example, as part of a test so that connecting
with a JProfiler GUI is not possible.

« You want to compare profiling data from different profiling sessions or look at older
recordings.

+ You want to share profiling data with somebody else.

Snapshots include data from all recordings, including heap snapshots. To save disk space,
snapshots are compressed, except for heap walker data which has to remain
uncompressed to allow for direct memory mapping.

Saving and opening snapshots in the JProfiler GUI

When you are profiling a live session, you can create snapshots with the Save Snapshot
tool bar button. JProfiler pulls all profiling data from the remote agent and saves it to a
local file with a ".jps" extension. You can save multiple such snapshots during the course
of a live session. They are not opened automatically and you can continue to profile.

@ Session View Profiling Window Help Animated Bezier Curve Demo - JProfiler - [m] X
- A A - 3 — —
I _‘ | | Ay !
Ls @ ' j EE s& o] > + 1 © o %
Start save | Session Start Stop Start _ Add View Show Stop Probe
Center % | snapshot |setings | Recordings Recordings Trscking | " °C Bogkmark P Getings HElP | gend | HTTP Server
HTTP Server @
; 1, Hot Spots Telemetries Events Tracker
’ Telemetries - P L B Incoming HTTP Requests
“| Thread status: 0 Thread selection: Aggregation level:
Live Memoi
l’i Y EX All states v 88 Al thread groups A @ Methods ~
2 . . Hot Spot Time Average Time Events

Saved snapshots are added automatically to the File->Recent Snapshots menu, so you
can conveniently open a snapshot that you have just saved. When opening a snapshot
while the live session is still running, you have a choice of terminating the live session or
opening another JProfiler window.

@ Iprofiler X

The Current Window Is In Use

How do you wish to proceed?
= Open a new window

% Use this window
If you select this option, the currently active profiling session
will be stopped.

Cancel

When you use the snapshot comparison feature in JProfiler, the list of snapshots is
populated with all the snapshots that you have saved for the current live session. This
makes it easy to compare different use cases.

40

In general, you can open snapshots by invoking Session->Open Snapshot from the main
menu or by double-clicking the snapshot file in the file manager. JProfiler's IDE integrations
also support opening JProfiler snapshots through the generic Open File actions in the IDEs
themselves. In that case, you get source code navigation into the IDE instead of the built-in

T File View Window Help
\ v \ \
d - @

Memary cpu Telemetry Probe

Available Snapshots |]2

testl.jps
2023-08-25 11:06:39
test2.jps
2023-08-25 11:06:41
test3.jps
2023-08-25 11:06:43

B
Start
Center

Snapshot Comparisen - IProfiler -

O

Help

O Please select snapshots on the left and create a comparisen

source code viewer.

When you open a snapshot, all the recording actions are disabled and only views with
recorded data are available. To discover what kind of data has been recorded, hover the

mouse over the recording label in the status bar.

Call Graph

Outlier Detection
Complexity Analysis
Call Tracer

JavaScript XHR

Threads

Menitors & Locks

Databases

HTTP, RPC & JEE

) @ W =D

The following data has been recorded:

B crudata
@ JpBC
9 HTTP Server

Only views related to these recordings are available,

W
D 3 recordings

Aug 25, 2023, 11:06:39 AM

VM #1

00:09

v @

I Snapshet

Profiling short-lived programs

For a live session, all profiling data resides in the process of the profiled JVM. So when the
profiled JVM is terminated, the profiling session in JProfiler is closed as well. To continue
profiling when a JVM exits, you have two options, both of which can be activated in the
session startup dialog.

41

@ Session Startup X

Settings

Call tree recording: Instrumentation Edit
0 For low-overhead CPU profiling, switch to sampling.

Call tree filters: 1 filter rule for method call recording Edit
@ Profiled packages have been defined. If the overhead is too high, make your filters

more specific or switch to sampling,

Trigger settings: Mo active triggers Edit

Database probe settings: 5 enabled probes Edit

HTTR, RPC & JEE probe settings: | 7 enabled probes Edit

JVM &t custom probe settings: 5 enabled probes Edit

Startup And Exit

Initial recording profile: | [no recordings] v Configure

VM exit action: Let the JVM exit and disconnect More -

Let the JWM exit and disconnect
Performance Keep the VM alive for profiling
Overhead; = Save and immediately open a snapshot

The overhead is composed of the selected profiling settings and the selected recording profile.

+ You can prevent the JVM from actually exiting and keep it artificially alive as long as
the JProfiler GUI is connected. This may be undesirable when you are profiling a test
case from the IDE and want to see the status and total time in the test console of the
IDE.

« You can ask JProfiler to save a snapshot when the JVM terminates and switch to it
immediately. The snapshot is temporary and will be discarded when you close the
session unless you use the Save Snapshot action first.

Saving snapshots with triggers

The final result of an automated profiling session is always a snapshot or a series of
snapshots. In triggers, you can add a "Save a snapshot’ action that saves the snapshot
on the machine where the profiled JVM is running. When the trigger runs during a live
session, the snapshot is also saved on the remote machine and may not include parts of
the data that have already been transmitted to the JProfiler GUI.

There are two basic strategies for saving snapshots with triggers:

+ For test cases, start recording in the "JVM startup” trigger and add a "JVM exit" trigger
to save the snapshot when the JVM is terminated.

+ For exceptional conditions like the "CPU load threshold” trigger or for periodic profiling
with a "Timer trigger’, save the snapshot after recording some data with a "Sleep” action
in between.

42

@ Trigger Wizard - CPU load threshold X

1. Trigger type Configure actions for this trigger
2, Threshold
3. Actions Configured actions:
4, Description [~ |
5. Group 1D A®) Start recording +
6. Finished v Sleep x
@ Stop recording
H Save snapshot
Snapshot file: | test
Add a unique number to the snapshot name
Note: If the JProfiler GUl is connected, the saved snapshot will only have
partial content.
N
4 Back Next b Finish Cancel
HPROF heap snapshots

In situations where taking a heap snapshot produces too much overhead or consumes
too much memory, you can use the HPROF heap snapshots that the JVM offers as a built-in
feature. Because the profiling agent is not required for this operation, this is interesting for
analyzing memory problems in JVMs that are running in production.

With JProfiler, there are three ways to obtain such snapshots:

 For live sessions, the JProfiler GUI offers an action in the main menu to trigger an HPROF
heap dump.

€ Session View m Window Help Animated Bezier Curve Demo - JProfiler - [m] x
> @ H @ Start Recordfngs 3 1+ 0 T %
Stant - save 45 Stop Recordings F8 bpor Hap SOW | SiopProbe | dsTe
Centes Snapsh "I Start Async And Remote Request Tracking Ctrl+Fg 2tk SELGE lagedl | TEeE -
m Disable Triggers And Custom Probes F&
. . - HTTP Server ﬁ
” Telemetries Enable Trigger Groups Shift+F6 |Events B Tracker Incaming HTTP Requesss
| = Save HPROF Snapshot Ctrl+Shift+5
"' * Motk 1 Aggregation level:
'l' Live Memary ark Heap v @ Methods =
[Run Garbage Collector Shift+F4
i Heap Walker l."+ Add Bookmark F2 Time Average Time Events
Edit Bookmarks Shift+F3
I CPU Views Show Glebal Filters for Methed Call Recording

« JProfiler has a special "Out of memory exception” trigger to save an HPROF snapshot
when an Qut O Menor yEr r or is thrown. This corresponds to the VM parameter W

- XX: +HeapDunpOnQut OF Menor yEr r or

that is supported by HotSpot JVMs.

M http://docs.oracle.com/javase/9/troubleshoot/command-line-optionsl.htm#JSTGD592

43

http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

@ Trigger Wizard - Out of memory exception X

1. Trigger type Configure actions for this trigger
2. Actions

3. Descriptien Configured actions:

4, Group 1D

5. Finished lr Il Create an HPROF/PHD heap dump &

4 Back Next b Finish Cancel

* The jmap executable in the JDK @)

running JVM.

can be used to extract an HPROF heap dump from a

JProfiler includes the command line tool j pdunp that is more versatile than jmap. It lets
you select a process, can connect to processes running as a service on Windows, has
no problems with mixed 32-bit/64-bit JVMs and auto-numbers HPROF snapshot files.
Execute it with the - hel p option for more information.

JDK Flight Recorder snapshots

JProfile fully supports opening snapshots saved by Java Flight Recorder (JFR). The Ul is
notably different in this case and is adjusted to the capabilities of JFR. See the JFR help
topics Tp. 219] for more details.

(2) https://docs.oracle.com/en/java/javase/11/tools/jmap.
htmI#GUID-D2340719-82BA-4077-BOF3-2803269B7F41

44

https://docs.oracle.com/en/java/javase/11/tools/jmap.html#GUID-D2340719-82BA-4077-B0F3-2803269B7F41

Telemetries

One aspect of profiling is monitoring scalar measurements over time, for example, the
used heap size. In JProfiler, such graphs are called telemetries. Observing telemetries gives
you a better understanding of the profiled software, allows you to correlate important
events over different measurements and may prompt you to perform a deeper analysis
with other views in JProfiler if you notice unexpected behavior.

Standard telemetries

In the "Telemetries” section of the JProfiler Ul, a number of telemetries are recorded by
default. For interactive sessions, they are always enabled. Some telemetries require that
a special type of data is recorded. In that case, a recording action will be shown in the
telemetry.

To compare multiple telemetries on the same time axis, the overview shows multiple
small-scale telemetries on top of each other with a configurable row height. Clicking on
the telemetry title activates the full telemetry view. The default order of the telemetries in
the overview may not be suitable, for example, because you want to correlate selected
telemetries side by side. In that case you can reorder them with drag and drop in the
overview.

i A
Telemetries

Overview

0:15.1 [Jul 25, 2023 11:58:16 AM]
Memarny

Memory = Freesize 1672 ME
Recorded Objects ome . Used size: 10.93 MB
Recorded Throughput mm Committed sizer 27.65 MB

Recorded Objects 2
GC Activity 1/10 allocations -
Classes -
z
Threads Recorded Throughput | o
A

0 allocations

CPU Load

1%
Custom Telemetries
GC Activity
‘i:!. Live Memaory 0%

4000
a
ﬁ Heap Walker Claseee

Row height: —@ /@]

The full view shows a legend with current values and may have more options than what
is visible in the overview. For example, the "Memory" telemetry allows you to select single
memory pools.

/- Telernetries Memory pool: | Heap A

+ I

Overview — G1 Eden Space
70ME 4+— [~ G10Ild Gen
Memory] — G1 Survivor Space
Recorded Objects 50 ME 4— Non-Heap
] — CedeHeap 'non-nmethods’
Eecoiediihioughput] [~ CodeHeap 'nen-profiled nmethods'
GC Activity 30MB _:_ [~ CedeHeap 'profiled nmethods'
4 — Compressed Class Space
Classes 40MB — ' Metaspace (non-class)
] T
Threads] I }
] | |
CPU Load 30ME I I
Custom Telemetries 20 ME _:
'I:I Live Memary]
. 10ME 5
b Heap Walker
B Freesize: 17.9ME ™ Usedsize: 975ME mm Committed size: 27.65MB =y /@)_ _|
|

JProfiler has a large number of probes [p. 105] that record events from high-level systems
in the JVM and important frameworks. Probes have telemetries that are displayed in the
corresponding probe views. To compare these telemetries to the system telemetries, you
can add selected probe telemetries to the top-level telemetries section. From the toolbar,
choose * Add telemetries->Probe Telemetry and select one or more probe telemetries.

@ Select Probe Telemetry X

Available telemetries:

E Databases
M joec
k Awerage Statement Execution Time
| Recorded Open Connections
&% JPA/Hibernate
E MengeDB
E Cassandra
E HBase
@ HTTR, RPC & JEE
9 HTTP Server
9 HTTP Client
a Web Services
wmr JNDI
=" IMS
ligh riv
Iegh grPC
© VM & Custom Probes
O Class Loaders
Exceptions
3 Sockets

Filter: | i

Each added probe telemetry gets its own view in the telemetry section and is also displayed
in the overview.

46

10 20 030 040 0:50
/. Telemetries

40

Overview

Memarny 4

Recorded Objects 1 (\
30 '

Recorded Throughput b

GC Activity

Classes 1 A
» Nl

Threads E V
CPU Load
JDBC: Executed Statements 7

'I:I' Live Memaory

b Heap Walker
|

B Executed Statements: 22 /Q |- -|

Once a probe telemetry has been added, data is only shown if probe data has been
recorded. If not, the telemetry description contains an inline button to start recording.

Q- -
Telemetries
p

T B T B A I B I B A U A B A A B A
10 0:20 0:30
Overview

Memary

Recorded Objects

Recorded Throughput CPU Load
GC Activity 0% PR

Classes 0

Threads
JDBC: Executed Statements

CPU Load
0
JDBC: Executed Statements

z

MongoDB: Executed Operati...

'I:I' Live Memaory

b Heap Walker Row height: ———@ e ko

MongoDB: Executed Operati... e.

]

The context menu for probe telemetries contains the recording actions as well an action
to show the corresponding probe view.

47

i Qb Filte v
Telemetries
......... TR I B I B B B S A B

Overview

Memarny

Recorded Objects

Recorded Throughput CPU Load
GC Activity 0% //\

Classes 40

Threads
JDBC: Executed Statements

CPU Load

JDBC: Executed Statements

MengeDB: Executed Operati...

MongoDB: Executed Operati.. show MongoDB Probe View

‘ Live Memory =) Show Full Telemetry
: &2 Record MongoDB
Row heightt ——@
i e ? x Remove Telemetry :@ F

Similar to the probe views, the VM telemetries for the recorded objects depend on memory
recording and also have a recording button and a similar context menu.

Finally, there are "tracking” telemetries that monitor a scalar value that is selected in
another view. For example, the class tracker view allows you to select a class and monitor
its instance count over time. Also, each probe has a "Tracker" view where selected hot
spots or control objects are monitored.

- JDBC E
£ Threads ‘e Events B Tracker JDBC connections end execution of statements
ﬁ Monitors & Locks Show: | [Event durations] jdbc:hsqldbhsgl//localhost:9012/.., o1 - + x
1
A [T e frrrrrr frrrrrrr v |
0:10 0:20 0:30 0:40 0:2
; Databases
2s
JDBC
JPA/Hibernate
MongeDE
Cassandra . ° 0:13.1 [Jul 25, 2023 11:58:14 AM]
< |
HBase B Statement execution: Os
mm [repared statement execution: Os
Q HTTP, RPC & JEE 1 W Batch execution: 1.08s
mm Total: 1.08s
o VM & Custom Probes
- B Stotement execution: 0.55 WM Prepared statement execution: 0015 M Bair 5 b

Bookmarks

JProfiler maintains a list of bookmarks that are shown in all telemetries. In an interactive
session, you can add a bookmark at the current time by clicking on the Add Bookmark
tool bar button, or by using the Add Bookmark Here feature in the context menu.

48

@ H 2 82 8 % C|l%|t 3 0 + F

Start Save Session Start Stop Start Add View Add Configure

St Run GC Export Hel)
Center P Snapshot Seings | Recordings Recordings Tracking | Bookmark por P | Telemety Telemeties

N . . . v ‘
' Telernetries 0:10 0:20 0:30 0:40 o
% | \ \
Overview ‘ ‘ ‘
Memary ‘ ‘ ‘
Recorded Objects ‘ ‘ ‘
Recorded Throughput
GC Activity
I'?' Add Bookmark Here I
Classes f
10 4
Threads
CPU Load Graph Type »
Custom Telemetries 1 Zoom »
i 1 T Export View Ctrl+R
’!:I' Live Memaory
4 View Settings Ctrl+T
b Heap Walker o
B Runnable threads: 0 @ Blocked threads: 0 T3 Threadsin Met I/0: & 03 '+ /@ b
|
@ 2 active recordings € Auto-update2 s VM #1 00:36 @ Profiling

Bookmarks can not only be created manually, they are added automatically by the
recording actions to indicate the beginning and the end of a particular recording. With
trigger actions or with the controller API, you can add bookmarks programmatically.

Bookmarks have color, a line style and also a name that shows up in the tool tip. You can
edit existing bookmarks and change these properties.

@ Edit Bookmark X

Bockmark Properties

B2 A St opped JDBC recording
Color: © Default

Custem
Il o000

Draw dashed line

If right-clicking several bookmarks in a telemetry is too inconvenient, you can use the
Profiling->Edit Bookmarks action from the menu to get a list of bookmarks. This is also the
place where you can export bookmarks to HTML or CSV.

49

@ Edit Bookmarks X

Available bookmarks:

Bookmark
mm Unnamed bookmark
i Stopped JDEC recording
= Unnamed bockmark

0:12.991 [Jul 2
0:32.981 [,
0:37.991 [Jul 2

@ Hep ok |

Custom telemetries

There are two ways to add your own telemetries: Either you write a script in the JProfiler
Ul to supply a numeric value or you select a numeric MBean attribute.

To add a custom telemetry, click on the Configure Telemetries tool bar button that is visible
in the "Telemetries” section. In a script telemetry, you have access to all classes that are
configured in the classpath of the current JProfiler session. If a value is not available directly,
add a static method to your application that you can call in this script.

@ Settings Edit Search Code Help Edit X
2 o+ % @
$ B & P R & %
) B Show) - Modify Test
Copy e PIte |y Find Repisce | o Compik Help

Line caption: | System Load Average

Please enter an expression (no trailing semicolon) or a script (ends with a return statement) that consists
of regular Java code. The following parameters are available:

- com jprofiler.api.agent.ScriptContext scriptContesct

The expected return type is long
Telemetry script:

1 {long)ManagementFactory.getOperatingSystemM{Bean () .getSystemLoadAverage ()

The above example shows a call to a platform MBean. Graphing scalar values of MBeans
is more conveniently done with an MBean telemetry. Here, an MBean browser allows you
to select a suitable attribute. The attribute value must be numeric.

50

@ Select Numeric MBean Attribute X

v v
com.jprofiler.api.agent.mbean MName Value
com.sun.management HeapMemorylsage [java.lang.management.Memoryllsage]
Jjavalang 58720256

GarbageCollector [type] init 1073741824

MemoryManager [ty pe] max 17146314752

MemoryPool [type] used 14639176
] ClassLoading [type] MonHeapMemoryUsage [java.lang.management.Memonyllsage]

ObjectMame Jjavalangitype=Memory

,d} Compilation [type]

& Memory [type]

& OperatingSystem [bype]
,d} Runtime [type]

@ Threading [type)]

java.nio

ObjectPendingFinalizatio... 0
Verbose false

Jjava.utillogging

Jjdk.management.jfr

@ Hel Cancel
P

You can bundle several telemetry lines into a single telemetry. That's why the configuration
is split into two parts: the telemetry itself and the telemetry line. In the telemetry line, you
just edit the data source and the line caption, in the telemetry you can configure unit,
scale and stacking which apply to all contained lines.

In a stacked telemetry, the single telemetry lines are additive and an area graph can be
shown. The scale factor is useful to convert a value to a supported unit. For example, if the
data source reports kB, the problem is that there is no matching "kB" unit in JProfiler. If you
set the scale factor to -3, the values will be converted to bytes and by choosing "bytes”
as the unit for the telemetry, JProfiler will automatically display the appropriate aggregate
unit in the telemetry.

@ Configure Telemetries

Three types of telemetries are shown in the Telemetries section:
+ The set of standard JVM telemetries that is always shown
+ Probes telemetries that are only shown in the probe views by default, but can be added here as well
+ Custom telemetries from MBeans or scripts

Probe telemetries — " - —t = n P
@ Edit Custom Telemetry >

Heap Meman &
committeg Mame: Heap Memory Usage =
init [MBeal . bytes -

Scale (107-n): 0% @

Stack all lines in the telemetry and show an area graph

@ Help “ Cancel

0 Hel, Cancel
P

Custom telemetries are added at the end of the "Telemetries” section in the order in which
they are configured. To reorder them, drag them to the desired position in the overview.

51

......... R e
&
' Telernetries 0:10 0:20 0:30 0:40 0:

2GB

Overview

Memarny

Recorded Objects
Recorded Throughput

GC Activity

Classes
1GB

Threads
CPU Load

Heap Memory Usage

‘i:!. Live Memaory
.
ﬁ Heap Walker

= committed: 0.05GE e init: 1.07 GB /@)_ _|

Overhead considerations

At first sight, it would seem that telemetries consume memory linearly with time. However,
JProfiler consolidates older values and makes them progressively more coarse-grained
in order to limit the total amount of memory consumed per telemetry.

The CPU overhead of telemetries is limited by the fact that their values are only polled
once per second. For the standard telemetries, there is no additional overhead for this
data collection. For custom telemetries, the overhead is governed by the underlying script
or MBean.

52

CPU Profiling

When JProfiler measures the execution times of method calls together with their call stacks,
we call it "CPU profiling". This data is presented in a variety of ways. Depending on the
problem you are trying to solve, one or the other presentation will be most helpful. CPU
data is not recorded by default, you have to switch on CPU recording [p. 27] to capture
interesting use cases.

Call tree

Keeping track of all method calls and their call stacks would consume a considerable
amount of memory and could only be kept up for a short time until allmemory is exhausted.
Also, it is not easy to intuitively grasp the number of method calls in a busy JVM. Usually,
that number is so great that locating and following traces is impossible.

Another aspect is that many performance problems only become clear if the collected
datais aggregated. In that way, you can tell how important method calls are with respect
to the entire activity in a certain time period. With single traces, you have no notion of the
relative importance of the data that you are looking at.

This is why JProfiler builds a cumulated tree of all observed call stacks, annotated with
the observed timings and invocation counts. The chronological aspect is eliminated and
only the total numbers are kept. Each node in the tree represents one call stack that was
observed at least once. Nodes have children that represent all the outgoing calls that
were seen at that call stack.

,i i i ’1\ A:7ms
* ¢ B:6 ms
C D
C:3ms
2ms 1ms 3ms 1ms
D:1ms
method invocations with call stacks call tree

The call tree is the first view in the "CPU views" section, and it's a good starting point when
you start CPU profiling, because the top-down view that follows method calls from the
starting points to the most granular end points is most easily understood. JProfiler sorts
children by their total time, so you can open the tree depth-first to analyze the part of the
tree that has the greatest performance impact.

53

” Thread status: 0 Thread selection: Aggregation level:
Telemetri
slemetnes = Runnable v | @8 All thread groups v | | @ Methods ~

() m— 3.0% - 359 ms - 5 inv. org.hsgldb.server.ServerConnection.run
":" Live Memaory () w— 57,39 - 359 ms - 149 inv. org.hsqldb.server.ServerConnection.receiveResult
() 56,43 - 292 ms - 149 inv. org.hsqldb.Session.execute
() =, 40.0% - 211 ms - 30 inv. org.hsqldb.Session.executeDirectStatement

’
'ﬁ Heap Walker (D . 2593 - 190 ms - 20 inw. org.hsqldb Session.executeCompiledStatement
() = 34.9% - 134 ms - 30 inv. org.hsqldb. StatementDMQL execute
(@) . 34.8% - 184 ms - 30 inv. org.hsqldb.StatementCQuery.getResult
I CPU Views (D) mm 34.8% - 134 ms - 30 inv. org.hsqldb.QuerySpecification.getResult

() . 34,85 - 184 ms - 30 inv. org.hsqldb.QuerySpecification.getSingleRe:
(D) == 32.3% - 184 ms - 30 inv. org.hsgldb.QuerySpecification buildRes!

Sl ()™ 30,3% - 162 s - 1,425 inv. org.hsqldb.RangeVariableSRangek
Hot Spots @ 0.8% - 4,237 ps - 6,975 inv. org.hsgldb. ExpressienColumn.getVal

@ 0.3% - 1,617 ps - 1,393 inv. org.hsgldb.navigator.RowSetMavigat
Call Graph @ 0.1% - 603 ps - 1,395 inv. org.hsqldb SessionData.startRowProce:

@ 0.1% - 300 ps - 1,395 inv. org.hsqldb.navigator.RowSetNavigator
Qutlier Detection @ 0.0%- 94 us - 25 inv. org.hsgldb.RangeVariable getlterator

@ 0.0% - 46 ps - 25 inv. org.hsqldb.navigator.RowSetNavigatorDat
Complexity Analysis @ 0.0% - 39 ps - 52 inv. org.hsqldb.RangeVariableSRangelteratorM;

@ 0.0%- 38 us - 26 inv. org.hsqldb.navigator.RowSetMavigatorDat:
Call Tracer @ 0.0% - 21 ps - 25 inv. org.hsqldb.result.Result.newResult

(@ 0.0% - 64 ps - 26 inv. org.hsgldb.SortAndSlice. hasOrder
g-h=g
JavaScript XHR Monnne an ar A P .
Threads v 9

While all measurements are performed for methods, JProfiler allows you to take a broader
perspective by aggregating the call tree on the class or package level. The aggregation
level selector also contains a "JEE/Spring components” mode. If your application uses JEE
or Spring, you can use this mode to see only JEE and Spring components on a class level.
Splitting nodes like URLs are retained in all aggregation levels.

Thread status: ﬂ Thread selection: Aggregation level:
I CPU Views == Runnable * @8 All thread groups v Packages

Call Tree m— 75,1% - 1,377 ms - 6 inv. org.hsqldb.server @ Methods
T o 57 5% - 1,138 ms - 550 inv. org.hsgldb © Classes

Hot Spots B 3.9% - 160 ms - 329,236 inv. org.hsgldb.lib [] Packages

12.7% - 48,911 ps - 44,633 inv. org.hsgldb.map

Call Graph T 0.3%- 5,008 pis - 14,558 inv. jovalang JEE/Spring
0 0.0%-758 Ws - 4,088 inv. org.hsgldb

QOutlier Detection D o1%- 2,701 ps - 7,892 inv. java.util
T 0.2% - 4,103 ps - 9,307 inv. java lang

Complexity Analysis T 0.0%- 383 us - 2429w, org.hsqldb
D oo%-51 s - 916 inv. java lang.reflect

Call Tracer D 0.0%-19% ps - 438 inv. java.util.concurrent.locks

X 15,93 - 106 ms - 14,307 inv. org.hsqldb.persist
JavaScript XHR 13.6% - 64,488 pis - 48,282 inv. org.hsqldb.lib
— LF 1.0% - 17,515 ps - 48,280 inv. java.util.concurrent.locks
Threads< 0.3% - 5,085 ps - 24,140 inv. org.hsgldb.map

Call tree filters

If methods from all classes are shown in the call tree, the tree is usually too deep to be
manageable. If your application is called by a framework, the top of the call tree will consist
of framework classes that you don't care about and your own classes will be deeply buried.
Calls into libraries will show their internal structure, possibly with hundreds of levels of
method calls that you are not familiar with and not in a position to influence.

The solution to this problem is to apply filters to the call tree, so that only some classes
are recorded. As a positive side-effect, less data has to be collected, and fewer classes
have to be instrumented, so the overhead is reduced.

By default, profiling sessions are configured with a list of excluded packages from
commonly used frameworks and libraries.

54

@ Session Settings

Application Settings

E= Call Tree Recording
T Call Tree Filters

Define Filters

Ignored methods

| Trigger Settings

; Databases
@ HTTP, RPC & JEE
° JVM & Custom Probes

@"' Advanced Settings

X
Filters define which classes are recorded for CPU profiling. (7]
Q All methods of profiled packages are shown in the call tree, Start the filter list with this type to
profile selected packages only.
The first call from a profiled class into @ compact class is shown in the call tree, but further
calls into compact classes are not measured separately.
@ lgnored packages or classes are not profiled at all.

Type Class or Package o
Comp... SProxy x
Comp... Sjava. O
Comp... Sjavax.

Comp... AOPContainerProxy$

Comp... COM.cloudscape.

Comp... COM.objectspace,

Comp... COM.rsa.

Comp... EDU.oswego. H
Comp... GregorSamsa

Comp.. _

Comp... allairejrun

Note: It is recommended to select the profiled packages instead of profiling everything except a list of
packages.

Show Filter Tree

General Settings Copy Settings From

Cancel

Of course this list is incomplete so it's much better that you delete it and define the
packages of interest yourself. In fact, the combination of instrumentation [p. 66] and the
default filters is so undesirable that JProfiler suggests changing it in the session startup

dialog.

@ Session Startup x
Settings
Call tree recording: Instrumentaticon, 1 exceptional method Edit
0 For low-overhead CPU profiling, switch to sampling.
Call tree filters: 1 filter rule for method call recording Edit
11 Fhe configured exclusive filters may be too broad. In that case, the overhead of
nstrumentation may be very high, and CPU times will be distorted. Please define
rofiled packages or switch to sampling,
Trigger settings: Mo active triggers Edit
Database probe settings: 4 enabled probes Edit
HTTP, RPC & JEE probe settings: | 7 enabled probes Edit
VM & custom probe settings: 5 enabled probes Edit
Startup And Exit
Initial recording profile: JDBC and JNDI v Configure
VM exit action: Let the JVM exit and disconnect * | More ~
Performance
Overhead:
The overhead is composed of the selected profiling settings and the selected recording profile.

The filter expressions are compared against the fully qualified class name, so com nycor p.
matches classes in all nested packages, like com nmycor p. myapp. Appl i cati on. There are

three types of filters, called "profiled",

‘compact” and “ignored”. All methods in “profiled’

classes are measured. This is what you need for your own code.

55

In a class that is contained by a "‘compact” filter, only the first call into that class is
measured, but no further internal calls are shown. "Compact” is what you want for libraries,
including the JRE. For example, when calling hashMap. put (a, b) you probably want to
see HashMap. put () in the call tree, but not more than that - its inner workings should be
treated as opaque unless you are the developer of the map implementation.

Finally, “ignored” methods are not profiled at all. They may be undesirable to instrument
due to overhead considerations, or they may simply be distracting in the call tree, such
as internal Groovy methods that are inserted between dynamic calls.

Entering packages manually is error prone, so you can use the package browser. Before
you start the session, the package browser can only show you packages in the configured
class path which often does not cover all the classes that are actually loaded. At runtime,
the package browser will show you all loaded classes.

@) Select Filters *

Packages of loaded classes that can be instrumented:

com (122 classes)

Jjavax (224 classes)

Jjdbe (17 classes)

Jjdk (4 classes)

org (719 classes)

apache (23 classes)
Jjuli {4 classes)
tomcat (19 classes)
jdbe (19 classes)

v B pool (19 classes)

hsqldb (696 classes)
sun (694 classes)

Filter type:) Profiled Compact Ignored

You have selected a total of 19 classes

The configured list of filters is evaluated from top to bottom for each class. At each stage,
the current filter type may change if there is a match. It's important what kind of filter starts
off the list of filters. If you start with a "profiled” filter, the initial filter type of a class is
‘compact’, meaning that only explicit matches are profiled.

oA ab.B ab.c.C dD

pom--- » Default:
O© o0}
@0 apbr JH—o— ‘
@ & abc* > & profiled
i : compact
"""""""""""""""""" v v ' —> match
Result: @ V]

If you start it with a "compact” filter, the initial filter type of a class is “profiled". In this case,
all classes are profiled except for explicitly excluded classes.

56

aA ab.B ab.c.C dD
------ > Default: & V] V)

O = R —

O TS —Q—Q

@[ab.c* } > & profiled

; 5 compact

""""""""""""""""" Y v y v —> match
Result: & &

Call tree times

To interpret the call tree correctly, it's important to understand the numbers that are
displayed on the call tree nodes. There are two times that are interesting for any node,
the total time and the self time. The self-time is the total time of the node minus the total
time in the nested nodes.

Usually, the self-time is small, except for compact-filtered classes. Most often, a
compact-filtered class is a leaf node and the total time is equal to the self-time because
there are no child nodes. Sometimes, a compact-filtered class will invoke a profiled class,
for example, via a callback or because it's the entry point of the call tree, like the run
method of the current thread. In that case, some unprofiled methods have consumed
time, but are not shown in the call tree. That time bubbles up to the first available ancestor
node in the call tree and contributes to the self-time of the compact-filtered class.

actual call sequence filtered call sequence

[Q A: self time Tms J

[B: self time 2ms J

................. y v

X:self tme3ms | [B: self time 6 ms J
................. | 2R,
5 Y:self timelms |
M memnnneeeennes o 9 profiled
compact

[9 C: self time 3ms J:

The percentage bar in the call tree shows the total time, but the self-time portion is shown
with a different color. Methods are shown without their signatures unless two methods on
the same level are overloaded. There are various ways to customize the display of the call

57

tree nodes in the view settings dialog. For example, you may want to show self-times or
average times as text, always show method signatures or change the used time scale.
Also, the percentage calculation can be based on the parent time instead of the time for
the entire call tree.

@ Call Tree View Settings

Node Description
Show percentage bar (7]
Show time
Show self time
Show invocation count
Show average times in brackets (7]
Always show fully qualified names €
Always show signature (7]
Shorten packages (7]

Time Scale

OAutomati(o Mixed units 5 ms us
Display Threshold
Hide calls with less than 0.0 % 0

Percentage Calculation

Relative &) OAbso\ute (7]

Cancel

Thread status

At the top of the call tree there are several view parameters that change the type and
scope of the displayed profiling data. By default, all threads are cumulated. JProfiler
maintains CPU data on a per-thread basis, and you can show single threads or thread
groups.

I CPU Views

Thread status: 0

== Runnable ¥

Thread selection:
88 Allthread groups

Aggregation level:
@ Methods ~

@_ 75.0% - ©0 Allthread groups

sz T)moso%-353, (88 HSOQLDB Connections @2b5856dd
Hot Spots O m249%-3 @ HSOLDE Connection ®2089d7b9
@m249% | @ HSOLDE Connection @2c70bba1
Call Graph Qmi17. @ HSQLDE Connection @7bf14b3d
@ @ HSOLDE Connection @d7ach2e ent
QutkerDetection € | l® HsaLs connection @desozet

main atement.execute
. o
Comnlexite Analusis n % ot

At all times, each thread has an associated thread status. If the thread is ready to process
bytecode instructions or is currently executing them on a CPU core, the thread status is
called "Runnable”. That thread state is of interest when looking for performance bottlenecks,
so it is selected by default.

Alternatively, a thread may be waiting on a monitor, for example, by calling Oj ect . wai t ()
or Thread. sl eep() in which case the thread state is called "Waiting". A thread that is
blocked while trying to acquire a monitor, such as at the boundary of a synchroni zed
code block is in the "Blocking” state.

Finally, JProfiler adds a synthetic "Net I/O" state that keeps track of the times when a thread
is waiting for network data. This is important for analyzing servers and database drivers,
because that time can be relevant for performance analysis, such as for investigating
slow SQL queries.

58

Thread status: 0 Thread selection: Aggregation level:
I CPU Views == Runnable 88 Al thread groups v | | @ Methods ~

0 Al states - 1,063 ms - 5 inv. org.hsqldb.server.ServerConnection.run

Call Te

all ree ms - 3 inv. java.util.concurrent. ThreadP oolExecutorS\Worker.run
Hot Spots = Waiting 353 ms-3 inv..jdb..:.JdbcTastWDrker‘call

== EBlocked %-353ms-5 |r|v‘.thc..Jdb(Tasthrker.call
Call Graph 7.1% - 242 ms - 25 inv, jdbcJdbcTestWorker.testStatementsPath1
P 3 Net1/0
! - 18.8% - 138 ms - 24 inv. jdbc.JdbcTestWorker.testPreparedStatement
QOutlier Detection ml 5.6% - 79,082 ps - 24 inv. java.sql.PreparedStatement.execute
(@15.6% - 79,048 us - 24 inv. org.hsqldb jdbec JDBCPreparedStatement.execute

Comnlexite Analusic P17 79 - 21 28R 11c - 77 inv iava <nl Cannertinn nrenareStatemeant

If you are interested in wall-clock times, you have to select the thread status "All states”
and also select a single thread. Only then can you compare times with durations that you
have calculated with calls to System current TimneM | | i s() in your code.

If you want to shift selected methods to a different thread status, you can do so with a
method trigger and an "Override thread status” trigger action, or by using the Thr eadSt at us
class in the embedded [p. 167] or injected [p. 162] probe APIs.

Finding nodes in the call tree

There are two ways to search for text in the call tree. First, there is the quicksearch option
that is activated by invoking View->Find from the menu or by directly starting to type into
the call tree. Matches will be highlighted and search options are available after pressing
PageDown. With the ArrowUp and Arr owDown keys you can cycle through the different
matches.

hrazd ctatiee £ Thread calartinn Aggregation level:
’ Telemetries Search for: JTW -
Match case UsECameIHumps (7] M © Methods

W UUe - J 5 - 20 Y, UG Ts0an. S LErTTer L SEl0 ererdleuc O

-‘:j Live Memory @ 00%-2us-25 inv. org.hsqldb.lib.HsglArrayList.get
’ @ 0.0% - 2 us - 25 inv. org.hsqldb.result.Result. getGeneratedResult Type

(@1 10.4% - 54,830 ps - 60 inv. org.hsgldb.Session.executeCompiledStatement

L (@13.5% - 18,665 ps - 45 inv. org.hsqldb StatementManager.compile

'ﬁ Heap Walker ; - ;
(@12.2% - 11,567 ps - 14 inv. org.hsqldb Session.executeCompiledBatchStatement
@ 0.2% - 1,139 ps - 144 inv. org.hsgldb.Session.performPostExecute
@ 0.0%-157 us- 45 inv. org.hsqldb.result.Result.newPrepareResponse

CPU Views . . L
@ 0.0%- 72 ps - 144 inv. org.hsqldb.lib java)avaSystem.gc
(@ 0.0% - 62 ps - 15 inv. org.hsqldb.SessionData.setResultSetProperties
Call Tree @ 00%-10ps - T3 inv. org.hsqldb Statement.getType

(@ 0.0% - 4 ps - 60 inv. org.hsqldb.result.Result.getUpdateCount

Hot Spots (@1 10.2% - 53,702 ps - 144 inv. org.hsqldb.result.Result.write
@ 0.9% - 5,006 ps - 144 inv. org.hsgldb.result.Result.newResult
Call Graph (@ 0.1% - 407 ps - 144 inv. org.hsgldb.result Result.readLobResults
X X @ 0.1% - 392 ps - 144 inv. org.hsqldb.rowio.RowlnputBinary.resetRow
Outlier Detection @ 0.0%-137 us - 144 inv. org.hsgldb.rowio.RowOutputBinary.reset

c | Analysi @ 0.0% - 90 ps - 144 inv. org.hsqldb.server Server.printRequest
S AT @ 0.0% - 18 ps - 144 inv. org.hsqldb.result.Result.getType
W 0.1%- 549 ps- 144 inv, java.io.DatalnputStream.readByte

Call Te
all fracer W 32.0% - 169 ms - 5 inv. java.util.concurrent. ThreadPoolExecutor§Worker.run
JavaScript XHR M 32.0%- 169 ms - 5 inv. jdbc orker.call
Threads @

Another way to search for methods, classes or packages is to use the view filter at the
bottom of the call tree. Here you can enter a comma-separated list of filter expressions.
Filter expressions that start with a "-" are like ignored filters. Expressions that start with a
"I" are like compact filters. All other expressions are like profiled filters. Just like for the filter
settings, the initial filter type determines if classes are included or excluded by default.

Clicking on the icon to the left of the view settings text field shows the view filter options.
By default, the matching mode is "Contains”, but "Starts with" may be more appropriate
when searching for particular packages.

59

' Thread status: 0 Thread selection: Aggregation level:
Telemetri
slemetnes = Runnable v | @8 All thread groups v | | @ Methods ~

) — 100.0% - 280 ms - 5 inv. java.util.concurrent. ThreadP oolExecutorSWorker.run
,':', Live Memaory (G m—100,0% - 280 ms - 5 inv. jdbe.JdbcTestWarker.call
() m—100,0% - 280 ms - 5 inv. jdbe.JdbeTestWorker.call
() e 70.3% - 197 ms - 19 inv. jdbc.JdbcTestWorker testStatementsPath1
ﬁ Heap Walker (D 4453125 ms - 15 inv. jdbc.)JdbcTestWorker testPreparedStatement
m B 27.6% - 77,530 ps - 15 inv. java.sql.PreparedStatement. execute
M |DBC calls Show in probe call tree
I CPU Views

T " 10.0% - 27,045 ps - 45 inv, java.sql.Connection.prepareStatement
m 14.1% - 11,546 ps - 30 inv. java.sql.PreparedStatement.executeQuery
}3 JDBC calls Show in probe call tree
Call Tree D 14%-3870ps- 15 I PreparedStatement.executeBatch
A% - 3,879 us inv. java.sql PreparedStatement.executeBatc
Hot Spots ¥ IDBC calls Show in probe call tree
m 1.2% - 3,260 ps - 13 inv. java.sql.PreparedStatement.executeUpdate
Call Graph ﬂJDBC calls Show in probe call tree
O 02%-524ps-15 inv. java.sql.PreparedStatement.addBatch
Qutlier Detection D 0.1% - 305 us - 90 inv. java.sql.PreparedStatement.setString
@ B 75.7% - 72,224 ps - 19 inv, jdbc.dbecTestWorker.testStatement
Complexity Analysis D™ 231%- 64,233 ps - 25 inv. java sql.Statement.executeQuery
}3 JDBC calls Show in probe call tree

Call Tracer m 0.1% - 191 ps - 14 inv. java.sql.Cennection.createStatement
D 0.0%-49ps-15 inv. java.sql.Statement.close
JavaScript XHR () = 38,3% - 79,518 us - 15 inv. jdbc.JdbcTestWorker.testStatementsPath2
= Threads 1~ -org.hsqldb d IO
Flame graphs

Another way to view the call tree is as a flame graph. You can show the entire call tree or
a portion of it as a flame graph by invoking the associated call tree analysis [p. 189].

£ £ T S % 2@ 69 E O =
Start Stop Start Add View Shaw Stop E

Run GC Bxport Hel Back Forward | - A
Zecordings Recordings Teacking | Bookmark PO cettings #P | egend cpu . S

| Show Flame Graph Ctrl+Alt+F |
Thread status: @ Thread selection: Collapse Recursions C

B Runnable ~ 88 Allthread groups

Ctrl+Alt+L plevek

() m— 75,1% - 1,439 ms - 5 inv. org.hsgldb.server.ServerConnect o o -
m- 23.9% - 451 ms - 5 inv. java.util.concurrent. ThreadPoclExecutg Inline Async Executions Ctrl+Alt+E
@ 0.0%- 414 ps- 1inv. org.hsqldb.server.ServerSServerThread.run
@ 0.0%- 270 us - 1 inv. org.hsqldb.lib.HsglTimers TaskRunner.run

@

A flame graph shows the entire content of a call tree in one image. Calls originate at the
bottom of the flame graph and propagate towards the top. The children of each node
are arranged in the row directly above it. Child nodes are sorted alphabetically and are
centered on their parent node. Due to the self-time that is spent in each node, the "flames”
get progressively more narrow toward the top. More information about nodes is displayed
in the tool tip where you can mark text to copy it to the clipboard.

60

’ Telernetries Showing 7,792 nodes in 44 rows at 00:25 @) D Reload analysis x & &

Thread status: Thread selection: Aggregation level:
'l:l' Live Memory == Runnable 88 Al thread groups @ Methods
|
. |
ﬁ Heap Walker | |
LT ITT TR | |
, N | | Ex
CPU Views 10 W | o.hsqgldb.ExpressionLogical.get!
1110 & | o.hsqldb.Expression.testConditid |
4 Call Tree I I E | ‘
[| [T \
Flame Graph E |
RlESpo org.hsqldb,jdbe.
JDBCPreparedStatement
Eallbiaeh fetchResult()
Outlier Detection This Invocation Sub-Tree @ All Invocations &)
Complexity Analysis Total 18,614 us 18,614 us 121 ms]
Call Tracer Self 374 ps I ps 1179 us
Calls 63 68 253
JavaScript XHR @ /Q

If the tool tip near the mouse cursor disturbs your analysis, you can lock it with the button
in its upper right corner and then move it to a convenient location with the gripper at the
top of the tool tip. The same button or a double click on the flame graph close the tool tip.

Flame graphs have a very high information density, so it may be necessary to narrow the
displayed content by focusing on selected nodes and their hierarchy of descendant nodes.
While you can zoom in on areas of interest, you can also set a new root node by
double-clicking on it or by using the context menu. When changing roots multiple times
in a row, you can move back again in the history of roots.

Another way to analyze flame graphs is to add colorizations based on class names,
package names or arbitrary search terms. Colorizations can be added from the context
menu and can be managed in the colorizations dialog. The first matching colorization is
used for each node. Colorizations are persisted across profiling sessions and are used
globally for all sessions and snapshots.

@ Manage Colorizations X
B org.hsgldb.server. [match mode "Starts with”, case sensitive] #
W org.hsgldb.Expression [match mode "Starts with”, case sensitive]

2

Colorization actions based on the text of the selected node are available in the context

menu of the flame graph.

In addition to colorizations, you can use the quick search functionality to find nodes of
interest. With the cursor keys you can cycle through match results while the tooltip is being
displayed for the currently highlighted match.

Hot spots

If your application is running too slowly, you want to find the methods that take most of
the time. With the call tree, it is sometimes possible to find these methods directly, but
often that does not work because the call tree can be broad with a huge number of leaf
nodes.

61

In that case, you need the inverse of the call tree: A list of all methods sorted by their total
self time, cumulated from all different call stacks and with back traces that show how the
methods were called. In a hot spot tree, the leafs are the entry points, like the mai n method
of the application or the r un method of a thread. From the deepest nodes in the hot spot
tree, the call propagates upward to the top-level node.

Thread status: @ Thread selection:

Agagregation level: Hot spot options:

‘ Telemetries

== Runnable * 8 Allthread grou.. ¥ @ Methods Self times hd
"j Py Hot Spot Self Time Average Time Invocations
gy LiveMemory i java.sgl.Statement.execu... I 17,548 ps (42 %) 501 s 35

0- 42,5% - 17,548 ps - 33 hot spot inv. jdbcJdbcTestWorker testStatement
(@™ 22.0% - 9,077 ps - 15 hot spot inv, jdbec)dbeTestWorker.testStatementsPath2
(D) ™ 22.0% - 9,077 ps - 15 hot spot inv. jdbc.JdbcTestWorker.call
@ W 22,0% - 9,077 ps - 15 hot spot inv. jdbcJdbcTestWorker.call
W 22,0% - 9,077 ps - 15 hot spot inv, java.util.concurrent ThreadPoolExecuterfWo

.
ﬁ Heap Walker

I CPU Views

(O™ 20.5% - 8,471 ps - 20 hot spot inv. jdbe.JdbcTestWorker testStatementsPath1
@ M 20.5% - 8,471 ps - 20 hot spot inv, jdbec)JdbcTestWorker.call

Call Tree (D)™ 20.5% - 8,471 ps - 20 hot spot inv. jdbe JdbeTestWorker. call
m B 20.5% - 8471 ps - 20 hot spot inv. java.util.concurrent. ThreadPoolExecutorSWoi
Hot Spots & java:sal.Connection.prep... I 12,758 s (30 %) 2835 15
%, java.sql.PreparedStateme... Il 3,822 ps (8 %) 127 ps 30
Call Graph %, java.sql.Connection.creat... I 1,463 ps (3 %) 97 us 15
i, java.sql.PreparedStateme.., | 1,351 us (3 %) S0 s 15
QOutlier Detection i java.sql.PreparedStateme... | 1,220 ps (2 %) & ps 13
1. java.sql.PreparedStateme... | 1,096 ps (2 %) T3ps 15
Complexity Analysis i, javax.sql.DataSource.get., | 429 ps (1 %) 42 s 10
%, jdbcdbcTestWorker.test... | 363 ps {0 %) 24 ps 15
Call Tracer 1. java.sql.PreparedStateme... | 320 ps (0 %) s a0
JavaSeript XHR i, java.sgl.Connection.close | 276 ps (0 %) 27 s 10

Thread;' v @

The invocation counts and execution times in the backtraces do not refer to the method
nodes, but rather to the number of times that the top-level hot spot node was called along
this path. This is important to understand: At a cursory glance, you would expect the
information on a node to quantify calls to that node. However, in a hot spot tree, that
information shows the contribution of the node to the top-level node. So you have to read
the numbers like this: Along this inverted call stack, the top-level hot spot was called n
times with a total duration of t seconds.

Call Tree Hot spots
Method A Method C
Countb Count 4
- @‘9\0 2 r N\)
Method € & Method A
Count 3 ,'l Count’3
% backtraces
’, ’/’
Method B t" | MethodB
Count 2 " hot spot ...l Count1
,l' invocation <
) counts
Method C
Count 1

62

By default, the hot spots are calculated from self-time. You can also calculate them from
total time. This is not very useful for analyzing performance bottlenecks, but can be
interesting if you would like to see a list of all methods. The hot spot view only shows a
maximum number of methods to reduce overhead, so a method you are looking for may
not be displayed at all. In that case, use the view filters at the bottom to filter the package
or the class. Contrary to the call tree, the hot spot view filters only filter the top-level nodes.
The cutoff in the hot spot view is not applied globally, but with respect to the displayed
classes, so new nodes may appear after applying a filter.

’ Thread status: 0 Thread selection: Aggregation level: Hot spot options:
Telemetries == Runnable ~ | | 88 Allthread grou.. + | | @) Methods v | | Self times

Hot Spot Self Time Time calculation:
l’:’l Live Memary i java.sql.Statement.execu... | NI 17,542 ps (42 %) o Self times

() w42 5% - 17,548 ps - 35 hot spot inv. jdbc.JdbcTestWorl
i Q- 22.0% - 9,077 ps - 15 hot spot inv. jdbec.JdbcTestWorl
Heap Walker o - Pl " .
ﬁ (@ ™ 22,0% - 8,077 us - 15 hot spot inv, jdbeJdbeTestV] Unprofiled classes:
0% - 9,077 ps - ot spot inv. cldbcTe
@ m 220%- 9,077 15 hot spot inv. jdbecJdbcTe
i O W 22.0% - 9,077 ps - 15 hot spot inv. java.util
CPU Views () ™ 20,5% - 8,471 ps - 20 hot spot inv. jdbedbcTestWorl ' Add to calling profiled class @
13% - 8471 ps - ot spot inv. c.JdbcTestWorrercam
@m 205% - 8471 20 hot spot inv. jdbc.JdbcTe
Call Tree @ = 20.5% - 8,471 s - 20 hot spot inv, jdbc.)JdbcTestWorker. call

m M 20.5% - 8,471 us - 20 hot spot inv, java.util.concurrent. ThreadPoolExecutorSWoi
el b e el Focctinn ean RS 17 750 .- 130 07 ELE. as

Total times

© @9

© Show separately

Hot spots and filters

The notion of a hot spot is not absolute but depends on the call tree filters. If you have no
call tree filters at all, the biggest hot spots will most likely always be methods in the core
classes of the JRE, like string manipulation, I/O routines or collection operations. Such hot
spots would not be very useful, because you often don't directly control the invocations
of these methods and also have no way of speeding them up.

In order to be useful to you, a hot spot must either be a method in your own classes or a
method in a library class that you call directly. In terms of the call tree filters, your own
classes are in “profiled" filters and the library classes are in "‘compact” filters.

When solving performance problems, you may want to eliminate the library layer and
only look at your own classes. You can quickly switch to that perspective in the call tree
by selecting the Add to calling profiled class radio button in the hot spot options popup.

Thread status: O Thread selection: Aggregation level: Hot spot options:
’ Telemetries .
== Runnable * E Allthread grou.. ~ @ Methods Self times

. Hot Spot Self Time Time calculation:
-’:’- Live Memory b java.sgl.Statement.execu... I 17,545 us (42 %) © Self times (7]
(). 43,5% - 17,548 ps - 35 hot spot inv. jdbcJdbcTestWorl Total ti e
1 (D)™ 22.0% - 8,077 ps - 15 hot spot inv. jdbc.JdbcTestWorl otaltimes
WG Heep Walker () ™ 22.0% - 9,077 s - 15 hot spet inv. jdbe.JdbeTesty| Unprofiled classes:
Q
7]

@ B 22,0% - 9,077 us - 15 hot spet inv. jdbc.JdbcTe
m B 22.0% - 9,077 ps - 15 hot spot inv. java.util
I CPU Views (@)™ 20,5% - 8,471 s - 20 hat spot inv. jdbcJdbcTestWork || Add to calling profiled class
@- 20.3% - 8,471 ps - 20 hot spot inv. jdbec.JdbcTestWorReram
Call Tree ()™ 20.5% - 8,471 ps - 20 hot spot inv. jdbc.JdbcTestWorker. call
O W 20.5% - 8,471 ps - 20 het spot inv, java.util.concurrent. ThreadPoolExecutorSWoi

P B mem el Crmnectine eeen T 17 TS0 - (30 0% 03 e A5

o Show separately

Callgraph

Both in the call tree as well in the hot spots view each node can occur multiple times,
especially when calls are made recursively. In some situations, you are interested in a
method-centric statistics where each method only occurs once and all incoming and
outgoing calls are visible. Such a view is best displayed as a graph and in JProfiler, it is
called the call graph.

63

. Thread status: Thread selection: Aggregation level:
Telemetries
B Runnable & All thread groups @ Methods

’i:!' Live Memaory
’
'ﬁ Heap Walker

i
I CPU Views ;:‘
171 us
E stWorker B
Call Tree ItsPath2 =
2l self, 25 inv. Ty

Hot Spots Jjdbe JdbeTestWarker
P testStaterment E—
30,408 us, 456 s self, 46 inv,

Call Graph stWaorker " //7
SO | tsPathi =
Qutlier Detection self, 21 inv.
2 — a 1.

Complexity Analysis +

Call Tracer o

JavaScript XHR

- bt

Threads

One drawback of graphs is that their visual density is lower than that of trees. This is why
JProfiler abbreviates package names by default and hides outgoing calls with less than
1% of the total time by default. As long as the node has an outgoing expansion icon, you
can click on it again to show all calls. In the view settings, you can configure this threshold
and turn off package abbreviation.

€ Call Graph View Settings X

Display Options
Show signature tooltips
Shorten packages (7]
Show average times in brackets ﬂ
Color Infoermation 0

ﬂ Self time Total time

Color Scale Base 0
° Displayed methods only All methods

Time Scale

° Automatic) Mixed units s ms ps

Display Threshold

Initially hide outgeing calls with less than | 1.0 % @

When expanding the call graph, it can get messy very quickly, especially if you backtrack
multiple times. Use the undo functionality to restore previous states of the graph. Just like
the call tree, the call graph offers quick search. By typing into the graph, you can start the
search.

The graph and the tree views each have their advantages and disadvantages, so you
may sometimes wish to switch from one view type to another. In interactive sessions, the
call tree and hot spots views show live data and are updated periodically. The call graph,
however, is calculated on request and does not change when you expand nodes. The
Show in Call Graph action in the call tree calculates a new call graph and shows the
selected method.

64

Thread status: 0 Thread selection: Aggregation level:

I CPU Views B Runnable ¥ 98 Allthread groups v @ Methods ~
Call Tree 0— 100.0% - 80,020 ps - 5 inv. java.util.concurrent. ThreadPoolEx ecutorSWorker.run
Hot Spots | =& Show Call Graph |:Worker.ca|l
7 Show Threads Norker testStatementsPath2
Call Graph - ‘orker.testStatementsPath1
Add Method Trigger getConnection
Outlier Detecti I
HHer setien @ Add As Exceptional Method]:ES;
Complexity Analysis =< Split Method with a Script
Call Tracer © Intercept Method With Script Probe

Switching from the graph to the call tree is not possible because the data is usually not
comparable anymore at a later time. However, the call graph offers call tree analyses
with its View->Analyze actions that can show you trees of cumulated outgoing calls and
backtraces for each selected node.

Beyond the basics

The ensemble of call tree, hot spots view and call graph has many advanced features
that are explained in detail in a different chapter [p. 171]. Also, there are other advanced
CPU views that are presented separately [p. 194].

65

Method Call Recording

Recording method calls is one of the most difficult tasks for a profiler, because it operates
under conflicting constraints: Results should to be accurate, complete and produce such
a small overhead that the conclusions you draw from the measured data do not become
incorrect. Unfortunately, there is no single type of measurement that fulfills all these
requirements for all types of applications. This is why JProfiler requires you to make a
decision on which method to use.

Sampling versus instrumentation

Measuring method calls can be done with two fundamentally different techniques called
"sampling” and “instrumentation’, each of which has advantages and drawbacks: With
sampling, the current call stacks of threads are inspected periodically. With instrumentation,
the bytecode of selected classes is modified to trace method entry and exit.
Instrumentation measures all invocations and can produce invocation counts for all
methods.

When processing sampling data, the full sampling period (typically 5 ms) is attributed to
the sampled call stack. With a large number of samples, a statistically correct picture
emerges. The advantage of sampling is that it has a very low overhead because it happens
infrequently. No bytecode has to be modified, and the sampling period is much larger
than the typical duration of a method call. The downside is that you cannot determine
any method invocation counts. Additionally, short running methods that are called only
a few times might not show up at all. This does not matter if you are looking for performance
bottlenecks, but can be inconvenient if you are trying to understand the detailed runtime
characteristics of your code.

[Method A: +5 ms] [Method A: +5 ms]

! |

[Method B: +5 ms] [Method B: +5 ms]

| |

[Method X: +5 ms] [Method Y: +5 ms]

T+5ms time

—

Instrumentation, on the other hand, canintroduce a large overhead if many short-running
methods are instrumented. This instrumentation distorts the relative importance of
performance hot spots because of the inherent overhead of the time measurement, but
also because many methods that would otherwise be inlined by the hot spot compiler
must now remain separate method calls. For method calls that take a longer amount of
time, the overhead is insignificant. If you can find a good set of classes that mainly perform
high-level operations, instrumentation will add a very low overhead and can be preferable
to sampling. JProfiler's overhead hotspot detection can also improve the situation after
some runs. Additionally, the invocation count is often important information that makes
it much easier to see what is going on.

66

[Profiling agent]

X2 rr r
> > o2 i
X:35ms Y: 45 ms
calls calls

Method B: 11 ms

Y
calls

Method A

T T T T T T T =

T T T T T T 1
1 2 3 45 6 7 8 9101 12 13 14 15 time in ms

Full sampling versus async sampling

JProfiler offers two different technical solutions for sampling: "Full sampling" is done with
a separate thread that pauses all threads in the JVM periodically and inspects their stack
traces. However, the JVM only pauses threads at certain "safe points” thereby introducing
a bias. If you have highly multi-threaded CPU bound code, the profiled distribution of
hotspots may be skewed. On the other hand, if code also performs significant I/, this bias
will generally not be a problem.

To help with getting accurate numbers for highly CPU-bound code, JProfiler also offers
async sampling. With async sampling, a profiling signal handler is called on the running
threads themselves. The profiling agent then inspects the native stack and extracts the
Java stack frames. The main benefit is that there is no safe-point bias with this sampling
method, and the overhead for highly multi-threaded CPU-bound applications is lower.
However, only the "Running’ thread state can be observed for the CPU views while "Waiting’,
"Blocking" or "Net I/O" thread states cannot be measured in this way. Probe data is always
collected with bytecode instrumentation, so you will still get all thread states for JDBC and
similar data.

Async sampling suffers from truncated traces where only the end of the call stack is
available. This is why the call tree is often not as useful for async sampling as the hot spots
view. Async sampling is only supported on Linux and macOS.

Starting with Java 17, JProfiler can avoid using a global safe point for sampling on Hotspot
JVMs and operate full sampling with near-zero overhead. Compared to async sampling,
it still introduces some kind of safe point bias for single threads, but no longer the overhead
of a global safe point for all threads in the JVM. Considering the drawbacks of async
sampling, using full sampling is recommended for Java 17+.

67

Full sampling: safe point bias
Ao —>

Thread 1

—@ - >

Thread 2

Sampling thread

Async sampling:

Thread 1

\
\

Thread 2

.
‘ !
\

T+5ms time

— .-

Choosing a method call recording type

Which method call recording type to use for profiling is an important decision and there
no right choice for all circumstances, so you need to make an informed decision. When
you create a new session, the session startup dialog will ask you which method call
recording type you want to use. At any later point in time you can change the method
call recording type in the session settings dialog.

@) Session Settings X
9

Application Settings Method Call Recording Type

There are important trade-offs to be considered. Check out the in-depth explanaticon in the
documentation.

© Instrumentation €

All features Invocation counts Ideal for I/O bound code Careful with CPU bound code

.

=

E:‘ Call Tree Recording
|

Methed Call Recording

Exceptional Methods Adjust call tree filters
Split Methods Full sampling @
T Call Tree Filters Low overhead 17+ Ideal for finding CPU hot spots Better accuracy for CPU times
Mot all features
Trigger Settings
Async sampling @
; Databases
Low overhead Best accuracy for CPUtimes Native sampling Only CPU times
@ HTTP, RPC & JEE Mot all features Experimental HotSpot-API
o VM & Custom Probes
@—5 Advanced Settings Common Options For Sampling (7]

General Settings Copy Settings From “ Cancel

As a simple guide, consider the following questions that test whether your application
falls into one of two clear categories on opposite sides of the spectrum:

68

- Is the profiled application I/0 bound?

This is the case for many web applications that wait on REST service and JDBC database
calls most of the time. In that case, instrumentation will be the best option under the
condition that you carefully select your call tree filters to only include your own code.

« Is the profiled application heavily multi-threaded and CPU bound?

For example, this could be the case for a compiler, image processing application or a
web server that is running a load test. If you are profiling on Linux or macOS, you should
choose async sampling to get the most accurate CPU times in this case.

Otherwise, "Full sampling” is generally the most suitable option and is suggested as the
default for new sessions.

Native sampling

Because async sampling has access to the native stack, it can also perform native
sampling. By default, native sampling is not enabled because it introduces a lot of nodes
into call trees and shifts the focus of hot spot calculation to native code. If you do have a
performance problem in native code, you can choose async sampling and enable native
sampling in the session settings.

@ Session Settings X

i Application Settings Methed Call Recording Type

A There are important trade-offs to be considered. Check out the in-depth explanation in the
documentation.
E‘ Call Tree Recording
- Instrumentation 0

Method Call Recarding All features Invacation counts Ideal for [/0 bound code Careful with CPU bound code

Exceptional Methods Adjust call tree filters
Split Methods Full sampling @
T Call Tree Filters Low overhead 17+ Ideal for finding CPU hot spots Better accuracy for CPU times
Mot all features
Trigger Settings
£ Async sampling (2]
; Databases
Low overhead Best accuracy for CPU times Mative sampling Only CPU times
Q HTTP, RPC & JEE Mot all features Experimental HotSpot-API
I Enable sampling of native libraries I (7]
o JVM & Custom Probes Async buffer size: 00 | % % @
{-;)-} Advanced Settings Common Options For Samplinc (7]
Disable all filters for sampling
General Settings Copy Settings From “ Cancel

JProfiler resolves the path of the library that belongs to each native stack frame. On native
method nodes in the call tree, JProfiler shows the file name of the native library in square
brackets at the beginning.

69

Thread status: o Thread selection: Aggregation level:
== Running v | @8 Allthread groups v | | (D Methods

0 N 33.1% - 3,220 ms java.awt.EventDispatchThread.run

0 M 79.9% - 2,765 ms berier.BezierAnimSDemao.paint
) w5355 - 1,860 ms sun.javald.SunGraphics2D.drawlmage

(D) ™ 23.8% - 825 ms bezier.BezierAnim$Demo.drawDemo
Dw153%-530ms sun,javazd.SunGraphics2Dfill
f’l 5.5% - 190 ms [libdcpr.dylib] Java_sun_dc_pr_PathFiller_writeAlphal
##15.2% - 180 ms [libdcpr.dylib] writeAlpha8
f'l 3.5% - 120 ms [libdcpr.dylib] writeAlphad

i ocesslumpBuffer

f' 0.9% - 30,000 us [libdcpr.dylib] sendTileToLLFiller
#~ 0.6% - 20,000 ps [libdcpr.dylib] reset
A~ 0.1% - 5,000 ps [libdcpr.dylib] dcLLFillerS_get
f' 0.1% - 3,000 ps [libdecpr.dylib] doeMutex_unlock
#~ 0.3%- 10,000 ps [libjwmn.dylib] jni_GetByteArrayElements
#413.2% - 110 ms [libawt.dylib] Java_sun_java2d_loops_MaskBlit_MaskBlit
Ty - P
f’ 0.6% - 20,000 ps [libdcpr.dylib] Java_sun_dc_pr_PathFiller_setOutputArea
A~ 0.1% - 5,000 ps [libawt.dylib] Java_sun_java2d_loops_Blit_BElit
A 0.1%- 5,000 us [libdepr.dylib] Java_sun_dc_pr_PathFiller_getAlphaBox
f’ 0.1% - 5,000 ps [libdepr.dylib] Java_sun_dc_pr_PathFiller_reset
A~ 0.1% - 5,000 ps [libdepr.dylib] Java_sun_dc_pr_PathFiller_setFillMode
f' 0.1% - 5,000 ps [libpem.dylib] Runtimel:counter_overflow(JavaThread™, int, Method®)
Wna4s-200ms sun.javazd.SunGraphics2D.draw
o 0.1% - 5,000 ps java.awt.geom.GeneralPath.<init=
0 1 2.3% - 80,000 ps bezier.BezierAnimSDemo.createGraphics2D
f‘ 2.5% - 85,000 ps [libjvm.dylib] JVM_MonitorWait
& 1.7% - 60,000 ps [libawt_lwawt.dylib] Java_sun_lwawt_macesx_CCursorManager_nativeGetCursorPosition
f 1.4% - 50,000 ps [libjvm.dylib] Unsafe_Park
f 0.9% - 30,000 ps [libjvm.dylib] InterpreterRuntimenfrequency_ceunter_overflow(lavaThread®, unsigned char)
#~ 0.6% - 20,000 ps [libjvmn.dylib] JVM_Clone
ﬁ 0.4% - 15,000 ps [libjem.dylib] JVM_GetStackAccessControlContext
@ 0.1% - 5,000 us bezier.BezierAnimSDemo$1.run
#~ 0.1%- 5,000 ps [libawt_wawt.dylib] Java_sun_twawt_macosx_CPlatformComponent_nativeSetBounds
A5 0.1% - 5000 s Hihivm dulih] CanstantPanleklass_ at imnlfcanstantPanlHandl=_int Thread®)

Q- ~| @

With respect to the aggregation level, native libraries act like classes, so in the “classes”
aggregation level all subsequent calls within the same native library will be aggregated
into a single node. The "packages” aggregation level aggregates all subsequent native
method calls into a single node regardless of the native library.

Thread status: 0 Thread selection: Aggregation level:
B== Running b 88 Al thread groups A @ Classes b

o I 53.1% - 3,220 ms java.awt.EventDispatchThread
() mmm— 79.9% - 7 765 ms bezier.BezierAnim$Demo
o N 79,3% - 2,743 ms sun.javald.SunGraphics2D
/- m—5) 3% - 1,810 ms libjvm.dylib

v 212 475 ms libdcpr.dylib
4~ 0.9% - 30,000 s libjvm.dylib
#~ 0.13% - 5,000 ps libsyster_m.dylib
A 0.1%- 5,000 us libsystern_malloc.dylib
71 6,3% - 235 ms libawt.dylib
A 0.1% - 5,000 ps [generated stubs]
° 0.4% - 15,000 ps java.awt.Component
o 0.1% - 5,000 ps java.awt.geom.GeneralPath
A16.4% - 220 ms libjvm.dylib
1.9% - 65,000 us libawt_lwawt.dylib
° 0.1% - 5,000 ps bezier.BezierAnimSDemo§1

uwronne man ' o

To eliminate selected native libraries, you can remove a node [p. 180] from that native
library and choose to remove the entire class.

70

Memory Profiling

There are two ways of getting information about objects on the heap. On the one hand,
a profiling agent can track the allocation and the garbage collection of each object. In
JProfiler, this is called "allocation recording". It tells you where objects have been allocated
and can also be used to create statistics about temporary objects. On the other hand,
the profiling interface of the JVM allows the profiling agent to take a "heap snapshot” in
order to inspect all live objects together with their references. This information is required
to understand why objects cannot be garbage collected.

Both allocation recording and heap snapshots are expensive operations. Allocation
recording has a large impact on the runtime characteristics, because the j ava. | ang.
(bj ect constructor has to be instrumented and the garbage collector continuously has
to report to the profiling interface. This is why allocations are not recorded by default, and
you have to start and stop recording [p. 27] explicitly. Taking a heap snapshot is a one-time
operation. However, it can pause the JVM for several seconds and the analysis of the
acquired data may take a relatively long time, scaling with the size of the heap.

JProfiler splits its memory analysis into two view sections: The ‘Live memory" section
presents data that can be updated periodically whereas the "Heap walker” section shows
a static heap snapshot. Allocation recording is controlled in the “Live memory" section,
but the recorded data is also displayed by the heap walker.

@ Session View Profiing Window Help Animated Bezier Curve Demo - JProfiler - a X

| I - A =+ , y *
Lo @ ' Jl' 'Egl = > 4 L 3 J ﬁ
Start Save Session Start Start Add Take Mark

St Run GC Hel)
Center P Snapshot Setfings | Recordings Tracking | " Bookmark ®P | Snapshot Hesp

, Telemetries O No snapshot has been taken.

For a maximum of features:

i h
i Live Memory

Press ﬁ to take a JProfiler heap snapshot

Heap Walker

» The snapshot is displayed in this frame and saved together with profiling information
from other views

= Integrations with other views require this snapshot type

Threads

]

I CPU Views » For live profiling sessions, special features are available
—

(a}

Press x’ to indicate the starting point of a use case

The three most common problems that can be solved with memory profiling are: Finding
a memory leak [p. 212], reducing memory consumption and reducing the creation of
temporary objects. For the first two problems, you will mainly use the heap walker, mostly
by looking at who is holding on to the biggest objects in the JVM and where they were
created. For the last problem you can only rely on the live views that show recorded
allocations, because it involves objects that have already been garbage collected.

Tracking instance counts

To get an overview of what objects are on the heap, the "All objects” view shows you a
histogram of all classes and their instance counts. The data that is shown in this view is
not collected with allocation recording but by performing a mini heap snapshot that only
calculates the instance counts. The larger the heap, the longer it takes to perform this
operation, so the update frequency of the view is automatically lowered according to the
measured overhead. When the view is not active, no data is collected and the view does
not generate any overhead. As with most views that are updated dynamically, a Freeze
tool bar button is available to stop updating the displayed data.

71

@ Session View Profiling Window Help Animated Bezier Curve Demo - JProfiler - a X
s % - 3 —_— a
@ H # 8 R c A A 7
Start Save Session Start Start Add View Freeze Mark
Center P Snapshot Setfings | Recordings R os Tracking | "% Bockmark | TP sening Help View = @
‘ Telernetries Aggregation level: | @ Classes >
MName Instance Count Size
. byte]] I 6,242 (22 %) 3,079 kB
-’:’. Live Memory java.lang.String I ::.25c (14 %) 678 kB
int[] I 6931 (3 %) 15,478 kB
All Objects javalang.Object] | 63333 %) 350 kB
jdk.internal.org.objectweb.asm.Sy... I 6,584 (3 %) 368 kB
Recorded Objects java.util HashMapiNode 6513 (3 %) 208 kB
jgva.lang.StringBuilder I 6322 (3%) 151 kB
lizcationCalles java.se(irlty.)’-\g:(ess(nntml(nntext Wl 2476 (2 %) 179 kB
Allocation Hot Spots Jjava.awt.geom.AffineTransform I 4,007 (1 %) 288 kB
java.lang.Class[] M 3644 (1%) 97,336 bytes
Class Tracker java.awt.Rectangle | EREENIES] 100 kB
java.util.concurrent.CencurrentHa... W 2036 (1 %) 97,152 bytes
.‘ﬁ Heap Walker java.lang.Class W 2,577 (1 %) 368 kB
sun.javaZd.pipe.Region W 2,666 (1 %) 106 kB
Jjava.lang.ref. WeakReference W 243501 %) 77,920 bytes
I CPU Views Jjava.lang.invoke MethodType W 2395(1%) 95,800 bytes
Jjava.lang.Integer 0 1,945 (0 %) 31,120 bytes
— Jjava.lang.invoke MemberMame 0 1,506 (0 %) 72,288 bytes
Threads charl] 11.4180%) 194 kB
—a— imnam s il L hAaim B 1207 mon T NEE b b
Total from 1,713 rows: 201,285 (100 %) 25,165 kB
r? Monitors & Locks - o
@ 0active recordings €D Auto-update2 s VM #1 00:05 @ Profiling

The "Recorded objects” view, on the other hand, only shows the instance counts for objects
that have been allocated after you have started allocation recording. When you stop
allocation recording, no new allocations are added, but garbage collection continues to
be tracked. In this way, you can see what objects remain on the heap for a certain use
case. Note that objects may not be garbage collected for a long time. With the Run GC
tool bar button you can speed up this process.

When looking for a memory leak, you often want to compare instance counts over time.
To do that for all classes, you can use the differencing functionality of the view. With the
Mark Current toolbar button, a Difference column is inserted and the histogram of the
instance counts shows the baseline values at the time of the marking in green color.

72

@ Session View Profiling Window Help Animated Bezier Curve Demo - JProfiler - a X
» -3 3 — a
@ H # 8 R c A A 7
Start s1op Save Ses_s'lcn Stan_) b Slar_t Run GC Add Expor: \ﬁ_e.\' Help Freeze Mark
Center Snapshot Setfings Recordings Recording: Tracking Bookmark Settings View Hesp Walker| Curen
” Telernetries Aggregation level: | @ Classes >
MName Instance Count Size
. byte] I 12,233 (12 %) +530 (+4.0 %) 713 kB
-’:’. Live Memory java.lang.String I 12,722 (11 %) +32 (+0.0 %) 306 kB
java.utilHashMapSNode NI ©,939 (6 %) +3,397 (+96.0 %) 222 kB
All Objects java.security. AccessContr... [5,521 (5 %) +35,333 (+2837.0 %) 220 kB
java.awt.geom. AffineTran... I 4,935 (4 %) +4,855 (+3735.0 36) 358 kB
Recorded Objects java.awt.Rectangle . 3005 (3 %) +3,882 (+3769.0 %) 127 kB
java.lang.Object|] I s 860 (3 %) +970 (+33.0 %) 220 kB
lizcationCalles JsunJaVagld.lepa.Reglnn G272 %) +3,396 (+4354.0 %) 138 kB
Allocation Hot Spots int[] M 0% +2,469 (+294.0 %) 3,036 kB
javalang.Class I 2965 (2 %) 0 (0 %) 366 kB
Class Tracker java.util.concurrent.Cone... [l 2,820 (2 %) 0(£0%) 90,240 bytes
java.lang.Integer B 2 2e2 2 %) +1,458 (+176.0 %) 36,608 bytes
b Heap Walker java.lang.ref. WeakReferen... Il 1,628 (1 %) +1,456 (+847.0 %) 52,006 bytes
sun javald.SunGraphics2D [l 1,488 (1 %) +1,456 (+4350.0 %) 300 kB
java.util. HashMap W 1,465 (1 %) +972 (+197.0 %) 70,320 bytes
I CPU Views java.util ArrayList W271(1%) +070 (+322.0 %) 30,504 bytes
doublel] W 1,050 (0 %) +972 (+1246.0 %) 203 kB
— Jjava.security.ProtectionDo... W 1,024 0 %) +968 (+1729.0 %) 24,576 bytes
Threads java.awt.EventQueuesd Wz +370 (+4409.0 %) 23,808 bytes
—a— mnam ik mmomind lenementbice B 00T 0000y JORG 7L ANII AT RD ADD hubnr
Total from 1,345 rows: 109,187 (100 %) +46,392 (+74.0 %) 8,000 kB
r? Monitors & Locks - 0
@ 0active recordings €D Auto-update2 s VM #1 00:15 @ Profiling

For selected classes, you can also show a time-resolved graph with the Add Selection to

Class Tracker action from the context menu.

u Telemetries
’i:!' Live Memaory

All Objects
Recorded Objects
Allocation Call Tree
Allocation Hot Spots

Class Tracker

Threads

Objects: All objects
Show:

A

20,000

[<] Jjava.awt.Rectangle

0:10 0:20

0:30

&

-

0:40

10,000

B Class java.awtRectangle: 11,520

Monitors & Locks

n
1

Allocation spots

When allocation recording is active, JProfiler takes note of the call stack each time an
object is allocated. It does not use the exact call stack, for example, from the stack-walking
API, because that would be prohibitively expensive. Instead, the same mechanism is used
that is configured for CPU profiling. This means that the call stack is filtered according to
the call tree filters [p. 53] and that the actual allocation spot can be in a method that is
not present in the call stack, because it is from an ignored or compact-filtered class.
However, these changes are intuitively easy to understand: A compact-filtered method
is responsible for all allocations that are made in further calls to compact-filtered classes.

73

If you use sampling, the allocation spots become approximate and may be confusing.
Unlike for time measurements, you often have a clear idea of where certain classes can
be allocated and where not. Because sampling paints a statistical rather than an exact
picture, you may see allocation spots that are seemingly impossible, such asj ava. uti |l .
HashMap. get allocating one of your own classes. For any kind of analysis where exact
numbers and call stacks are important, it is recommended to use allocation recording
together with instrumentation.

Just like for CPU profiling, the allocation call stacks are presented as a call tree, only with
allocation counts and allocated memory rather than invocation counts and time. Unlike
for the CPU call tree, the allocation call tree is not displayed and updated automatically
because the calculation of the tree is more expensive. JProfiler can show you the allocation
tree not only for all objects, but also for a selected class or package. Together with other
options, this is configured in the options dialog that is shown after you ask JProfiler to
calculate an allocation tree from the current data.

@ Allocation Options X

Type of Allocations to be Shown
Allecations cumulated for all classes
D Allocations for a selected class or package

java.awt.Rectangle
Liveness mode: | Live objects - Q

Update Options

Auto-update the allocation views periodically €

A useful property of the CPU call tree is that you can follow the cumulated time from top
to bottom because each node contains the time that is spent in the child nodes. By default,
the allocation tree behaves in the same way, meaning that each node contains the
allocations that are made by the child nodes. Even if allocations are only performed by
leaf nodes deep down in the call tree, the numbers propagate up to the top. In this way,
you can always see which path is worth investigating when opening branches of the
allocation call tree. "Self-allocations” are those that are actually performed by a node and
not by its descendants. Like in the CPU call tree, the percentage bar shows them with a
different color.

. 207 1/
‘ Telemetries Recorded allocations: Live objects at 00:07, 1/10 allocations, All classes Change
Aggregation level: @ Methods hd
‘l:l‘ Live Memory 0— 94.3% - 179 kB - 2,930 alloc. java.awt.EventDispatchThread .run

() mm 47.1% - 89,720 bytes - 1,206 alloc. bezier.BezierAnimSDemo.paint
(L) mmm 335% - 73,344 bytes - 923 alloc. bezier.BezierAnimS$Demo.drawDemo

All Objects T = 33.2% - 63,248 bytes - 783 alloc. java.awt.Graphics2D.fill
Recorded Objects Wr147%- 9008 bytes - 106 alloc. java.awt.geom.GeneralPath. <init>
W 0.6%- 1,088 bytes - 34 alloc. java.awt. Graphics2D.draw
Allocation Call Tree Ol 7.0% - 13,384 bytes - 215 alloc. bezier.BezierAnimSDemo.createGraphics2D
Wir64%-12216 bytes - 142 alloc. java.awt.image Bufferedimage.createGraphics
Allocation Hot Spots O 1%-217 bytes - 34 alloc. java.awt. Graphics.drawlmage

(15.7% - 10,864 bytes - 321 zlloc. bezier.BezierAnim$Demo.run
Class Tracker

.
ﬁ Heap Walker

I CPU Views

Threads

Menitors & Locks ~ @

n
1

74

In the allocation call tree, there are often a lot of nodes where no allocations are performed
at all, especially if you show allocations for a selected class. These nodes are only there
to show you the call stack leading to the node where the actual allocation has taken place.
Such nodes are called "bridge” nodes in JProfiler and are shown with a gray icon as you
can see in the screen shot above. In some cases, the cumulation of allocations can get
in the way and you only want to see the actual allocation spots. The view settings dialog
of the allocation tree offers an option to show uncumulated numbers for that purpose. If
activated, bridge nodes will always show zero allocations and have no percentage bar.

Recorded allocations: Live objects at 00:07, 1/10 allocations, All classes Change

’ Telemetries

‘i:l' Live Memaory

All Objects
Recorded Objects
Allocation Call Tree

Allocation Hot Spots

Aggregation level: (@ Methods

D w4729 - 89,872 bytes - 1,744 alloc. java.awt.EventDispatchThread.run
@ 04%- 816 bytes - 34 alloc, bezier.BezierAnim$Demo.paint

) 0.0% - O bytes - 0 alloc. bezier.BezierAnim$Demo.drawDemo
O w3379 - 63,248 bytes - 783 alloc. java.awt.Graphics2D.fill
W1473%-9008 bytes - 106 alloc. java.awt.geom.GeneralPath, <init>
@ 0.6% - 1,088 bytes - 34 alloc. java.awt.Graphics2D.draw

@ 0.6%-1,168 bytes - 73 alloc. bezier.BezierAnimSDemo.createGraphics2D
Wre4ax-12216 bytes - 142 alloc, java.awt.image Bufferedimage.createGraphics

@ 1.1% - 2,176 bytes - 34 alloc. java.awt.Graphics.drawlmage

-

(W 0.0% - 0 bytes - 0 alloc, bezier.BezierAnimSDema.run
Class Tracker

L
ﬁ Heap Walker

I CPU Views

Threads

Menitors & Locks ~ @

n
1

The allocation hot spots view is populated together with the allocation call tree and allows
you to directly focus on the methods that are responsible for creating the selected classes.
Like the recorded objects view, the allocation hot spots view supports marking the current
state and observing the differences over time. A difference column is added to the view
that shows how much the hot spots have changed since the time when the Mark Current
Values action was invoked. Because the allocation views are not updated periodically by
default, you have to click on the Calculate tool bar button to get a new data set that is
then compared to the baseline values. Auto-update is available in the options dialog but
not recommended for large heap sizes.

Recorded allocations: Live objects at 00:32, 1/10 allocations, All classes Change

’ Telemetries

‘i:l‘ Live Memory

All Objects

Aggregation level: @ Methods * Hotspot options: | Self allocated memory hd
Allocations Difference
3,366 +1,622 (+9...

1,518 +735 (+94...

272 +130 (+92....

205 +99 (+93.0 ...

275 +134 (+95...

273 +129 (+90....

65 +31 (+91.0...

140 +67 (+92.0 ...

70 +36 (+106....

70 +36 (+106....

Hot Spot Self Allocated Memary

i, java.awt.EventDispatchThread.run [INNEN 171 kB (46 %)
&, java.awt.Graphics2D il I 126 kB (34 %)

% java.awtimage.Bufferedimage.cr... Il 23,432 bytes (6 %)
java.awt.geom.GeneralPath. <init> W 16,624 bytes (4 %)
java.awt.EventQueue.invokelater | 9,904 bytes (2 %)

%, bezier.BezierAnim$Demo.schedu... | 9,832 bytes (2 %)
java.awt.Graphics.drawlmage | 4,160 bytes (1 %)
bezier.BezierAnimSDemo.createG... | 2,240 bytes (0 %)

%, java.awt.Graphics2D.draw | 2,240 bytes (0 %)

. bezier.BezierAnimSDemo.paint 1,680 bytes (0 %)

Recorded Objects

4 Allocation Call Tree

Allocation Classes

Allocation Hot Spots

. bezier.BezierAnim5DemoSl.<init> 1,120 bytes (0 %) T0 +34 (+94.0 ...
Class Tracker
o
ﬁ Heap Walker
I CPU Views
Threads
@

75

Allocation recording rate

Recording each and every allocation adds a significant overhead. In many cases, the
total numbers for allocations are not important and relative numbers are sufficient to
solve problems. That is why JProfiler only records every 10th allocation by default. This
reduces the overhead to roughly 1/10 compared to recording all allocations. If you would
like to record all allocations, or if even fewer allocations are sufficient for your purpose,
you can change the recording rate in the recorded objects view as well as the parameter
dialog of the allocation call tree and hot spot views.

’ Telernetries Recorded allocations: | Live objects, 1/10 allocations qe
Aggregation level: O Classes v
":" Live Memory Name Instance Count Size
Jjava.awt.geom.AffineTransform I G0 (10 %) 4,320 bytes
All Objects jeva.awt.Rectangle I 0 (8 %) 1,568 bytes
java.util HashMapSNode I, 2 (7 %) 1,344 bytes
Recorded Objects sun java2d.pipe.Region I 1 (7 %) 1,680 bytes
Jjava.security. AccessControlContext | ENGE 1,480 bytes
AliocationiEalliee int]] I 1 5 o 8244 butes
. java.lang.Integer @ Allocation Options X
Allocation Hot Spot:
SIS java.lang.ref.WeakReference
Class Tracker sun.javaZd.SunGraphics2D Liveness Mode
java.lang.Object[] - -
. double]] Live objects ~| @
-ﬁ pleapiiValkay java.awt.EventQueuesd
Jjava.awt.event.InvocationEvent | Recording Rate
Jjava.awt.geom.Path2D5FloatSCol
I CPU Views java.awt.geom.Point2DSDouble Record all objects (7]

java.security.ProtectionDomainl, () Record one sample every 10 % allocstions
Jjava.util. ArrayList

iava.util HashMap
Total from 38 rows: “ Cancel

@

Threads

r? Menitors & Locks

The setting can also be found on the "Advanced Settings->Memory profiling" step of the
session settings dialog where it can be adjusted for offline profiling sessions.

The allocation recording rate influences the VM telemetries for "Recorded objects” and
"Recorded throughput” whose values will be measured at the configured fraction. When
comparing snapshots [p. 134}, the allocation rate of the first snapshot will be reported, and
other snapshots will be scaled accordingly, if necessary.

Analyzing allocated classes

When calculating the allocation tree and allocation hot spot views, you have to specify
the class or package whose allocations you want to see up-front. This works well if you
already focused on particular classes, but is inconvenient when trying to find allocation
hot spots without any pre-conceptions. One way is to start to look at the "Recorded objects”
view and use the actions in the context menu for switching to the allocation tree or
allocation hot spot views for the selected class or package.

76

’ Telernetries Recorded allocations: | Live objects, 1/10 allocations Change
Aggregation level: O Classes v
‘ Live Memaory Mame Instance Count Size
Jjava.awt.geom. Affi- - "EE 200 (10 %) 57,600 bytes
All Objects java.awt.Rectangle Show Selection In Heap Walker 644 (8 %) 20,608 bytes
sun.javald.pipe.Re Show Allecation Tree for Selection (7 %) 22,200 bytes
Recorded Object: java.util.
ccorde Z=2= javautil.Hashhap Show Allecation Hot Spots for Selection (7%) 17,696 bytes
Jjava.security. Acc) 19,120 bytes
4 Allocation Call Tree int[] Add Selection To Class Tracker 110 kB
. java.lang.Integer | _ 3,936 bytes
Allocation Cl
ocation asses java.lang.ref.Weak Show Source F4 7,776 bytes
Allocation Hot Spots sun.javald.5unGra Show Bytecode 48,464 bytes
java.awt.geom.Pat 5,216 bytes
Class Tracker Jjava.util IdentityHd M Mark Current Values 6,520 bytes
java.lang.Object[] Remove Mark 5,856 bytes
Heap Walker Jjava.awt.EventQue . 3,840 bytes
h 2 java.awt.event.nvi Change Liveness Mode 2 10,240 bytes
Jjava.util. ArrayList 3,816 bytes
I CPU Views sun.awt.EventCue Sort Classes ¢ 3,816 bytes
double]] 5 Find Ctrl+F 10,112 bytes
— iava.securitv.Prote) 3.768 bvtes
b Threads Total from 40 ro T, Export View Ctrl+R 428 kB
Q- 1 View Settings Ctrl+T ~ @

Another way is to start with the allocation tree or allocation hot spots for all classes and
use the Show classes action to show the classes for a selected allocation spot or allocation
hot spot.

Window Help Animated Bezier Curve Demo - JProfiler - a X
£ Bt 0% t =3 09 & o 3
Rarmings Raromgs Toatng | PP okt | P s | B oy | ey caren | O P | 0
| Show Classes Ctrl+ Alt+C |
Recorded allocations: | Live objects at 00:07, 1/10 allocations, All classes Show Flame Graph Ctrl+Alt+F Change
Collapse Recursions Ctrl+Alt+L

Aggregation level: @ Methods -

Calculate Cumulated Qutgoing Calls Ctrl+ Alt+G
) 94,33 - 179 kB - 2,930 alloc. java.awt. EventDispatchThread.run Calculate Backtraces To Selected Methed — Cirl+Alt+E
47.1% - 86,720 bytes - 1,206 alloc. bezier.BezierAnim$Demo.paint Infine Async Executions Corle AlteE

38.5% - 73,344 bytes - 923 alloc. bezier.BezierAnimSDemo.drawDern

W 1 4.7% - 9,008 bytes - 106 alloc. java.awt.geom.GeneralPath. <init>
0 0.6% - 1,088 bytes - 34 alloc. java.awt.Graphics2D.draw
@l 7.0% - 13,384 bytes - 215 alloc, bezier.BezierAnimSDemo.createGraphics2D
0' 6.4% - 12,216 bytes - 142 alloc. java.awt.image. Bufferedimage.createGraphics
0 1.1% - 2,176 bytes - 34 alloc, java.awt.Graphics.drawimage
Ql 5.7% - 10,864 bytes - 321 alloc, bezier.BezierAnim$Demo.run

Q- - @

Y @ 1 active recording VM #1 00:16 @ Profiling

The histogram of the allocated classes is shown as a call tree analysis [p. 189]. This action
also works from other call tree analyses.

77

783 instances in 15 classes have been allocated at the .
’ Telemetries selected call stack €D Reload analysis X 2 @

Recorded allocations: Live objects at 00:07, 1/10 allocations, All classes

l’:’l Live Memory Aggregation level: @ Methods

All Objects Allocation spot: Jjava.awt.Graphics2D.fill — bezier.BezierAnimSDemo.drawDemo — * Show more

Recorded Objects Name Instance Count Size
java.util HashMapSNode I 012 (27 %) 6,784 bytes
4 Allocation Call Tree Jjava.awt.geom.AffineTransform 710 5,112 bytes
. java.awt.geom.Point2D5Double [ETEES] 2,208 bytes

Allocation Classes . . . ,
java.awt.GradientPaintContext W 374 %) 2,368 bytes
Allocation Hot Spots Jjeva.awt.RenderingHints 374 %) 592 bytes
Jjava.awt.geom.Path2D5FloatSCopylterator 374 %) 1,184 bytes
Class Tracker Jjava.awt.geom.Point2DSFloat 374 %) 888 bytes
Jjava.lang.Integer 37 4% 592 bytes
g Heap Walker Jjava.lang.ref. WeakReference a7 4%) 1,184 bytes
-ﬁ java.util. HashMap M 36045 1,728 bytes
sun java2d.loops.GraphicsPrimitiveMgréPrimitiveSpec [l 36 (4 %) 576 bytes
I CPU Views sun.javald.pipe AlphaPaintPipesTileContext Il 364 %) 1,728 bytes
int[] Ml 344 %) 35,632 bytes
java.awt.qeom.Rectangle2DSFloat Ml 344 %) 1.088 bytes
= Threads Total from 15 rows: 783 (100 %) 63,248 bytes
@

The classes analysis view is static and is not updated when the allocation tree and hot
spot views are recalculated. The Reload Analysis action will first update the allocation tree
and then recalculate the current analysis view from the new data.

Analyzing garbage collected objects

Allocation recording cannot only show the live objects, but also keeps information on
garbage collected objects. This is useful when investigating temporary allocations.
Allocating a lot of temporary objects can produce significant overhead, so reducing the
allocation rate often improves performance considerably.

To show garbage collected objects in the recorded objects view, change the liveness
selector to either Garbage collected objects or Live and garbage collected objects. The
options dialog of the allocation call tree and allocation hot spot views has an equivalent
drop-down.

indow Help Animated Bezier Curve Demo - JProfiler - a X
i i, - n —a
A i 8 =y JiL B L
£ B T C L 0 4
Start Stop Start Add View Stop Freeze
Run GC Exq Hel
Recordings Recordings Tracking un Bookmark POt ttings = Memory View Hezp Waleer| Objects | Cument

. Live Objects

Recorded allocations: | Live objects, 1/10 allocations T Garbage Collected Objects Change
-’1 Live And Garbage Collected Objects
Aggregation level: © Classes hd
Name Instance Count Size
Jjava.awt.geom.AffineTransform I, 24 (10 %) 15,408 bytes
java.awt.Rectangle I 171 (8 %) 5,472 bytes
Jjava.util. HashMapS$Hode I 149 (7 %) 4,768 bytes
sun.javald.pipe.Region I, 1 (7 %) 5,960 bytes
Jjava.security.AccessContralContext I 129 (6 °5) 5,160 bytes

However, JProfiler does not collect allocation tree information for garbage-collected
objects by default, because the data for live objects only can be maintained with far less
overhead. When switching the liveness selector in the "Allocation Call Tree" or "Allocation
Hotspots” view to a mode that includes garbage collected objects, JProfiler suggests
changing the recording type. This is a change in the profiling settings, so all previously
recorded data will be cleared if you choose to apply the change immediately. If you would
like to change this setting in advance, you can do so in "Advanced Settings” -> "Memory
Profiling” in the session settings dialog.

78

@ Session Settings
iy | Application Settings
E‘ Call Tree Recording
T Call Tree Filters
Trigger Settings

Databases

HTTP, RPC & JEE

© @ i

¥ Advanced Settings

£

CPU Profiling
Probes & JEE
Memory Profiling
Thread Profiling

Miscellaneous

General Settings

JVM & Custom Probes

Allocation Tree Recording Type

Record allocations of: |) Live objects

Live and GCed objects

Live and GCed objects without class resolution

QOO

Recording options
Recording rate: Record all objects €
© Record one sample every

Record object allecation times 0

Copy Settings From

10 % allecations

Cancel

Next stop: heap walker

Any more advanced type of question will involve references between objects. For example,
the sizes that are displayed in the recorded objects, allocation tree and allocation hot
spot views are shallow sizes. They just include the memory layout of the class, but not
any referenced classes. To see how heavy objects of a class really are, you often want to
know the retained size, meaning the amount of memory that would be freed if those

objects were removed from the heap.

This kind of information is not available in the live memory views, because it requires
enumerating all objects on the heap and performing expensive calculations. That job is
handled by the heap walker. To jump from a point of interest in the live memory views into
the heap walker, the Show in Heap Walker tool bar button can be used. It will take you to

the equivalent view in the heap walker.

If no heap snapshot is available, a new heap snapshot is created, otherwise JProfiler will

ask you whether to use the existing heap snapshot.

79

indow Help Animated Bezier Curve Demo - JProfiler - a X
A 5 = by " | ! i) P

$ 8 T S &K 2t @ &£ < @

Start Stop Start . Add View Stop Unfreeze Live Mark
Recordings Recordings Tracking | " CC Bockmak | CF°" Settings HEP pemory | View | Heap Walker | Otjects Cument
Recorded allocations: | Live objects, 1/10 allocations Change
Aggregation level: O Classes

Name Instance Count Size

java.awt.geom.AffineTransform 682 (10 %) 49,104 bytes|
Jjava.awt.Rectangle . Fg 17,440 bytes
sun.javaZd.pipe.Region I, 73 (7 %) 19,120 bytes
java.util. HashMapSNode I, <77 (7 %) 15,264 bytes
Jjava.security.AccessControlContext I 09 (6 %) 16,360 bytes

@ IProfiler x

A Heap Dump Has Already Been Taken

‘Where do you want to show the selected objects?

% Show in current heap dump

Selected objects were created after the heap dump was
taken will not be found in the current heap dump.

% Show in new heap dump
If you select this option, the current heap dump will be
discarded.

Selected objects that have already been garbage collected
will not be found in the new heap dump.

Cancel

In any case, it is important to understand that the numbers in the live memory views and
in the heap walker will often be very different. Apart from the fact that the heap walker
shows a snapshot at a different point in time than the live memory views, it also eliminates
all unreferenced objects. Depending on the state of the garbage collector, unreferenced
objects can occupy a significant portion of the heap.

80

The Heap Walker

Heap snapshots

Any heap analysis that involves references between objects requires a heap snapshot,
because it is not possible to ask the JVM what the incoming references to an object are.
You have to iterate over the entire heap to answer that question. From that heap snapshot,
JProfiler creates an internal database that is optimized for producing the data required
for serving the views in the heap walker.

There are two sources of heap snapshots: JProfiler heap snapshots and HPROF/PHD heap
snapshots. JProfiler heap snapshots support all available features in the heap walker. The
profiling agent uses the profiling interface JVMTI to iterate over all references. If the profiled
JVM s running on a different machine, all information is transferred to the local machine
and further calculations are performed there. HPROF/PHD snapshots are created with a
built-in mechanism in the JVM and are written to disk in a standard format that JProfiler
can read. HotSpot JVMs can create HPROF snapshots, and Eclipse Opend9 JVMs provide
PHD snapshots.

On the overview page of the heap walker, you can choose if a JProfiler heap snapshot or
an HPROF/PHD heap snapshot should be created. By default, the JProfiler heap snapshot
is recommended. The HPROF/PHD heap snapshot is useful in special situations that are
discussed in another chapter [p. 205].

‘ Telemetries O No snapshot has been taken.

For a maximum of features:

‘l:l- Live Memory

Press ﬁ to take a JProfiler heap snapshot

i
ﬁ Heap Walker : o i . i
» The snapshot is displayed in this frame and saved together with profiling infermation
from other views
I CPU Views = For live profiling sessions, special features are available
» Integrations with other views require this snapshot type
Threads
Press x’ to indicate the starting point of a use case
Q Monitors & Locks
= All objects that are currently on the heap will be marked as old
» When you take the next heap snapshot, new and old objects will be listed separately
Datahaes in the header
» You can select new or old objects only, making it easy to track down memory leaks
G HTTP, RPC & JEE
For a minimum of overhead:
@ JVM & Custom Probes

Y
Press g totake an HPROF heap snapshot
o
ees MBeans
- = The snapshot is saved separately and displayed in another frame
» Not all features are available

« Memory and CPU overhead in the profiled VM are lower than for the JProfiler

Selection steps

The heap walker consists of several views that show different aspects of a selected set of
objects. Right after you take the heap snapshot, you are looking at all objects on the heap.
Each view has navigation actions for turning some selected objects into the current object
set. The header area of the heap walker shows information on how many objects are
contained in the current object set.

8l

© Classes Wl Allocations EE Biggest Objects 1 References O Time @ Inspections 3

Current object set: 62,197 objects in 1,320 classes.

1 selection step, 5,766 kB shallow size

© Classes hd Use.. ™ (& Group By Class Loaders Calculate estimated retained sizes
Name Instance Count Size

byte[] I 3,132 (21 %) 694 kB

javalang.String I 11,253 (19 %) 285 kB

Initially, you are looking at the "Classes” view which is similar to the "All objects” view in the
live memory section [p. 71]. By selecting a class and invoking Use->Selected Instances,
you create a new object set that only contains instances of that class. In the heap walker,
‘using” always means creating a new object set.

For the new object set, showing the classes view of the heap walker would not be interesting,
because it would effectively just filter the table to the previously selected class. Instead,
JProfiler suggests another view with the "New object set” dialog. You can cancel this dialog
to discard the new object set and return to the previous view. The outgoing references
view is suggested, but you could also choose another view. This is just for the initially
displayed view, you can switch views in the view selector of the heap walker afterward.

@ Mew Object Set x

A new object set has been created. It consists of 4,474 instances of java.util.HashMap$Node.

Please choose the initial view for the object set:

Classes] This view mode of the references view shows trees
of cutgeing references from the single instances in
llccatuns o the current object set. You can navigate to other

instances in the reference tree.

Biggest objects EE
© References o
Qutgoing references -
Time O
Inspections @

Do not show this dialog again

T o

The header area now tells you that there are two selection steps and includes links for
calculating the retained and deep sizes or for using all objects that are retained by the
current object set. The latter would add another selection step and suggest the classes
view because there would likely be multiple classes in that object set.

82

i i - 0 —
N EICRIE a *[0]o[a
g 8 B | & s 7 N
Start Stop Start Add View Take Mark GoTo | Show
Run GC Ex Hel) Back
Recordings Recordings Tracking | Bookmark PO ettings ®P | Snapshot Heap Stat | Selection
© Classes il Allocations EI] Biggest Objects % References O Time 1:9:} Inspections

Current object set: 4,474 instances of java.util.HashMap$Node

2 selection steps, 143 kB shallow size, ICa\cuIate retained and dEEE sizes II Use retained cb'&ctzl

Outgoing references o Use.. ™ Apply filter .. ¥ |
Object Retained Size Shallow Size Allocation Time (himss)
» java.util HashMapSMode 1,483 kB 32 bytes
¥ java.util HashMapSMode 1,487 kB 32 bytes
¥ java.util HashMapSMede 96,976 bytes 32 bytes
¥ java.util HashMapSMede 94,968 bytes 32 bytes
¥ java.util HashMapSMode 50,728 bytes 32 bytes
¥ java.util HashMapSMode 5,344 bytes 32 bytes
¥ java.util HashMapShode 1,528 bytes 32 bytes
¥ java.util HashMap&hode (0x 1,408 bytes 32 bytes

Selection step 2: Class
java.util.HashMapSNede

4,474 instances of java.utilHashMap&Node

Selection step 1: All objects, after full GC, retaining soft references

E7ANT ot 4T e

In the lower part of the heap walker, the selection steps up to this point are listed. Clicking
on the hyperlinks will take you back to any selection step. The first data set can also be
reached with the Go To Start button in the tool bar. The back and forward buttons in the
tool bar are useful if you need to backtrack in your analysis.

Classes view

The view selector at the top of the heap walker contains five views that show different
information for the current object set. The first one of those is the "Classes” view.

The classes view is similar to the "All objects” view in the live memory section and has an
aggregation level chooser that can group classes into packages. In addition, it can show
estimated retained sizes for classes. This is the amount of memory that would be freed if
allinstances of a class were removed from the heap. If you click on the Calculate estimated
retained sizes hyperlink, a new Retained Size column is added. The displayed retained
sizes are estimated lower bounds, calculating the exact numbers would be too slow. If
you really need an exact number, select the class or package of interest and use the
Calculate retained and deep sizes hyperlink in the header of the new object set.

© Classes Wl Allocations EE Biggest Objects i References o Time 1:9:} Inspections 3

Current object set: 62,197 objects in 1,320 classes.

1 selection step, 5,766 kB shallow size

© Classes hd Use.. ™ (& Group By Class Loaders ICaIcuIatr: estimated retained zlzesl
Name Instance Count Size
byte[] I (2,132 (21 %) 694 kB
javalang.String I 11,323 (19 %) 285 kB
java.utilHashMapSNode I 474 (7 %) 143 kB
java.lang.Class I 2,954 (4 %) 945 kB
java.lang.Object]] I 2534 (4 %) 183 kB

Based on your selection of one or more classes or packages, you can select the instances
themselves, the associated java.lang.C ass objects, or all retained objects.
Double-clicking is the quickest selection mode and uses the selected instances. If multiple
selection modes are available, as in this case, a Use drop-down menu is shown above
the view.

83

When solving class loader-related problems, you often have to group instances by their
class loader. The Inspections tab offers a "Group by class loaders” inspection that is made
available on the classes view, because it is especially important in that context. If you
execute that analysis, a grouping table at the top shows all class loaders. Selecting a class
loader filters the data accordingly in the view below. The grouping table remains in place
when you switch to the other views of the heap walker until you perform another selection
step. Then, the class loader selection becomes part of that selection step.

© Classes Wl Allocations .. Biggest Objects 1 References O Time @ Inspections 3
Ohbject groups:
Priority Class Loader Instance Count Shallow Size
1 Default class loader 62,172 5,762 kB
2 jdk.internal.loader.ClassLoadersS AppClassLoader (0x103f) 25 3,928 bytes

Current object set: 62,172 objects in 1,313 classes.
3 selection steps, 5,762 kB shallow size, Calculate retained and deep sizes Use retained objects

O Classes ~ Use.. v Group By Class Loaders Calculate estimated retained sizes
Name Instance Count Size

byte[] I 13,132 (21 %) 694 kB
Jjava.lang.String I 1,283 (19 %) 285 kB
Jjava.util.HashMapSMode I 474 (7 %) 143 kB
java.lang.Class I 2046 (4 %) 942 kB
javalang.Object]] I 20344 %) 183 kB
java.util.concurrent.ConcurrentHashMapSNode N 2,823 (4 %) 90,336 bytes
Total from 1,313 rows: 62,172 (100 %) 5,762 kB

v @

Allocation recording views

The information where objects have been allocated can be important when narrowing
down suspects for a memory leak or when trying to reduce memory consumption. For
JProfiler heap snapshots, the "Allocations” view shows the allocation call tree and the
allocation hot spots for those objects where allocations have been recorded. Other objects
are grouped in the "unrecorded objects” node in the allocation call tree. For HPROF/PHD
snapshots, this view is not available.

@ Classes Wl Allocations .- Biggest Objects 7 References O Time @ Inspections »

Current object set: 62,197 objects in 1,320 classes.

1 selection step, 5,766 kB shallow size

Cumulated allocationtree » of | (@) Methods | [@ Use Selected

U— 100.0% - 131 kB - 2,035 alloc, java.awt.EventDispatchThread.run
() e— 9,92 - 131 kB - 2,032 alloc. berier.BezierAnim$Dema.paint
‘;)— 99.9% - 131 kB - 2,032 alloc., bezier.BezierAnimSDemo.drawDemo
100 kB - 1,218 alloc. i

0 bytes - 407 alloc. java. ap.put

7. . 744 bytes - 406 alloc, java.lang.Long.valueOf
m 0.0% - 32 bytes - 1 alloc. java.awt.Graphics2D.fill
@ 0.0% - 5,634 kB - 60,162 alloc. unrecorded objects

Recorded allocations: All allocations 0

Like in the classes view, you can select multiple nodes and use the Use Selected button
at the top to create a new selection step. In the "Allocation hot spots” view mode, you can

84

also select nodes in the back traces. This will only select objects in the associated top-level
hot spot that have been allocated on a call stack that ends with the selected back trace.

Another piece of information that JProfiler can save when recording allocations is the time
when an object was allocated. The "Time" view in the heap walker shows a histogram of
the allocation times for all recorded instances in the current object set. You can click and
drag to select one or multiple intervals and then create a new object set with the Use
Selected button.

© Classes Wl Allocations EE Biggest Objects 1 References o Time @ Inspections 3

Current object set: 5,495 instances of java.awt.geom.GeneralPath

2 selection steps, 175 kB shallow size, Calculate retained and deep sizes Use retained objects
4,485 new instances (81,6%) since the last heap dump Use new Use old

Use Selected log FOUPCINS SIRE |

Unrecorded objects: 604
Click and drag to select chjects

A

1000

100 5

| 0:31.8 [Jul 25, 2023 10:47:23 AM] £ 260 ms

Instances: 160

For a more precise selection of a time interval, you can specify a range of bookmarks [p. 45].
All objects between the first and last selected bookmark will then be marked.

In addition to the time view, allocation times are displayed as a separate column in the
reference views. However, allocation time recording is not enabled by default. You can
switch it on directly in the time view or edit the setting in Advanced Settings -> Memory
Profiling in the session settings dialog.

Biggest objects view

The biggest objects view shows a list of the mostimportant objects in in the current object
set. ‘Biggest" in this context means the objects that would free most memory if they were
removed from the heap. That size is called the retained size. In contrast, the deep size is
the total size of all objects that are reachable through strong references.

Each object can be expanded to show outgoing references to other objects that are
retained by this object. In this way, you can recursively expand the tree of retained objects
that would be garbage collected if one of the ancestors were to be removed. This kind of
tree is called a "dominator tree”. The information displayed for each object in this tree is
similar to the outgoing reference view except that only dominating references are
displayed.

85

© Classes Wl Allocations .. Biggest Objects 1 References o Time @ Inspections 3

Current object set: 60,357 objects in 1,319 classes.
1 selection step, 5,651 kB shallow size

Mo grouping v | = Tree A Use.. v Show In Graph w0

Object Retained Size
W sun.awt.AppContext (05 I 1,545 kB (27 %)
D bezier.BezierAnimSDemo (0xde03 I G2 kB (6 %)
— 351 kB (99.7%) bimg @) sun.awtimage.0ffScreenlmage
I G5 kB (99.7%) raster (declare timage.Bufferedimage =] sun.awt.image.IntegerinterleavedRaster
351 kB (99.6%) data (declared wt.image.IntegerCompenentRaster @ int[1
}G Another 3 instances with a total retained size of 264 bytes and a maximum single retained size of 144 bytes
ég Another 2 instances with a total retained size of 152 bytes and a maximum single retained size of 128 bytes
é% Another 12 instances with a total retained size of 504 bytes and a maximum single retained size of 80 bytes

) jova.awt.EventDispatchThread (05048 I 331 kB (5 %)
) bezier.BezierAnim (DcdeST I 203 kB (3 %)
[] Jjava.util zip.ZipFileS5Source (0x 7622 112 kB (1 %)

Il 97,424 bytes (1 %)
W 55,088 bytes (0 %)

3 sun.swing.CachedPainter (0
© com.jprofiler.agent.d.a (0x11
@ sun.security.util KnownOIDs W 50,380 bytes (0 %)
I:i sun.security.provider,Sun (0x3a68 B 43,176 bytes (0 %)
Q sun javald.loops.GraphicsPrimitiveMgr (0: 97 W 33,432 bytes (0%)

Q Jjavalang.invoke MethodType ([xb3 W 32,304 bytes (0 %)
Iﬁ-i Jjava.util.concurrent.ConcurrentHashMap (0x6elc I 34192 bytes (0 %)
W javalang.invoke.LambdaForm (0140 1 33,160 bytes (0 %)
1 sun.awt.ExtendedKeyCodes (D:1e 1 30,336 bytes (0 %)
1 com.jprofiler.agent.triggers.TriggerLog (0x207 1 25,224 bytes (0 %)
[] Jjava.io.PrintStream ((u38cf 1 25,112 bytes (0 %)
@ java.io.PrintStream (0x273 1 25,112 bytes (0 %)
I.,J javalang.ProcessEnvironment (0x2fd 1243552 bytes (0 %)
|:i sun.awt. Win32FontManager (0x 2645 120016 bytes (0 %)
Iﬁ-i javalang.Module (0x 2144 1 18,568 bytes (0 %)

Not all dominated objects are directly referenced by their dominators. For example, consider
the references in the following figure:

[GC root J

[Objt;ct A J

dominates directly dominates directly

Object B2 J

—/
tes in
)

[Object Bl

[Object C]

Object A dominates objects Bl and B2, and it does not have a direct reference to object
C. Both B1 and B2 reference C. Neither Bl nor B2 dominates C, but A does. In this case, BI,
B2 and C are listed as direct children of A in the dominator tree, and C will not be listed a
child of Bl and B2. For Bl and B2, the field names in A by which they are held are displayed.
For C, "[transitive reference]" is displayed on the reference node.

At the left side of each reference node in the dominator tree, a size bar shows what
percentage of the retained size of the top-level object is still retained by the target object.
The numbers will decrease as you drill down further into the tree. In the view settings, you
can change the percentage base to the total heap size.

86

The dominator tree has a built-in cutoff that eliminates all objects that have a retained
size that is lower than 0.5% of the retained size of the parent object. This is to avoid
excessively long lists of small dominated objects that distract from the important objects.
If such a cutoff occurs, a special "cutoff” child node will be shown that notifies you about
the number of objects that are not shown on this level, their total retained size and the
maximum retained size of the single objects.

Instead of showing single objects, the dominator tree can also group biggest objects into
classes. The grouping drop-down at the top of the view contains a checkbox that activates
this display mode. In addition, you can add a class loader grouping at the top level. The
class loader grouping is applied after the biggest objects are calculated and shows who
loaded the classes of the biggest objects. If you want to analyze the biggest objects for
one particular class loader instead, you can use the "Group by class loader” inspection
first.

© Classes Wl Allocations EE Biggest Objects 1 References O Time ::C_;} Inspections 3

Current object set: 60,357 objects in 1,319 classes.
1 selection step, 5,651 kB shallow size

Mo grouping = Tree - Use.. ¥ = 0

Group by class loader @ DPhject Retained Size

Group by class @ I 1,545 kB (27 %)
a3 I 62 LB (6 %)

D jeva.awt EventDispatchThread (0x50d2 I kB (5 %)

¥ bezier.Bezieranim (DxdedT) I 203 kB (3 %)

W iava.tilzin FinFileSSnurce (M 7R3 I 117 R 01 %)

The view mode selector above the biggest objects view allows you to switch to a sunburst
diagram. The diagram is composed of a series of concentric segmented rings and shows
the entire content of the dominator tree up to a maximum depth in one single image.
References originate in the innermost ring and propagate towards the outer rim of the
circle. This visualization gives you a flattened perspective with high information density
that allows you to discover reference patterns and see large primitive and object arrays
at a glance through their special color coding.

If the current object set is the entire heap, the total circumference of the circle corresponds
to the used heap size. Because the biggest object view only shows objects that retain
more than 0.1% of the total heap, this means that a substantial sector will be empty,
corresponding to all objects that are not retained by those biggest objects.

87

© Classes Wl Allocations .. Biggest Objects 1 References O Time @ Inspections 3

Current object set: 60,357 objects in 1,319 classes.
1 selection step, 5,651 kB shallow size

Mo grouping b Sunburst Diagram +

Q All objects

Biggest ohjects:

1,545 kB (27.4%) sun.awt.AppContext

362 kB (6.4%) bezier.BezierAnimiDemo

331 kB (3.9%) java.awt.EventDispatchThread

203 kB (3.6%) bezier.BezierAnim

112 kB (2.0%) java.util.zip.ZipFileSSource

97,424 bytes (1.7%) class sun.swing.CachedPainter
55,088 bytes (1.0%) class com,jprofiler.agent.d.a
50,880 bytes (0.9%) class sun.security.util. KnownOIL
48,176 bytes (0.9%) sun.security.provider.5un
38,432 bytes (0.73) class sun.javaZd.loops.Graphicsl
38,304 bytes (0.7%) class java.lang.inveke.MethodTy
34,192 bytes (0.6%) java.util.concurrent.Concurrent!
33,160 bytes (0.6%) java.lang.invoke.LambdaForm
30,336 bytes (0.5%) class sun.awt.ExtendedKeyCode
23,224 bytes (0.4%) class com jprofiler.agent.trigger
25,112 bytes (0.4%) java.io.PrintStream

25,112 bytes (0.4%) java.io.PrintStream

24,5352 bytes (0.4%) class java.lang.ProcessEnvironrm
20,016 bytes (0.4%2) sun.awt.Win32FontManager
18,368 bytes (0.3%) java.lang.Module

14,544 bytes (0.3%) class java.nio.charset.Charset

Instances ™ Object arrays ™ Primitive arrays Smaller objects

Clicking on any ring segment sets a new root for the circle, thereby expanding the maximum
depth that you can see in the diagram. Clicking on the hollow center of the diagram
restores the previous root. If a new root has been set, the total circumference of the circle
corresponds to the retained size of the root object. An empty sector represents the self-size
of the root object and additional objects that are not present in the list of biggest retained
objects. If the current object set is not the entire heap, the total circumference of the circle
corresponds to the sum of all displayed biggest objects and no empty sector is shown.

88

© Classes Wl Allocations .. Biggest Objects 1 References o Time @ Inspections 3

Current object set: 60,357 objects in 1,319 classes.
1 selection step, 5,651 kB shallow size
Mo grouping b Sunburst Diagram + Q

Q class java.nio.charset.Charset
14,544 bytes (0% of parent node, 0% of total heap)

Biggest objects:

14,160 bytes (97.4%) static standardProvider o su
Another 3 instances with a total retained size of 64 £

%
2
>
=
=
=
E=

&
S
AN

AN
T '
]

Instances ™ Object arrays ™ Primitive arrays Smaller objects

More information about instances and theirimmediately retained objects is displayed on
the right side of the diagram when you hover over them with the mouse. When the mouse
is outside any ring segment, the list on the right side shows the biggest objects in the
innermost ring. Hovering over that list highlights the corresponding ring segments and
clicking on a list item sets a new root for the diagram. To create a new object set, you can

choose from the actions in the context menu, both on the ring segments as well on the
list items.

Reference views

Unlike the previous views, the reference views are only available if you have performed at
least one selection step. For the initial object set these views are not useful, because the
incoming and outgoing reference views show all individual objects and the merged
reference views can only be interpreted for a focused set of objects.

The outgoing references view is similar to the view that a debugger would show in an IDE.
When opening an object, you can see the primitive data and references to other objects.
Any reference type can be selected as a new object set, and you can select multiple
objects at once. Like in the classes view, you can select retained objects or associated
java.l ang. d ass objects. If the selected object is a standard collection, you can also

select all contained elements with a single action. For class loader objects, there is an
option to select all loaded instances.

89

© Classes Wl Allocations .. Biggest Objects 1 References o Time @ Inspections 3

Current object set: 4,474 instances of java.util.HashMap$Node
2 selection steps, 143 kB shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references v Use.. v Apply filter ... ¥ =3 Show In Graph @ || @

Object Selected Objects Shallow Size Allocation Time (himis)

¥ key ™ class javax.swing.Repai Instances of Selected java.lang.Class Objects

HANDLE_TOP_LEVEL_PAIN
BUFFER_STRATEGY NOT_ Retained Objects
BUFFER_STRATEGY_SPECIFIED_ON = 1
BUFFER_STRATEGY_SPECIFIED_OFF = 2
BUFFER_STRATEGY_TYPE = 2
volatilelmageBufferEnabled = true
volatileBufferType = 1

Selection step 2: Class
java.util. HashMapSMNode

4,474 instances of java.util.HashMapSNode

Selection step 1: All objects, after full GC, retaining soft references

7 40T mleia it 4 A almmmem

Fields with null references are not shown by default because that information may be
distracting for a memory analysis. If you want to see all fields for debugging purposes,
you can change this behavior in the view settings.

€ Heap Walker View Settings X
General Classes Allocations Biggest Objects References Time Graph

Size Scale For Cumulated Views

0 Automatic 0 Mixed units MEB kB bytes

Instance Views
Show object IDs
Show declaring class if different from actual class (7]

I Show fields with null values in outgoing references viewl (7]

-

Instance block size: 00 5| @

Common Options

Compact representation of incoming references to collections £

Beside the simple selection of displayed instances, the outgoing references view has
powerful filtering capabilities [p. 209]. For live sessions, both outgoing and incoming
reference views have advanced manipulation and display functionality that is discussed
in the same chapter.

The incoming references view is the main tool for solving memory leaks. To find out why
an object is not garbage collected, the Show Paths To GC Root button will find reference
chains to garbage collector roots. The chapter on memory leaks [p. 212] has detailed
information on this important topic.

90

© Classes Wl Allocations EE Biggest Objects 1 References O Time @ Inspections 3

Current object set: 652 instances of java.awt.geom.GeneralPath
2 selection steps, 20 kB shallow size, Calculate retained and deep sizes Use retained objects

Incoming references v Use.. ¥ =3 Show In Graph @ s @ i Show Paths To GC Reot
Object Retained Size Shallow Size Allocation Time (himss)
¥ java.awt.geom.GeneralPath (0x822f) 248 bytes 32 bytes nfa

@ value of java.util HashMapSNode (0:222d
D element of java.util. HashMapSMode[] (0:xb243
@ table of java.util.HashMap (0x822¢
O leakMap of bezier.BezierAnim (Dxded7
0 this$0 of bezier.BezierAnimSDemo (0x4293
Oj',java stack of Thread-0 in bezier.BezierAnimSDemo.run()

J java.awt.geom.GeneralPath (0x 8 243 bytes 32 bytes
» java.awt.geom.GeneralPath 248 bytes 32 bytes
J java.awt.geom.GeneralPath 248 bytes 32 bytes
¥ java.awt.geom.GeneralPath 248 bytes 32 bytes
J jeva.awt.geom.GeneralPath 248 bytes 32 bytes
J java.awt.geom.GeneralPath 248 bytes 32 bytes
¥ java.awt.geom.GeneralPath 248 bytes 32 bytes
» java.awt.geom.GeneralPath 248 bytes 32 bytes
J java.awt.geom.GeneralPath 243 bytes 32 bytes
J java.awt.geom.GeneralPath 243 bytes 32 bytes
» java.awt.geom.GeneralPath 248 bytes 32 bytes
J java.awt.geom.GeneralPath 248 bytes 32 bytes
J java.awt.geom.GeneralPath 248 bytes 32 bytes
¥ java.awt.geom.GeneralPath 248 bytes 32 bytes
J java.awt.geom.GeneralPath 248 bytes 32 bytes
» java.awt.geom.GeneralPath 248 bytes 32 bytes
» java.awt.geom.GeneralPath 248 bytes 32 bytes
» java.awt.geom.GeneralPath 243 bytes 32 bytes
¥ java.awt.geom.GeneralPath (0x 2268 248 bytes 32 bytes

Merged references

Checking references for a lot of different objects can be tedious, so JProfiler can show you
the merged outgoing and incoming references of all objects in the current object set. By
default, the references are aggregated by classes. If instances of a class are referenced
by other instances of the same class, a @ special node is inserted that shows the original
instances plus the instances from these class-recursive references. This mechanism
automatically collapses internal reference chains in common data structures, such as in
a linked list.

You can also choose to show the merged references grouped by field. In that case, each
node is a reference type, such as a particular field of a class or the content of an array.
For standard collections, internal reference chains that would break cumulation are
compacted, so you see reference types like ‘'map value of java.lang.HashMap®. Unlike for
class aggregation, this mechanism only works for explicitly supported collections from
the standard library of the JRE.

In the "Merged outgoing references” view, the instance counts refer to the referenced
objects. In the "Merged incoming references” view, you see two instance counts on each
row. The first instance count shows how many instances in the current object set are
referenced along this path. The bar icon at the left side of the node visualizes this fraction.
The second instance count after the arrow icon refers to the objects that hold the references
to the parent node. When performing a selection step, you can choose whether you want
to select objects from the current object set that are referenced in the selected way or if
you are interested in the objects with the selected reference - the reference holders.

91

© Classes Wl Allocations .. Biggest Objects 1 References o Time @ Inspections 3

Current object set: 4,474 instances of java.util.HashMap$Node
2 selection steps, 143 kB shallow size, Calculate retained and deep sizes Use retained objects

Merged incoming references ¥ | Aggregate by class Use.. v @

N 21% - 3,647 instances 3 422 instances of java.util.} Referenced Objects
7% - 3,457 instances ¥ 420 instances of java.ut Unreferenced Objects
B 1% - 951 instances (Y 250 inctances of java.utilH

18% - 821 instances ® 1 instance of bezier. Bezie | kit |
W 15% - 821 instances 3 1 instance of bezier.BezierAnim$1
W 18% - 821 instances (Y 2 instances of javaJlang.Object]]
W 12% - 821 instances 3 1 instance of java.awt.BorderLayout
W 8% - 827 instances &Y 1 instance of javax.swing.JRootPane
W 18% - 821 instances (Y 3 instances of java.util.Hashtable$Entry
W 18% - 821 instances 3 1 instance of sunawt.windows.WPanelPeer
W 8% - 821 instances &Y 1 instance of sunawtimage.OffScreenlmage
W 13% - 821 instances) 1instance of java.awt.LightweightDispatcher
W 18% - 821 instances 3 1 instance of bezier.BezierAnim$Demo

1 6% - 305 instances &Y 53 instances of javalang.Module

1 5% - 266 instances (Y 21 instances of java.util.HashMap$KeySet

1 4% - 214 instances 3 40 instances of java.util. HashMap$EntrySet

I 2% - 125 instances &Y 1instance of sun.awt.resources.awt

| 2% - 123 instances Y class sun.font.TrueTypeFont

| 2% - 102 instances L3 1instance of sun awt windows WTanlkit

With the "Merged dominating references” view you can find out which references must be
removed so that some or all of the objects in the current object set can be garbage
collected. The dominating reference tree can be interpreted as the merged inverse of the
dominator tree in the biggest objects view, aggregated for classes. The reference arrows
may not express a direct reference between the two classes, but there may be other
classes in between that hold non-dominating references. In the case of multiple garbage
collector roots, no dominating references may exist for some or all objects in the current
object set.

@ Classes Wl Allocations .- Biggest Objects 7 References o Time 1:9:} Inspections »

Current object set: 4,474 instances of java.util.HashMap$Node
2 selection steps, 143 kB shallow size, Calculate retained and deep sizes Use retained objects

Merged dominating references v || Objects to GC roots Use.. v @
— 1% - 3,647 instances () IR N AL achMap$ Nodel |
B 779 - 3457 instances| GC roots to ebjects tiLHashMap

M 21% - 951 instances 0 250 instances of java.util.HashSet
W 13% - 821 instances (3 1instance of bezier.BezierAnim
1 6% - 305 instances (Y 53 instances of java.lang.Module
I 2% - 125 instances 0 1instance of sun.awt.resources.awt
I 2% - 125 instances (3% GC root
| 2% - 123 instances O class sun.font.TrueTypeFont
I 2% - 102 instances 0 1instance of sun.awt.windows.WToolkit
| 2% - 100 instances Y 1 instance of sun.awt.windows.WDesktopProperties
| 2% - 96 instances e class sun.awt.ExtendedKeyCodes
I 1% - 8% instances 0 1 instance of com.sun.swing.internal.plaf.basic.resources.basic
| 1% - 63 instances Y 37 instances of java.security.Provider§Service
I 1% - 59 instances 0 5 instances of java.util.Collections$UnmodifiableMap
I 1% - 51 instances 0 1 instance of java.lang.ModuleLayer
| 1% - 49 instances @ class jdkcinternal.misc VM
I 1% - 49 instances €3 class iava.securitv.Provider

All references may be transitive @)

By default, the "Merged dominating references’ view shows incoming dominating references
and by opening the tree, you can reach the objects that are held by the GC roots.
Sometimes, the reference tree may lead to the same root objects along many different
paths. By choosing the "GC roots to objects” view mode in the drop-down at the top of the
view, you can see the reverse perspective where the roots are at the top level and the
objects in the current object set are in the leaf nodes. In that case, the references go from
the top level towards the leaf nodes. Which perspective is better depends on whether the
references you want to eliminate are close to the current object set or close to the GC
roots.

92

Inspections

The "Inspections’ view does not show data by itself. It presents a number of heap analyses
that create new object sets according to rules that are not available in the other views.
For example, you may want to see all objects that are retained by a thread local. This
would be impossible to do in the reference views. Inspections are grouped into several
categories and explained in their descriptions.

© Classes Wl Allocations EE Biggest Objects 1 References O Time @ Inspections 3

Current object set: 60,357 objects in 1,319 classes.
1 selection step, 5,651 kB shallow size

Awailable Inspections:

* Duplicate objects Description

Find duplicate java. lang. 5tring objects in the current object set.
Duplicate strings
After the inspection is calculated, you will see a statistics table at the top of all
heap walker view where you can select each duplicate string value and analyze
the correspending string objects separately.

Duplicate primitive wrappers

Duplicate arrays

Mote: If no java. lang. String chjects are contained in the current object

[Collections & Arrays set, the inspection will return the empty object set.

P4 Reference & field analysis Configuration

(& Weak references Minimum length: 20 ¥
I Stack references Status
= Thread locals o Mot calculated T:C';} Calculate inspection and create a new object set

@ Classes & Class loaders

e Custom inspections

An inspection can partition the calculated object set into groups. Groups are shown in a
table at the top of the heap walker. For example, the "Duplicate strings” inspection shows
the duplicate string values as groups. If you are in the reference view, you can then see
the j ava. | ang. Stri ng instances with the selected string value below. Initially, the first
row in the group table is selected. By changing the selection, you change the current
object set. The Instance Count and Size columns of the group table tell you how large the
current object set will be when you select a row.

93

© Classes Wl Allocations EE Biggest Objects 1 References O Time @ Inspections 3

Ohbject groups:
Priority Duplicate String Instance Count String Length Total Size

1 makeConcatWithConstants 34 23 782 bytes
2 ChUsers\ingohprojects\jprofilerfdist\bin 4 4 164 bytes
3 file:///C:f Users/ingo/projects/jprofiler/dist/demo/bezier/classes/ 2 66 132 bytes
4 C:h\Users\ingo'jdks'jbrsdk-11_0_13-b1751.16 3 42 126 bytes
5 Ch\Users\ingo'projects\jprofilerdist\demo'\bezierclasses 2 57 114 bytes
6 (Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object; 2 56 112 bytes
7 C\Program Files\Java\jdk1.8.0_201 3 34 102 bytes
8 Cih\Users\ingohprojects\jprofiler\dist\bin\agent,jar 2 51 102 bytes

Current object set: 34 instances of java.lang.String
3 selection steps, 816 bytes shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references o Use.. ™ Apply filter .. ¥ Show In Graph W | @
Object Retained Size Shallow Size Allocation Time (himss)
¥ javalang.String (0 o) ["makeConcatWithCo... 64 bytes 24 bytes n/a
¥ javalang.String 0) ["makeConcatWithCe... 64 bytes 24 bytes
¥ javalang.String 4) ["makeConcatWithCe... 64 bytes 24 bytes

¥ javalang.String
» javalang.String
¥ javalang.String

<) ["makeConcatWithCe... 64 bytes 24 bytes
"makeConcatWithCo... 64 bytes 24 bytes
"makeConcatWithCo... 64 bytes 24 bytes
4) ["makeConcatWithCo... 64 bytes 24 bytes

¥ javalang.String

¥ javalang.String "makeConcatWithCe... 64 bytes 24 bytes
¥ jevalang.String 4) ["makeConcatWithCe... 64 bytes 24 bytes
¥ javalang.String 4) ["makeConcatWithCe... 64 bytes 24 bytes
¥ javalang.String 1) ["makeConcatWithCo... 64 bytes 24 bytes
¥ javalang.String 2 ["makeConcatWithCo... 64 bytes 24 bytes
¥ javalang.String 2 ["makeConcatWithCo... 64 bytes 24 bytes
J javalang.String (Dxab24) ["makeConcatWithCo... 64 bytes 24 bytes
W izvea lana Stnnn 21 Mealal ancatiblith(C o RA hadac A hadar

The group selection is not a separate selection step in the heap walker, but it becomes
part of the selection step made by the inspection. You can see the group selection in the
selection step pane at the bottom. When you change the group selection, the selection
step pane is updated immediately.

Each inspection that creates groups decides which groups are most important in the
context of the inspection. Because this does not always correspond to the natural sort
order of one of the other columns, the Priority column in the group table contains a numeric
value that enforces the sort order for the inspection.

Inspections can be expensive to calculate for large heaps, so the results are cached. In
this way, you can go back in the history and look at the results of previously calculated
inspections without waiting.

Heap walker graph

The most realistic representation of instances together with their references is a graph.
While the graph has a low visual density and is impractical for some types of analyses, it
still is the best way to visualize relationships between objects. For example, circular
references are difficult to interpret in a tree, but immediately evident in a graph. Also, it
may be beneficial to see incoming and outgoing references together, which isimpossible
in a tree structure where you can see either one or the other.

The heap walker graph does not automatically show any objects from the current object
set, nor is it cleared when you change the current object set. You manually add selected
objects to the graph from the outgoing references view, the incoming references view or
the biggest objects view by selecting one or more instances and using the Show In Graph
action.

94

© Classes Wl Allocations EE Biggest Objects 1 References o Time @ Inspections 3

Current object set: 652 instances of java.awt.geom.GeneralPath
2 selection steps, 20 kB shallow size, Calculate retained and deep sizes Use retained objects

Incoming references v Use.. ¥ =3 Show In Graph @ || @ i Show Paths To GC Reot

Object Retained Size Shallow Size Allocation Time (himss)

» I java.awt.geom.GeneralPath (0x822f) 248 bytes 32 bytes n/a
) jeva.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
[] Jjava.awt.geom.GeneralPath

243 bytes 32 bytes nfa

1 R LR R R

Package names in the graph are shortened by default. Like in the CPU call graph, you can
enable the full display in the view settings. References are painted as arrows. If you move
the mouse over the reference, a tooltip window will be displayed that shows details for
the particular reference. Instances that were manually added from the reference views
have a blue background. The more recently an instance has been added, the darker the
background color. Garbage collector roots have a red background and classes have a
yellow background.

4 Wl Allocations EE Biggest Objects K References o Time 3:0:} Inspections = Graph

Heap Walker Object Graph

The object graph is not cleared when the current object set is changed. You can add cbjects from different object sets and explore their
relationships and connections.

Use.. ¥

"
3

J.util.IdentityHashMap

k] : L
4 JutilHashSet =

ference of AWT-EventQueue-0 \
ack of <system thread= in
wtAWTAuto Shutdown —> s awt AWTAutoShutd own jlang.Object

>
- _)
=
s.awt AWTAutoShutdown '?’ \ j.lang.Ohject

J.lang Thread

ch |

J| Hl% vl

]
& 8

‘o
-

R

By default, the reference graph only shows the direct incoming and outgoing references
of the current instance. You can expand the graph by double-clicking on any object. This
will expand either the direct incoming or the direct outgoing references for that object,
depending on the direction you're moving in. With the expansion controls on the left and
right sides of an instance, you can selectively open incoming and outgoing references. If
you need to backtrack, use the undo functionality to restore previous states of the graph,
so you don't get distracted by too many nodes. To trim the graph, there are actions for
removing all unconnected nodes or even for removing all objects.

Like in the incoming references view, the graph has a Show Path To GC Root button that
will expand one or more reference chains to a garbage collector root [p. 212] if available.

95

In addition, there is a Find Path Between Two Selected Nodes action that is active if two
instances are selected. It can search for directed and undirected paths and optionally
also along weak references. If a suitable path is found, it is shown in red.

@ Path Search Options X

Search Directions
Search for directed path from first to second object
[search for directed path from secend to first object
Search for undirected path @)
Options

This search follows soft references, as per the initial retention setting
for the heap dump.

Also follow weak, phantomn and finalizer references for this search 9

V] Stop search at classes (7]

Initial object set

When you take a heap snapshot, you can specify options that control the initial object
set. If you have recorded allocations, the Select recorded objects check box restricts the
initially displayed objects to those that have been recorded. The numbers will usually differ
from those in the live memory views, because unreferenced objects are removed by the
heap walker. Unrecorded objects are still present in the heap snapshot, they are just not
displayed in the initial object set. With further selection steps you can reach unrecorded
objects.

In addition, the heap walker performs a garbage collection and removes weakly referenced
objects, except for soft references. This is usually desirable because weakly referenced
objects are distracting when looking for memory leaks where only strongly referenced
objects are relevant. However, in those cases where you are interested in weakly referenced
objects, you can tell the heap walker to retain them. The four weak reference types in the
JVM are "soft”, "weak”, "phantom” and *finalizer" and you can choose which of them should
be sufficient for retaining an object in the heap snapshot.

€ Heap Snapshot Options X

Select recorded objects

Initially, the heap walker will show only those objects that have been
recorded in the dynamic memory view section.

[Perform full GC in heap snapshot €
Retain objects held by soft references -

Msoft

Show Overhead Of —
weak

finalizer

If present, weakly referenced objects can be selected or removed from the current object
set by using the "Weak reference” inspections in the heap walker.

Marking the heap

Often you want to look at the objects that have been allocated for a particular use case.
While you could do this by starting and stopping allocation recording around that use
case, there is a much better way that has a lot less overhead and preserves the allocation
recording feature for other purposes: The Mark Heap action that is advertised on the heap
walker overview and that is also available in the Profiling menu or as a trigger action marks
all objects on the heap as "old". When you take the next heap snapshot, it is now clear
what the "new" objects should be.

96

” Telemetries @ Mo snapshot has been taken.

For a maximum of features:

’i:!' Live Memaory

Press to take a JProfiler heap snapshot

Heap Walker
» The snapshot is displayed in this frame and saved together with profiling infermation
from other views
CPU Views = For live profiling sessions, special features are available
» Integrations with other views require this snapshot type
Threads

Press * to indicate the starting point of a use case

Menitors & Locks
» All objects that are currently on the heap will be marked as old

= When you take the next heap snapshot, new and old objects will be listed separately
Databases in the header

» You can select new or old objects only, making it easy to track down memory leaks
HTTP, RPC & JEE
For a minimum of overhead:

VM & Custom Probes
Y
Press | @ totake an HPROF heap snapshot

) @ @ W D i m g

ﬁ MBeans

» The snapshot is saved separately and displayed in another frame
» MNot all features are available

» Memory and CPU overhead in the profiled VM are lower than for the JProfiler

If there was a previous heap snapshot or a mark heap invocation, the title area of the
heap walker shows the new instance count and two links titled Use new and Use old that
allow you to select either the instances that have been allocated since that point in time,
or the surviving instances that were allocated before. This information is available for each
object set, so you can drill down first and select new or old instances later on.

© Classes il Allocations .- Biggest Objects 1 References O Time @ Inspections »

Current object set: 96,409 objects in 1,327 classes.

1 selection step, 7,563 kB shallow size

34,841 new instances (36.1%) since the last heap dump Use old

© Classes A Use.. ™ & Group By Class Loaders Calculate estimated retained sizes
Name Instance Count Size
byte[] I 20560 (21 %) 087 kB
java.lang.String I 1,296 (15 %) 357 kB
java.util.HashMapSMode I 0,132 (10 %) 324 kB
javalang.leng I 5,756 (5 %) 138 kB

97

Thread Profiling

Using threads incorrectly can create many different kinds of problems. Too many active
threads can result in thread starvation, threads can block each other and impact the
liveness of your application or acquiring locks in the wrong order can lead to deadlocks.
In addition, information about threads is important for debugging purposes.

In JProfiler, thread profiling is split into two view sections: The "Threads” section deals with
the life-cycle of threads and with capturing thread dumps. The "Monitors & locks" section
offers functionality for analyzing the interaction of multiple threads.

Live Memory
Heap Walker

CPU Views

Threads

Monitors & Locks

Databases

HTTP, RPC & JEE

© @ Wi umpg ¥

JVM & Custom Probes

Inspecting threads

The thread history view shows each thread as a colored row in a time-line where the color
indicates the recorded thread status. Threads are sorted by their creation time, by name
or by their thread group and can be filtered by name. You can also rearrange the order
of threads yourself via drag and drop. When monitor events have been recorded, you can
hover over parts of a thread where it was in the "Waiting" or "Blocked"” state and see the
associated stack trace with a link into the monitor history view.

. Both alive and dead Sort by start time hd hd
’ Telemetries | ——— e e
Threads I‘I 0:!7_0 0:‘30
‘i:l' Live Memaory main [main] 1
HSQLDB Server @13acb0d1 [main] (1 |
i HSQLDE Timer @30ea8206 [main]
ﬁ =l AWT-EventQueue-0 [mazin] 1 :
pool-1-thread-1[main] 1 |
I CPU Views pool-1-thread-2 [main]] |
pool-1-thread-3 [main] u |
— Tt pool-1-thread-4 [main] u |
pool-1-thread-5 [main] u |
T (i Tomcat JDBC Pool Cleaner[1717139... |
o HSQLDE Connection @12963974 | |
Thread Monitor HSOLDB Connection @22c3f957 [... |
HSCOLDE Connection @641f0d65 | |
Thread Dumps HSOLDE Connection @6780e3al | |
n X HSOLDE Connection @44fe2bbe |
i Monitors & Locks
; Databases == Runnable ™ Waiting ™= Blocked ™ Netl/O /O A

A tabular view of all threads is available in the thread monitor view. If CPU recording is
active while a thread is being created, JProfiler saves the name of the creating thread

98

and displays it in the table. At the bottom, the stack trace of the creating thread is shown.
For performance reasons, no actual stack trace is requested from the JVM, but the current
information from CPU recording is used. This means that the stack traces will only show
those classes that satisfy the filter settings for call tree collection.

” Telernetries Name Group Start Time Creating Thread Status
HSQLDE Server @13a... main 0:00.263 main [main] I Netl/O
H50LDE Timer @30e... main 0:00.531 H50OLDE Server @13ach0... =3 Waiting

’i:!' Live Memaory

AWT-EventQueue-0

main

0:00.865

main [main]

=1 Waiting

poal-1-thread-1 lmain ~~ [0:00969 AWT-EventQueue-0 [main] == Net |/0

poal-1-thread-2 main 0:00.970 AWT-EventQueue-0 [mazin] C3 Net /0

b Heap Walker pool-1-thread-3 main 0:00.970 AWT-EventQueue-0 [main] T3 Net /0
pool-1-thread-4 main 0:00.970 AWT-EventQueue-0 [main] =3 Net /0

pool-1-thread-5 main 0:00.970 AWT-EventQueue-0 [main] =3 Net /O

I CPU Views Tomcat JDBC Pool Cl.. main 000,923 pool-1-thread-1 [main] =3 Waiting
HSCQLDE Connection ... HSQLDE Connection... 0:01.013 H5QLDE Server @13ach0.. =3 Waiting

— HSCQLDE Connection ... HSOLDE Connection... 0:01.152 HSOLDE Server @13ach0... =3 Waiting
Threads HSQLDE Connection ... HSOLDE Connection... 0:01.254 HSOLDB Server @13acbl... £ Waiting
HSQLDB Connection ... HSOLDB Connection... 0:01.359 HSOLDB Server @13acbl... £33 Waiting

H50LDB Connection ... HSOLDB Connection... 0:01.465 HSQOLDB Server @13achl.. =3 Waiting

Thread History

Thread Monitor X X
Filtered stack trace for thread creation: 0

Thread Dumps java.util.concurrent.ExecutorService.submit(java.util.concurrent.Callable)

N jdbcJdbeDemo.startActivity(boolean)
1 Monitors & Locks jdbe.ServerControllerFrame.updateActivity ()
jdbe.ServerControllerFrameS2. windowOpened (java.awt.event WindowEvent)
java.awt.EventDispatchThread.run()
; Databases

If you enable the recording of estimated CPU times in the profiling settings, a CPU Time
column is added to the table. CPU time is only measured when you record CPU data.

€ Session Settings X
g

4 Enable CPU profili
Application Settings & Enable R

Aute-Tuning For Instrumentation

Enable auto-tuning (7]

A methed is an overhead hot spot and will be suggested for inclusion into the list of ignored
methods, if both of the following conditions are true:

Call Tree Recording

e NTn

Call Tree Filters

1. The total tirme of the method is more than 10 | % permille of the entire total time
Trigger Settings 2, The average time of the method is less than 100 | %) us
Auto-tuning is only performed if the methed call recording type is set to “Instrumentation” on
Databases the method call recording tab.
Call Tree Recording Options
HTTP, RPC & JEE

CPU times for instrumentation: () Elapsed times @) Estimated CPU times| €

Instrument native methods ﬂ
Thread resolution for async sampling @)

© & wh

JVM & Custom Probes

‘ R Exceptional Method Run Recerding
Advanced Settings

Maximurn number of separately recorded method runs: 5% @

CPU Profili
e Time type for determining exceptional method runs: EX All states ¥
Probes & JEE

Call Tree Splitting
Memery Profiling

Maximum number of splits: 128 (% @

T _amelee

General Settings

Copy Settings From Cancel

Like most debuggers, JProfiler can also take thread dumps. The stack traces of thread
dumps are the full stack traces provided by the JVM and do not depend on CPU recording.
Different thread dumps can be compared in a diff viewer when you select two thread
dumps and click the Show Difference button. It is also possible to compare two threads
from a single thread dump by selecting them and choosing Show Difference from the
context menu.

99

” Telemetries Thread dumps: :’ x s || @ H50LDB Connection @22¢3f957
H50LDB Connection @44fedbbc

at 0:11.112.557 HSQLDB Connection @641f0d65
’i:!' Live Memaory at 0:09.622.507 HSQLDB Connection @6780e3al
at 0:08.100.097 main
P AWT-EventQueue-0
ﬁ Heap Walker HSQLDB Server @13ack0d1
H50LDE Timer @30eal206
Tomcat JDBC Pool Cleaner[1717139310:16929345642537]
I CPU Views

pool-1-thread-1

— = Copy Selected Threads To Clipboard Ctrl+C
Threads

sun.t @ Show Difference Ctrl+Alt+D g, ir
sun.nio.ch.5ocketDispatcher.readijava.ic.FileDescriptor, long, int

Thread History sun.nio.ch.MioSocketimpl.tryRead(java.io. FileDescriptor, byte[],

Thread Menitor sun.nio.ch.MioSocketimplimplRead(byte[1. int, int) (line: 312)
sun.nio.ch.MioSocketlmpl.read(byte[], int, int} (line: 350}
Thread Dumps sun.nio.ch.NioSocketlmpl$1.read(byte[], int, int) (line: 803)
java.net.SocketSSocketinputStream.read (byte(|, int, int] (line: 98
(] Monitors & Locks java.ic.BufferedinputStream.fill() (line: 244)
1 java.io.BufferedinputStream.read() (line: 263)
javaio.DatalnputStream.readByte() (line: 271)
; Databases org.hsgldb.result.Result.newResult(java.io.Datalnput, org.hsgldb

Thread dumps can also be taken with the "Trigger thread dump” trigger action or via the
APl

Analyzing locking situations

Every Java object has an associated monitor that can be used for two synchronization
operations: A thread can wait on a monitor until another thread issues a notification on
it, or it can acquire a lock on a monitor, possibly blocking until another thread has given
up the ownership of the lock. In addition, Java offers classesinthej ava. uti | . concurrent.
| ocks package forimplementing more advanced locking strategies. Locks in that package
do not use monitors of objects but a different native implementation.

JProfiler can record locking situations for both of the above mechanisms. In a locking
situation, there are one or multiple threads, a monitor or an instance of java. util.
concurrent. | ocks. Lock as well as a waiting or blocking operation that takes a certain

amount of time. These locking situations are presented in a tabular fashion in the monitor
history view, and visually in the locking history graph.

” Telernetries Curentevent |{ £ | | ¥ Pl 2720 [at :04053.833]

Event of interest: no nedes of interest have been marked Recording thresholds: *

’!:l' Live Memaory

Heap Walker

- I) =)
CPU Views Waiting for monitor since (:04.043.020 in:

Class: javalang.Object
| AWT-EventQueue-0 [main] L\

Thread
reads Thread-0 [main] |-———————

Monitors & Locks

=D ¥l mm g

Current Locking Graph
Current Monitors Show in monitor history
Locking History Graph ‘
Manitor History
mm Event mmm Eventinvolving nodes of interest = Currently displayed event » /@ % _|

Manitor Usaae Statistics

The locking history graph focuses on the entire set of relationships of all involved monitors
and threads rather than the duration of isolated monitor events. Threads and monitors

100

participating in a locking situation are painted as blue and gray rectangles, if they are
part of a deadlock, they are painted in red. Black arrows indicate ownership of a monitor,
yellow arrows extend from waiting threads to the associated monitors, while a dashed
red arrow indicates that a thread wants to acquire a monitor and is currently blocking.
Stack traces are available when hovering over blocking or waiting arrows if CPU data has
been recorded. Those tool tips contain hyperlinks that take you to the corresponding row
in the monitor history view.

The tabular monitor history view shows monitor events. They have a duration that is
displayed as a column, so you can find the most important events by sorting the table.
For any selected row in the tabular view, you can jump to the graph with the Show in Graph
action.

A3 A - » —
£ | = A [" /Lr n
£ 8B T S &% 0 2 -2

Start Stop Start Add View Stop Freeze show In | Show In
lecordings Recordings Tiacking | " CC Bookmark | PO Semings | °7 Mentors View | Hesp Walker| Giaph

Al types ¥ Threshold in ms: 0|+ —

Time Duration Type Manitor ID Maonitor Class Waiting Thread Owning Thread

0:04.043 [Jul 25, ... 200 ms =3 Waiting 2 java.lang.Object AWT-EventQueue-0 [ma...
0:04.053[Jul25,..] 189ms| Blocked | 3lbezierBezierAnimSD... [Thread-0 [main] AWT-EventQueue-0 [ma...
0:05.305 [Ju . 200 ms =3 Waiting 2 javalang.Object AWT-EventQueue-0 [ma..,
0:05.316 [Ju 190 ms = Blocked 3 bezier.BezierAnimSD... Thread-0 [main] AWT-EventQueue-0 [ma...
0:06.569 [Ju 199 ms =2 Waiting 2 java.lang.Object AWT-EventQueue-0 [ma...

0:06.579 [Ju 189 ms Bl Blocked 3 bezier.BezierAnimSD... Thread-0 [main] AWT-EventQueue-0 [ma...
0:07.828 [Ju . 200 ms 3 Waiting 2 java.lang.Object AWT-EventQueue-0 [ma...

0:07.838 [Jul 25, ... 190 ms Ml Blocked 3 bezier.BezierAnimSD... Thread-0 [main] AWT-EventQueue-0 [ma..
Total from 8 ro... 1,361 ms

Recording thresholds: 1,000 ps blocking / 100,000 ps waiting [Change]

Filtered stack trace for waiting thread: (7] Filtered stack trace for owning thread:

Each monitor event has an associated monitor. The Monitor Class column shows the class
name of the instance whose monitor is used, or "[raw monitor]" if no Java object is
associated with the monitor. In any case, monitors have a unique ID that is displayed in
a separate column, so you can correlate the usage of the same monitor over multiple
events. Each monitor event has a waiting thread that is performing the operation and
optionally an owning thread that is blocking the operation. If available, their stack traces
are shown in the lower part of the view.

If you have further questions about a monitor instance, the Show in Heap Walker action
in both monitor history view and locking history graph provides a link into the heap walker
and selects the monitor instance as a new object set.

) - - L —
%] i o~ 1+ n
£ 8B T S % ® 2 ~a
Start Stop Start Add View Sop Freeze Show In | Shew In
b e e | S Gmomer | SRR e D ety e Hezp Walker | Grzph
Al types ¥ | Thresheld in ms: 0| X
Duraticn Type Menitor ID Menitor Class Waiting Thread Owning Thread
ul 25, 200 ms =2 Waiting 2 java.lang.Object AWT-EventQueue-0 [ma...
s Blocked beziel.BezielAnimiD... Thread-0 [main] [AWT-EventQueue-0 [ma...
0:05.305 [Jul 25, ... 200 ms =3 Waiting 2 java.lang.Object AWT-EventQueue-0 [ma...

101

Limiting the events of interest

One fundamental problem with analyzing monitor events is that applications may generate
monitor events at an extraordinary rate. That is why JProfiler has default thresholds for
waiting and blocking events below which events are immediately discarded. These
thresholds are defined in the view settings and can be increased in order to focus on
longer events.

Current event: N |4 # | 21 2/740 [at0:04.053.833]

Event of interest: FARP . IR Recording thresholds: 1,000 ps blocking / 100,000 pswa\tingl Chanae
| © Monitor History Graph View Settings X

| AWT-EventQueue-0 [main]

Recording Time line

Recording Threshaolds

| — Monitor blocking threshold: 1,000 | % WS

Monitor waiting thresheld: 100,000 | % HS
..........................
0: 7 a D: ED All events with a duration that is lower than the configured thresheld will be
discarded.
Warning: If you lower the thresholds, more data will be recorded. Please note
that the acenriated memans mverhead armwes linearks in fime

mm Event = Eventinvolving nodes of interest = Currently displayed event Click and drag to cumulate events "@"] |_ _|

To the recorded events, you can further apply filters. The monitor history view offers a
threshold, an event type and a text filter at the top of the view. The locking history graph
allows you to select a thread or a monitor of interest and only show locking situations that
involve the marked entities. Events of interest are shown with a different color in the time
line, and there is a secondary navigation bar to step through those events. If the current
event is not an event of interest, you can see how many events are between the current
event and the next event of interest in either direction.

In addition to locking situations where the selected thread or monitor are present, the
locking situations where it is removed from the graph are shown as well. This is because
each monitor event is defined by two such locking situations, one where an operation is
started and one where it has ended. This also means that a completely empty graph is
a valid locking situation that indicates that there are no more locks in the JVM.

Current event: K | < & | |21 2728 [at0:04.053.833]

F\rent of interest: FARP. IRV 14| Recording thresholds: 1,000 ps blocking / 100,000 ps waiting [Change

Class: java.lang Object
| AWT-EventQueue-0 [main] Monitor Id: 2

Class: bezier.B Ao
Mark Modes of Interest

Remove Mark

Show Selection In Heap Walker

010 0:20 0:30 I Export View cileR B 110
] ‘ ‘ | View Settings Ctel+T
mm Event = Eventinvolving nodes of interest mm Currently displayed event Click and drag to cumulate events /O ko

102

Another strategy to reduce the number of events that need your attention is to cumulate
locking situations. In the locking history graph, there is a time line at the bottom that shows
all recorded events. Clicking and dragging in it selects a time range and data from all
contained events is shown in the locking graph above. In a cumulated graph, each arrow
can contain multiple events of the same type. In that case, the tool tip window shows the
number of events as well as the total time of all contained events. A drop-down list in the
tool tip window shows the time stamps and lets you switch between the different events.

Deadlock detection

The "Current locking graph” and the "Current monitors” views operate on a "'monitor dump”
that is triggered with an action in the JProfiler Ul. With a monitor dump, you can inspect
events that are stillin progress. This includes deadlocks which are events that never finish
and cannot be shown in the history views.

Blocking operations are usually short-lived, but in the event of a deadlock, both views will
display a permanent view of the issue. In addition, the current locking graph shows the
threads and monitors that produce a deadlock in red, so you can spot such a problem
immediately.

Taking a new monitor dump will replace the data in the both views. You can also trigger
monitor dumps with the "Trigger monitor dump” trigger action or via the API.

Monitors dumped at 0:18 O
‘ Telemetries

i’
-l-l- Live Memory
Thread-1 [main] !

\

.
'ﬁ Heap Walker
Thread-3 [main] S "\\
\

I CPU Views

- Thraad-4 [main]
Threads

Iy
) Monitors & Locks Threa-2 [man]
Class: java.lang.Ohject
Thread-0[main] [» Monitar Id: 1

Blocked on monitor since 0:08.077.043 in: (2

L
W
.

et

Class: java.lang Ohject
Monitar Id: 2

Current Locking Graph
Current Manitors

TRy S javalang.Objectwait(long)

Meniter History misc.DeadlockTest$1.run()

Menitor Usaae Statistics

Monitor usage statistics

To investigate blocking and waiting operations from a more elevated perspective, the
monitor statistics view calculates reports from the monitor recording data. You can group
monitor events by monitors, thread names, or classes of monitors and analyze cumulated
counts and durations for each row.

103

Session
Snapshat Setiings

Start

St
Center P

- Telemetries
‘ Live Memory
i Heap Walker

CPU Views

Threads

Menitors & Locks

=) l\ml ||

Current Locking Graph
Current Monitors
Lecking History Graph
Monitor History
Moniter Usaee Statistics

O HZ £ 8 % © &% &7 0 & 2

Start Stop Start Add View Caleulzte Stop
Run GC Export Hel)
PO Cettings P | Guatiefics = Montors | H

Recordings Recordings Tracking Backmark

Monitor Usage Statistics Grouped by Monitors

Menitors Block Count Block Duration Wait Count Wait Duration
bezier.BezierinimsDem... 13 2,468 ms 0 0 ps
java.lang.Object (id: 2) 0 0 ps 13 2,604 ms
java.util.concurrent.lock... 0 Ops 1,244 11,211 ms
java.util.concurrent.lock... 0 O ps 3 70 ps!

€ Monitor Usage Statistics Options x

Select the desired monitor usage statistics:
) Group by Monitors
Group by Threads

Group by Classes of monitors

T (o]

@ 1 active recording VM #1 00:21 @ Profiling

104

Probes

CPU and memory profiling are primarily concerned with objects and method calls, the
basic building blocks of an application on the JVM. For some technologies, a more
high-level approach is required that extracts semantic data from the running application
and displays it in the profiler.

The most prominent example for this is profiling calls to a database with JDBC. The call
tree shows when you use the JDBC APl and how long those calls take. However, different
SQL statements may be executed for each call, and you have no idea which of those calls
are responsible for a performance bottleneck. Also, JDBC calls often originate from many
different places in your application and it is important to have a single view that shows
all database calls instead of having to search for them in the generic call tree.

To solve this problem, JProfiler offers a number of probes for important subsystems in the
JRE. Probes add instrumentation into specific classes to collect their data and display
them in dedicated views in the "Databases” and "JEE & Probes” view sections. In addition,
probes can annotate data into the call tree so you can see both generic CPU profiling as
well as high-level data at the same time.

’

L]
L Live Memory
Heap Walker

CPU Views

Threads

Monitors & Locks

n

1
; Databases
@ HTTP, RPC & JEE

JVM & Custom Probes

in
Smms MBeans
ur

If you are interested in getting more information about a technology that is not directly
supported by JProfiler, you can write your own probe [p. 162] for it. Some libraries, containers
or database drivers may ship with their own embedded probe [p.167] that becomes visible
in JProfiler when they are used by your application.

Probe events

Because probes add overhead, they are not recorded by default, but you have to start
recording [p. 27] separately for each probe, either manually or automatically.

Depending on the capabilities of the probe, probe data is displayed in a number of views.
At the lowest level are probe events. Other views show data that cumulates probe events.
By default, probe events are not retained even when a probe is being recorded. When
single events become important, you can record them in the probe events view. For some
probes, like the file probe, this is generally not advisable because they usually generate
events at a high rate. Other probes, like the "HTTP server” probe or the JDBC probe may
generate events at a much lower rate and so recording single events may be appropriate.

105

1 % -5 e b —_—
£ 8 v S L& 2 ® @ |5 - |
Start Stop Change Add View Stop Probe Stop | Freeze Control
tecordings Recordings Tracking | " OO Bogkmark PO cettings Help JpBc Events | View Object
4, Hot Spots T Connection Leaks ! Telemetries Events JDBC 3
JDBC connections 2nd execution of statements
All types ¥ | Filter in all text columns = A
Start Time Event Type Duratlun Connection D Description Thread
(:03.211 [Jul 25, 20... £ Connection o.. Jjdbciderno://remote_host/test Sar\flet request sim..
0:03.237 [Jul 25 — SELECT * FROM ORDER O WHERE 0.
0:03.519 [Ju — Cnnnectmn o.. Ops2 Jjdbc:deme://remote_host/test Sarvlet rEquEst sim..
0:03.564 [Ju B Prepared state... 173ms 2 SELECT * FROM ORDER O WHERE O... Servlet request sim...
0:04.092 [Ju W Prepared state... 45,695 us 1 INSERT INTO CUSTOMER (1D, NAM... Servlet request sim...
0:04,791 [Ju W Prepared state.., 69,194 us 1 INSERT INTO ORDER (1D, MAME, OP... Servlet request sim...
0:04.338 [Ju mm Prepared state.., 78,103 us1 INSERT INTO ORDER_CUSTOMER (... Servlet request sim...
0:04.427 [Ju Prepared state... 79,691 us 2 INSERT INTO CUSTOMER (1D, NAM... Serviet request sim...
0:04.568 [Ju mm Prepared state... 72375 pus2 INSERT INTO ORDER. (1D, MAME, OP... Servlet request sim...
0:04.695 [Ju B Prepared state... 82997 ps 2 INSERT INTO ORDER_CUSTOMER (... Servlet request sim...
N5 283 T M1 Cnnner Hon n Noe 3 idhedemne {fremnte hnet ftect RMI TP Cnnner tin
Total from 11!) rows: 36,941 ms
+ Selection ﬂm Duration
Stack trace:

javax.persistence. TypedQuery.getResultList()
com.egjt.demo.server.handlers.RequestHandler.executelpaQuery(javax persistence EntityManager)
com.ejt.demo server.handlers.RequestHandler.makelpaCall()
com.ejt.demo.server.handlers.RequestHandler.performWork()

Probe events capture a probe string from a variety of sources, including method
parameters, return values, the instrumented object and thrown exceptions. Probes may
collect data from multiple method calls, for example, like the JDBC probe that has to
intercept all setter calls for prepared statements in order to construct the actual SQL string.
The probe string is the basic information about the higher-level subsystem that is measured
by the probe. In addition, an event contains a start time, an optional duration, the
associated thread and a stack trace.

At the bottom the of the table, there is a special row that shows the total number of
displayed events and sums all numeric columns in the table. For the default columns, this
only includes the Duration column, Together with the filter selector above the table, you
can analyze the collected data for selected subsets of events. By default, the text filter
works on all text field columns, but you can choose a specific filter column from the
drop-down before the text field. Filter options are also available from the context menu,
for example, to filter all events with a duration larger than that of the selected event.

JDBC 3

4} Hot Spots T Connection Leaks M Telemetries Events 3
1DBC connections and execution of statements
All types A Filterin all text columns >
Start Time Event Type Duration Connection 1D Description Thread
0:01.788 [Jul 2€, 20... T3 Connection ... Opsi Jjdbcidemo://remote_host/test Servlet request sim...
0:01,828 [1-1 20 A0 m=—Reoe et otee TAR e SELECT * FROM ORDER O WHERE Q... Serviet request sim...
0:02.049 | [l Show Connections For Selected Events Ctrl+Alt+ C Jdbc demo://remote_host/test Servlet request sim...
0:02.071 777 7M ORDER O WHERE O... Servlet request sim...
0:02.756 Duration CUSTOMER. (ID, MAME... Servlet request sim...
0:02.898 Filter Greater Than This 2 Connection 1D ZUSTOMER. (ID, NAME... Servlet request sim...
0:02.899 Eilter Less Than This N Description ORDER (1D, NAME, OP... Servlet request sim...
0:03.003 Thread ORDER_CUSTOMER (O... Servlet request sim...
0:03.045 | s Stop Recording Probe Events i ORDER (1D, NAME, OP... Servet request sim..
0:03.162 Jdbaidemo:/remote_host/test Servlet request sim...
Sort Events 3 -

nn2 181 SEIECT* FROM ORNER NWHERE (1 Servlet remiiect sim

Total from| / Find Ctrl+F

o Selectl < Show Row Details Ctrl+Alt+
Stack trace: 1. Export View Ctrl+R
Javax.persig View Settings Ctrl+T

com.gjt.defnuservenma

TGS S T IS TaTT

WIS A CLULS e STy ava

wpersistence. EntityManager)

com.gjt.demo.server.handlers.RequestHandler.makelpaCall(
com.ejt.demo.server.handlers.RequestHandler.peformWork()

Other probe views also offer options to filter probe events: In the probe telemetries view
you can select a time range, in the probe call tree view you can filter events from the

106

selected call stack, the probe hot spots view offers a probe event filter based on the
selected back trace or hot spot and the control object and time line views offer actions
to filter probe events for the selected control object.

Stack traces of selected probe events are shown at the bottom. If multiple probe events
are selected, the stack traces are cumulated and shown either as a call tree, as probe
hot spots with back traces or as CPU hot spots with back traces.

4}, Hot Spots '.‘ Connection Leaks ! Telemetries Events ’ JDBC ﬂ

JDBC connections and execution of statements

All types ¥ | Filterin all text columns v | Ci -
Start'ﬁme Event Type Duration Connection |D Des(riptinn Thread
_
0:01.827 [Ju W Prepared state... 192 ms 3 SELECT * FROM ORDER. O WHERE Q... Servlet request sim...
mm Prepared state... 78,287 ps 1 IMSERT INTO CUSTOMER. (ID, NAME... Servlet request sim...
B Prepared state... 69,460 ps 1 IMSERT INTQ ORDER (ID, NAME, OP... Serviet request sim...
B Prepared state... 63,011 ps 1 IMSERT INTQ ORDER_CUSTOMER (O... Serviet request sim...
W Dronared chabe S0 8T e D IMCERT INTA CHETARMER (I MARME Candat ramiisct cimn
Total from 146 rows: 49,750 ms

+ Selection M Duration

Probe call tree from selected events hd I

) o 100.0% - 328 ms - 5 evt. com.gjt.demo.server. DemoServerS3.run
a_ 55.8% - 183 ms - 2 evt. HTTP: /demo/view?
) == 14.2% - 145 ms - 2 evt. HTTP: /demo/viewl
@ 0.0%- 1 evt. HTTP: /demo/view5

Next to the stack trace views, histogram views for event durations and optionally for
recorded throughput are shown. You can select a duration range in these histograms with
the mouse in order to filter probe events in the table above.

4}, Hot Spots ‘.‘ Connection Leaks ! Telemetries Events 3 3 JDBC
JDBC connections and execution of statements
All types - Filter in all text columns + | O v
Start Time Event Type Duration Connection 1D Description Thread
0:01.367 [Jul 2 1 Connection 0. Dusi jdbaidemo://remote_host/test Servlet request sim...
0:01.400 [Jul 1 Connection 0. Dus2 jdbcidemo://remote_host/test Servlet request sim...
0:01.412 [Ju mm Prepared state... 183 ms2 SELECT* FROM ORDER O WHERE Q... Servlet request sim...
001412 T10l 28 20wl Prenared <tate 145 ms 1 SFI FCT* FROM ORNFR 0 WHFRF (1. Servlet reanest <im
Total from 157 rows: 53,283 ms

+ Selection [l Duration

Event count

Event duraticn log

Probes can record different kinds of activities and associate an event type with their probe
events. For example, the JDBC probe shows statements, prepared statements and batch
executions as event types with different colors.

107

JDBC

4}, Hot Spots ? Connection Leaks B Telemetries Events § §
JDBC connections and execution of statements.

All types Filterin all text columns v

[Connection opened

R ype Duration Connection ID Description Thread
[connection closed tion o... Ops1 jdbe:demo:/fremote_host/test Servlet request sim...
[statement execution d state... 158 ms 1 SELECT * FROM ORDER O WHERE O... Servlet request sim...
P'EPWEd statement execution g o,., Dps2 Jjdbcidemo://remote_host/test Servlet request sim...
[Batch execution d state.., 173ms2 SELECT * FROM ORDER O WHERE Q... Serviet request sim...
d state... 45,695 us 1 INSERT INTO CUSTOMER (ID, NAM... Servlet request sim...
Select All Select Mone .
— d state... 69,194 ps 1 INSERT INTO ORDER (ID, NAME, OP... Servlet request sim...
“ Cancel d state... 78103 ps 1 INSERT INTO ORDER_CUSTOMER (... Servlet request sim...
oS T [TUT £, £Un e Frepared state... 759,601 ps 2 INSERT INTO CUSTOMER (ID, NAM... Servlet request sim...
ANASED 1175 90w Pemoend e 71975 . INCEDT INTA ADAED AR RIAKAE AR Sk e ik i

To prevent excessive memory usage when single events are recorded, JProfiler consolidates
events. The event cap is configured in the profiling settings and applies to all probes. Only
the most recent events are retained, older events are discarded. This consolidation does
not affect the higher-level views.

Probe call tree and hot spots

Probe recording works closely together with CPU recording. Probe events are aggregated
into a probe call tree where the probe strings are the leaf nodes, called "payloads”. Only
call stacks where a probe event has been created are included in that tree. The information
on the method nodes refers to the recorded payload names. For example, if an SQL
statement was executed 42 times at a particular call stack with a total time of 9000 ms,
this adds an event count of 42 and a time of 9000 ms to all ancestor call tree nodes. The
cumulation of all recorded payloads forms the call tree that shows you which call paths
consume most of the probe-specific time. The focus of the probe tree is the payloads, so
the view filter searches for payloads by default, although its context menu also offers a
mode to filter classes.

. JDBC
4 & Call Tree 1\, Hot Spots ‘.‘ Connection Leaks ! Telermet » 3 3
1DBC connections and execution of statements
Thread status: Q Thread selection: Agagregation level:
O All states ¥ a All thread groups hd @ Metheds

@ W 70,1% - 32,624 ms - 44 evt, java.util.concurrent. ThreadPoolExecutorS\Werker.run
| W 28.9% - 11,926 ms - 15 evt. called from call site 1 (remote VM 21)
Ve 08,99 - 11,928 ms - 15 evt. com.gjt.demo.server.handlers.RmiHandlerlmpl.remoteOperation
VA 28,69 - 11,926 ms - 15 evt. com.gjt.demo.server.handlers.RmiHandlerlmpl perfformWork
VAV 28.9% - 11,926 ms - 15 evt. com.gjt.demo.serverhandlers.RmiHandlerlmpl.executeldbcStatements
== 28.9% - 11,926 ms - 15 evt. java.sql.Statement. executeQuery
W 28.9% - 11,926 ms - 13 evt, SELECT i.id, i.availability, i.name FROM inventory i WHERE i.delayed = 1
| ™ 15.6% - 6,435 ms - 9 evt. called from call site #4 (remote VM #1)
i B 11.2% - 4,607 ms - & evt. called from call site #10 (remote VM #1)
| 80.2% - 3,802 ms - 6 evt. called from call site 212 (remote VM 1)
| 88.3% - 3,432 ms - 5 evt. called from call site #6 (remote VM £1)
i 15.9% - 2,420 ms - 3 evt. called from call site #16 (remote VM #1)
@ M 20,93 - 8,629 ms - 70 evt. com.ejt.demo.server.DemoServeri3.run
@17.9%-3,260 ms - 8 evt. com.ejt.demo.server.handlers. JdbclobHandler.run
| 5.4% - 2,238 ms - 26 evt. HTTP: /demo/viewd
(@ 15.4% - 2,238 ms - 26 evt. com.ejt.demo.server.handlers.RequestHandler.run
@154%-2238 ms - 26 evt. com.ejt.demao.server. handlers.RequestHandler.performWark
(@15.4% - 2,238 ms - 26 evt. com.gjt.demo.server.handlers.RequestHandler.makelpaCall
D1 3.1% - 1,287 ms - 20 evt. javax.persistence EntityManager.flush

If CPU recording is switched off, the back traces will only contain a "No CPU data was
recorded” node. If CPU data was only partially recorded, there may be a mixture of these
nodes with actual back traces. Even if sampling is enabled, JProfiler records the exact call
traces for probe payloads by default. If you want to avoid this overhead, you can switch
it off in the profiling settings. There are several other tuning options for probe recording
that can be adjusted to increase data collection or reduce overhead.

108

@ Session Settings X

Application Settings aricaciietor

Payloads are consolidated if there are too many different strings. When annotating payloads into the

call tree, payloads are consolidated into an [Earlier calls] node.

E‘ Call Tree Recording
C

Maximum number of distinct payleads for probe hot spots: 16384 |+ @
T Call Tree Filters Maximum number of annotated payloads per call stack: 0% @

Cutoff payload strings after: 8192 | % characters @

Trigger Settings
% 9 I Record payload call stacks in sampling mndel (7]
Retain call stacks when consolidating hot spots €
Databases
Event Options

HTTP, RPC & JEE Maximum number of recorded events: 5000 |+ | @

JVM & Custom Probes JEE/Spring Options

© ¢ w

Detect JEE/Spring components @)

Advanced Settings Show request URLs without a recorded call stack 0

£

CPU Profiling
Note: Probes are individually configured on the "Database probe settings”, "HTTP, RPC & JEE prebe

Probes & JEE settings” and "JVIM & custom probe settings” tabs. The settings on this tab apply to all probes.

Memary Profiling
Thread Profiling

Miscellaneous

General Settings Copy Settings From “ Cancel

Hot spots can be calculated from the probe call tree. The hot spot nodes are now payloads
and not method calls like in the CPU view section [p‘ 53]. This is often the most immediately
useful view of a probe. If CPU recording is active, you can open the top-level hot spots
and analyze the method backtraces, just like in the regular CPU hot spots view. The numbers
on the back trace nodes indicate how many probe events with what total duration were
measured along the call stack extending from the deepest node to the node just below
the hot spot.

4 o Call Tree 1, Hot Spots T Connection Leaks M Telemet» JDEC 3
1DBC connections 2nd execution of statements
Thread status: 0 Thread selection: Aggregation level:
0 All states @ All thread groups v @ Metheds
Hot Spot Time Average Time Events
i SELECT i.id, i.availability, i.name FROM inventory i WHERE i.cel... NN 36,972 ms (30 %) 739 ms 30
% SELECT SUM(o.price * o.quantity) FROM customers ¢ LEFTJOL.. [3,166 ms (6 %) 791 ms 4

SELECT * FROM ORDER O WHERE O.DATE »= 7 02,600 ms (5 %) 162 ms 16
@l 5.7% - 2,600 ms - 16 hot spot evt. javax.persistence. TypedCuery.getResultList
@15.7% - 2,600 ms - 16 hot spot evt. com.gjt.demo.server.handlers.RequestHandler.executelpaCuery
(@15.7% - 2,600 ms - 16 hot spot evt. com.ejt.demo.server.handlers.RequestHandler.makelpaCall
(@1 5.7% - 2,600 ms - 16 hot spot evt. com.ejt.demo.server.handlers.RequestHandler.performWork
(@1 5.7% - 2,600 ms - 16 hot spot evt. com.ejt.dema.server. handlers.RequestHandler.run
Gl 2.4% - 1,097 ms - 7 hot spot evt, HTTP: /demo/viewd
@ 1.1% - 506 ms - 3 hot spot evt. HTTP: /demo/view5
0 0.8% - 366 ms - 2 hot spot evt. HTTP: /demofview]
G 0.8% - 343 ms - 2 hot spot evt. HTTP: /demo//view3
@ 0.6% - 285 ms - 2 hot spot evt. HTTP: /demo/view?

& INSERT INTO CUSTOMER (1D, NAME, OPTIONS) VALUES (2,2,7) | 1,052 ms (2%) 65,790 ps 16

& INSERT INTO ORDER_CUSTOMER (ORDER_ID, CUSTOMER_ID] V... | 1,031 ms (2 %) 64,490 ps 16

% INSERT INTO ORDER (D, NAME, OPTIONS) VALUES (2, 7, 7) | 976 ms (2 %) 61,001 ps 16

% INSERT INTO order_report VALUES (7, 7, 7) 94172 s (0 %) 23,543 s 4

¥ NEILFTE FRAOM MRNDER _CLISTORMER WHFERE MRNER 1IN — 7 20231 e (0 B0 3202321 e 1
=

Both probe call tree as well as probe hot spots view allow you to select a thread or thread
group, the thread status and an aggregation level for method nodes, just like in the
corresponding CPU views. When you come from the CPU views to compare datq, it is
important to keep in mind that the default thread status in the probe views is "All states”
and not "Runnable” like in the CPU views. This is because a probe event often involves

109

external systems like database calls, socket operations or process executions where it is
important to look at the total time and not only on the time that the current JVM has spent
working on it.

Control objects

Many libraries that provide access to external resources give you a connection object
that you can use for interacting with the resource. For example, when starting a process,
the j ava. | ang. Process object lets you read from the output streams and write to the
input stream. When working with JDBC, youneed aj ava. sql . Connect i on object to perform
SQL queries. The generic term that is used in JProfiler for this kind of object is "control
object”.

Grouping the probe events with their control objects and showing their life cycle can help
you to better understand where a problem comes from. Also, creating control objects is
often expensive, so you want to make sure that your application does not create too many
and closes them properly. For this purpose, probes that support control objects have a
"Time line" and a "Control objects” view, where the latter may be named more specifically,
for example, "Connections” for the JDBC probe. When a control object is opened or closed,
the probe creates special probe events that are shown in the events view, so you can
inspect the associated stack traces.

In the time line view, each control object is shown as a bar whose coloring shows when
the control object was active. Probes can record different event types and the time line
is colored accordingly. This status information is not taken from the list of events, which
may be consolidated or not even available, but is sampled every 100 ms from the last
status. Control objects have a name that allows you to identify them. For example, the file
probe creates control objects with the file name while the JDBC probe shows the connection
string as the name of the control object.

JDBC

T B Connections & Call Tree B Hot Spot IDBC connections 2nd execution of statements
Both open and closed Sort by start time ¥ v
Physical Connections || ||| || 6:|1|; IIIIIII I0 ‘EDI IIIIIII I0:‘3[)I IIIIIII IO:LD‘ IIIIIII IOIE»DI [T
jdbodermno:/fremote_host/test[ID 1] I ! ; "o]
jdbcdemo://remote_host/test[|D 2] 1 ‘ | n 1 I
jdbo:demno:/fremote_host/test[|D 3] L | RN EEE IEN I EER
Jjdbcidemo://remote_host/test[/D 4] L1 | (L] e u Il‘ I E
jdbcidemo://remote_host/test[|D 5] ! L ‘l ‘
jdbc:demo:/fremote_host/test (|0 5] | I Il
jdbcidemo://remote_host/test[|D 7] 1 1 (
jdbodemo:/fremote_host/test (|0 2] Im Em + ENE EEINEIN
jdbcidemo://remote_host/test[|D 9] Il (] |
jdbe:dermno://remote_host/test[ID 10] in u

™ |dle ™= Statement execution ™ Prepared statement execution ™= Batch execution @ |_ _|

The control objects view shows all control objects in tabular form. Both open and closed
control objects are present by default. You can use the controls at the top to restrict the
display to open or closed control objects only or to filter the contents of a particular column.
In addition to the basic life cycle data for control objects, the table shows data for the
cumulated activity of each control object, for example, the event count and the average
event duration.

Different probes show different columns here, the process probe, for example, shows
separate sets of columns for read and write events. This information is also available if

110

single event recording is disabled. Just like for the events view, the total row at the bottom
can be used together with filtering to get cumulated data on partial sets of control objects.

G Time Line ; eSS & Call Tree B Hot Spot JDBC connections and exacution of ;lEIEJnE}:‘E
Both open and closed Filter in all text columns hd
D Connection String Start Time End Time Event Count Event Duration

1 jdbc:dema://remote_host/test 0:03.206 [Jul 31 12 1,118 ms
2 jdbc:dema://remote_host/test 0:03.516 [J 22 1,896 ms
3 Jjdbcidemaoi//remote_host/test 0:05.286 [J 18 13,674 ms
4 Jdbcidemoi/fremote_host/test 0:05.376 [J 15 10,563 ms
5 jdbcidemo//remote_host/test 0:05.846 [J g 3,260 ms.
6 jdbcidemo//remote_host/test 0:08.996 [J 12 968 ms’
7 jdbcidemo//remote_host/test 0:10.566 [g 743 ms.
g jdbe:demo://remote_host/test 0:12.176 [J 15 11,323 ms
9 jdbodemo://remote_host/test 0:15.006 [12 1,000 ms
10 jdbc:dema://remote_host/test 0:31.846 [Jul 6 4,209 ms
Total from 10 rows: 128 48,757 ms

A probe can publish certain properties in a nested table. This is done to reduce the
information overload in the main table and give more space to table columns. If a nested
table is present, such as for the file and process probes, each row has an expansion handle
at the left side that opens a property-value table in place.

The time line, control objects view and the events view are connected with navigation
actions. For example, in the time line view, you can right-click a row and jump to each of
the other views so that only the data from the selected control object is displayed. This is
achieved by filtering the control object ID to the selected value.

JDBC 3

JDBC connections and execution of statements

Q,‘ﬁme Line ; Connections & Call Tree I\, Hot Spot»

Both open and closed = Sort by start time = -

.....
Physical Connections 0

jdbcidemo://remote_host/test[|D 1] !

3 Show Selected Connection
jdbe

jdbeks

Show Events For Selected Connection

SIS

1
|
I
|
1
|
TSRO T T |
jdbcidemo://remote_host/test[|/D 5] !
jdbc:demo://remote_host/test[|D &] 1

jdbc:demo:/fremote_host/test[ID 7]

Telemetries and tracker

From the cumulated data that is collected by a probe, several telemetries are recorded.
For any probe, the number of probe events per second and some average measure for
probe events like the average duration or the throughput of an I/O operation are available.
For probes with control objects, the number of open control objects is also a canonical
telemetry. Each probe can add additional telemetries, for example, the JPA probe shows
separate telemetries for query counts and entity operation counts.

m

JDBC

‘ ﬁ Call Tree 1., Hot Spots '.‘ Connection Leaks . Telemetries »))
JDBC connections and execution of statements.

Available probe telemetries: | Overview -

Overview
Executed Statements
Average Statement Execution Time

Recorded Open Connections
E

Executed Statements

Row height: ——@ ja ko

Average Statement Execution Time

Ll
AN

The hot spots view and the control objects view show cumulated data that can be
interesting to track over time. These special telemetries are recorded with the probe
tracker. The easiest way to set up tracking is to add new telemetries with the Add Selection
to Tracker action from the hot spots or control object views. In both cases, you have to
choose if you want to track times or counts. When tracking control objects, the telemetry
is a stacked area graph for all different probe event types. For tracked hot spots, the
tracked times are split into the different thread states.
JPA/Hibernate

& Call Tree 1, Hot 5pots ! Telemetries Events . Tracker ~ N s l'l
IPA/Hibernste cperstions and statistics

Show: | [Hot spot times] Query: select o from Order o where o.date » = :date A + x

&

300 ms 3

200 ms

100 ms J

B Runnable: 0 ms B3 Waiting: 0 ms ®® Blocked: Oms B3 Netl/O: Oms D Total time: O ms /@ ko

Probe telemetries can be added to the "Telemetries” section [p. 45] in order to compare
them to system telemetries or to custom telemetries. You then also have control over
probe recording with the context menu actions in the telemetry overview.

JDBC and JPA

The JDBC and JPA probes work hand in hand. In the events view of the JPA probe, you can
expand single events to see the associated JDBC events if the JDBC probe was recorded
along with the JPA probe.

12

- JPA/Hibernate
& Call Tree 1., Hot Spots 8 Telemetries Events B Tracker 1A Hibarnate operstions and stEcetcs l’l
All types h Filter in all text columns = v
Start Time Event Type Duration Description Thread
0:03.234 [Jul 25, 2023 1... S22 Query 857 ms select o from Order o where o.date >= :date Servlet request simulato...

JDBC [P tatement execution] 158 ms SELECT * FROM ORDER O WHERE O.DATE == ? Servlet request simulato...

JDBC [P tatement execution] 173 ms SELECT * FROM ORDER. O WHERE Q.DATE >= 7 Servlet request simulato...
0:04,092 [Jul . 4 Insert 99,206 s com.ejt.demo.server.entities. Customer Servlet request simulate...
0:04.191 4 Insert 224 ms com.gjt.demo.server.entities.Order Servlet request simulate...
0:04.427 4 Insert 141 ms com.gjt.demo.server.entities.Customer Servlet request simulate...
0:04.568 . 4 Insert 210 ms com.gjt.demo.server.entities.Order Servlet request simulate...
0:09.014 L Query 701 ms select o from Order o where o.date >=:date Servlet request simulate...
0:09.716 4 Insert 128 ms com.ejt.demo.server.entities.Customer Servlet request simulato...
NG AAR 11 b Incert 151 ms ram ait demn cencer entities Order Servlet reaniest cirulatn

Total from 55 rows: 19,096 ms

+ Selection [Duration
Stack trace:

[Direct operation

javax.persistence. TypedQuery.getResultlist{)
com.gjt.demo.server.handlers.RequestHandler.executelpaCluery(javax. persistence.EntityManager)
com.ejt.demo.server.handlers.RequestHandler.makelpaCall()

Similarly, the hot spots view adds a special "JDBC calls” node to all hot spots that contains
the JDBC calls that were triggered by the JPA operation. Some JPA operations are
asynchronous and are not executed immediately, but at some arbitrary later point in time
when the session is flushed. When looking for performance problems, the stack trace of
that flush is not helpful, so JProfiler remembers the stack traces of where existing entities
have been acquired or where new entities have been persisted and ties them to the probe
events. In that case, the back traces of the hot spot are contained inside a node that is
labeled "Deferred operations”, otherwise a "Direct operations” node is inserted.

JPA/Hibernate
Call Tr 1, Hot Spot: Telemets Event: Track:
& 2l lree B ot pats ! elemetnes vems E racker JPA/Hibernate operstions and statistics "-
Thread status: 0 Thread selection: Aggregation level:
EX All states v 88 All thread groups A @ Methods +
Hot Spot Time Average Time Events
,D Query: select o from Order o where o.date > = :date I (2501 ms (69 %) 740 ms 17
9 IDEC calls

B 2804 ms - 17 evt. SELECT* FROM ORDER O WHERE O.DATE »= 7
i7 [53,4% - 12,591 ms - 17 hot spot evt. Direct operations
@ I 50.4% - 12,591 ms - 17 hot spot evt. javax.persistence. TypedQuery.getResultList
(D) m— 0,49 - 12,591 ms - 17 hot spot evt. com.ejt.demo.server.handlers.RequestHandler.execute)paQuery
() 55,43 - 12,501 ms - 17 hot spot evt, com.ejt.demo.server handlers.RequestHandler.make)paCall
() m— 55,43 - 12,531 ms - 17 hot spot evt. com.ejt.demo.server handlers RequestHandler.performWork
(D) m— 5 4% - 12,591 ms - 17 hot spot evt. com.ejt.demao.server.handlers.RequestHandler.run

a- 28.6% - 5,194 ms - 7 hot spot evt, HTTP: /demo/view4
@ " 128%-2314 ms- 3 hot spot evt. HTTP: /demo/view3
0' 12.7% - 2,296 ms - 3 hot spot evt, HTTP: /demo/view3
@r2.2%- 1,434 ms - 2 hot spot evt, HTTP: /demo/viewl
@1 7.2%- 1,300 ms - 2 hot spot evt. HTTP: /demo/view2

=k Insert: com.ejt.demo.server.entities.Order I 5,239 ms (17 %) 190 ms 17
9 IDBC calls
%™ 17.9% - 3,239 ms - 17 hot spot evt. Deferred operations @

o Incart: coma cit dewnn cancar antities Cuckomner B) 015 e (12 900 130 e 17

Other probes like the MongoDB probe support both direct and asynchronous operations.
Asynchronous operations are not executed on the current thread but somewhere else,
either on one or multiple other threads in the same JVM or in another process. For such
probes, the back traces in the hot spots are sorted into "Direct operations” and "Async
operation” container nodes.

A special problem in the JDBC probe is that you can only get good hot spots if literal data
like IDs is not included in the SQL strings. This is automatically the case if prepared
statements are used, but not if regular statements are executed. In the latter case, you
will likely get a list of hot spots, where most queries are executed just once. As a remedy,
JProfiler offers a non-default option in the JDBC probe configuration for replacing literals
in unprepared statements. For debugging purposes, you may still want to see the literals

13

in the events view. Deactivating that option reduces memory overhead, because JProfiler
will not have to cache so many different strings.

@ Session Settings X

X Database probes for RDBMS, Big Data and NeSOL databases:
Application Settings

3 JDBC [record events, annotate into call tree view]
Call Tree Recording Ensbled @
Record single events

Call Tree Filters Annotate IDBC calls in call tree

<

Recerd open virtual connections for connection leak analysis)

Resolve parameters of prepared statements for single events (7]

Trigger Settings
I Replace literals in unprepared :tatementsl (7]
; Databases Keep literals for events view
"' JPA/Hibernate [record events, annotate into call tree view]
@ HTTP, RPC & JEE 3 MongoDE
o VM & Custom Probes 3 Cassandra

g HBase

" Advanced Settings

£

General Settings Copy Settings From “ Cancel

On the other hand, JProfiler collects the parameters for prepared statements and shows
a complete SQL string without placeholders in the events view. Again, this is useful when
debugging, but if you do not need it, you can switch it off in the probe settings in order to
conserve memory.

JDBC connection leaks

The JDBC probe has a "Connection leaks” view that shows open virtual database
connections that have not been returned to their database pool. This only affects virtual
connections that are created by a pooled database source. Virtual connections block a
physical connection until they are closed.

JDBC
4 Connections & Call Tree 1. Hot Spots T Connection Leaks * 3

JDBC connections and execution of statements

This view shows all virtual connections that have been open for more than 10 seconds. Virtual connections are what you get from connection
pools and block a physical connection until they are closed.

Connections of type "Unclosed collected” are definite leaks while "Unclosed” connections are strong candidates,

All types A Filter in all text columns = i v
Opened At Open Since Description Thread Class Name
0:01.577 [Jul 25, 202... 18,472 m; Jidbc:hsgldb:hsgl://localhost:9012/test [pool-1-thread-2 [m... [jdk.prosy? $Proxy2
0:08.787 [Jul 11,262 ms @@ Unclosed c.. Jdbc hsgldb:hsgl://localhost:3012/test pool-1-thread-2 [rm... jdk.proxy2.5Proxy2
0:16.994 [Jul 25, 202... 3,035 ms ™ Unclosed c.. jdbchsgldb:hsgl//lecalhost:9012/test pool-1-thread-2 [m... jdk.proxy2. SProxy2

Stack trace:

Jjavax sql.DataSource.getConnection()
jdbeJdbcTestWorker.call()

jdbcJdbcTestWaorker.call()

Jjava.util.concurrent. ThreadPoolExecutor§Worker.run()

There are two types of leak candidates, "unclosed” connections and “unclosed collected”
connections. Both types are virtual connections where the connection objects that have
been handed out by the database pool are still on the heap, but cl ose() has not been

na

called on them. "Unclosed collected” connections have been garbage collected and are
definite connection leaks.

"Unclosed” connection objects are still on the heap. The greater the Open Since duration,
the more likely such a virtual connection is a leak candidate. A virtual connection is
considered as a potential leak when it has been open for more than 10 seconds. However,
cl ose() may still be called on it, and then the entry in the "Connection leaks” view would
be removed.

The connection leaks table includes a Class Name column that shows the name of the
connection class. This will tell you which type of pool has created the connection. JProfiler
explicitly supports a large number of database drivers and connection pools and knows
which classes are virtual and physical connections. For unknown pools or database drivers,
JProfiler may mistake a physical connection for a virtual one. Since physical connections
are often long-lived, it would then show up in the "Connection leaks" view. In this case, the
class name of the connection object will help you to identify it as a false positive.

By default, when you start probe recording, the connection leak analysis is not enabled.
There is a separate recording button in the connection leaks view whose state corresponds
to the Record open virtual connections for connection leak analysis check boxin the JDBC
probe settings. Just like for event recording, the state of the button is persistent, so if you
start the analysis once, it will automatically be started for the next probe recording session.

oS 2] -3 » -
=l | = il My 4+ @
£ 8 & o &% 52 @
Start Stop Start _ Add Stop Probe Stop || Freeze
Recordings Recordings Tracking | " O Bogkmark | PO Help JpBC Leaks | View
JDBC
4 Connections ,5% Call Tree I\, Hot Spots ? Connection Leaks *+ 3

JDBC connections and exscution of statements

This view shows all wirtual connections that have been open for more than 10 seconds. Virtual connections are what you get from connection
pools and block a physical connection until they are closed.

U 1 T U Sy [JUNPNOE (1N =30 P DU SO U U PR 1t S SO,

Payload data in the call tree

When looking at the CPU call treg, it is interesting to see where probes have recorded
payload data. That data may help you to interpret the measured CPU times. That is why
many probes add cross-links into the CPU call tree. For example, the class loader probe
can show you where class loading has been triggered. This is otherwise not visible in the
call tree and can add unexpected overhead. A database call that is otherwise opaque in
the call tree view can be further analyzed in the corresponding probe with a single click.
This even works for call tree analyses where the analysis is automatically repeated in the
context of the probe call tree view when you click on the probe link.

115

Thread status: 0 Thread selection: Aggregation level:
== Runnable v | @8 All thread groups v | | (D Methods

() 5).1% - 386 ms - 1 inv. jdbeJdbcDemo.main
n N 37.3% - 280 ms - 5 inv. java.util.concurrent. ThreadPoolExecutorSWorker.run
() 27.2% - 278 ms - 5 inv. jdbcJdbcTestWorker.call
(D) = 37.8% - 279 ms - 5 inv. jdbcdbcTestWorker.call
W= 138%- 102 ms-12 inv. javax.sql.DataSeurce.getConnection
(@ ®13.5% - 100 ms - 12 inv. jdbeJdbcTestWorker.testStatementsPath1
@l 9.6% - 70,817 ps - 10 inv, jdbcJdbcTestWorker.testPreparedStatement
@l 4,0% - 29,283 ps - 12 inv. jdbc)dbcTestWorker testStatement
7,021 ps - 22 inv. java.sgl.Statement.executeQuery
}3 JDBC calls Show in probe call tree
@ 0.3% - 1,888 ps - 12 inv. java.sgl.Connection.createStatement
D 00%-65ps-10 inv. java.sql.5tatement.close
0' 6.3% - 47,961 ps - 10 inv. jdbcdbcTestWorker testStaternentsPath2
0 30%- 28755 ps - 1 inv. java.lang.System.gc
D 01%-642p5-6 inv. java.sql.Connection.close
O 00%-150s-12 inv, java.lang. Thread.interrupted
Ul 10.1% - 74,919 ps - 1inv, java.awt.EventDispatchThread .run

v @

Another possibility is to show the payload information inline directly in the CPU call tree.
All relevant probes have an Annotate in call tree option in their configuration for that
purpose. In that case, no links into the probe call tree are available. Each probe has its
own payload container node. Events with the same payload names are aggregated, and
the number of invocations and total times are displayed. Payload names are consolidated
on a per-call stack basis, with the oldest entries being aggregated into an "[earlier calls]"
node. The maximum number of recorded payload names per call stack is configurable
in the profiling settings.

Thread status: 0 Thread selection: Agagregation level:
== Runnable = . All thread groups hd @ Metheds

n W 50.5% - 30,897 ms - 7 inv, java.util.concurrent. ThreadP oolExecutorSWorker.run
U- 38.1% - 19,435 ms - 7 inv. com.ejt.demo.server.DemoServeri3.run
al 12.5% - 6,395 ms - 7 inv. HTTP: /demo/viewd
@ B 12,5% - 6,393 ms - 7 inv, com.gjt.demo.server.handlers.RequestHandler.run
(@ ®12.4% - 6,327 ms - 7 inv. com.ejt.demo.server.handlers RequestHandler.performWork
0 0.1% - 67,332 ps - 7 inv. com.gjt.dema.server.handlers.RequestHandler.workWithGlobalResource
@ " 10.5% - 5,366 ms - 5 inv, HTTP: /demo/view3
@1 10,5% - 5,366 ms - 5 inv. com.gjt.demo.serverhandlers.RequestHandler.run
@m10.4% - 5,322 ms - Sinv., com.gjt.demo.server.handlers.RequestHandler.performWork
@17.3%- 3,745 ms - 5inv, com.gjt.demo.server handlers RequestHandler.make)paCall
(@1 6.0% - 3,085 ms - 5 inv. com.ejt.demo.server.handlers.RequestHandler.executelpaQuery
ml 3.7% - 2,912 ms - 5 inv, javax.persistence. TypedQuery getResultList

£012912 ms- 5 evt. Query: select o from Order o where o.date »= :date
/ IDBC calls
16,572 ps - 5 evt. SELECT * FROM ORDER. O WHERE O.DATE == 7

m 0.3% - 172 ms - 5 inv. com.gjt.mock.MockHelper.runnable

) 0.0%- 65 ps - Sinv. javax.persistence.EntityManager.createCuery

0 0.0% - 21 ps - 10 inv. java.util. Random.nextint

0 0.0% - 13 ps - 3 inv. Java.util List.size
W 13%-658ms-5 inv., javax.persistence.EntityManager.flush
D 0.0%-776 s - S inv. com.gjt.mock.jpa.MockEntityManager. <init>

Call tree splitting

Some probes do not use their probe strings to annotate payload data into the call tree.
Rather, they split the call tree for each different probe string. This is especially useful for
server-type probes, where you want to see the call tree separately for each different type
of incoming request. The "HTTP server” probe intercepts URLs and gives you fine grained
control over what parts of the URL should be used for splitting the call tree. By default, it
only uses the request URI path without any parameters.

116

@ Session Settings X
X Probes for HTTP, RPC & JEE:
Application Settings

9 HTTP Server [record events]

E= Call Tree Recording Enabled

Record single events
T Call Tree Filters Show full URLs in events
URL splitting in the call tree: (&) Request URI path only
| Trigger Settings Resolve with serviet scripts: Edit Scripts (7]
Resolve with generic scripts: Edit Scripts (7]
Databases

; 9 HTTP Client

Q HTTP, RPC & JEE ‘3 Web Services [record events]
/D! [record events, annotate into call tree view]

o VM & Custom Probes u
=" JMS [record events, annotate into call tree view]

4 . g record events

L Advnced setings () R [record events
Mt

General Settings Copy Settings From “ Cancel

For more flexibility, you can define a script that determines the split string. In the script,
you get the current j avax. servl et. http. H t pServl et Request as a parameter and
return the desired string.

@ Settings Edit Search Code Help Edit X

PR = % O
N Shaw Modify Test

Unde Redo Cepy Cu Paste Find Replace

Hel)
History Qasspath Compile =P

Please enter an expression (ne trailing semicolon) or a script (ends with a return statement) that consists of regular Java
code. The following parameters are available:

El'mup

- com.jprofiler.api.agent.ScriptContext scriptContext
- javax servlet.http. HttpSenvletRequest servietRequest

The expected return type is java.lang.String
Script:

limport javax.servlet.http.HttpSession; .

4 in this ¢ - It will s ot

S HttpSeasion session = servletRequest.getSession(false):
g1if (session '= null) |

7 Object user = session.getAttribute ("user™);
g8 if (user !'= mull) {

] return user.toString():

10 1 else [

11 return "Unauthenticated":

12 1

13} else {

14 return null; Do not split

151

What's more, you are not limited to a single splitting level, but can define multiple nested
splittings. For example, you can split by the request URI path first and then by the user
name that is extracted from the HTTP session object. Or, you can group requests by their
request method before splitting by the request URI.

17

@ Edit Serviet Scripts X

You can split requests on multiple nested levels. For example, you can split by the request method first
and then split by the request path.

The grouping expression for each level is defined by the return value of a script. When adding new
scripts, some example entries help you to get started.

Seript &

servletRequest.getRequestURI]) Edit Script x
servletRequest.getMethod() Edit Script

import javax.servlet.hitp. HttpSession; [...] Edit Script

o)

@ Help “ Cancel

By using nested splittings, you can see separate data for each level in the call tree. When
looking at the call tree, a level might get in the way and you would find yourself in need
of eliminating it from the "HTTP server” probe configuration. More conveniently and without
loss of recorded data, you can temporarily merge and unmerge splitting levels in the call
tree on the fly by using the context menu on the corresponding splitting nodes.

Thread status: 0 Thread selection: Aggregation level:
== Runnable v | @8 All thread groups v | | (D Methods

0 . £0).5% - 30,857 ms - 7 inv. java.util.concurrent. ThreadPoolExecutorSWorker.run
n- 38.1% - 19,433 ms - 7 inv. com.ejt.demo.server.DemaeServers3.run
@™ 12.5% - 6,395 ms - 7 inv. HTTP: /demoy/viewd
@ ®12.5%- 6,395 ms - 7inv. com.ejt.demo.server.handlers.RequestHandler.run
(@®12.4% - 6,327 ms - 7 inv. com.ejt.deme.server.handlers RequestHandler.perfermiWork
@ 0.1% - 67,532 ps - 7 inv. com.ejt.demo.server.handlers.RequestHandler.workWithGlobalResource

Show Call Graph indlers.RequestHandler.run
B Show Threads rhandlers.RequestHandler.performWork
- nandlers.RequestHandler.workWithGlobalResource

d

d

d

G wldbcoebHandler.run

[. t Probe rsmsHandler.onMessage

= b t Probe

L nsHandlerSJmsType < clinit>

GI 2= Merge splitting level Crl+ Alt+ M |.questHandler.« clinit>

[n] nsHandlerSJmsTypevalues

[5: Remove Selected Sub-Tree Delete tHandler$ImsType.getDuration
0 Ctrl+Ale+ 5 sHandlerSmsType.getDestination

1 ' Erom
n 0 . aServer$151.run

@ Show Tree Legend

Ao e eoan '0

Splitting the call tree can cause considerable memory overhead, so it should be used
carefully. To avoid memory overload, JProfiler caps the maximum number of splits. If the
splitting cap for a particular split level has been reached, a special "[capped nodes]"
splitting node is added with a hyperlink to reset the cap counter. If the default cap is too
low for your purposes, you can increase it in the profiling settings.

118

Garbage Collector Analysis

Understanding and analyzing the runtime characteristics of the garbage collector (GC)
isimportant for several reasons. Firstly, GC pauses can directly impact the responsiveness
of your application. By understanding how the garbage collector is performing, you can
optimize its settings to reduce these pauses. In general, frequent long GC cycles may
indicate that the heap is too small, or that too many temporary objects are being created.

With the help of the garbage collector probe you can solve these problems and make
more informed decisions when tuning your JVM settings, such as selecting the appropriate
garbage collector, heap size, or other JVM parameters.

The garbage collector probe has different views than the other probes and also uses a

different data source. It does not obtain its data from the profiling interface of the JVM

but uses JFR streaming to analyze GC-related events from the JDK flight recorder »

Because of the dependency on JFR event streaming, the GC probe is only available when
you profile Java 17 or higher on a Hotspot JVM. When you open JFR snapshots [p. 219], the
exact same probe is available, regardless of the used Java version.

Garbage collections view

The main view in the garbage collector probe is the "Garbage collections” table. It shows
all recorded garbage collections as rows with their most important metrics as columns.

. . — = . . = Garbage Collector T3]
@ Garbage Collections M Telemetries £ GC Summary %+ GC Configuration [Z] GCFlags ¢ cotkctons sna configuraton |

Filter in all text columns = i
GCID Start Time Duration Cause Collector Longest Pause Sum Of Pauses Final Refs Weak Refs Soft Refs Phantom Refs
Ll 0:01.997.517 [2,265 ps G1 Evacuation ... G1New 2,265 ps 2,265 ps 4 44 0 6
42 0:01.999.852 | 22,885 ps G1 Evacuation ... G101d 5,688 ps 5810 ps 1 1 0
43 0:03.520.570 [J 1,365 ps G1 Humengou... G1MNew 1,365 us 1,365 us 2 7 0 5.
44 0:03.521.951 [J 24,998 ps G1 Humongeu... G10Id 7477 us 7,632 us 0 7 0
45 0:03.655.470 [J 1,776 us G1 Evacuation .. G1New 1,776 us 1,776 us 3 34 0 3
46 0:03.809.613 [J 1,672 us G1 Evacuation .. G1New 1,672 us 1,672 us 1 0 o 3
a7 003,811,333 [19,640 ps G1 Evacuation .. G101d 4,167 ps 4,286 ps 0 0 0
43 0:03.881.874) 20,034 ps System.ge) G1Full 20,034 ps 20,034 ps] 1,691 0 34
49 0:04.555.097 [1,920 ps G1 Evacuation ... G1New 1,920 ps 1,920 ps 1 72 0 3
50 0:04.557.035 [20,714 ps G1 Evacuation ... G101d 3,917 ps 4035 ps 0 0 0
51 0:05.606.811 [. 2,043 ps G1 Evacuation ... G1New 2,043 ps 2,043 ps 4 46 o 1
52 0:05.772.998 [J 1,548 ps G1 Humengou.. G1New 1,548 us 1,548 us 4 13 0
53 0:05.774.563 [J 24,473 ps 61 Humongeu... G10Id 7,541 us 7,665 us 0 0 0
54 0:05.885.318 [J 944 ps G1 Humongou.., G1MNew 944 ps 944 ps o o o
55 0:05.886.278 [J 21,086 ps G1 Humongeu... G10Id 4,363 us 4447 ps 0 0 0
56 0:06.030.645 [1,033 ps G1 Humengou... G1New 1,053 ps 1,053 ps 0 0 0
57 0:06.031.711 [J 23,766 ps G1 Humongeu... G10Id 6,388 ps 6,318 ps 0 0 0
58 0:06.137.906 [1.867 us 61 Humonoou... G1New 1.867 us 1.867 us]]]

Total from 112 rows: 1,618 ms 645 ms 152 12,588 4,731 3,33

The "Cause’ column shows you why a garbage collection was triggered. For example, a
call to System gc() triggered a full garbage collection. You can see that from the
associated "GIFull” value in the "Collector” column. It also caused a substantial pause of
20 ms whichis why it is generally not a good idea to call Syst em gc() . Other causes trigger
the collection of the young generation space ("GINew") or the old GC collection of the Gl
collector ("G10Id") that cleans up unreferenced objects in the old generation. You can see
that the old GC collections consistently take longer than the young generation collections
although the young generation collections collect more objects.

Collected references with special GC handling are shown as ‘final’, "weak”, "soft" and
‘phantom” references in separate columns.

The reason there are separate columns for the longest pause and the sum of pauses is
that each garbage collection is composed of multiple phases that produce separate

M https://en.wikipedia.org/wiki/ JDK_Flight_Recorder

19

https://en.wikipedia.org/wiki/JDK_Flight_Recorder

pauses. Also, the "Duration” of a garbage collection is not equal to the sum of pauses,
because a garbage collection only partially pauses the JVM while it is executing. You can
see that the "G10Id" collections in the screenshot only pause for about a fifth of their
duration.

To inspect the various phases of a garbage collection, you can toggle the tree icon in the

"GC ID" column.

€> Garbage Collections M Telemetries fE6C Summary 13 GC Cenfiguration
Filter in all text columns =
GCID Start Time Duration Cause Collector Longest Pause Sum Of Pauses
Ll 0:01.997.517 [2,265 ps G1 Evacuation ... G1New 2,265 ps 2,265 ps
42 0:01.999.852 [22,885 ps G1 Evacuation ... G101d 5,688 ps 5810 ps
Phase Level Duration Phase Mame

1 I 05 s (62 %) Class Unloading

1 533 s (8 %)
1 397 ps (6 %)
2l 30354 %)
10209 ps (3 %)
10110 s (1 %)
1199 ps (1 %)
1] 74 ps (1 %)
1] 49 ps (0 %)

21 47 ps (0 %)

2| 35 us (0 %)
1] 34 ps (0 %)

2 30ps(0%)

1 2us(0%)

Total from 112 rows: 1,618 ms

Purge Metaspace

Reference Processing

Motify and keep alive finalizable

Finalize Marking

'Weak Processing

Finalize Concurrent Mark Cleanup

Reclaim Empty Regions

Update Remembered Set Tracking Before Rebuild
Notify Soft/WeakReferences

Notify PhantomReferences

Flush Task Caches

ClassLoaderData

Update Remembered Set Tracking After Rebuild

645 ms

[7] GC Flags

Final Refs Weak Refs
4 44

1 1
Committed metaspace:
Class metadata:
Other data:
Used metaspace:
Class metadata:
Other data:
Reserved metaspace:
Class metadata:

Other data:

Committed heap:
Used heap:

Reserved heap:

152 12,588

Garbage Collector "'-T

GC collections and configuration

Phantom Refs
0 6
0

58,302 kB — 58,458 kB (-0.1%)
8650 kB — 8650 kB (0 9%)
49741 kB — 49807 kB +0.1 %)
57,805 kB — 57,027 kB (-0.1%)

Soft Refs

8365 kB — 8365 kB {0 %)
49530 kB — 49,562 kB +001 %
1,124 MB = 1,124 MB [+0%)
1.073 MB — 1073 MB {+0 %)
50331 kB — 50331 kB {+0 %)
65,011 kB — 65,011 kB [+0%)
36331 kB —36331kB (£0%)
208 ME — 209 MB (£0 %)

4731 3,53

In the screenshot above, a mixed GC collection of the Gl collector ("G10Id") was expanded.
You can see that most of the time is spent in "Class Unloading’, which does not pause the
JVM. On the right, you can see further statistics for the garbage collection. Here, the used

heap stayed the same while the used metaspace went up by 0.1%.

@ Garbage Collections , Telemetries 3 6C Summary W 6C Configuration
Filter in all text columns =
GCID Start Time Duration Cause Collector Longest Pause Sum Of Pauses
a7 003,811,333 [19,640 ps G1 Evacuation .. G101d 4,167 ps 4,286 ps
48 0:03.881.874 [20,034 ps System.gc() G1Full 20,034 ps 20,034 ps
Phase Level Duration Phase Name
1 I 11,366 ps (43 %) Phase 1: Mark live objects
2 657 s (27 %) Phase 1: Class Unloading and Cleanup
1 I 3,582 ps (15 %) Phase 3: Adjust pointers
TH 822 ps (3 %) Phase 2: Prepare for compaction
Tl 805 ps (3 %) Phase 4: Compact heap
21195 us (0 %) Phase 1: Reference Processing
21 130 us (0%) Phase 1: Weak Processing
49 0:04,555.097 [J 1,920 s G1 Evacuation .. G1New 1,920 us 1,920 ps
Total from 112 rows: 1,618 ms 645 ms

%] GCFlags
g

Final Refs Weak Refs
0 0

] 1,691
Committed metaspace:
Class metadata:
Other dats
Used metaspace:
Class metadata:

Other datz

Reserved metaspace:
Class metadatz:
Other datz

Committed heap:

Used heap:
Reserved heap:

1 72
152 12,588

Garbage Collector T3]

GC collections and configuration. —
Soft Refs Phantom Refs

0

0 34
59,965 kB — 53,965 kB (+0 %)
E7I6 kB — BTI6 kB (£0 %)
51249 kB — 51240 kB (£038)
50,436 kB — 59,486 kB (+0 %)
8483 kB — 8463 kB (£0%)
51.003 kB — 51.003 kB (£0%)
1,132 MB — 1,132 MB [0 %)
1073 MB — 1,073 MB (0%
58720 kB — 58720 kB [£03)
70,254 kB — 70,254 kB [+0 %)

44714 kB — 37,705 kB (-153.7 %)

209 MB — 200 MB (£0%)
0 3
4731 3,53

The phases of each collector are different. In the screenshot above, a full collection is
shown. It spends a lot of time marking live objects in the entire heap. At the end of the
collection, the used heap was reduced by 15.7%, while the metaspace remained the same.

While analyzing garbage collections, filtering is an important tool to compare different
subsets of garbage collections. At the top of the table, there is a filter selector that lets
you choose any column and configure a corresponding filter. An easier way to see similar

120

garbage collections is to use the context menu on the table and select a filter condition
based on the column values in the selected row.

@ Garbage Collections B9 Telemetries _z GC Summary 13 GC Cenfiguration GC Flags Garbage Collector ZT

GC collections and configuration

Phantom Refs ||z - 65 | % + Add
Duration z 2,265 ps Phantom Refs = 63
GCID Start Time Duration Cause Collector Longest Pause Sum Of Pauses Final Refs Weak Refs Soft Refs Phantom Refs
a1 0:01.997.517 [1... 2,265 ps G1 Evacuation ... G1New 2,265 ps 2,265 ps 4 44 0 65
48 e e AT 20,034 ps 20,034 ps 6 1,691 [344
113 Filter Equals This GCID G1Full 40,249 ps 40,249 ps i) 2,139 0 369
123 Filter Greater Than This Duration G1Full 43,426 ps 43,426 ps 10 2432 1,113 304
124 . G1Full 35,537 ps 35,537 ps) 2431 229 394
Filter Less Than Th C
134 [Ter e han e ause 51New 2,398 ps 2,398 ps 17 5 0 78
Collect G
13 Sort Garbage Collections ¥ ollector G1Full 76,258 ps 76,258 ps 2 2,223 1,062 421
L tP
2 Find Ctil+F ongestTause
Sum of Pauses
T Export View Ctri+R Final Refs
- Ctrl+T Weak Refs
Soft Refs

Phantorn Refs

Total from 7 rows: 220 ms 220 ms 63 11,006 2,404 1,975

You can add multiple filters to narrow down the garbage collections of interests. Active
filters are shown as labels at the top of the table. It is also possible to add filters from the
nested GC phases tables.

Garbage Collector "I_T

Garbage Collecti Telemets R 6cs 13 GC Confl ti Z| GCFI
@ arbage Collections B Telemetries EX ummary w* onfiguration ags € callections and configuration

GCID hd 48

| Purge Metaspace 2 333 ps I

GCID Start Time Duration Cause Collector Longest Pause Sum Of Pauses Final Refs Weak Refs Soft Refs Phantom Refs
42 0:01.999.852 [J... 22,885 ps 61 Evacuation .. G10Id 5,688 us 5,810 us 1 1 o
a4 0:03.521.951 [1... 24,998 ps G1 Humongeu... G10Id TATT ps 7,632 ps 0 7 0
Phase Level Duration Phase Name Committed metaspace: 38,916 kB — 58,982 kB
1 I ;224 s (319%) Class Unloading Class metadsta £650 kB — §650 kB
e EEEEEE——— Other data: 50,266 kB — 50331 kB
Filter Garbage Collections With This Phase And a Longer Duration Used metaspace: 38,425 kB — 58,470 kB
Filter Garbage Collections With This Phase And a Shorter Duration rk Cleanup Class met - B398 kB — 5401 kB
Sort Phases » Other data: 50027 kB — 50078 kB +0.1 %)
T 83 ps (1 %) Reclaim Empty Kegions Reserved metaspace: 1,124 MB — 1,124 MB (0 %)
1l 82 us(1%) Update Remembered Set Tracking Before Rebuild Class m g 1073 MB — 1.073 MB (£0 %)
2 39ps(0%) Motify Soft/WeakReferences Cther data: 50331 kB — 50331 kB (£0%)
2 33us(0%) Motify PhantomReferences
1 19 ps (0%) Flush Task Caches Committed heap: 65,011 kB = 70,254 kB (+2.1 %)
2 15ps (0 %) ClassLoaderData Used heap: 36,689 kB — 40,883 kB (+11.4 %)
1 2ps (0%) Update Remembered Set Tracking After Rebuild Reserved heap: 200 MB — 209 MB [+0 %)
Total from 33 rows: 1,181 ms 305 ms 8 19 2327 .
.
Telemetries

The GC probe produces a number of telemetries which are available in the "Telemetries”
probe view.

121

. o) = . . Garbage Collector T3]
@Garbage Collections 8 Telemetries Lz GC Summary % GC Configuration GC cotections 2nd configuraton |
Available probe telemetriess | Owverview hd
-
......... T O A I NI L L B T LA I A I B B B B S B A S
0 0:20 0:30 =40 50
%0 m
Longest pause R A
Bms | LAl | s] e L sl |

200 ms
Sum of pauses ‘ ‘ ‘
’ ors | il
300 MB
Used Heap R _,m/’\ﬁ'—_—':;'-%_._ s

oms

300 ME

Committed Heap

100MB

Used Metaspace

Row height: @ }9 kA X

If you are interested in minimizing GC pauses, the "Longest pause” telemetry at the top
will be the most interesting one. You can drag along the time axis of the telemetry to select
the corresponding garbage collections in the "Garbage Collections” view. For better vertical
resolution, you can select a single telemetry from the drop-down at the top or by clicking
on the name of the telemetry.

= = Garbage Collector T3]
{/\ Garbage Collections ! Telemetries Lz GC Summary 4 GC Configuration € collections and configuration |
@ Available probe telemetries: | Sum of pauses hd
a [TTTTTTTTT frrrrrrr frrTrrrer frrrrerr TR B I I A I B A frorrrer
0:10 0:20 0:30 040 50 1:00

|
5
200 ms i

0:07.0 [Jul 3, 2023 11:01:11 AM] £ 2000 ms

100 ms = Sum of pauses: 107.7 ms

BN Sum of pauses: 8.07 ms /@ ko

In the screenshot above you can see the sum of pauses over time. JProfiler presents
summable measurements by building a histogram of the recorded data. The bin width
depends on the available horizontal space, so histogram bins will change depending on
the zoom level and, if "scale to fit" is enabled, depending on the width of the window. What
stays the same is the total area under all histogram bins.

The heap and metaspace telemetries are based on the statistics that you can see when
expanding a garbage collection. This means that the data is not regularly sampled like
for the memory telemetries in a full profiling session. If no garbage collection occurs during
a time period, there will be no data. For a JVM with little allocation activity, there can be
long stretches along the time axis where the graph is just interpolated between two
garbage collections.

Each of these telemetries has two data lines: "Before GC" and "After GC". The differences
are typically large for the "Used Heap® telemetry. At each time, you can see how much

122

work the garbage collection has performed by comparing the values of the two data lines.
You can look at the tooltip to get the precise values. For the "Committed heap” telemetry
and the metaspace telemetries, the differences between both lines will often be smaill.

If you are analyzing a JFR snapshot [p. 219], the same data from the j dk. GCHeapSummar y
JFR event type is also used in the "Memory" telemetry in the telemetry section. In that case,
however, both the "Before GC" and "After GC" values are shown in the same data line and
data is not aggregated to a once per-second granularity as in the GC probe telemetries,
so the graph will look different.

GC Summary

The GC summary shows you measurements that are aggregated over the entire recording
period. Each measurement provides the number of garbage collections, as well as the
average, maximum and the total values. The most important data at the top are the
"Pause times" that directly affect the liveness of your application.

Garbage Collector ‘I='|'

& Garbage Collections B Telemetries z GC Summary % GC Configuration € collecions and configuiation
Pause Count 143
Average Pause 4512 ps
PMaximum Pause 76,258 us
Sum of Pauses 643 ms
Average GC Time 14,451 ps
PMaximum GC Time 76,258 us
Total GC Time 1,618 ms

GC Count 70
Average GC Time 1,712 ps
Maximum GC Time 3,460 ps
Total GC Tirne 118 ms
GC Count 42
Average GC Time 35,682 us
Maximum GC Time 76,238 ps
Total GC Time 1,492 ms

The other top-level category shows the total times of all collections which is then split into
two subcategories for young and old collections.

GC Configuration

When you tune your garbage collector, you may want to inspect the common properties
that can either be set explicitly or that are set implicitly by the garbage collector itself.

123

Garbage Collector T3]
i

@ i En [F1 = TN
G\ Garbage Collections ¥ Telemetries £ GC Summary % GC Configuration GC cotections 2nd configuraton

GC Configuration

Young Garbage Collector GlNew
Old Garbage Collector G10Id
Concurrent GC Threads 3
Parallel GC Threads 13
Concurrent Explicit GC false
Disabled Explicit GC false
Uses Dynamic GC Threads true

GC Time Ratic 12

GC Heap Configuration

Initial Size 209 MB
Minimum Heap Size 8383 kB
Maximum Heap Size 209 MB
If Compressed Oops Are Used true
Compressed Oops Mode 32-bit
Heap Address Size 32
Object Alignment 8 bytes
Young Generation Configuration

Minimum Yeoung Generation Size 1,363 kB
Maximum Young Generation Size 125 MB

These properties are common to all garbage collectors and help you understand the
differences between garbage collectors.

GC Flags

Finally, the GC-specific flags give you an idea what properties of a garbage collector can
be tuned and lets you check their actual values.

. — = = Garbage Collector T3]
« M Telemetries £ GC Summary %+ GC Configuration GC Flags GC cotections 2nd configuraton
Flag Name Flag Value Origin

AlwaysPreTouch false Default
ClassUnloading true Default
ClassUnloadingWithConcurrentMark true Default
G1CencMarkStepDurationMillis 10.0 Default
G1CencRSHotCardLimit 4 Default
G1ConcRSLogCacheSize 10 Default
G1ConcRefinementGreenZone 0 Default
G1ConcRefinementRedZone 0 Default
G1ConcRefinementServicelntervalMillis 300 Default
G1ConcRefinementThreads 13 Ergonomic
G1ConcRefinementThresholdStep 2 Default
G1ConcRefinernentYellowZone 0 Default
G1ConfidencePercent 50 Default
G1DummyRegionsPerGC 0 Default
GlEvacuationFailureAlot false Default
G1EvacuationFailureAlotCount 1000 Default
G1EvacuationFailureALotDuringConcMark true Default
G1EvacuationFailureALotDuringConcurrentStart true Default
G1EvacuationFailureALotDuringMixed GC true Default

S S SO Y Y S SRS VI e P Pafe

The "Origin” column shows you how the flag was set. "Default” values have not been modified
from the standard settings while "Ergonomic” flags have been adjusted automatically by
the garbage collector. If you set specific GC flags on the command line, they will be
reported as "Command line" in origin.

124

MBean Browser

Many application servers and frameworks such as Apache Camel D Use JMX to expose a
number of MBeans for configuration and monitoring purposes. The JVM itself also publishes
a number of platform MxBeans @ that present interesting information around the low-level
operations in the JVM.

JProfiler includes an MBean browser that shows all registered MBeans in the profiled VM.
The remote management level of JMX for accessing MBean servers is not required, because
the JProfiler agent is already running in-process and has access to all registered MBean
servers.

JProfiler supports the type system of Open MBeans. Besides defining a number of simple
types, Open MBeans can define complex data types that do not involve custom classes.
Also, arrays and tables are available as data structures. With MXBeans, JMX offers an
easy way to create Open MBeans automatically from Java classes. For example, the
MBeans provided by the JVM are MXBeans.

While MBeans have no hierarchy, JProfiler organizes them into a tree by taking the object
domain name up to the first colon as the first tree level and using all properties as
recursively nested levels. The property value is shown first with the property key in brackets
at the end. The t ype property is prioritized to appear right below the top-level node.
Attributes

At the top level of the tree table showing the MBean content, you see the MBean attributes.

’i:l' Live Memaory h [Attributes @ Operations
com.ejt.demo
Heap Walker com jprofiler.api.agent.r -
cUm.sun.managEment
java.lang Name . Value
CPU Views GarbageCollector /¢ ¥ HeapMemoryUsage |[java.lang.management.MemoryUsage]
B committed 58720256
MemoryManager [ty .
MemoryPool [tvoe] init 1073741824
Threads ®c L'yd_ . “_ . max 17146314752
d] asstoading ypel used 16235800
. Compilation [type] NonHeapMemory... [java.lang.management.MemoryUsage]
Meonitors & Locks {8 Memory [type]
ry P 5 ObjectMame javalangitype=Memory
‘d‘] OperatingSystem [tyr ObjectPendingFin... 0
& Runtime [type] Verbose false 4

Databases
@& Threading [type]
java.nio

HTTP, RPC & JEE java.utillogging

jdk.management.jfr

JVM & Custom Probes

@ 0@ WD mypg

{.-. MBeans

The following data structures are shown as nested rows:

+ Arrays
Elements of primitive arrays and object arrays are shown in nested rows with the index
as the key name.

« Composite data

All items in a composite data type are shown as nested rows. Each item can be an
arbitrary type, so nesting can continue to an arbitrary depth.

(1) https://camel.apache.org/camel-jmx.html
2 https://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

125

https://camel.apache.org/camel-jmx.html
https://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

 Tabular data

Most frequently you will encounter tabular data in MXBeans where instances of j ava.
util.Map are mapped to a tabular data type with one key column and one value
column. If the type of the key is a simple type, the map is shown ‘inline”, and each
key-value pair is shown as a nested row. If the key has a complex type, a level of ‘map
entry” elements with nested key and value entries is inserted. This is also the case for
the general tabular type with composite keys and multiple values.

Optionally, MBean attributes can be editable in which case an +* edit icon will be displayed
next to their value and the Edit Value action becomes active. Composite and tabular types
cannot be edited in the MBean browser, but arrays or simple types are editable.

If a value is nullable, such as an array, the editor has a checkbox to choose the null state.

@ Edit Attribute Value X

EditableObjectMame null

Array elements are separated by semicolons. One trailing semicolon can be ignored, so
1 and 1; areequivalent. A missing value before a semicolon will be treated as a null value
for object arrays. For string arrays, you can create empty elements with double quotes
(") and elements that contain semicolons by quoting the entire element. Double quotes
in string elements must be doubled. For example, entering a string array value of

"Test":""::"enbedded "" quote":"A B'::

creates the string array

new String[] {"Test", "", null, "enbedded \" quote", "A;B", null}

JProfiler can create custom telemetries from numeric MBean attribute values. When you
define an MBean telemetry line [p. 45] for a custom telemetry, an MBean attribute browser
will be shown that lets you choose an attribute that provides the telemetry data. When
you are already working in the MBean Browser, the Add Telemetry For Value action in the
context menu provides a convenient way to create a new custom telemetry.

126

e [Attributes @ Operations
com.gjt.deme
com, jprofiler.api.agent.mbean
com.sun.management
Jjava.lang HespM NamLeJ liavalang ; M \ﬁlru/e R
GarbageCollector [type] eap err.w:tr}; sage ;;7;6;;64.\71?”?:lement. emoryUsage]
MemoryManager [type] Ic::ml & 10'73741324
MemoryPool [type] 4-.I I-.”-.:-‘
max
@ ClassLoading [type] used Edit Attribute Value
d] Compilation [type] NonHeapM'E; Add Telemetry For Value NemoryUsage]
&8 Memory [type] ObjectNam
Ctrl+F

@ OperatingSystem [type]
;_!] Runtime [type]

[) Threading [type]
Jjava.nio

java.utillogging

ObjectPend ,0 Find

o Show Row Details Ctrl+Alt+]

Verbose

L Export View Ctrl+R

Jjdk.management.jfr

A telemetry can also track nested values in composite data or tabular data with simple
keys and single values. When you chose the nested row, a value path is built where path
components are separated by forward slashes.

Operations

In addition to inspecting and modifying MBean attributes, you can invoke MBean operations
and check their return values. MBean operations are methods on the MBean interface
that are not setters or getters.

e [Attributes {0:7 Operations

com.gjt.demo

@9 standardTest [type] .

@ Test [type]

com jprofiler.apiagent. mbean Operation

com.sun.management dumpHeap(java.lang.5tring p0, boolean pl) — void

@ DiagnosticCommand [type] getVMOpt.ion(java.\ang.Str.mg pO).ﬂ[CDmpos.itE] I | -
setVMOption(java.lang.String p0, java.lang.String | nvoke Operation

&8 HotSpotDiagnostic [typel
java.lang

A2 Find Ctrl+F

GarbageCollector [type] 1 Export View ChileR

MemoryManager [type]
MemoryPool [type] T
[) ClassLoading [type]
] Compilation [type]
.;IJ Memory [type]
@ OperatingSystem [type]
.;IJ Runtime [type]
@ Threading [type]
Java.nic
java.util.logging

Jjdk.management.jfr

The return value of an operation may have a composite, tabular or array type, so a new
window with a content similar to the MBean attribute tree table is shown. For a simple
return type, there is only one row named "Return value®. For other types, the "Return value”
is the root element into which the result is added.

127

@ Operation Result X

Name Value
Return value [com.sun.management.VMOption]
name HeapDumpOnOutOfiemoryError
origin DEFAULT
value false
writeable true

MBean operations can have one or more arguments. When you enter them, the same
rules and restrictions apply as when editing an MBean attribute.

€ Enter Operation Parameters X
java.lang.String p0 | HeapDumpOnQutOfiemaoryError null
java.lang.String p1 | true null

128

Offline Profiling

There are two fundamentally different ways to profile an application with JProfiler: By
default, you profile with the JProfiler GUI attached. The JProfiler GUI provides you with
buttons to start and stop recording and shows you all recorded profiling data.

There are situations where you would like to profile without the JProfiler GUI and analyze
the results later on. For this scenario, JProfiler offers offline profiling. Offline profiling allows
you to start the profiled application with the profiling agent but without the need to connect
with a JProfiler GULI.

However, offline profiling still requires some actions to be performed. At least one snapshot
has to be saved, otherwise no profiling data will be available for analysis later on. Also, to
see CPU or allocation data, you have to start recording at some point. Similarly, if you wish
to be able to use the heap walker in the saved snapshot, you have to trigger a heap dump.

Profiling API

The first solution to this problem is the controller API. With the AP, you can programmatically
invoke all profiling actions in your code. In the api / sanpl es/ of f | i ne directory, there is a
runnable example that shows you how to use the controller API in practice. Execute . . /
gr adl ew in that directory to compile and run it and study the Gradle build file bui | d.
gr adl e to understand how the test program is invoked.

The Controller API is the main interface for managing profiling actions at run time. It is
contained in bi n/ agent . j ar in your JProfiler installation or as a Maven dependency with
the coordinates

group: com jprofiler
artifact: jprofiler-probe-injected
version: <JProfiler version>

and the repository

https:// maven. ej -t echnol ogi es. coni repository

If the profiling API is used during a normal execution of your application, the API calls will
just quietly do nothing.

The drawback of this approach is that you have to add the JProfiler agent library to the
class path of your application during development, add profiling instructions to your
source code and recompile your code each time you make a change to the programmatic
profiling actions.

Triggers

With triggers [p. 27], you can specify all profiling actions in the JProfiler GUI without
modifying your source code. Triggers are saved in the JProfiler config file. The config file
and the session ID are passed to the profiling agent on the command line when you start
with offline profiling enabled, so the profiling agent can read those trigger definitions.

129

@ Session Settings X

il X Triggers defined for the current session:
Application Settings
: Method invocation +
" bezier.BezierAnimSDemoControls.actionPerformed (java.awt.event. ActionEvent) i
Call Tree Recording .
e Timer x
. Interval 10 minutes, offset 10 minutes
Call Tree Filters
’ CPU load threshold
L 80% CPU load
| Trigger Settings " o2
Heap usage threshold
- IIN p usag
Triggers T 80% of maximum heap size
Output
; Databases
Q HTTP, RPC & JEE
N
° JVM & Custom Probes W
General Settings Copy Settings From “ Cancel

In contrast to the profiling API, where you add API calls to your source code, triggers are
activated when a certain event occurs in the JVM. For example, instead of adding an API
call for a certain profiling action at the beginning or at the end of a method, you can use
a method invocation trigger. As another use case, instead of creating your own timer
thread to periodically save a snapshot, you can use a timer trigger.

Each trigger has a list of actions that are performed when the associated event occurs.
Some of these actions correspond to profiling actions in the controller API. In addition,
there are other actions that go beyond the controller functionality such as the action to
print method calls with parameters and return values or the action to invoke interceptor
scripts for a method.

@ Trigger Wizard - Method invocation x
1. Trigger type Configure actions for this trigger
2. Specify methods
3. Actions Configured actions:
4, Descri
escription 9 Print method invocation +
5. Group 1D
6. Finished £ Run interceptor script x

On method entry:
On method exit:

On exception exit:

4 Back Next P Finish Cancel

Configuring offline profiling

If you have configured a launched session in JProfiler, you can convert it to an offline
session by invoking Session->Conversion Wizards->Convert Application Session To Offline
from the main menu. This will create a start script with the appropriate VM parameters
and take the profiling settings from the same session that you use in the JProfiler UL. If you
want to move the invocation to another computer, you have to use Session->Export Session

130

Settings to export the session to a config file and make sure that the VM parameter in the
start script references that file.

@ Convert local session to offline session >
1. Select local session Check required actions

2, Offline profiling

3. Locate output directory The conversicn wizard has finished collecting all necessary infermation and is
4. Check actions now about to execute the required actions.

5. Finished

Please check the summary below.

Conversion type: Convert local session to offline session
Application sessicn: Animated Bezier Curve Demo
Output directory: C:\Users\ingo

For offline profiling, a start script named start_session_offline_101.bat
will be created in the output directory. Use this start script to start offline
profiling.

4 Back Next P Cancel

When profiling an application server with the integration wizards, there is always a start
script or config file that is being modified so that the VM parameters for profiling are
inserted into the Java invocation. All integration wizards have a "Profile offline” option on
the "Startup” step in order to configure the application server for offline profiling instead
of interactive profiling.

@ Integration Wizard X
1. Choose wizard Choose whether to wait for the JProfiler GUI

2. Local or remote

3. Profiled JUM Please choose whether you would like your profiled JVM to wait for a

4. Startup mode connectien from the JProfiler GUI frontend before starting up:

Wait for a connection from the JProfiler GUI

[Easy] Profiling settings are transmitted directly by the JProfiler GUI at
startup. With this option you can profile the startup phase of your
application.

Startup immediately, connect later with the JProfiler GUI

[Easy] Profiling settings are transmitted directly by the JProfiler GUl ence
you connect.

I() Profile offline, JProfiler GUI cannot conﬂectl

[Advanced] You have to configure triggers that record data and save
snapshots that can be opened with the JProfiler GUI later on.

4 Back Next P Cancel

You may want to pass the VM parameter yourself to a Java call, for example, if you have
a start script that is not handled by the integration wizards. That VM parameter has the
format

-agentpat h: <path to jprofilerti library>=offline,id=<ID>[, config=<path>]

and is available from the [Generi ¢ appli cati on] wizard.

Passing of f I i ne as a library parameter enables offline profiling. In this case, a connection
with the JProfiler GUI is not possible. The sessi on parameter determines which session
from the config file should be used for the profiling settings. The ID of a session can be

131

seen in the top right corner of the Application settings tab in the session settings dialog.
The optional conf i g parameter points to the config file. This is a file that you can export
by invoking Session->Export Session Settings. If you omit the parameter, the standard
config file will be used. That file is located inthe . j profi | er 14 directory in your user home
directory.

Offline profiling with Gradle and Ant

When you start offline profiling from Gradle or Ant, you can use the corresponding JProfiler
plugins to make your work easier. A typical usage of the Gradle task for profiling tests is
shown below:

pl ugi ns {
id "'comjprofiler' version 'X Y.Z
id'java'

}

jprofiler {
instalIDir = file('/opt/jprofiler")
}

task run(type: comjprofiler.gradle. TestProfile) {
offline = true
configFile = file("path/to/jprofiler_config.xm")
sessionld = 1234

The com jprofiler.gradle. JavaProfil e task profiles any Java class in the same way
that you execute it with the standard JavaExec task. If you use some other method of
launching your JVM that is not directly supported by JProfiler,the com j profil er. gradl e.

Set Agent Pat hPr oper t y task can write the required VM parameter to a property. It is added
by default when applying the JProfiler plugin, so you can simply write:

set Agent Pat hProperty {
propertyNane = 'agent Pat hProperty
offline = true
configFile = file("path/to/jprofiler_config.xm")
sessionld = 1234

and then use agent Pat hProperty as a project property reference elsewhere after the
task has been executed. The features of all Gradle tasks and the corresponding Ant tasks
are documented in detail in separate chapters [p. 249].

Enabling offline profiling for running JVMs

With the command line utility bi n/ j penabl e, you can start offline profiling in any running
JVM with a version of 1.6 or higher. Just like for the VM parameter, you have to specify an
of f I i ne switch, a session ID and an optional config file:

jpenabl e --offline --id=12344 --config=/path/to/jprofiler_config.xmn

With an invocation like this, you have to select a process from a list of running JVMs. With
the additional arguments - - pi d=<PI D> - - noi nput other you can automate the process
so that it requires no user input at all.

132

On the other hand, when enabling offline profiling on the fly, it may be necessary to
manually start some recordings or to save a snapshot. This is possible with the bi n/
j pcontrol | er command line tool.

If the profiling agent is only loaded, but no profiling settings have been applied, no recording
actions can be switched onand soj pcont r ol | er will not be able to connect. This includes
the case where you enable profiling with j penabl e, but without the of f | i ne parameter.
If you enable offline mode, the profiling settings are specified and j pcontrol | er can be
used.

More information on the j penabl e and j pcontrol | er executables is available in the
command line reference [p. 249].

133

Comparing Shapshots

Comparing the runtime characteristics of your current application against a previous
version is a common quality assurance technique for preventing performance regressions.
It also can be helpful for solving performance problems within the scope of a single profiling
session, where you may want to compare two different use cases and find out why one
is slower than the other. In both cases, you save snapshots with the recorded data of
interest and use the snapshot comparison functionality in JProfiler by invoking
Session->Compare Snapshots in New Window from the menu or clicking the Compare
Multiple Snapshots button on the Open Snapshots tab of the start center.

@ IProfiler Start Center X

Start Center

Open a Single Snapshot

r
Open Use this option to analyze a snapshot in detail. All views are available just like for a live profiling session.
Session
w Recent Snapshots
a Use this option to re-open a recently opened snapshot.
Quick I Compare Multiple Snapshots
Attach

Use this option to compare certain aspects of different snapshots. JProfiler will switch to the snapshot
= comparison window.

MNew
Session

Open
Snapshots

Close

Selecting snapshots

Comparisons are created and viewed in a separate top-level window. First, you add a
number of snapshots in the snapshot selector. Then you can create comparisons from
two or more of the listed snapshots by selecting the snapshots of interest and clicking on
a comparison tool bar button. The order of the snapshot files in the list is significant because
all comparisons will assume that snapshots further down in the list have been recorded
at a later time. Apart from arranging snapshots manually, you can sort them by name or
creation time.

Y W n)
i] i & 7
Memory CPU Telemery Probe Start Help
aris aris Center
Available Snapshats & |]2
serveri.jps Sort By Creation Time
2019-03-22 11:11:54 Sort By Mame

server2.jps
2018-03-22 11:11:54

server3.jps
2019-03-22 11:11:54

Unlike for the views in JProfiler's main window, the comparison views have fixed view
parameters that are shown at the top instead of drop-down lists that let you adjust the

134

parameters on the fly. All comparisons show wizards for collecting the parameters for the
comparison, and you can perform the same comparison multiple times with the same
parameters. The wizards remember their parameters from previous invocations so you
don't have to repeat the configuration if you compare several sets of snapshots. At any
point, you can shortcut the wizard with the Finish button or jJump to another step by clicking
on the step in the index.

When a comparison is active, the snapshots that were analyzed are shown with number
prefixes. For comparisons that work with two snapshots, the displayed differences are the
measurements from snapshot 2 minus the measurements from snapshot 1.

S I\) 0\

Memory cPU Telemetry Probe

Available Snapshots |]2
1 | serverl.jps
) 2019-03-22 11:11:54
2 | server2jps
[_, 2019-03-22 11:11:54

server3.jps
2019-03-22 11:11:54

For the CPU comparisons, you can use the same snapshot as the first and second snapshot
and select different threads or thread groups in the wizard.

1! CPU Comparisen Wizard - Call tree comparison X
1. Choose comparisen type Choose the threads that should be compared

2. Select snapshots

3. Thread selection Please choose the thread for the comparison:

4, View parameters
First snapshot: @ Servlet request simulator 1 [main] v

Second snapshot: Same as for first snapshot
© Different thread

@ Servlet request simulator 2 [main]

4 Back MNext p Finish Cancel

Comparisons with tables

The simplest comparison is the "Objects” memory comparison. It can compare data from
the "All objects”, "Recorded objects” or the "Classes” view of the heap walker. The columns
in the comparison show differences for instance counts and size, but only the Instances
Count column shows the bidirectional bar chart where increases are painted in red and

to the right, while decreases are painted in green and to the left.

135

T File View Window Help Snapshot Comparisen - IProfiler [m] X
1Y LY LY f —
4 8§ = = (7]
Mernary CPU Telernetry Start View
i i i Center | TP Gusings | TP
Available Snapshots Objects comparison
serverl.jps Aggregation: Classes
2019-03-22 11:11:54 Objects: All ohjects
1 server2.jps Mame Instance Count Size 0

2019-03-22 11:11:54 char[] +15,808 (+46 %) +2,789 kB
serverd.jps Jjavalang.String +6,984 (+27 %) +167 kB
019-02-22 11:11:54 java.util HashMapSNode +5,267 (+43 %) +168 kB

= — com.sun.org.apachexerces.internal xni.QMame +4,140 (+85 %) +132 kB
javalang.Object]] +2,695 (+36 %) +209 kB

java.lang.StringBuilder +1,765 (+115 %) +42,360 bytes

java.lang.String[] +1,624 (+58 %) +130 kB

com.sun.org.apachexerces.internal.util. Symbo... +1,305 (+91 %) +41,760 bytes

int[] +1,175 (+36 %) +584 kB

com.sun.org.apachexerces.internal.util XMLStr... +1,080 (+95 %) +23,920 bytes

byte[] +1,050 (+48 %) +2,716 kB

com.sun.org.apachexerces.internal xni XML5tr.., +930 (+95 %) +23,760 bytes

short]] +852 (+99 %) +42,960 bytes

java.util. HashMap +797 (+24 %) +38,256 bytes

java.util. HashMapSNode[+786 (+25 %) +88,360 bytes
com.sun.oro.apachexerces.internal.utils XMLS... B +630 (+112 %) +30.240 butes

Total from 313 rows: +72,286 (+48 %) +8,242 kB

v @
= X N B Comparison1 | Comparisan 2

In the view settings dialog you can choose whether you want this bar chart to display

absolute changes or percentages. The other value is displayed in parentheses. This setting
also determines how the column is sorted.

I* Objects Comparison View Settings x
Size Scale

O Automatic 0 Mixed units MB kB bytes

Primary Measure (7]
© Instance count
Shallow size
Differences of Primary Measure o

© Sort by values
Sort by percentages

Show zero difference values ﬂ

Only show classes that appear in both snapshots

The measurement in the first data column is called the primary measure, and you can
switch it from the default instance counts to shallow sizes in the view settings.

136

The context menu of the table gives you a shortcut into the other memory comparisons

with the same comparison parameters and for the selected class.

Objects comparison

Aggregation: Classes

I File View Window Help Snapshot Comparisen - IProfiler - [m] X
1Y LY LY 1Y @ —
£ § = o - e
Memory PU Telemetry Probe Start View
s i s s Center | DT Gapings NP
Available Snapshots 4=]# Objects comparison
serverl.jps Aggregation: Classes
2019-03-22 11:11:54 Objects: All ohjects
server2.jps Mame Size Instance C... o
2019-03-22 11:11:54 char[] +2,789 kB (+67 %) +15,808
serverd.jps byte[] +2,TI6 kB (+77 %) +1,050
2019-03-22 11:11:54 int[] +384 KB (+2 %) 1,175
— java.lang.Object| 1 +200 kB (+43 %) +2,605
java.util. HashMapiNode +168 kB (+43 %) +35,267

Objects: All objects
Mame Instance Count Size o
char[] +15,808 (+46 %) +2,789 kB
Jjavalang.String +6,984 (+27 %) +167 kB
java.util. HashMapSMode, EJ5T(+43 %) +168 kB
com.sun.org.apachexer Create Allocation Call Tree Comparison 5 %) +132 kB
java.lang.Object]] Create Allocation Hot Spot Comparison +209 kB
java.lang.StringBuilder +42,360 bytes
java.lang.String[] = Show Source F4 +150 kB
com.sun.org.apachexen g Bytecode +41,760 bytes
int[] +584 kB
com.sun.org.apachexen Sort Classes » +23,920 bytes
bytel] £ Find Ctil+F 2716 kB
com.sun.org.apachexen +23,760 bytes
short]] + Expart View Ctrl+R +42,960 bytes
java.util. HashMap +38,256 bytes
java.util. HashMap&Node View Settings Ctrl+T +88,360 bytes
com.sun.cra.anache.xerces. NTErMan uTis AVILS... W =050 T+ 1T 78 +30.240 bvtes
Total from 313 rows: +72,286 (+48 %) +8,242 kB
@

Like the objects comparison, CPU hot spot, probe hot spot and allocation hot spot
comparisons are shown in a similar table.

Comparisons with trees

For each of the CPU call tree, the allocation call tree and the probe call tree you can
calculate another tree that shows the differences between the selected snapshots. In
contrast to the regular call tree views, the inline bar diagram now displays the change,
either in red for increases or in green for decreases.

137

Call tree comparison

Thread selection: @8 Allthreads
Thread status: == Runnable
Aggregation: Methods

Difference calculation: Total call times

0 inv. java.util.concurrent. ThreadP oolExecutor§Worker.run
() — 5,403 ms (+32 %) +69 inv. com.gjt.demo.server.handlers.WsHandlerlmpl.getExchangeRate
0— +5,403 ms (+32 %) +69 inv. com.gjt.demo.server.handlers.WsHandlerimpl.lockupExchangeRate
I 5,402 ms (+32 %) +69 inv. com.ejt.mock.MockHelper.runnable
W 191 ps (+24%) +60 inv. java.util. Random.nextint
@™ 11,355 ms (+38 %) +18 inv, RMI: 192.168.218.1
Ui 11,352 ms (+38 %) +18inv. com.ejt.dema.server handlers.RmiHandlerlmpl.remoteOperation
G50 1,352 ms (+38 %) +18inv. com.gjt.demo.server.handlers.RmiHandlerlmpl.performWork
Dl +927 ms (+44 %) +18 inv. com.gjt.mock.MeckHelper.runnable
b9 310 ms (+26 %) <18 inv. com.gjt.demo.server.handlers.RmiHandlerlmpl.makeWeb5ServiceCalls
(@D1+310 ms (+26 %) =17 inw. com.gjt.demo.server.handlers. HandlerHelper.makeWebServiceCall
B 1 +310 ms (+40 %) +51 inv. com.gjt.demo.server.handlers.\WsHandler.getEx changeRate [com.sun.proxy.5Pn
+24 ps (+0 %) +17 inv. java.lang.ThreadLocal get
D +40ps (+21 %) +18inv. java.utilRandom.nextint
@A@ +113 ms (+37 %) +19 inv, com.gjt.dema.server. handlers.RmiHandlerimpl.executeldbcStatements
m +111 ms (+38 %) +19 inv. java.sql.Statement.executeQuery

> @

Depending on the task at hand, it may make it easier for you if you only see call stacks
that are present in both snapshot files and that have changed from one snapshot file to
the other. You can change this behavior in the view settings dialog.

‘r Call Tree Comparison View Settings X

Time Scale

O Automatic & Mixed units 3 ms Hs

MNode Description

Show percentage bar ﬂ
Always show fully qualified names €
Always show signature (7]
Shorten packages (7]
Time Differences (7]

© Sort by values

Sort by percentages

Show zero difference values)

Only show call stacks that appear in both snapshots|

For the CPU and probe call tree comparisons it may be interesting to compare the average
times instead of the total times. This is an option on the "View parameters” step of the
wizard.

138

T CPU Comparisen Wizard - Call tree comparison X

1. Choose comparisen type Select view parameters
2. Select snapshots
3. Thread selection Please specify the following parameters that are necessary in order to calculate

4. View parameters the snapshot comparison:

Thread status: == Runnable v

Aggregation level: (@ Methods v

Difference calculation: | () Total call times

Average call times

4 Back Next P Finish Cancel

Telemetry comparisons

For telemetry comparisons you can compare more than two snapshots at the same time.
If you don't select any snapshots in the snapshot selector, the wizard will assume that you
want to compare all of them. Telemetry comparisons do not have a time axis, but show
the numbered selected snapshots as an ordinal x-axis instead. The tool tips contain the
full name of the snapshot.

4 § ®m o = r &F O

Memory (= Telemety Probe Start View
c @ ison G ison C i Center BXpOrt o tings e
Available Snapshats %= |2 Memory comparison

serverl.jps Value type: Current value {when snapshot was saved)
2019-03-22 11:11:54 Memery type: Heap

2 server2.jps F Y 5 2 3
2019-03-22 11:11:54

o | =R 70 MB
2019-03-22 11:11:54]

wmsf N
snmaf \

AOMBf \
aomaf \

20 ME

10MB

- |Jsed size PP |©

Ld x . Comparison 1 Ji Comparisen 2 | T Comparisen 3

The comparison extracts one number from each snapshot. Because telemetry data is
time-resolved, there are multiple ways to do so. The "comparison type" step of the wizard
gives you the option to use the value when the snapshot was saved, calculate the
maximum value or find the value at a selected bookmark.

139

I VM Telemetry Comparison Wizard - Memory comparison

1. Choose comparison type Choose the comparison type
2. Select snapshots
3. Memory type One value is extracted from each snapshot for the comparison graph. Please

4. Comparison type select what kind of value should be compared:

5.C d t
ompared measurements ﬂ Current value (when snapshot was saved)

Maximum value
Value at bookmark
[Choose one]

Only bookma

4 Back Next P Finish Cancel

140

IDE Integrations

When you profile your application, the methods and classes that come up in JProfiler's
views often lead to questions that can only be answered by looking their source code.
While JProfiler provides a built-in source code viewer for that purpose, it has limited
functionality. Also, when a problem is found, the next move is usually to edit the offending
code. Ideally, there should be a direct path from the profiling views in JProfiler to the IDE,
SO you can inspect and improve code without any manual lookups.

Installing IDE integrations

JProfiler offers IDE integrations for IntelliJ IDEA, eclipse and NetBeans. To install an IDE plugin,
invoke Session->IDE Integrations from the main menu. The plugin installation for IntelliJ
IDEA is performed with the plugin management in the IDE, for other IDEs the plugin is
installed directly be JProfiler. The installer also offers this action to make it easy to update
the IDE plugin along with the JProfiler installation. The integration wizard connects the
plugin with the current installation directory of JProfiler. In the IDE plugin settings, you can
change the used version of JProfiler at any time. The protocol between the plugin and the
JProfiler GUl is backwards compatible and can work with older versions of JProfiler as well.

@ General Settings X
Ul Session Defaults Snapshots IDE Integrations Updates External Programs

IDE Integration

To integrate JProfiler with an IDE, choose the target IDE and click on "Integrate” below.

Intelli) IDEA v

Integrate O

The IntelliJ IDEA integration can also be installed from the plugin manager. In that case,
the plugin will ask you for the location of the JProfiler executable when you profile for the
first time.

On different platforms, the JProfiler executable is located in different directories. On
Windows, it's bi n\j profil er. exe, on Linux or Unix bi n/j profil er and on macOS there
is a special helper shell script Cont ent s/ Resour ces/ app/ bi n/ macos/j profiler.shin
the JProfiler application bundle for the IDE integrations.

Source code navigation

Everywhere a class name or a method name is shown in JProfiler, the context menu
contains a Show Source action.

141

' Telernetries Aggregation level: | @) Classes -

Mame Instance Count Size
byte[] I, 15,752 (25 %) 3,057 kB
1':'1 Live Memory java.lang.String I :: 123 (15 %) 674 kB

jdk.internal.org.ohi- -=est mmee Coo WL 070 00 365 kB

All Objects java.lang.Object[] 4 Show Selection In Heap Walker 332 kB
Java.lang.StringBu Add Selection To Class Tracker 151 kB
Recorded Objects int[] 10,628 kB
Allocation Call Tree J.ava.utll‘HashMapI = Show Source F4 154 kB
java.lang.Class[] Show Bytecode 97,280 bytes
Allocation Hot Spots Jjava.util.concurren 97,152 bytes
javalang.Class | Mark Current Values 368 kB
Class Tracker java.lang.invoke.lM Remave Mark 95,600 bytes
Jjava.security. Acce: o 72,720 bytes
b Heap Walker Jjava.lang.ref. Weak Sort Classes » 54,720 bytes
Jjava.awt.geom. Aff . 114 kB
Jjava.lang.invoke M ,D Find Corl=F 72,192 bytes
I CPU Views charl] T Export View Cirl+R 194 k8
java.lang.Integer 19,504 bytes
— Jjava.awt.Rectangle " View Settings Ctrl+T 38,464 bytes
Threads com jprofiler.agenuomn w1, U (o) 96,976 bytes
. PRS- B 4oz oy AR BT b
Total from 1,713 rows: 177,272 (100 %) 19,272 kB

{? Menitors & Locks 1 -~ @

If the session was not started from the IDE, the built-in source code viewer is shown that
utilizes line number tables in the compiled class files to find methods. A source file can
only be found if its root directory or a containing ZIP file is configured in the application
settings

@ Session Settings X
Application Settings Session name: | Animated Bezier Curve Deme Id: 101 @
Session Type
Profiled VM . Attach to an already running HotSpot/Open)3 JVM and profile it
Code Editor Attach Select from all local JVMs Attach to remote JVM Kubernete
Call Tree Recording i Launch a new JVM and profile it

et Launch type: () Application Web Start

Call Tree Filters
Application Settings

Trigger Settings Java VM: 17 [C:h\Users\ingo'jdks'jbrsdk-17-b135.1] = Configure JREs
Working directory: [startup directory]

Databases VM options: (7]
Main class or executable JAR: | bezier.BezierAnim

HTTP, RPC & JEE
Program arguments: block (7]

JVM & Custom Probes Open browser with URL

. OQ@ W T 4 u

Java File Path
Advanced Settings

£

demc'\bezier\src]

Class path

o Source path (7]
Library path

General Settings Copy Settings From “ Cancel

Together with the source code display, a bytecode viewer based on the jclasslib bytecode
viewer ") shows the structure of the compiled class file.

M https://github.com/ingokegel/jclasslib

142

https://github.com/ingokegel/jclasslib
https://github.com/ingokegel/jclasslib

= Viewer Window bezier.BezierAnim (C\Users\ingo\projects\jprofilefdist\demo\bezier\src)... — [m] *

Show: | @ Bezierfinim -
General Information R
Constant Pool Major version: 50[1.6]
Interfaces Constant pool count: 141
Fields)
Methods Access flags: 0x0021 [public]
Attributes This class: cp_info #23 <bezier/BezierAnim>

Super class: cp_info #£39 <javax/swing/JApplet>
Interfaces count: 0
Fields count: 3
Methods count: &
Attributes count: 2

Source Bytecode

If the session is launched from the IDE, the integrated source code viewer is not used and
the Show Source action defers to the IDE plugin. The IDE integrations support launched
profiling sessions, opening saved snapshots as well as attaching to running JVMs.

For live profiling sessions, you start the profiled application for the IDE similarly to running
or debugging it. The JProfiler plugin will then insert the VM parameter for profiling and
connect a JProfiler window to it. JProfiler is running as a separate process and is started
by the plugin if required. Source code navigation requests from JProfiler are sent to the
associated project in the IDE. JProfiler and the IDE plugin cooperate to make window
switching seamless without blinking task bar entries, just as if you were dealing with a
single process.

When starting the session, the "Session startup” dialog lets you configure all profiling
settings. The configured profiling settings that are used for a launched session are
remembered by JProfiler on a per-project or on a per-run-configuration basis, depending
on the IDE integrations. When a session is profiled for the first time, the IDE plugin
automatically determines a list of profiled packages based on the topmost classes in the
package hierarchy of your source files. At any later point, you can go to the filter settings
step in the session settings dialog and use the reset button to perform this calculation
again.

For snapshots, the IDE integration is set up by opening a snapshot file from within the IDE
with the File->Open action or by double-clicking on it in the project window. Source code
navigation from JProfiler will then be directed into the current project. Finally, the IDE plugin
adds an Attach to JVM action to the IDE that lets you select a running JVM and get source
code navigation into the IDE, similar to the mechanism for snapshots.

Sometimes you may want to switch to the IDE without a particular class or method in
mind. For that purpose, the tool bar in the JProfiler window has an Activate IDE button that
is shown for profiling sessions that are opened by an IDE integration. The action is bound
to the F11 key, just like the JProfiler activation action in the IDE, so you can switch back
and forth between the IDE and JProfiler with the same key binding.

143

- ™ - 3 — —
= | H & ' S + 90 -+ 3
Pl ElH 3 # B G s =
Start Activate Save Session Start p Start fun GC Add Export View Hel Add Configure
Center | IDE |Snapshot Semings Recordings e : Tracking Bookmark PO cettings P Telemety Telemetries
. i =
Telemetries
RS EEEEERERE RS R ERESEEEEEEEEREREE
0:10 0:20 0:30 0:4

IntelliJ IDEA integration

To profile your application from IntelliJ IDEA, choose one of the profiling commands in the
Run menu, or click on the drop-down menu next to the run or debug actions in the main
tool bar to choose the "Profile with JProfiler" action. JProfiler can profile most run IDEA
configuration types, including application servers.

bytecode viewer v c°+ Q @

=5 Commit (2 Run 'bytecode viewer' with Coverage

(Profile 'bytecode viewer' with 'IntelliJ Profiler

€A Profile 'bytecode viewer' with JProfiler

The JProfiler plugin adds additional settings to run configurations which are not
immediately visible. To access these settings, select the "Profile” option in the "Modify
options” dropdown. All other profiling settings can be configured in the startup dialog of
the JProfiler window.

. Add Run Options

java

install4j.install4j.ide_run.main v Allow multiple instances
v/ Environment variables

@dist/install4j/bin/options/base.options @dist/install4j/bin/opt . .
Redirect input

com.install4j.Install4JGUI
Do not build before run
Use classpath of module
Modify classpath
Add dependencies with “provided” scope to classpath
Working directory: C:\Users\ingo\projects\install4j Implicitly declared class run configuration
Shorten command line

Environment variables: .
Add VM options

Profile Specify logs to be shown in the console

» . . ™ Save console output to file
Use profiling settings: Project-specific L
Show console when a message is printed to stdout

Debug parameters for profiling agent: Show console when a message is printed to stderr

. o Specify classes and packages
Open run/debug tool window when started Allow multiple instances
Exclude classes and packages

Profile
€D JProfiler v

Add before launch task

Open run/debug tool window when started

Focus run/debug tool window when started

Show the run/debug configuration settings before start

144

Once the profiling session is started, the output appears in a separate JProfiler tool window.
That tool window displays the console output like the regular run tool window, along with
a "JProfiler” tab that can be used after you connect with the JProfiler Ul:

@ .gitignore
&2 build.gradle.kts

JProfiler bytecode viewer

G @, : Console JProfiler

0 ® v 9 B

= © 0

ms (a minute ago)

The JProfiler tool window is also shown when you open a JProfiler snapshot in IntelliJ IDEA
or when you attach to a running JVM with the "Attach to JVM with JProfiler” action.

The "JProfiler” tab contains actions to start and stop data recording for CPU data, allocation
data and probe events. Additionally, an action allows you to switch to the JProfiler window.
The JProfiler window includes a similar action for switching back to the IDEA window so
that it becomes convenient to work with the two separate windows. Precise source code
navigation from JProfiler into IntelliJ IDEA is implemented for Java and Kotlin.

Profiling information is typically displayed in the JProfiler window, but the CPU graph data
is also integrated in the IntelliJ IDEA Ul because it makes sense to show this data directly
in the source code. Use the "Apply graph” action in IntelliJ IDEA or generate a CPU graph
in JProfiler to display CPU data within Intellid IDEA. To configure advanced parameters like
thread selection or to use the call tree root, call tree removal and call tree view filter settings
from the call tree view, you should generate the graph in the JProfiler window.

@ .gitignore
&2 build.gradle.kts

JProfiler bytecode viewer
Q @, : Console JProfiler
£ Apply Graph X Recordings: {6} &8 [,

Method Total Time v

T
2
®

= © 0

(2 minutes

Once the CPU data has been applied, the "JProfiler” tab displays a list of recorded methods.
Double-clicking on a method will take you to the source code. In the gutter of the source
code editor, arrows for incoming and outgoing calls are added.

145

= B jcles.. v P master v £ O &« () bytecode viewer v 0o & Q =

Project v - Commit ClasspathBrowser.kt ClassPathContainer.kt

abstrac ass ClassPathContainer : ClasspathComponent {
erride fun findClass(className: String, modulePathSelection:

return createJreEntry()?.findClass(className, modulePathSe

v [pjclasslib
> [kotlin

> (3 buildSrc
[gradle

0 lib-compile ide fun jnergeClas IntoTree(classPathModel: DefaultTreeM
(entry in classpath) {
if (reset || !mergedEntries.contains(entry)) {
O web entry.mergeClassesIntoTree(classPathModel, moduleP

@ .gitignore mergedEntries.add(entry)
&2 build.gradle.kts

[modules

JProfiler bytecode viewer

¢ @ : Console JProfiler

£ Apply Graph X = Recordings: 8¢ &8 §,

Method Total Time v Self-Time Invocations

B

java.awt.EventDispatchThread.run 4.398 ms 2.753ms

java.util.concurrent.ThreadPoolExecutor$Worker.run 1.556 ms 59 ps

®@ v 9

org.gjt.jclasslib.browser.config.classpath.ClasspathBrowser.sync$l... 1.556 ms 12 ps

org.gjt.jclasslib.browser.config.ClassPathContainer.mergeClassesl... 1.556 ms 19 ps
org.gjt.jclasslib.browser.config.classpath.ClasspathJrtEntry.merge... 1.550 ms 2.238 ps
org.gjt.jclasslib.io.JimageKt.forEachClassNamelnJrt 1.548 ms PAVAV

¥ O

org.gjt.jclasslib.io.JimageKt.forEachClassinJrt 1.548 ms 497 s
CRLF UTF-8 4 spac

Clicking on a gutter icon displays the incoming or outgoing methods in a popup window,
along with a bar chart showing the recorded times. Clicking on rows in the popup will
navigate to the corresponding methods.

Also, the total recorded time and the invocation count for the target method will be shown
at the bottom of the popup. The "Show in JProfiler" drop down in the bottom-right corner
of the popup provides context-dependent navigation actions into the JProfiler Ul. You can
show the selected node or the corresponding call tree analysis in the method graph. For
outgoing calls, the "Cumulated outgoing calls” analysis and for the incoming calls the
"Backtraces” analysis is offered.

= B jas. v P masterv £ O €3 bytecode viewer v 0o & Q @

ClasspathBrowser.kt DefaultTreeModel.java ClasspathEntry .kt ClassPathContainer.kt EventDispatchThread.java Stream.java

t class ClasspathEntry : ClasspathComponent {
tected fun addEntry(path: String, moduleName: String?, classPathModel: DefaultTreeModel, modulePathModel:

(model- DefanltTreeMadel nathComnonents: |ist<Strine> reset- Ranlean) {

Choose outgoing calls

1.057 ms (293.519 inv.) org.gjt.jclasslib.browser.config.classpath.ClasspathEntry.addOrFindNode- | model, reset)
98.723 ps (53.301 inv.) <self-time>

20.643 us (346.820 inv.) java.util.Iterator.hasNext

17.750 ps (293.519 inv.) java.util.Iterator.next

17.435 ps (293.519 inv.) java.util.lList.size

3.689 us (53.301 inv.) java.lang.Iterable.iterator
3.346 pus (53.301 inv.) javax.swing.tree.DefaultTreeModel.getRoot

This method: 1.219 ms total time, 53.301 invocations €D Show in JProfiler v
VereInserted(parentNode, intArrayOf(insertionIndex))

Y
J

®@ v 9

fun addToClas th(classpath: MutablelList<ClasspathEntry>): Boolean {
return if (!classpath.contains(this)) {
classpath.add(this)
true
} else {
false

T Q0O

CRLF UTF-8 4

146

The same navigation actions are also available in the context menu of the method table
in the "JProfiler” tab:

return coder == ? StringlLatinl.compareTo(vl, v2)
: StringUTF16.compareTo(vl, v2);

3
JProfiler bytecode viewer

Q @ : Console JProfiler

4

B

£ Apply Graph X Recordings: {6} @B [,

Method Total Time Self-Time
java.lang.String.compareTo
java.util.lterator.hasNext ¢ Navigate To Source
java.util.Iterator.next Show Selected Method In JProfiler

Javax.swing tree.DefaultMutableT Show Backtraces To Selected Method In JProfiler Ctri+Alt+B
java.util.List.size

@ v 9

Show Cumulated Outgoing Calls Of Selected Method In JProfiler
org.gjt.jclasslib.browser.config.Claccpuc i crvoopun i ywaaci nee oor s

© O

org.gjt.jclasslib.browser.config.classpath.ClassTreeNode.<init>(jav... 54.684 us 37.375 ps
// Bu 9

The JProfiler plugin provides a toolbar quick action for the "Attach to JVM with JProfiler”
action that you can add to the main toolbar. With that action you can attach to a process
thatis already running and still get source code navigation from the JProfiler Ul into IntelliJ
IDEA as well as inline CPU graph data in source code editors:

P RS S
3 Customize Toolbar...

Add to Main Toolbar >
Show Main Menu in Separate Toolbar T Build

& Commit

Q Run with Coverage
(® Profiler
(X Attach to JVM with JProfiler

B Change Project Color >
Set Custom Project Icon...

v/ Show Project Gradient

¥ Update Project...

-o- Commit...

This is how the action button looks like once it has been added:

bytecode viewer

5 Commit

The key bindings for all actions in JProfiler can be customized in the "Keymap" settings in
IntelliJ IDEA. Given the limited availability of non-conflicting keyboard shortcuts, the
navigation actions from the source code editor to the JProfiler Ul are chained shortcuts
whereyou firsthitCt rl - Al t - Shi f t - Oand then another key to select the navigation action.
If you frequently use this functionality, you may want to assign simpler keyboard shortcuts.

147

Keymap

Appearance & Behavior Default copy
Keymap

Editor

Plugins

Version Control

> [In-Editor Performance Hints
Build, Execution, Deployment > (3 JB SDK Bintray Downloader

Languages & Frameworks 3 JProfiler
Tools & Apply Graph
€3 Attach to JVM with JProfiler
Incoming Profiled Calls

Advanced Settings
£ Outgoing Profiled Calls Ctrl+Alt+Shift+9
String Manipulation

Settings Sync

Profile with JProfiler

X Remove Graph
Show Backtraces In JProfiler
Show Backtraces To Selected Method In JProfiler
Show Cumulated Outgoing Calls In JProfiler

On the Tools->JProfiler page of the IDE settings, you can adjust the used JProfiler executable
and whether you always want to open a new window in JProfiler for new profiling sessions.

2] Settings

Q- Tools » JProfiler
Vergiem Geniet JProfiler executable: = C:\Program Files\test\jprofiler14\bin\jprofiler.exe

> Build, Execution, Deployment
Always open new windows in JProfiler
> Languages & Frameworks

Tools

Qodana

Actions on Save

Web Browsers and Preview
External Tools

JProfiler

Terminal

> Database

Eclipse integration

The eclipse plugin can profile most common launch configuration types including test
run configurations and WTP run configurations. The eclipse plugin only works with the full
eclipse SDKs and not with partial installations of the eclipse framework.

To profile your application from eclipse, choose one of the profiling commands in the Run
menu or click on the corresponding toolbar button. The profile commands are equivalent
to the debug and run commands in eclipse and are part of eclipse’s infrastructure, except
for the Run->Attach JProfiler to JVM menu item which is added by the JProfiler plugin.

S eclipse-workspace - Eclipse

File Edit Source Refactor Mavigate Search Project Run Window Help

r-Dofe]e-nis-o-R]e-a-iwe-do vt ilrn oo

148

h Project Run Window Help

Qv @ @ Run CerleF11 |
*&, Debug F11 |
Q Profile
=, Coverage Last Launched Ctrl+Shift+F11

Profile History >
Profile As >
Profile Configurations..,

Run History >
Run As ¥
Run Configurations...

Debug History >
Debug As >
Debug Cenfigurations...

Coverage History >

Coverage As >

Coverage...
Toggle Breakpoint Ctrl+Shift+B
@ Toggle Tracepoint

Tnnnle | ine Rreaknnint

If the menu item Run->Profile ... does not exist in the Java perspective, enable the "Profile”
actions for this perspective under Window->Perspective->Customize Perspective by
bringing the Action Set Availability tab to front and selecting the Profile checkbox.

Several JProfiler-related settings including the location of the JProfiler executable can be
adjusted in eclipse under Window->Preferences->JProfiler.

NetBeans integration

In NetBeans, you can profile standard, free form and Maven projects that use the exec
Maven plugin. To profile your application from NetBeans, choose one of the profiling
commands in the Run menu or click on the corresponding toolbar button. For Maven
projects that start an application in another way and for Gradle projects, start the project
normally and use the Profile->Attach JProfiler To A Running JVM action in the menu.

For free form projects, you have to debug your application once before trying to profile it,
because the required filenbproj ect/i de-targets. xm is set up by the debug action.
JProfiler will add a target named “profile-jprofiler” to it with the same contents as the
debug target and will try to modify the VM parameters as needed. If you have problems
profiling a free form project, check the implementation of this target.

You can profile web applications with the integrated Tomcat or with any other Tomcat
server configured in NetBeans. When your main project is a web project, selecting Profile
main project with JProfiler starts the Tomcat server with profiling enabled.

If you use NetBeans with the bundled GlassFish Server and your main project is set up to
use a GlassFish Server, selecting Profile main project with JProfiler starts the application
server with profiling enabled.

The location of the JProfiler executable and the policy for opening new JProfiler windows
can be adjusted under Miscellaneous->JProfiler in the options dialog.

() NetBeans IDE

File Edit View MNavigate Source Refacter Run Debug Profile Team Tools Window Help

1}:] E‘ E <default config v g BE ::g} D v @' LI} N

149

bug Profile Team Tools Window Help |_a

@ Profile Main Project With JProfiler Ctrl+Shift+F3
Profile File With JProfiler

|||V|

a
3

|
@

Profile Project (C:\Users\ingoiDocumentsi MetBeansProjects\maven) Cirl+F2
Profile File

Profile Test File

Attach to Project

Attach to External Process

Finish Profiler Session Shift+F2

Take Thread Dump
Take Heap Dump...

Run GC
Take Snapshot of Collected Results Alt+F2
Reset Collected Results Alt+5Shift+F2

[Insert Profiling Point...

150

A Custom Probes

A.1Probe Concepts

To develop a custom probe for JProfiler, you should be aware of some basic concepts
and terminology. The common basis of all of JProfiler's probes is that they intercept specific
methods and use the intercepted method parameters and other data sources to build a
string with interesting information that you would want to see in the JProfiler UL.

The initial problem when defining a probe is how to specify the intercepted methods and
get an environment where you can use the method parameters and other relevant objects
for building the string. In JProfiler, there are three different ways to do that:

- A script probe [p. 158] is completely defined in the JProfiler Ul. You can right-click a
method in the call tree, choose the script probe action and enter an expression for the
string in a built-in code editor. This is great for experimenting with probes, but only
exposes a very limited segment of the capabilities of custom probes.

- The embedded probe [p.167] APl can be called from your own code. If you write a library,
a database driver or a server, you can ship probes with your product. Anybody who
profiles your product with JProfiler, will get your probes added automatically to the
JProfiler Ul.

« With the injected probe [p. 162] API, you can write probes for 3rd party software in your
IDE using the full capability of JProfiler's probe system. The API makes use of annotations
to define the interceptions and to inject method parameters and other useful objects.

Profiled JVM

Profiled application

Embedded (0)

probe @

JProfiler Ul /

Script Profiling Injected
probe agent probe

The next question is: what should JProfiler do with the string that you have created? There
are two different strategies available: payload creation or call tree splitting.

Payload creation

The string that is built by a probe can be used to create a probe event. The event has a
description that is set to that string, a duration that is equal to the invocation time of the
intercepted method, as well as an associated call stack. At their corresponding call stacks,

151

probe descriptions and timings are cumulated and saved as payloads into the call tree.
While events are consolidated after a certain maximum number, the cumulated payloads
in the call tree show the total numbers for the entire recording period. If both CPU data
and your probe are being recorded, the probe call tree view will show the merged call
stacks with the payload strings as leaf nodes and the CPU call tree view will contain
annotated links into the probe call tree view.

Probe Events Call tree with annotated payloads
Payload A, time 200 ms Method 1
Payload A, time 100 ms Payloads
Payload A, time 300 ms ': Payload A, count 3, time 600 ms
Payload B, time 100 ms Payload B, count 2, time 300 ms
Payload B, time 200 ms Method 2
i Method 3
chronological cumulated

Just like for CPU data, payloads can be shown in a call tree or in a hot spots view. The hot
spots show which payloads are responsible for most of the expended time, and the back
traces show you which parts of your code are responsible for creating these payloads. In
order to get a good list of hot spots, the payload strings should not contain any unique
IDs or timestamps, because if every payload string is different, there will be no cumulation
and no clear distribution of hot spots. For example, in the case of a prepared JDBC
statement, the parameters should not be included in the payload string.

Script probes create payloads automatically from the return value of the configured script.
Injected probes are similar, they return the payload description from an interception
handler method annotated with Payl oadl nt er cept i on either as a string or as a Pay| oad
object for advanced functionality. Embedded probes, on the other hand, create payloads
by calling Payl oad. exi t with the payload description as an argument, where the time
between Payl oad. ent er and Payl oad. exi t is recorded as the probe event duration.

Payload creation is most useful if you're recording calls to services that happen at different
call sites. A typical example is a database driver where the payload string is some form
of query string or command. The probe takes the perspective of the call site, where the
work that is measured is performed by another software component.

Call tree splitting

The probe can also take the perspective of the execution site. In that case, it is not important
how the intercepted method is called, but rather what method calls are executed after it.
A typical example is a probe for a servlet container where the extracted string is a URL.

More important than creating payloads is now the ability to split the call tree for each
distinct string that is built by the probe. For each such string, a splitting node will be inserted
into the call tree that contains the cumulated call tree of all corresponding invocations.
Where otherwise there would be just one cumulated call tree, now there is a set of splitting
nodes segmenting the call tree into different parts that can be analyzed separately.

152

Call tree without splits Call tree with splits

- Method 1,1inv, 1400 ms .. Method 1,1inv., 1400 ms
t Method 2, 4 inv, 900 ms
Method 3, 3inv., 500 ms

Split string A |

— Method 2, 3 inv., 200 ms
L— Method 3,1inv., 400 ms

Split string B |

— Method 2,1inv,, 700 ms
— Method 3,2 inv. 100 ms

Multiple probes can produce nested splits. A single probe by default produces only one
split level, unless it has been configured as reentrant which is not supported for script
probes.

In the JProfiler Ul, call tree splitting is not bundled with the script probe feature, but is a
separate feature [p.185]called "Split methods". They just split the call tree without creating
payloads, so no probe view with name and description is required. Injected probes return
the split string from an interception handler method annotated with Spl i t I nt er cepti on,
while embedded probes call Spl i t. ent er with the split string.

@ Session Settings X
g

=l X ’c This list contains methods that should be split into multiple branches in the call tree, similarly
Application Settings to request splitting of the "HTTP server” probe. A configurable script returns a string that is
displayed above the actual method node. For example, you can split the call tree for different

argument values
E: Call Tree Recording

If this feature is abused, the call tree can become very large, adding significant overhead.

Methed Call Recordin
& @ bezier.BezierAnimSDema.createGraphics2D{int, int) EF

Exceptional Methods Split by return value of script: "Pixels: " + (i1 " 12) i 4

Split Metheds

T Call Tree Filters
Trigger Settings

; Databases

o HTTP, RPC & JEE

o JYM & Custom Probes

{';;} Advanced Settings

General Settings Copy Settings From “ Cancel

Telemetries

Custom probes have two default telemetries: The event frequency and the average event
duration. Injected and embedded probes support additional telemetries that are created
with annotated methods in the probe configuration classes. In the JProfiler Ul, script

153

telemetries are independent from the script probe feature and are found in the "Telemetries”
section, under the Configure Telemetries button in the tool bar.

@ Configure Telemetries X
Three types of telemetries are shown in the Telemetries section:

+ The set of standard JVM telemetries that is always shown

+ Probes telemetries that are only shown in the probe views by default, but can be added here as well

» Custom telemetries from MBeans or scripts
Probe telemetries and custom telemetries can be added below.

DataBus connections [plain] &

DataBus connections [Script line "' DataBus.getinstance().getActiveConnecti Add Probe Telemetry

Add MBean Telemetry Line
Add Script Telemetry Line

Add Empty Custom Telemetry View

@ Hel Cancel
P

Telemetry methods are polled once per second. In the Tel enet ry annotation, you can
configure the unit and a scale factor. With the | i ne attribute, multiple telemetries can be
combined into a single telemetry view. With the st acked attribute of the Tel enet r yFor mat
you can make the lines additive and show them as a stacked line graph. The
telemetry-related APIs in the embedded and injected probes are equivalent but only
applicable for their respective probe types.

Control objects

Sometimes it is interesting to tie probe events to associated long-lived objects that are
called “control objects” in JProfiler. For example, in a database probe, that role is taken by
the physical connection that executes a query. Such control objects can be opened and
closed with the embedded API and the injected probe API which generate corresponding
events in the probe events view. When a probe event is created, the control object can
be specified, so that the probe event contributes to the statistics that is shown in the
"Control objects” view of the probe.

154

@ Session View Profiling Window Help factorial jps - JProfiler - a X
- /I} I —
> [4 o
Stat % Session Start I View
T ot Setiings BOPOT ¢ ttings Help
Gl Factorial cache
; Databases +f Time Line © control Ebi=cE aka Call Tree » Records request to the Factorial cache o
Both open and closed Filter in all text columns = b
0 HTTP, RPC & JEE
D MName Start Time End Time Event Count Event Duration
1 Factorial cache c... 0:00.384 [Apr 21, .. 760 9,896 ms
o JVM & Custom Probes 2 Factorial cache c... 0:00.584 [Apr 21, ... 2 9,044 ms.
3 Factorial cache c... 0:00.384 [A, . a4s 10,854 ms
Class Loaders 4 Factorial cache c... 0:00.584 [Apr 21, .. 790 10,188 ms
5 Factorial cache c... 0:00.584 [Apr 21, .. 830 10,140 ms.
Exceptions
Sockets
Files
Processes
Garbage Collector
Factorial server
Factorial cache
Fr
MB
wy e Total from 5 rows: 4,000 51,025 ms
@ 3 recordings VM #1 H Snapshat)/

Control objects have display names that have to be specified when they are opened. If a
new control object is used when creating a probe event, the probe has to provide a name
resolver in its configuration.

In addition, probes can define custom event types via an enum class. When the probe
event is created, one of those types can be specified and shows up in the events view
where you canfilter for single event types. More importantly, the timeline view of the probe
that shows control objects as lines on a time axis is colored according to the event type.
For a probe without custom event types, the coloring shows the idle state where no events
are recorded and the default event state for the duration of probe events. With custom
types, you can differentiate states, for example, "'read” and "write".

155

Recording

@ Session
> Ef
Start Session
Center ot Settings

; Databases
@ HTTP, RPC & JEE
o VM & Custom Probes

Class Loaders
Exceptions
Sockets

Files

Processes
Garbage Collector
Factorial server

Factorial cache

Py
AEEN

wwy MBeans

View Profiling Window Help

G}; Time Line

Both open and closed

Control Objects

Factorial cache connection #4 [I0 4]
Factorial cache connection #5 |10 5]
Factorial cache connection #2 [I0 2]
Factorial cache connection #3 [ID]

Factorial cache connection #1 [0 1]

= |dle ™= Read = \Yrite

@ 3 recordings

° Control Objects

factorial jps - JProfiler

& Call

Sort by start time

——

- [m] X
o
View
Settings Help
Factorial cache
Tree + Recards request to the factorial cache o
-
........ EEREEEEE R RREEE
0:20 0:30
» ki
VM #1 [Snapshot

Like for all probes, custom probes do not record data by default, but you have to enable
and disable recording as necessary. While you can use the manual start/stop action in
the probe view, it is often necessary to switch on probe recording at the beginning. Because
JProfiler does not know about custom probes in advance, the recording profiles have a
Custom probes check box that applies to all custom probes.

@ Configure Recording Profiles

Configured recording profiles:

Y
r:gﬂ CPU only

Iﬁ CPU and Allocation Recording

%
;ﬁv My recerding profile

CPU data
Allocation call stacks

Record database probes:

Call tracer

[none]

Record HTTP, RPC & JEE probes: [none]

Record JVM & custom probes:

[none]

Recording overhead: —s—

0 Help

Monitor recording

-

-

-

Complexity data
Customn probes

Cancel

Similarly, you can choose All custom probes for the trigger actions that start and stop
probe recording.

156

@ Trigger Wizard - CPU load threshold X

1. Trigger type Configure actions for this trigger
2. Threshold

3. Actions Configured actions:
4, Descript]
5, G:Z:FI[\]OH e‘ Start probe recording H}

6. Finished Probe: | All custom probes X

Rec HBase
HTTP Server
HTTP Client
Web Services
JNDI
IMS
RMI
gRPC
Class Loaders
Exceptions
Sockets
Files
Processes
Garbage Collector

All custom probes

4 Back Next b Finish Cancel

For programmatic recording, you can call Controller.
start ProbeRecordi ng(Control | er. PROBE_NAVE ALL CUSTOMV ProbeRecor di ngOpti ons.
EVENTS) to record all custom probes, or pass the class name of the probe in order to be
more specific.

157

A.2 Script Probes

Developing a custom probe in your IDE requires a clear understanding of the interception
point and the benefits that the probe will provide. With script probes, on the other hand,
you can quickly define simple probes directly in the JProfiler GUI and experiment without
having to learn any API. Unlike embedded or injected custom probes, script probes can
be redefined during a running profiling session, leading to a fast edit-compile-test loop.

Defining script probes

A script probe is defined by selecting an intercepted method and entering a script that
returns the payload string for the probe. Multiple such method-script pairs can be bundled
in a single probe.

The script probe configuration is accessed in the session settings. This is the place to
create and delete script probes as well as for saving your script probes to a set that can
be imported by other profiling sessions.

€ Session Settings X
= Script probes defined for the current session:
Application Settings
@ Image buffers E
E: Call Tree Recording Measures the areas of image buffe,s ™

1' Call Tree Filters

Trigger Settings

; Databases
Q HTTP, RPC & JEE
@ JVM & Custom Probes

Built-In Probes

Script Probes

Custom Probes

{;“,:Lt Advanced Settings

General Settings Copy Settings From “ Cancel

Each script probe needs a name and optionally a description. The name is used to add
a probe view to JProfiler's view selector in the "JEE & Probes” section. The description is
shown in the header of the probe view and should be a short explanation of its purpose.

For selecting a method you have multiple options, including selecting a class from the
configured classpath or selecting a class from the profiled classes if the profiling session
is already running. In the second step, you can then select a method from the selected
class.

158

@ Create Script Probe X

1. Mame and description Specify the payload interceptions
2. Payload interceptions
Intercepted methods:

- Call tree annotations

@ bezier.BezierAnimSDemo.createGraphics2Diint, int) #
3. Finished

Payload creation script: | "Pixels: * + Search in Cenfigured Class Path

Search in Other JAR or Class Files
Search in Profiled Classes

Enter Manually (Advanced)

CQuick Help

Use the current object (null for static methods) as well as the methed parameters to
construct and return a payload string.

Probe events, probe call tree and probe hot spots will be shown for these payloads.

w Advanced Options

4 Back Next b Finish Cancel

A much easier way to select the intercepted method is from the call tree view. In the
context menu, the Intercept Method With Script Probe action will ask you if you want to
create a new probe or add an interception to an existing probe.

' Thread status: 0 Thread selection: Aggregation level:
Telemetri
lemetnes == Runnable | 88 Allthread groups v | | @ Methods ~

. m— §7.0% - 1,524 ms - 1inv. java.awt.EventDispatchThread.run
,':', Live Memaory Q) m— 52,1% - 976 ms - 750 inv. bezier.BezierAnim$Demao.paint
() = 39,432 - 619 ms - 750 inv. bezier.BezierAnim$Demo.drawDemo

b = 18.2% - 286 ms - 750 inv, java.awt. Graphics.drawlmage
B vor oo T Y

=3 Show Call Graph earRect
B Show Threads limage.createGraphics
I CPU Views - RenderingHint
Add Method Trigger mage.getiWidth
Call Tree @ Add As Ex ional Method ackground
) s Exceptional Metho nage.getHeight
Hot Spots E +< Split Method with a Script ep
| @ Intercept Method With Script Probe
Call Graph Qo o —
©'3.0% Verge splitting leve Chrl+Alt+
Outlier Detecti
(e Beection Sg Remove Selected Sub-Tree Delete
Complexity Analysis Restore Removed Sub-Trees Ctrl+ Alt+ 5
Call Tracer T Add Filter From Selection »
JavaScript XHR @ Show Tree Legend
o Show Node Details Ctrl+Alt+|
Threads = Show Source F4 MK

Probe scripts

In the script editor, you have access to all parameters of the intercepted method as well
as the object on which the method was called. If you need access to the return value of
the intercepted method or any thrown exceptions, you have to write an embedded or
injected probe.

In this environment, your script can construct the payload string, either as an expression
or as a sequence of statements with a return statement. The simplest version of such a
script simply returns paraneter.toString() for one parameter or String.
val ueX (par anet er) for a parameter with a primitive type. If it returns nul |, no payload
will be created.

If you record CPU and probe data at the same time, the call tree view in the CPU section
will show links into the probe view at the appropriate call stacks. Alternatively, you can

159

select to show the payload strings inline in the CPU call tree view. The "Payload
interceptions->Call tree annotations” step of the probe wizard contains this option.

@ Settings Edit Search Code Help Edit X
= — .
] = ~ bt
$ B & PR &« % O
X B Show § . Modify Test
Copy e PIte |y Find Repisce | o Compik Help

Please enter an expression (no trailing semicolon) or a script (ends with a return statement) that consists
of regular Java code. The following parameters are available:

E”“"J"

- com jprofiler.api.agent.ScriptContext scriptContext

- javalang.Class<?> ¢

- bezier.BezierAnim.Demo currentObject

-int i1
-int i2

The expected return type is java.lang.String

Script:

1"Pixels: ™ + (il * i2)

One more parameter that is available to the script is the script context, an object of type
com jprofiler.api.agent. ScriptContext that allows you to store data between
invocations of any script that is defined for the current probe. For example, let's suppose
that the intercepted method A only sees objects that have no good text representation,
but the association between object and display name could be obtained by intercepting
method B. Then you could intercept method B in the same probe and save the
object-to-text association directly to the script context. In method A you would then get
that display text from the script context and use it to build the payload string.

160

'a ™\

Method A, intercepts: '

- object ¢
@ e [P E

scriptContext.putObject(c,n);
return null;

(. J/

e N\

Timed method B, intercepts:
@ - object e

return |scriptContext.getObject(c); |< --------------- 5

(. J/

If these kinds of concerns get too complex, you should consider switching to the embedded
or injected probe APIs.

Missing capabilities

Script probes are designed to facilitate an easy entry to custom probe development, but
they are missing a couple of capabilities from the full probe system that you should be
aware of:

« Script probes cannot do call tree splitting. In the JProfiler Ul this is a separate feature
as explained in the custom probes concepts [p. 151]. Embedded and injected probes
offer call tree splitting functionality directly.

 Script probes cannot create control objects or create custom probe event types. This
is only possible with embedded or injected probes.

« Script probes cannot access return values or thrown exceptions, unlike embedded and
injected probes.

« Script probes cannot handle reentrant interceptions. If a method is called recursively,
only the first call into it is intercepted. Embedded and injected probes offer you
fine-grained control over reentrant behavior.

« It is not possible to bundle telemetries other than default telemetries into the probe
view. Instead, you can use the script telemetry feature as shown in the custom probes
concepts. [p. 151]

161

A.3 Injected Probes

Similarly to script probes, injected probes define interception handlers for selected methods.
However, injected probes are developed outside the JProfiler GUI in your IDE and rely on
the injected probe API that is provided by JProfiler. The APl is licensed under the permissive
Apache License, version 2.0, making it easy to distribute the associated artifacts.

The best way to get started with injected probes is to study the example in the api /
sanpl es/ si npl e-i nj ect ed- probe directory of your JProfiler installation. Execute . ./
gr adl ewin that directory to compile and runit. The gradle build file bui | d. gr adl e contains
further information about the sample. The example in api/sanples/
advanced- i nj ect ed- pr obe shows more features of the probe system, including control
objects.

Development environment

The probe API that you need for developing an injected probe is contained in the single
artifact with maven coordinates

group: comjprofiler
artifact: jprofiler-probe-injected
version: <JProfiler version>

where the JProfiler version corresponding to this manual is 14.0.5.

Jar, source and javadoc artifacts are published to the repository at

https://maven. ej -t echnol ogi es. conl repository

You can either add the probe API to your development class path with a build tool like
Gradle or Maven, or use the JAR file

api/jprofiler-probe-injected.jar

in the JProfiler installation.

To browse the Javadoc, go to

api / j avadoc/ i ndex. ht

That javadoc combines the javadoc for all APIs that are published by JProfiler. The overview
forthecom j profil er. api. probe.injectedpackageis agood starting point for exploring
the API.

Probe structure

Aninjected probeis a class annotated withcom j profi | er. api . probe. i nj ect ed. Pr obe.
The attributes of that annotation expose configuration options for the entire probe. For
example, if you create a lot of probe events that are not interesting for individual inspection,
the event s attribute allows you to disable the probe events view and reduce overhead.

162

@°r obe(nane = "Foo", description = "Shows foo server requests", events = "fal se")
public class FooProbe {

}

To the probe class, you add specially annotated static methods in order to define
interception handlers. The Payl oadl nt er cept i on annotation creates payloads while the
Splitlnterceptionannotation splits the call tree. The return value of the handler is used
as the payload or the split string, depending on the annotation. Like for script probes, if
you return nul |, the interception has no effect. Timing information is automatically
calculated for the intercepted method.

@r obe(nanme = "FooBar")
public cl ass FooProbe {
@pPayl oadl nt er cepti on(
i nvokeOn = | nvocati onType. ENTER,
met hod = @t hodSpec(cl assNane = "com bar. Dat abase",
net hodNane = "processQery",
par anet er Types = {"com bar. Query"},
returnType = "void"))
public static String fooRequest (@Paraneter(0) Query query) {
return query. get Verbose();
}

@plitlnterception(
met hod = @t hodSpec(cl assNane = "com f oo. Server",
net hodNane = "handl eRequest ",
par amet er Types = {"com f 00. Request "},
returnType = "void"))
public static String barQuery(@araneter(0) Request request) ({
return request.getPath();
}

As you can see in the above example, both annotations have a net hod attribute for defining
the intercepted methods with a Met hodSpec. In contrast to script probes, the Met hodSpec
can have an empty class name, so all methods with a particular signature are intercepted,
regardless of the class nhame. Alternatively, you can use the subt ypes attribute of the
Met hodSpec to intercept entire class hierarchies.

Unlike for script probes where all parameters are available automatically, the handler
methods declare parameters to request values of interest. Each parameter is annotated
with an annotation fromthe com j profil er. api . probe. i nj ect ed. par anet er package,
so the profiling agent knows which object or primitive value has to be passed to the
method. For example, annotating a parameter of the handler method with @ar anet er (0)
injects the first parameter of the intercepted method.

Method parameters of the intercepted method are available for all interception types.
Payload interceptions can access the return value with @ret ur nVal ue or a thrown exception
with @xcepti onVal ue if you tell the profiling agent to intercept the exit rather than the
entry of the method. This is done with the i nvokeOn attribute of the Payl oadl nt er cepti on
annotation.

In contrast to script probes, injected probes handlers can be called for recursive invocations
of the intercepted method if you set ther eent r ant attribute of the interception annotation
to t rue. With a parameter of type Pr obeCont ext in your handler method, you can control

163

the probe's behavior for nested invocations by calling Pr obeCont ext . get Qut er Pay| oad()
or ProbeContext.restart Ti m ng().

Advanced interceptions

Sometimes a single interception is not sufficient to collect all necessary information for
building the probe string. For that purpose, your probe can contain an arbitrary number
of interception handlers annotated with | nt er cepti on that do not create payloads or
splits. Information can be stored in static fields of your probe class. For thread safety in a
multi-threaded environment, you should use Thr eadLocal instances for storing reference
types and the atomic numeric types from the j ava. uti | . concurrent. at oni ¢ package
for maintaining counters.

Under some circumstances, you need interceptions for both method entry and method
exit. A common case is if you maintain state variables like i nMet hodCal | that modify the
behavior of another interception. You can set i nMet hodCal |l to true in the entry
interception, which is the default interception type. Now you define another static method
directly below that interception and annotate it with @\ddi t i onal | nt er cepti on(i nvokeOn
= I nvocati onType. EXI T) . The intercepted method is taken from the interception handler
above, so you do not have to specify it again. In the method body, you can set your
i nMet hodCal | variable to f al se.

private static final ThreadLocal <Bool ean> i nMet hodCal |l =
ThreadLocal .withlnitial (() -> Bool ean. FALSE) ;

@ nt ercepti on(
i nvokeOn = | nvocationType. ENTER,
met hod = @kt hodSpec(cl assName = "com f 0o. Server",
met hodNane = "internal Cal | ",
par anet er Types = {"com f 00. Request "},
returnType = "void"))
public static void guardEnter() {
i nMet hodCal | . set (Bool ean. TRUE) ;
}

@\ddi tional I nterception(lnvocationType. EXI T)
public static void guardExit() {
i nMet hodCal | . set (Bool ean. FALSE) ;

}

@plitlnterception(
met hod = @t hodSpec(cl assName = "com f oo. Server",
met hodNane = "handl eRequest ",
par anet er Types = {"com fo00. Request"},
returnType = "void"),
reentrant = true)
public static String splitRequest(@araneter(0) Request request) {
if ('invethodCall.get()) {
return request. getPath();
} else {
return null;
}

164

You can see a working example of this use case in api/sanples/
advanced-i nj ect ed- probe/ src/ mai n/ j ava/ AdvancedAw Event Pr obe. j ava.

Control objects

The control objects view is not visible unless the cont r ol Obj ect s attribute of the Pr obe
annotation is set to true. For working with control objects, you have to obtain a
Pr obeCont ext by declaring a parameter of that type in your handler method. The sample
code below shows how to open a control object and associate it with a probe event.

@r obe(nane = "Foo", control Cbjects = true, custoniTypes = M/Event Types. cl ass)
public class FooProbe {
@nterception(
i nvokeOn = | nvocationType. EXI T,
met hod = @t hodSpec(cl assNanme = "com f oo. Connect i onPool ",
net hodName = "creat eConnecti on",
par anet er Types = {},
returnType = "com f oo. Connecti on"))
public static void openConnecti on(ProbeContext pc, @ReturnValue Connection c) {
pc. openControl Obj ect(c, c.getld());
}

@ayl oadl nt er cepti on(
i nvokeOn = I nvocati onType. EXI T,

net hod = @kt hodSpec(cl assNane = "com f oo. Connect i onPool ",
net hodName = "creat eConnecti on”,
par anet er Types = {"com f 0o. Query", "com foo. Connection"},
returnType = "com f oo. Connection"))

public static Payl oad handl eQuery(
ProbeCont ext pc, @Paraneter(0) Query query, @Paranmeter (1) Connection c) {
return pc.createPayl oad(query. get Verbose(), ¢, MyEvent Types. QUERY);

Control objects have a defined lifetime, and the probe view records their open and close
times in the timeline and the control objects view. If possible, you should open and close
control objects explicitly by calling ProbeContext.openControl Gbject() and
Pr obeCont ext . cl oseCont r ol Qbj ect (). Otherwise you have to declare a static method
annotated with @ont r ol Obj ect Nane that resolves the display names of control objects.

Probe events can be associated with control objects if your handler method returns
instances of Payl oad instead of Stri ng. The ProbeCont ext . cr eat ePayl oad() method
takes a control object and a probe event type. The enum with the allowed event types
has to be registered with the cust onilypes attribute of the Pr obe annotation.

Control objects have to be specified at the start of the time measurement which
corresponds to the method entry. In some cases, the name of payload string will only be
available at method exit because it depends on the return value or other interceptions.
In that case, you can use Pr obeCont ext . cr eat ePayl oadW t hDef er r edName() to create
a payload object without a name. Define an interception handler annotated with
@\ddi tional I nterception(invokeOn = I nvocationType. EXI T) right below and return
a St ri ng from that method, it will then automatically be used as the payload string.

165

Overriding the thread state

When measuring execution times for database drivers or native connectors to external
resources, it sometimes becomes necessary to tell JProfiler to put some methods into a
different thread state. For example, it is useful to have database calls in the "Net I/O" thread
state. If the communication mechanism does not use the standard Java 1/O facilities, but
some native mechanism, this will not automatically be the case.

With a pair of Thr eadSt at e. NETI O. ent er () and Thr eadSt at e. exi t () calls, the profiling
agent adjusts the thread state accordingly.

@nterception(invokeOn = I nvocationType. ENTER, nmethod = ...)
public static void enterMethod(ProbeCont ext probeContext, @hisValue JConponent

conponent) {
Thr eadSt at e. NETI O. enter () ;

}

@\ddi tional I nterception(lnvocationType. EXIT)
public static void exitMthod() {
ThreadState. exit();

}

Deployment

There are two ways to deploy injected probes, depending on whether you want to put
them on the classpath or not. With the VM parameter

-Djprofiler.probed assPat h=. ..

a separate probe class path is set up by the profiling agent. The probe classpath can
contain directories and class files, separated with ;" on Windows and " on other platforms.
The profiling agent will scan the probe classpath and find all probe definitions.

If it's easier for you to place the probe classes on the classpath, you can set the VM
parameter

-D profiler.custonProbes=...

to a comma-separated list of fully qualified class names. For each of these class names,
the profiling agent will try to load an injected probe.

166

A.4 Embedded Probes

If you control the source code of the software component that is the target of your probe,
you should write an embedded probe instead of an injected probe.

Most of the initial effort when writing an injected probe goes into specifying the intercepted
methods and selecting the injected objects as method parameters for the handler method.
With embedded probes, this is hot necessary because you can call the embedded probe
APl directly from the monitored methods. Another advantage of embedded probes is that
deployment is automatic. Probes ship together with your software and appear in the
JProfiler Ul when the application is profiled. The only dependency you have to ship is a
small JAR file licensed under the Apache 2.0 License that mainly consists of empty method
bodies serving as hooks for the profiling agent.

Development environment

The development environment is the same as for injected probes, with the difference that
the artifact nameiisj profi | er - pr obe- enbedded instead of j profi | er - probe-i nj ect ed
and that you ship the JAR file with your application instead of developing the probe in a
separate project. The probe API that you need for adding an embedded probe to your
software component is contained in the single JAR artifact. In the javadoc, start with the
package overview for com j profi | er. api . probe. enbedded when you explore the API.

Just like for injected probes, there are two examples for embedded probes as well. In api /
sanpl es/ si npl e- enbedded- pr obe, there is an example that gets you started with writing
an embedded probe. Execute.. . / gr adl ewin that directory to compile and run it and study
the gradle build file bui | d. gr adl e to understand the execution environment. For more
features, including control objects, go to the example in api/sanples/
advanced- enbedded- pr obe.

Payload probes

Similar to injected probes, you still need a probe class for configuration purposes. The
probe class must extend com j profil er. api . probe. enbedded. Payl oadPr obe or com
jprofiler.api.probe. enbedded. Split Probe, depending on whether your probe collects
payloads or splits the call tree. With the injected probe API, you use different annotations
on the handler methods for payload collection and splitting. The embedded probe API,
on the other hand, has no handler methods and needs to shift this configuration to the
probe class itself.

public class FooPayl oadProbe extends Payl oadProbe {

@verride

public String getNane() {
return "Foo queries";

}

@verride

public String getDescription() {
return "Records foo queries";

}

Whereas injected probes use annotations for configuration, you configure embedded
probes by overriding methods from the base class of the probe. For a payload probe, the
only abstract method is get Nane(), all other methods have a default implementation
that you can override if required. For example, if you want to disable the events view to
reduce overhead, you can override i sEvent s() toreturnf al se.

167

For collecting payloads and measuring their associated timing you use a pair of Payl oad.
ent er () and Payl oad. exi t () calls

public void neasuredCall (String query) {
Payl oad. ent er (FooPayl oadPr obe. cl ass) ;

try {
per f or mor k() ;

} finally {
Payl oad. exi t (query);
}

The Payl oad. ent er () callreceives the probe class as an argument, so the profiling agent
knows which probe is the target of the call, the Payl oad. exi t () call is automatically
associated with the same probe and receives the payload string as an argument. If you
miss an exit call, the call tree would be broken, so this should always be done in a finally
clause of a try block.

If the measured code block does not produce any value, you can call the Payl oad. execut e
method instead which takes the payload string and a Runnabl e. With Java 8+, lambdas
or method references make this method invocation very concise.

public void nmeasuredCal | (String query) {
Payl oad. execut e(FooPayl oadPr obe. cl ass, query, this::performrk);
}

The payload string must be known in advance in that case. There is also a version of
execut e that takes a Cal | abl e.

public QueryResult neasuredCall (String query) throws Exception {
return Payl oad. execut e(Payl oadProbe. cl ass, query, () -> query.execute());
}

The problem with the signatures that take a Cal | abl e is that Cal | abl e. cal | () throws a
checked Excepti on and so you have to either catch it or declare it on the containing
method.

Control objects

Payload probes can open and close control objects by calling the appropriate methods
in the Pay| oad class. They are associated with probe events by passing them to a version
of the Payl oad. ent er () or Payl oad. execut e() methods that take a control object and
a custom event type.

public void nmeasuredCal |l (String query, Connection connection) {
Payl oad. ent er (FooPayl oadPr obe. cl ass, connection, M/Event Types. QUERY);

try {
per f or mMor k() ;

} finally {
Payl oad. exi t (query);
}

The control object view must be explicitly enabled in the probe configuration, and custom
event types must be registered in the probe class as well.

168

public class FooPayl oadProbe extends Payl oadProbe {

@verride

public String getNane() {
return "Foo queries";

}

@verride

public String getDescription() {
return "Records foo queries";

}

@verride
publ i c bool ean isControl Gbjects() {
return true;

}

@verride
public C ass<? extends Enune get Custoniypes() {
return Connecti on. cl ass;

}

If you do not explicitly open and close your control objects, the probe class must override
get Cont r ol Cbj ect Nane in order to resolve display names for all control objects.

Split probes

The split probe base class has no abstract methods, because it can be used to just split
the call tree without adding a probe view. In that case, the minimal probe definition is just

public class FooSplitProbe extends SplitProbe {}

One important configuration for split probes is whether they should be reentrant. By default,
only the top-level call is split. If you would like to split recursive calls as well, override
i sReentrant () toreturntrue. Split probes can also create a probe view and publish the
split strings as payloads if you override i sPayl oads() to returntrue in the probe class.

To perform a split, make a pair of callsto Split.enter() and Split.exit().

public void splitMethod(String paraneter) ({
Split.enter(FooSplitProbe.class, paraneter);

try {
per f or M\dr k(par anet er) ;

} finally {
Split.exit();
}

Contrary to to payload collection, the split string has to be passed to the Spl i t. enter ()
method together with the probe class. Again, it is important that Split. exi t () is called
reliably, so it should be in a finally clause of a try block. Spl it also offers execut e()
methods with Runnabl e and Cal | abl e arguments that perform the split with a single call.

Telemetries

It is particularly convenient to publish telemetries for embedded probes, because being
in the same classpath you can directly access all static methods in your application. Just
like for injected probes, annotate static public methods in your probe configuration class

169

with @el emet ry and return a numeric value. See the chapter on probe concepts [p. 151]
for more information. The @el enet ry annotations of the embedded and the injected
probe APIs are equivalent, they are just in different packages.

Another parallel functionality between embedded and injected probe API is the ability to
modify the thread state with the Thr eadSt at e class. Again, the class is present in both
APIs with different packages.

Deployment

There are no special steps necessary to enable embedded probes when profiling with the
JProfiler Ul. However, the probe will only be registered when the first call into Payl oad or
Spl it is made. Only at that point will the associated probe view be created in JProfiler. If
you prefer the probe view to be visible from the beginning, as is the case for built-in and
injected probes, you can call

Payl oadPr obe. r egi st er (FooPayl oadPr obe. cl ass) ;

for payload probes and

Spl it Probe. register(FooSplitProbe.cl ass);

for split probes.

You may be considering whether to call the methods of Payl oad and Spl i t conditionally,
maybe controlled by a command line switch in order to minimize overhead. However, this
is generally not necessary because the method bodies are empty. Without the profiling
agent attached, no overhead is incurred apart from the construction of the payload string.
Considering that probe events should not be generated on a microscopic scale, they will
be created relatively rarely, so that building the payload string should be a comparatively
insignificant effort.

Another concern for containers may be that you do not want to expose external
dependencies on the class path. A user of your container could also use the embedded
probe APl which would lead to a conflict. In that case, you can shade the embedded probe
APl into your own package. JProfiler will still recognize the shaded package and instrument
the API classes correctly. If build-time shading is not practical, you can extract the source
archive and make the classes part of your project.

170

B Call Tree Features In Detail

B.1 Auto-Tuning And Ignored Methods

If the method call recording type is set to instrumentation, all methods of profiled classes
are instrumented. This creates significant overhead for methods that have very short
execution times. If such methods are called very frequently, the measured time of those
methods will be far too high. Also, due to the instrumentation, the hot spot compiler might
be prevented from optimizing them. In extreme cases, such methods become the dominant
hot spots, although this is not true for an uninstrumented run. An example is the method
of an XML parser that reads the next character. Such a method returns very quickly, but
may be invoked millions of times in a short time span.

This problem is not present when the method call recording type is set to sampling.
However, sampling does not provide invocation counts, only shows longer method calls,
and several views do not have their full functionality when sampling is used.

To alleviate the problem with instrumentation, JProfiler has a mechanism called
auto-tuning. From time to time, the profiling agent checks for methods with high
instrumentation overhead and transmits them to the JProfiler GUI. In the status bar, an
entry alerting to the presence of overhead hot spots will be shown.

Complexity Analysis
Call Tracer

JavaScript XHR

Threads

I u 6 overhead hot spots I W @ 1 active recording €3 Auto-update5s VM #1

You can click on that status bar entry to review the detected overhead hot spots and
choose to accept them into the list of ignored methods. These ignored methods will then
not be instrumented. When a session is terminated, the same dialog is shown.

© Overhead Hot Spots Detected X

Some methods with excessive instrumentation overhead have been detected. They are called very
frequently, their execution times are very short, and the time required for measuring those calls is
disproportional.

Since they distort the overall picture, JProfiler recommends that you add these methods to the list
of ignored methods.

You can edit the list of ignored methods in the filter settings section of the session settings.
@ java.awt.Graphics2D.clearRect{int, int, int, int)
@ jeva.awt.EventQueue.invokelater{java.lang Runnable)
@ Javax.swing.JComponent._paintimmediately(int, int, int, int)
@ javax.swing.RepaintManager.addDirtyRegicon0(java.awt.Container, int, int, int, int)
@ java.security.AccessController. getContext()

@ jevax.swing.RepaintManagerSPaintManager.paintDoubleBufferedFPScal es(javax.swing)Compo...

Disable auto-tuning

O Help m Cancel

After you apply the new profiling settings, all ignored methods will be missing in the call
tree. Their execution time will be added to the self-time of the calling method. If later on

171

you find that some ignored methods are indispensable in the profiling views, you can
remove them in the Ignored Methods tab in the session settings.

@ Session Settings X

il X This list contains methods that should be completely ignored by JPrefiler. The main use cases

Application Settings are call site mechanisms of dynamic languages and overhead hot spots that create excessive
overhead for dynamic instrumentation.

E= Call Tree Recording During profiling overhead hot spots are indicated in the status bar and at the end of a session
you are prompted whether to accept them as ignored methods. If you would like to deactivate
this feature, please clear the list, edit the profiling settings and disable auto-tuning on the "CPU

T Call Tree Filters Profiling" tab.

Define Filters @ org.codehaus.groovy.runtime.callsite.CallSite, o

@ Jjava.awt.Graphics2D.clearRect(int, int, int, int)
Ignored methods
@ ava.awt.EventQueue.invokelater(java.lang.Runnable)
J g O
Trigger Settings (@ javax.swing.JComponent._paintimmediately(int, int, int, int)
(@ javax swing.RepaintManager.addDirtyRegionD(java.awt.Container, int, int, int, int)
Databases @ Jjava.security. AccessController.getContext()
@ javax.swing RepaintManager$PaintManager.paintDoubleBufferedFPScalesjavax.swing.JCo..

HTTP, RPC & JEE

JVM & Custom Probes

LO@ W T

" Advanced Settings

General Settings Copy Settings From “ Cancel

The default configuration for ignored methods includes the call site classes for Groovy
that are used for the dynamic method dispatch, but make it difficult to follow the actual
call chain.

If you want to manually add ignored methods, you can do so in the session settings, but
a much easier way is to select a method in the call tree and invoke the Ignore Method
action from the context menu.

Thread status: 0 Thread selection: Aggregation level:
B Runnable - . All thread groups v 0 Metheds

n— 93,3% - 1,483 ms - 1inv. java.awt.EventDispatchThread.run

=2 Show Call Graph no.scheduleRepaint
I Show Threads no.scheduleBlockingActivity
Add Method Trigger block

G-‘ Add As Exceptional Method
=< Split Method with a Script
-] Intercept Method With Script Probe

5= Rernove Selected Sub-Tree Delete

Restore Removed 5

Add Filter From Selection 3 Compact bezier.BezierAnim$Demo

Compact bezier.

@ Show Tree Legend

' Show Node Details CtrleAlte] @ Ignore bezier.BezierAnim$Demo

= Show Source Ea @ Ignore bezier.

% Show Bytecode R Ignore method bezier.BezierAnim$Demo.run()

@

T Funand Multinle | evels

In the filter settings, you can also ignore entire classes or packages by setting the type of
the filter entry to "Ignored”. The Add Filter From Selection menu contains actions that
depend on the selected node and suggest ignoring the class or packages up to the

172

top-level package. Depending on whether the selected node is compact-profiled or
profiled, you also see actions for changing the filter to the opposite type.

In case you don't want to see any messages about auto-tuning, you can disable it in the
profiling settings. Also, you can configure the criteria for determining an overhead hot
spot. A method is considered an overhead hot spot if both of the following conditions are
met:

« The total time of all its invocations exceeds a threshold in per mille of the entire total
time in the thread

« Its average time is lower than an absolute threshold in microseconds

€ Session Settings X
g

— Application Settings Enable CPU profiling

Aute-Tuning For Instrumentation

Enable auto-tuning O

A methed is an overhead hot spot and will be suggested for inclusion into the list of ignored
methods, if both of the following conditions are true:

E.‘ Call Tree Recording
4

' Call Tree Filters
1. The total time of the method is more than 10 | % permille of the entire total time
Trigger Settings 2. The average time of the method is less than 100 | %) ps
Auto-tuning is only performed if the method call recording type is set to "Instrumentation” on
; Databases the method call recording tab.
Call Tree Recording Optiens
Q HTTP, RPC & JEE CPU times for instrumentation: () Elapsed times) Estimated CPU times)
Instrument native methods ﬂ
° VM & Custom Probes Thread resolution for async sampling €
sl Exceptional Method Run Recording
{g‘f Advanced Settings
Maximum number of separately recorded methed runs: 5 % @
CPU Profil
e Time type for determining exceptional method runs: | EX0 All states v
Probes & JEE

Call Tree Splitting
Memary Profiling
Maximum number of splits: 128 |+ 0

T P E

General Settings Copy Settings From “ Cancel

173

B.2 Async And Remote Request Tracking

Asynchronous execution of tasks is a common practice, both in plain Java code and even
more so with reactive frameworks. Code that is adjacent in your source file is now executed
on two or more different threads. For debugging and profiling, these thread changes
present two problems: On the one hand, it is not clear how expensive an invoked operation
is. On the other hand, an expensive operation cannot be traced back to the code that
caused its execution.

JProfiler provides different solutions to this problem depending on whether the call stays
in the same JVM or not. If the async execution takes place in the same JVM that invokes
it, the "Inline Async Executions” call tree analysis [p. 189] calculates a single call tree that
contains both call sites as well as execution sites. If a request to a remote JVM is made,
the call tree [p. 53] contains hyperlinks to call sites and execution sites, so you can
seamlessly navigate both ways between different JProfiler top-level windows that show
profiling sessions for the involved JVMs.

Enabling Async And Remote Request Tracking

Async mechanisms can be implemented in various ways, and the semantics of starting
tasks on a separate thread or in a different JVM cannot be detected in a generic way.
JProfiler explicitly supports several common asynchronous and remote request
technologies. You can enable or disable them in the request tracking settings. By default,
request tracking is not enabled. It is also possible to configure request tracking in the
session startup dialog that is shown directly before a session is started.

€} Async And Request Tracking Types *

Available tracking types:
Async tracking &)
D Executors O
Kotlin Coroutines @
" awT @
w1 @
Virtual threads @)
Platform threads &)
Remote request tracking)
Ml @
aRPC @
Remote EJB @
HTTP requests)

O Help “ Cancel

In JProfiler's main window, the status bar indicates if some async and remote request
tracking types are enabled and gives you a shortcut to the configuration dialog.

r? Monitars & Locks

3 Databases Async tracking is active for:

» Executors

G HTTP, RPC & JEE s AwT

Click to teggle or press [Ctrl+F2]

-

T hY

@ 3 active recordings Q) Auto-update5s VM #1

JProfiler detects if an async request tracking type that is not activated is used in the profiled
JVM and shows you a . notification icon next to the async and remote request tracking
icon in the status bar. By clicking on the notification icon, you can activate the detected

174

tracking types. Async and remote request tracking can produce substantial overhead
and should only be activated if necessary.

4000
— - | |
Threads
- With request tracking, local async executions can be shown inline.
The following request tracking types have occurred in the profiled JVM:
Menitors & Locks
1 * Executors
« AWT
3 Databases X X
Click to activate request tracking for the above tracking types.

T W
W @ 3active recordings [an] Aute-update 2 s VM #1

Async Tracking

If at least one async tracking type is activated, the call tree and hot spot views for CPU,
allocation and probe recording show information about all activated tracking types
together with a button that calculates the “Inline Async Executions” call tree analysis. In
the result views of that analysis, the call tree of all async executions is connected with the
call sites by way of an I "async execution” node. By default, the async execution
measurements are not added to the ancestor nodes in the call tree. Because it is
sometimes useful to see aggregated values, a checkbox at the top of the analysis allows
you to do that where appropriate.

Thread status: Q Thread selection: Aggregation level:
BE Runnable All thread groups v | @ Methods

Async tracking: Executorsand AWT | Inline Async Executions
0_ 56.1% - 392 ms - 1 inv. jdbc)dbcDemao.main

0 I 32.3% - 226 ms - 5 inv. java.util.concurrent. ThreadP oolExecutorSWorker.run
0 B 11.5% - 80,697 ps - 1inv. java.awt.EventDispatchThread.run

The simplest way to offload a task on another thread is to start a new thread. With JProfiler,
you can follow a thread from its creation to the execution site by activating the "Thread
start” request tracking type. However, threads are heavy-weight objects and are usually
reused for repeated invocations, so this request tracking type is more useful for debugging
purposes.

The most important and generic way to start tasks on other threads uses executors in the
java.util.concurrent package. Executors are also the basis for many higher-level third
party libraries that deal with asynchronous execution. By supporting executors, JProfiler
supports a whole class of libraries that deal with multi-threaded and parallel programming.

Apart from the generic cases above, JProfiler also supports two GUI toolkits for the JVM:
AWT and SWT. Both toolkits are single-threaded, which means that there is one special
event dispatch thread that can manipulate GUI widgets and perform drawing operations.
In order not to block the GUI, long-running tasks have to be performed on background
threads. However, background threads often need to update the GUI to indicate progress
or completion. This is done with special methods that schedule a Runnabl e to be executed
on the event dispatch thread.

In GUI programming, you often have to follow multiple thread changes in order to connect
cause and effect: The user initiates an action on the event dispatch thread, which in turn
starts a background operation via an executor. After completion, that executor pushes

175

an operation to the event dispatch thread. If that last operation creates a performance
problem, it's two thread changes away from the originating event.

Finally, JProfiler supports Kotlin coroutines (]), Kotlin's multi-threading solution that is
implemented for all Kotlin backends. The async execution itself is the point where a
coroutine is launched. The dispatching mechanism of Kotlin coroutines is flexible and can
actually involve starting on the current thread, in which case the "async execution’ node
has an inline part that is then reported separately in the text of the node.

G) 18 execution sites were were inlined o x ﬁ Q
Thread status: Thread selection: Agagregation level:
== Runnable E All thread groups @ Methods

Add async execution time to tree O

7 show suspended time (7]
0— 100.0% - 80,305 ps - 1 inv, ie.netty.util.concurrent.FastThreadLecalRunnablerun
T 2088 ms async execution (79,567 ps was already inline)

() — 05,27, - 2,008 ms suspended time

@G, 1.5%- 30,755 ps - 1 semantic inv. io.ktor.samples.simulateslowserver, SimulateSlowServerApplicationktSmoduleS 281 invokeSusps
D 15%- 30732 ps- 1inv. io.ktor.response ApplicationResponseFunctionskt.respondTextSdefault
W 00%-4us-1inw. io.ktor.util. pipeline.PipelineContext.getContext

@G, 0.8%- 16,928 ps - 2 semantic inv. io.ktor.samples.simulateslowserver, SimulateSlowServerApplicationKtSmedule$ 1 invekeSuspen
Q 0.6% - 12,568 ps - 2 inv. kotlinx.coroutines.time. TimeKt.delay
0 0.2% - 4,296 ps - 2 inv. java.time.Duration.ofSeconds

J

v @

Suspending methods can interrupt the execution which is then possibly resumed on
different threads. Methods where suspension was detected have an additional & "suspend”
icon with a tooltip that shows the number of actual calls versus the semantic invocations
of the method. Kotlin coroutines can be suspended deliberately, but because they are not
bound to threads, the waiting time will not appear anywhere in the call tree. To see the
total time taken until a coroutine execution is finished, a © ‘suspended’ time node is added
below the "async execution” node that captures the entire suspension time for the coroutine.
Depending on whether you are interested in the CPU time or in the wall clock time of async
executions, you can add or remove those nodes on the fly with the "Show suspended
times” check box at the top of the analysis.

Tracking unprofiled call site

By default, both executor and Kotlin coroutine tracking only track async executions where
the call site is in a profiled class. This is because frameworks and libraries can use these
async mechanisms in a way that is not directly related to the execution of your own code,
and the added call and execution sites would just add overhead and distraction. However,
there are use cases for tracking unprofiled call sites. For example, a framework can start
a Kotlin coroutine on which your own code is then executed.

If such call sites in unprofiled classes are detected, the tracking information in the call
tree and hot spot views shows a corresponding notification message. In live sessions, you

M https://kotlinlang.org/docs/reference/coroutines.html

176

https://kotlinlang.org/docs/reference/coroutines.html

can switch on tracking for unprofiled call sites separately for executor and Kotlin coroutine
tracking directly from those views. These options can be changed at any time on the "CPU
profiling” step of the session settings dialog.

Thread status: O Thread selection: Aggregation level:
== Runnable v | @8 All thread groups v | @ Methods ~

Async tracking: Kotlin Coroutines Inline Async Executions Track unprofiled calls | @)

0 T"— 100.0% - 80,305 ps - 1 inv. io.netty.util.cory For Kotlin Coroutines le.run - inline async executions
(D) mm 32,3% - 30,755 ps - 1 inv. ioktor.samples.simulatESTowEErTErSTTTESTOWSErTRrApplicationKtSmodule$2S LinvekeSuspend
(™ 21.1% - 16,928 ps - 4 inv. io.ktor.samples.simulateslowserver. SimulateSlowServerApplicationKtSmodule$1.invokeSuspend

It is important to understand that Kotlin coroutines can only be tracked when their launch
happened while CPU recording was active. If you start CPU recording later on, the async
executions from Kotlin coroutines cannot be inlined. JProfiler will notify you just like for the
detection of call sites in unprofiled classes. If you need to profile long-lived coroutines
that are started at the beginning of the application, then using the attach mode is not an
option. In that case, launch the JVM with the -agentpath VM parameter [p. 12] and start
CPU recording at startup.

Remote Request Tracking

For selected communication protocols, JProfiler is able to insert meta-data and track
requests across JVM boundaries. The supported technologies are:

« HTTP: HttpURLConnection, java.net.http.HttpClient, Apache Http Client 4.x, Apache Async
Http Client 4.x, OkHttp 3.9+ on the client side, any Servlet-API implementation or Jetty
without Servlets on the server side

« Additional support for async JAX-RS calls for Jersey Async Client 2.x, RestEasy Async
Client 3.x, Cxf Async Client 3.1.1+

+ Web services: JAX-WS-RI, Apache Axis2 and Apache CXF
* RMI

« gRPC

« Remote EJB calls: JBoss 7.1+ and Weblogic 11+

In order to be able to follow the request in JProfiler you have to profile both VMs and open
them at the same time in separate JProfiler top-level windows. This works with both live
sessions as well as with snapshots. If the target JVM is not currently open, or if CPU recording
was not active at the time of the remote call, clicking on a call site hyperlink will show an
error message.

When tracking remote requests, JProfiler makes call sites and execution sites explicit in
the call trees of the involved JVMs. A call site in JProfiler is the last profiled method call
before a recorded remote request is performed. It starts a task at an execution site that
is located in a different VM. JProfiler allows you to jump between call sites and execution
sites by using hyperlinks that are shown in the call tree view.

177

Thread status: 0 Thread selection: Aggregation level:
== Runnable v | @8 All thread groups v | | (D Methods

M 1(0.0% - 4,665 ms - 5 inv. c.e.d.server.DemoServerS3.run
D— 100.0% - 4,664 ms - 3 inv. c.e.d.s.handlers.RequestHandler.run
([) m—2,7% - 4,604 ms - 5 inv. c.e.d.s.handlers.RequestHandler.performWork
() m— 073,59 - 4,128 ms - 5 inv. c.e.d.s.handlers.RequestHandler.makelpaCall
bl 6.9% - 323 ms - 5 inv. c.emock.MockHelper.runnable
@12.3% - 109 ms - 5 inv. c.e.d.s.handlers.RequestHandler.makeRmiCall
06 ms - 5 inv. c.e.d.s.handlers.HandlerHelper.makeRmiCall
70,679 ps - 5 inv. J 3 reglstry Registry. Iookup

T 01%- 6,695 s - 15 inv. c.e.d.s.handlers. leHand\cr r:mot:!):ratlon [j.proxy2.8Proxy3] - jump to exe e [call site: #1]
@ 0.9% - 42,143 ps - S inv. c.e.d.s.handlers.RequestHandler.makeHttpCall
0 0.0% - 12 ps - 5 inv. j.util. Random.nextint
@ 1.3% - 39,523 ps - 5inv. c.e.d.s.handlers.RequestHandlerworkWithGlobalResource
D 0.0% - 7 ps - 1inv. c.e.d.s.handlers.RequestHandler. < clinit>

v @

Call sites have the same identity with respect to remote request tracking for all threads.
This means that when you jump from call sites to execution sites and vice versaq, there is
no thread-resolution and the jump always activates the "All thread groups” as well as the
"All thread states” thread status selection, so that the target is guaranteed to be part of
the displayed tree.

Call sites and execution sites are in a I:n relationship. A call site can start remote tasks on
several execution sites, especially if they are in different remote VMs. In the same VM,
multiple execution sites for a single call site are less common because they would have
to occur at different call stacks. If a call site calls more than one execution site, you can
choose one of them in a dialog.

An execution site is a synthetic node in the call tree that contains all executions that were
started by one particular call site. The hyperlink in the execution site node takes you back
to that call site.

Thread status: 0 Thread selection: Agagregation level:
O All states ¥ . All thread groups hd @ Metheds

n W 72,87 - 152 5 - 8 inv, ju.concurrent. ThreadPoolExecutorSWorker.run

“| #0.7% - 20,309 ms - 15 inv. called from call site #1 (remote VM £2

306 ms - 13 inv. c.e.d.s.handlers.BmiHandlerlmpl.remoteOperation
- 20,306 ms - 13 inv. c.e.d.s.handlers.RmiHandlerlmpl.performWerk
@,ﬁ“)l 6.0% - 12,538 ms - 15 inv. c.e.d.s.handlers.RmiHandlerlmpl.executeldbcStatements
5% 3,3% - 6,820 ms - 15 inv. c.e.d.s.handlers, RmiHandlerlmpl.makeHttpCalls
m 0.4% - 926 ms - 13 inv. c.e.mock.MockHelper.runnable
m 0.0% - &7 ps - 15 inv. j.util. Random.nextint
®|4.D% - 8,304 ms - 120 inv. c.e.d.s.handlers.DemoHttpServer§l.handle
U- 27.2% - 56,888 ms - 1 inv, c.e.d.s.test.RemoteDemoServer.main

@

If the same call site invokes the same execution site repeatedly, the execution site will
show the merged call tree of all its invocations. If that is not desired, you can use the
exceptional methods [p. 194] feature to split the call tree further, as shown in the screen
shot below.

178

Thread status: 0 Thread selection: Aggregation level:
o Allstates v | @8 All thread groups v | | (D Methods

) mm— 100.0% - 1465 - 10 inv. j.u.concurrent. ThreadPoolExecutorSWorker.run
‘i B 11.4% - 16,661 ms - 15 inv. called from call site #1 (remote VM #3
#3910 6,2% - 9,138 ms - 10 inv. c.e.d.s.handlers.RmiHandlerimpl.remoteOperation [merged exceptional runs]
v 1.1% - 1,642 ms - 1 inv. c.e.d.s.handlers. EmiHandlerlmpl.remoteOperation [exceptional run]
@A“) 1.1% - 1,642 ms - 1 inv. c.e.d.s.handlers.RmiHandlermpl.performWork
049 0.7% - 959 ms - 1 inv. c.e.d.s.handlers.RmiHandlerllmpl.executeldbcStatements
g% 0.5% - 665 ms - 1 inv. c.e.d.s.handlers.RmiHandlerlmpl.makeHttpCalls
m 0.0% - 17,466 ps - 1inv. c.emock.MockHelper.runnable
0.0% - 4 ps - 1 inv. j.util. Random.nextint
5“,{@ 1.0% - 1,522 ms - 1inv. c.e.d.s.handlers.RmiHandlerimpl.remoteOperation [exceptional run]
@A"D 1.0% - 1,469 ms - 1inv, c.e.d.s.handlers.RmiHandlerimpl.remoteOperation [exceptional run]
039 1.0%- 1,468 ms - 1inv. c.e d.s.handlers. RmiHandlerlmpl.remoteOperation [exceptional run]
5“,{@ 1.0% - 1,415 ms - 1inv, c.e.d.s.handlers.RmiHandlerimpl.remoteOperation [exceptional run]
®|4.2% - 6,131 ms - 90 inv. c.e.d.s.handlers.DemoHttpServeri1.handle

v @

Unlike execution sites which are only referenced from a single call site, call sites themselves
can link to several execution sites. With the numeric ID of a call site, you can recognize the
same call site if you see it referenced from different execution sites. In addition, a call site
displays the ID of the remote VM. The ID of the profiled VM can be seen in the status bar.
It is not the unique ID that JProfiler manages internally, but a display ID that starts at one
and is incremented for each new profiled VM that is opened in JProfiler.

- @
T @ 3 active recordings C',J Aute-update 55 o0 o Profiling

179

B.3 Viewing Parts Of The Call Tree

Call trees often contain too much information. When you want to reduce the displayed
detail, there are several possibilities: you can restrict the displayed data to one particular
subtree, remove all unwanted data, or use a more coarse-grained filter for displaying
method calls. All of these strategies are supported by JProfiler.

Setting call tree roots

If you profile a use case that consists of multiple tasks that run sequentially, each subtree
can be analyzed separately. Once you have found the entry point to such a subtask, the
surrounding call tree is only a distraction and the timing percentages in the subtree
inconveniently refer to the root of the entire call tree.

To focus on a particular subtree, JProfiler offers the Set As Root context action in the call
tree and the allocation call tree views.

Thread status: 0 Thread selection: Agagregation level:
== Runnable = a All thread groups hd @ Metheds

@— 100.0% - 2,937 ms - 1inv, CompileTest.main
() m— 93,59 - 2,746 ms - 1 inv. com.sun.tools javac.api.JavacTasklmpl.call
(D) e—g3,5% - 2,746 ms - 1inv. com.sun.toolsjavac.apiJavacTaskimpl.doCall
@— 93.5% - 2,746 ms - 1inv, com.sun.tools,javac.main.Main.compile
() m— 72,52 - 2,307 ms - 1 inv. com.sun.tools javac.main.JavaCompiler.compile

®- 41.6% - 1,220 ms - 1 inv. cDm.sun.too\s.Java(.maln.JavaCDmEHer.comElleE

=3 Show Call Graph mp.Enter.main
: Show Threads

laskListener.isEmpty
Add Method Trigger

@ Add As Exceptional Method Compiler parseFiles

it Method with a Script vaCompiler.initProcessAnnotations
@ < Split Method with a Scrip Compiler.initP s d
iy 9 Intercept Method With Script Probe _ompller.(lose .
q . R ompiler.processAnnotations
[vierge splitting leve SR JavacProcessingEnvironment.close
G mpiler.stoplfError
d Sg Remove Selected Sub-Tree Delete er?wve "
[R ces Ctrl+Alt+S mpiler.now
[aut
% @ Show Tree Legend
[l i Show Mode Details Ctrl+Alt+| ‘empiler.instance
g 0 = Show Source F4 |rocessArgs
0 npiler.= clinit>
g) Show Bytecode fo.preRegister
0 . ult.<clinit=
Expand Multiple Level
@0 .E. pand Multiple Levels dLine.parse
@ 0 4 Collapse Al ’
p ¥ Collapse e
@ 0 ler.close
W o @_SetAs Root Ctrl+Alt+R
@0 Reset Root A A Ctrl+ Alt+ Shift+R
B o
E Analyze 4

@

—~

After setting a call tree root, information about the selected root is shown at the top of the
view. A single scrollable label shows the last few stack elements leading up to the root
and a detail dialog with the entire stack of the call tree root can be displayed by clicking
on the Show More button.

180

Thread selection:
88 Al thread groups

Thread status: 0

== Runnable -

Call tree root:

com.sun.tools javac.mainJavaCompiler.enterTrees — com.sun.tools.javac.main JavaCompiler.compile — ¢+ Show more

Aggregation level:
v | (D Methods

-

x

() m—10)0.0% - 956 ms - 1 inv. com.sun.tools.javac.comp.Enter.main
() e—100,0% - 956 ms - 1inv. com.sun.toolsjavac.comp.Enter.complete

() 52,13 - 651 ms - 1inv. com.sun toolsjavac.codes

() ™ 37.9% - 267 ms - 1 inv. com.sun.toolsjavac.comp.Entt

© Call Tree Root

@‘ 3.9% - 37,543 ps - 1inv. com.sun.toolsjavac.comp.Anng

@ 0.0%- 6 ps - 1 inv. com.sun.tools.javac.util.ListBuffer.<ir Complete stack trace of the call tree rook:

D 0.0%-5ps-2 inv. java.util. terator.hasMext CompileTest.main(java.lang.String[1)

o . . .
% ggo"’ - j Hs - } !”V' _wm'Stu_IHI:ODLS'JEV“t'Ut‘I'L'StEUﬁ:E"”a com.sun.toolsjavac.apiJavacTaskimpl.call()
0% - 4 ps - 1inv. java.util.lterator.nex
com.sun.tools,javac.apiJavacTaskimpl.doCall

@ 0.0% - 2 ps - T inv. com.sun.toolsjavac.util.List.iterator tool s P inMai p.l . IO Stri . |

@ 0.0%- 1ps - 1inv. com.sun.toolsjavac.comp.Annotate. com-sun-foo S'J“E(‘mafn‘ am'mmF' e(java. éng‘ ring[] java.lang
© 00%-20ps-1 inv. java.util Set.add (nm.5L|n.tnnls.Java(‘ma!n‘JavaCnmp!Ier.(Dmplls((nm.sun.tnnls.Ja\.ra
@ 0.0%-2ps-Zinv. com.sun.tools,javac.api.MultiTaskListener.is| com.sun.tocls.javac.mainJavaCompiler.enterTrees(com.sun.tools.jay
@ 0.0% - 2 us - 2 inv. java.util Iterator.hasMext
@ 0.0% - 1 ps - 1inv. java.util lterator.next

(7]

-

When you use the set root action recursively, the call stack prefixes will simply be
concatenated. To go back to the previous call tree, you can either use the Back button of
the call tree history to undo one root change at a time, or the Reset Root And Show All
action in the context menu to go back to the original tree in a single step.

S 1 QO © @ =a E
Start View Show . Show }
Cemer T Bpart o ings RED Back Guaph A=
‘ Thread status: ﬂ Thread selection: Aggregation level:
Telemetri
slemetnes B Runnable - a All thread groups A @ Methods

What is most important about changing the call tree root, is that the hot spots view will
show data that is calculated for the selected root only, and not for the entire tree. At the
top of the hot spots view, you will see the current call tree root just like in the call tree view
to remind of you the context of the displayed data.

Thread selection: Haot spot options:

88 Al thread groups A

Aggregation level:
@ Methods ~

Thread status: 0

== Runnable - v

x

Self times

Calltree root: | com.sun.tools.javac.main.JavaCompiler.enterTrees — com.sun.toolsjavac.main.JavaCompiler.compile — ¢t Show more

Hot Spot Self Time Average Time Invocations
% com.sun.tools.javac.util.List.reverse I -.056 s (7 %) 18 ps 4,020
% com.sun.tools.javac.util.List. prependList I 71,340 ps (7 %) 30 ps 2,357
i com.sun.toolsjavac.utilList.<init> I 7 065 s (7 %) 0 ps 298,479
i com.sun.toolsjavac.fileZipFilelndexSZipDirectory.readEntry [N 5,179 us (6 %) 2ps 26,873
i com.sun.tools javac.util.List.nonEmpty I 50,241 s (6 %) 0ps 591,329
% java.util AbstractCollection.<init> I 31504 ps (3 %) Ops 298479
& com.sun.tools.javac.util.List.setTail I 20,018 s (3 %) Ops 291,369
%, com.sun.tools.javac file ZipFilelndexSEntry.compareTo(jav... [21,872 ps (2 %) Ops 91,521
1 com.sun.tools.javac.file ZipFilelndexSEntry.compareTo(co... [21,785 ps (2 %) Ops 91,521
& java.util Map.get I 12,226 ps (1 %) Ops 50,074
% jeva.util. Arrays.sort I 16,364 ps (1%) 818 ps 20
1 com.sun.toolsjavacfile ZipFilelndex.get4BytelitticEndian [l 14,128 ps (1 %) Ops 133,230
i com.sun.toolsjavacfile ZipFilelndex.get2ByteLittieEndian [l 12,811 ps (1 3) Ops 107,712
& java.lang.String.compareTo W 12328 ps (1 %) Ops 92,814
% com.sun.tools.javac.fileRelativePathSRelativeFile. <init>(c... [l 10,514 us (1%) Ops 11,788
& com.sun.toolsjavac.utilMame.getBytes W 10,141 ps (1%) 0ps 14,898
% com.sun.tools.javac file ZipFilelndexSZipDirectory.buildin... [l 8,811 ps (0 %) 440 ps 20
% com.sun.tools.javac.util. SharedNameTable fromUtf W 2,390 s (0 %) Ops 11,657
b Gmnem b Cheine cinibe W 70N o noe RLEED

Removing parts of the call tree

Sometimes it's helpful to see how the call tree would look like if a certain method was not
present. For example, this can be the case when you have to fix several performance
problems in one go, because you are working with a snapshot from a production system
that cannot be iterated quickly like in your development environment. After solving the

181

main performance problem, you then want to analyze the second one, but that can only
be seen clearly if the first one is eliminated from the tree.

Nodes in the call tree can be removed together with their subtrees by selecting them and
hitting the Del et e key or by choosing Remove Selected Subtree from the context menu.
Times in ancestor nodes will be corrected accordingly as if the hidden nodes did not exist.

Thread status: 0 Thread selection: Aggregation level:
== Runnable - 88 All thread groups v @ Methods ~

7 @— 93.5%; - 2,746 ms - 1inw, (om‘sun‘to’ols.javalc.mam.Main‘clompiIe
() m— 72 6% - 2,307 ms - 1 inv. com.sun.tools javac.main.JavaCompiler.compile
] P P

®- 41.6% - 1,220 ms - 1 inv. cDm.sun.too\s.Java(.maln.JavaCDmEHer.comElleE

=3 Show Call Graph mp.Enter.main
: Show Threads

laskListener.isEmpty
Add Method Trigger

G @ Add As Exceptional Method Compiler parseFiles
@ < Split Method with a Script vaCompiler.initProcessAnnotations

y [+] Intercept Method With Script Probe _ompller.close .

q . ~ pmpiler.processAnnotations

5 g leve lavacProcessingEnvironment.close
mpiler.stoplfError

emove

Delete

Ctrl+Alt+5 mpiler.now
aut

@ Show Tree Legend
o
n

i Show Mode Details Ctrl+Alt+]

[m]

Compiler.instance
= Show Source F4

Chase Bitarade - o
There are three removal modes. With the Remove all invocations mode, JProfiler searches
for allinvocations of the selected method in the entire call tree and removes them together
with their entire subtrees. The Remove subtree only option only removes the selected
subtree. Finally, the Set self-time to zero leaves the selected node in the call tree bug sets
its self-time to zero. This is useful for container nodes like Thr ead. r un that may include a
lot of time from unprofiled classes.

@ Remove Mode x

There are several ways to remove the selected node:

) Remove all invocations of the | selected method = ﬂ
Remove sub-tree only)

Set self-timetozero)

Just like for the Set As Root action, removed nodes influence the hot spots view. In this
way, you can check what the hot spots would look like if those methods were optimized
to the point of not being important contributions.

When you remove a node, the header area of both the call tree and the hot spots views
will show a line with the count of the removed nodes and a Restore Removed Subtrees
button. Clicking on that button will bring up a dialog where you can select removed
elements that should be shown again.

182

Thread status: 0 Thread selection: Aggregation level:
== Runnable v | @8 All thread groups v | | (D Methods

Removed nodes: | 1 removed node SE

(D) —G().3% - 1,789 ms - 1 inv. com.sun.tools.javac.main.Main.compile

() m— 3,2% - 1,351 ms - 1 inv. com.sun.toolsjavac.mainJavaCompiler.compile
() w51 6% - 1,220 ms - 1inv. com.sun.tol
@15.1%- 101 ms - Tinv. com.sun.tools.javac
@ 1.4% - 28,429 ps - 1inv, com.sun.tools.javi
@ 0.0%- 493 ps - 1inv. com.sun.toolsjavac.
@ 0.0%-27 ps - Tinv. com.sun.toolsjavac.m @ com.sun.toolsjavac.mainJavaCompiler.enterTrees(com.sun.tools jas

@ 0.0% - 10 ps - 1inv, com.sun.tools,javac.pl

0.0% - 7 ps - 1 inv. com.sun.tools.javac.mz

0% - T ps - 1inv, com.sun.tools,javac.uti

0% - 4 ps - 1inv, com.sun.tools,javac.ma

]

@ o

@o

@ 00%-3ps-1inv. com.sun.tocls.javac.uti
Do

Do

Do

@ Select Removed Nodes to be Restored *

Currently remeved nodes:

0% - 1 ps - 2 inv, java.lang.StringBuilder.

0% - 1 ps - 3 inv, java.lang.StringBuilder.

0% - 1 ps - 2 inv. java.lang.5tringBuilder]
21.0% - 413 ms - Tinv, com.sun.teolsjavac
1% - 2,483 ps - 1 inv. com.sun.toels javac.m
0% - 670 ps - 1 inv. com.sun.tools javac.mai
0% - 427 ps - 1 inv, com.sun.toolsjavacfile|
0

0% - 36 ps - 1inv, com.sun.teolsjavac.main 0K Cancel

ML

Call tree view filters

The third feature in the call that has an influence on the displayed data in the hot spots
view is the view filter. When you change your call tree filters, it has a large effect on the
calculated hot spots [p. 53]. To emphasize this interdependence with the call tree view,
the hot spots view shows the call tree view filter in a line above the view together with a
button to remove the additional filters.

Thread status: 0 Thread selection: Aggregation level: Hot spot options:
== Runnable = a All thread groups hd @ Methods Self times hd
Call tree root: com.sun.toolsjavac.mainJavaCompiler.generate — com.sun.toolsjavac.mainJavaCompiler.compil ¥ Show maore x
Rermoved nodes: 3 removed nodes gg
Call tree view filters: | com.sun.tools x |
Hot Spot Self Time Average Time Invocations

% javaio.OutputStream.close I 10,900 us (6 %) 909 ps 12

% com.sun.tools.javac.jvm.Gen.genMethod I 7,740 ps (4 %) 151 ps Bl

i java.io.FileQutputStream. <init> I 407 s (4 %) 535 ps 12

% com.sunteools.javacjvm.GeninitCode I 2767 s (2 %) 93 ps 3

& com.sun.tools.javac.jvm.Code <init> 277 ps (2 %) 66 ps Bl

i, com.sun.tools.javac.jvm.Code.emitStackMapFrame I 3067 us (1 %) 105 ps 29

& com.sun.tools.javacjvm.Pool.makePoolValue I 2507 ps (13) Tus 1,696

%, com.sun.toolsjavac.jvm.ClassWriterSCWSignatureGenerat... [l 1,907 ps (1 %) Ips 585

% com.sun.toolsjavac.code TypesSDescriptorCache findDes... [l 1,662 ps (1 %) 207 ps 8

& com.sun.tools.javacjvm,Class\WriterwritePool W 1,655 s (1 %) 137 ps 12

% com.sun.toolsjavac.codeKinds.kindMame M 1,636 ps (1 %) 818 ps 2

1 com.sun.toolsjavacjvm.Gen.setTypeAnnotationPositions [l 1,602 ps (1 %) Sps 195

% com.sun.teools.javacjvm.Pool.put W 1,570 ps (0 %) Ops 1,696

% com.sun.tools.javac.code.Type.hasTag W 1,351 ps (0 %) Ops 3,928

b rarn cum tanle izvas cade Tumec O R vic# T lace Toona M 1970 e 0 B0 1T e T70

@

Setting a call tree root, removing parts of the call tree and view filters can be used together,
with the limitation that view filters have to be set last. As soon as view filters are configured
inthe call tree, the Set As Root and >Remove Selected Subtree actions do not work anymore.

Interaction with the call graph

Invoking the Show Graph action in either the call tree or the hot spots view will show a
graph that is limited to the same call tree root, does not include the removed methods
and uses the configured call tree view filters. At the top of the graph, the information about
these changes is displayed in a similar form as in the call tree.

183

@ Create Call Graph

1. Select graph options Select options for the call graph
2. Select first node
The call graph can be calculated for all threads, a thread group or a single thread as
well as for any aggregation level. The thread status selection determines the meaning
of times that are displayed in the call graph.

Thread selection: | 88 All thread groups hd
Thread status: == Runnable v
Aggregation level: | (@) Methods b

Use root that was set in the call tree view
Use view filter that was zet in the call tree view

Remove nodes that were removed in the call tree view

MNext P Cancel

When creating a new graph in the graph view itself, check boxes in the wizard let you
choose which of these call tree adjustment features should be taken into account for the

calculation of the call graph. Each check box is only visible if the corresponding feature
is currently used in the call tree view.

Thread status: Thread selection: Aggregation level:
= Runnable @8 All thread groups @ Methods

View filters: com.sun.tools

Call tree root: com.sun.tools javac.mainJavaCompiler.generate — com.sun.toolsjavac.mainJavaCompiler.compileZ — corr + Show more

Removed nodes: | 3 removed nodes Show more

c.s.1jjvm.Gen
genStat
86,321 s, 247 us self, 255

visitMethodDef .'—)-

| c.stjjvm.Gen
' 109 ms, 153 s self, 51 inv.

c.s.tjijvm.Code
i endScopes
1,438 ps, 67 ps self, 1101ir

Hl|% o/ =@

184

B.4 Splitting The Call Tree

Call trees are cumulated for repeated invocations of the same call stacks. This is necessary
because of memory overhead and the need for consolidating data in order to make it
understandable. However, sometimes you want to break the cumulation at selected points
SO you can view parts of the call tree separately.

JProfiler has a concept of splitting the call tree with special nodes that are inserted into
the call stack and show semantic information that has been extracted from the method
invocation above the inserted node. These splitting nodes allow you to see additional
payload information directly inside the call tree and to analyze their contained subtrees
separately. Each splitting type can be merged and unmerged on the fly with the actions
in the context menu and has a cap on the total number of splitting nodes so that the
memory overhead is bounded.

Call tree splitting and probes

Probes [p. 105] can split the call tree according to the information that they collect at
selected methods of interest. For example, the "HTTP server” probe splits the call tree for
each different URL. The splitting in this case is highly configurable, so you can include only
the desired parts of the URL, some other information from the servlet context or even
produce multiple splitting levels.

‘ Thread status: O Thread selection: Aggregation level:
Telemet
glemetnes == Runnable - & All thread groups hd @ Methods

0_ 69.1% - 4,588 ms - 7 inv. com.e't.demo‘seNer.DemoSeNerSlruﬂ

‘l:l‘ Live Memory

Q_ 54 3,535 ms - 4 inv. com.gjt.demo.server.handlers.RequestHandler.run
B () m—53,1% - 3,525 ms - 4 inv. com.ejt.demo.server.handlers.RequestHandler. performWork
ﬁ Heap Walker @ 0.9% - 58,710 ps - 4 inv. com.gjt.demo.serverhandlers.RequestHandler.workWithGlobalRe:
ol 10.2% - 677 ms - 1 inv. HTTP: /demo/viewl
@l 3.3% - 220 ms - 1inv. com.gjt.dema.server.handlers.JdbclobHandler.run
I CPU Views @ 1.5% - 100 ms - 1 inv. com.gjt.demo.server.handlers.JmsHandler.onMessage

@ 0.0%- 3B s - 1inv. com.gjt.demo.server.handlers msHandlerSImsType. <clinit>
Call Tree @ 0.0%- 9 ps- 1inv. com.gjt.demo.server.handlers. RequestHandler. < clinit>
@ 0.0% - 5 ps - 2inv. com.ejt.demo.server.handlers.JmsHandlerSJmsType.values
Hot Spots @ 0.0%-1us-Tinv, com.ejt.dema.server handlersJmsHandlerSmsType.getDestination
0- 19.9% - 1,321 ms - 8 inv. java.util.concurrent. ThreadPoolExecutorSWerker.run
Call Graph 508 ms - 1inv. java.awt.EventDispatchThread.run
|1 3 3: 217 ms - 1inv, com.gjt.demo.server.gui.GuiDemoServer§151.run

Qutlier Detection
Complexity Analysis
Call Tracer

JavaScript XHR

Threads v @

If you write your own probe, you can split the call tree in the same way, with both the
embedded [p. 167] and the injected [p. 162] custom probe systems.

Splitting methods with scripts

The same splitting functionality that is available for probes can be used directly in the call
tree, with the Split Method With a Script action. In the screen shot below, we want to split
the call tree for a JMS message handler to see the handling of different types of messages
separately.

185

Thread status: 0 Thread selection: Aggregation level:
== Runnable v | @8 All thread groups v | | (D Methods

0 . £0.1% - 4,588 ms - 7inv. com.ejt.demo.server.DemoServerS3.run
@ 540% - 3,585 ms - 4 inv. HTTP: /demoy/viewd
() . 54.0% - 3,585 ms - 4 inv. com.ejt.demo.server.handlers. RequestHandler.run
() 53,19 - 3,525 ms - 4 inv. com.ejt.demo.server.handlers.RequestHandler.performWork
@ 0.9% - 38,710 ps - 4 inv. com.gjt.dema.server.handlers.RequestHandler.workWithGlobalResource
@ 10.22% - 677 ms - 1 inv. HTTP: /demo/view1
@‘ 3.3% - 220 ms - 1 inv. com.ejt.demo.server.handlers.JdbcJobHandler.run

#5 Show Call Graph

¥ m 1,5% - 100 ms - 1inv. com.ejt.demo.server.handlersJmsHandler.onMeszsag,
@ 1.5%-98,2321 ps - 1inv. com.gjt.demo.server.handlers.JmsHandler.hang
1.0% - 63,679 ps - 1 inv. com.gjt.dema.server.handlers.JmsHandlerp 7 Show Threads
@ 0.5% - 35,137 ps - 1 inv. com.ejt.demo.server.handlers.JmsHandler.n -
@ 0.0%- 36 ps - 1 inv. com.gjt.demo.server.handlersJmsHandlerSImsType. <(Add Method Trigger
0 0.0% - 9 us - 1inv. com.gjt.demo.server.handlers.RequestHandler. < clinit»
(@) Add As Exceptional Method

@ 0.0%- 5 ps - 2inv. com.gjt.demo.server.handlers.JmsHandlerS)msTypevaly
@ 0.0%-1ps - 1inv. com.gjt.demo.server.handlers.JmsHandlerSImsType. getl =C Split Method with a Script
U- 19.9% - 1,321 ms - & inv. java.util.concurrent. Thread PoolExecutorSWorker.rui ° Intercept Method With Script Probe
Ul 7.7% - 508 ms - 1 inv, java.awt.EventDispatchThread.run)
©133%- 217 ms - 1inv. com. gjt.demo.server.gui.GuilemoServers1$1.run lerge splitting leve Ctrl+Alt+

5& Remove Selected Sub-Tree Delete

TP Add Filter From Selection 3

@

@ Show Tree Leaend

Instead of writing a probe, you just enter a script that returns a string. The string is used
for grouping the call tree at the selected method and is displayed in the splitting node. If
you return nul |, the current method invocation is not split and added to the call tree as

usual.
@ Settings Edit Search Code Help Edit x
[8 = . \
YPEE PR 2 % O
e Show. Modify Test
Undo Copy Cut Pty Find - Repiace 0 Compie Help
::‘ Please enter an expression (ne trailing semicolon) or a script (ends with a return statement) that censists of
regular Java code. The following parameters are available:
JAVA
- com jprofiler.api.agent.ScriptContext scriptContext
- jgva.lang.Class<?> ¢
- com.gjt.demo.server.handlersJmsHandler currentObject
- jgvax jms.Message message
The expected return type is java.lang.String
Script:
; ; m
1 Inessage‘ getJMSDestination() .teString()

The script has access to a number of parameters. It is passed the class of the selected
method, the instance for non-static methods, as well as all method parameters. In addition,
you geta Scri pt Cont ext object that can be used to store data. If you need to recall some
values from previous invocations of the same script, you can invoke the get Cbj ect/
put Obj ect and get Long/ put Long methods in the context. For example, you may want to
split only the first time a particular value for method parameter is seen. You could then

use

186

if (scriptContext.getObject(text) !'= null) {
scri pt Cont ext . put Obj ect (text);
return text;

} else {
return null;

}

as part of your splitting script.

Splitting nodes are inserted below the selected method. For the example in the screen
shot above, we now see the handling code for each JMS message destination separately.

0 N (54.4% - 29,478 ms - 10 inv. java.util.concurrent. ThreadPoolExecutorSWorker.run
0- 35.6% - 16,263 ms - 7 inv. com.gjt.demo.server.DemoServerS3.run
@1 7.6% - 3,489 ms - 4 inv, HTTP: /demoy/view?
@17.2% - 3,270 ms - 4 inv. HTTP: /demoy/view3
Gl 5.4% - 2,483 ms - 3 inv. HTTP: /demo/view5
@15.2%- 2,377 ms - 3 inv. HTTP: /demo/view1
@147%-2133 ms- Sinv. com.gjt.demo.server.handlers. JdbclobHandler.run
G‘ 3.8% - 1,738 ms - 2 inv. HTTP: /demo/viewd
@ 0.8% - 288 ms - 5 inv. com.gjt.demo.server.handlers.JmsHandler.onMessage
=4 0.5% - 216 ms - 1inv. paymentProcessor
v 0.2% - 110 ms - 2 inv. deliveryService
@ 0.2%- 110 ms - 2 inv. com.ejt.demo.server.handlers.JmsHandler.handleMessage
@ 0.2%-105ms - 2 inv. com.gjt.demo.server.handlers. msHandler.performWork
@ 0.0% - 2,697 ps - 2 inv. com.gjt.demo.server.handlers.JmsHandler.makeHttpCall
@ 0.0%- 2,404 ps - Zinv. com.gjt.demo.server.handlers.JmsHandler.makeRmiCall
=4 0.1% - 54,488 s - 1 inv. orderHandler
@ 0.0% - 1,613 ps - 1 inv. com.eft.demo.server.handlers.JmsHandler handleMessage
% - 338 ms - 5 inv. com.gjt.deme.server handlers RequestHandler.run
% - 29 ps - 8 inv, com.gjt.demo.server.handlers.JmsHandlerSJmsTypevalues
% - 2 ps - 4 inv. com.ejt.demo.server.handlers.JmsHandlerS)msType.getDuration
% - 1 ps - 4inv. com.gjt.demo.server.handlers.JmsHandler8)msType.getDestination

0000

0.
0.
0.
0.

The splitting location is bound to a method, not to the selected call stack. If the same
method is present somewhere else in the call tree, it will be split as well. If you use the
Merge splitting level action, all splits will be merged into a single node. That node gives
you a chance to unmerge the split again.

Thread status: 0 Thread selection: Aggregation level:
B Runnable v | @8 Al thread groups v | @ Methods

0_ 63.0% - 36,304 ms - 10 inv. java.util.concurrent. ThreadPoolExecutorSWorker.run
0- 37.0% - 21,282 ms - 7 inv. com.ejt.demo.server.DemoServeri3.run

@1 7.6% - 4,402 ms - 5 inv. HTTP: /demoy/view?

al 6.9% - 3,950 ms - 5 inv. HTTP: /demo/view1

@1 6.3% - 3,636 ms - 4 inv. HTTP: /demo/views

@15.7% - 3,272 ms - 4 inv. HTTP: /demo/view3

a|4.6% - 2,676 ms - 3 inv. HTTP: /demo/viewd

@14.4%-23538 me- 11 inv. com.ejt.demo.server.handlers.)dbclobHandler.run
(@ 0.8% - 440 ms - 6 inv. com.ejt.demo.server.handlers JmsHandler.onMessage
v 0.8% - 433 ms - 5 inv. merged method sp
@ 0.8%- 433 ms - 5 inv. com.ejt.demo.ser Show Call Graph

@ 0.0%- 1613 ps- 1inv. com.ejt.demo.serve T opou Threads
@ 0.6% - 359 ms - 5 inv. com.ejt.dema.server.har -
@ 0.0%- 45 ps- 10inv. com.gjt.demo.server.han
@ 0.0%- 3 ps - 5 inv. com.ejt.demo.server.handly
@ 0.0% - 2 us - 5 inv. com.gjt.demo.server.handly

ntercept Method Wit pt Probe
I 54 Unmerge splitting level Ctrl+ Alt+ M
5= Remove Selected Sub-Tree Delete

@ Show Tree Legend
¢ Show Node Details Ctrl+Alt+|

If you produce too many splits, a node labeled capped method splits will contain all further
splitinvocations, cumulated into a single tree. With the hyperlink in the node, you can reset

187

the cap counter and record some more splitting nodes. For a permanent increase in the
maximum number of splits, you can increase the cap in the profiling settings.

Thread status: 0 Thread selection: Aggregation level:
== Runnable v | @8 All thread groups v | | (D Methods

0_ 62.8% - 29,033 ms - 11 inv. java.util.concurrent. ThreadPoolExecutorSWorker.run
@ . 54,7% - 25,294 ms - 383 inv. com.gjt.demo.server.handlers.DemoHttpServerS1.handle

54.7% - 25,286 ms - 382 inv. com.ejt.mock.serviet. MockServiet.service

W 5..7% - 25,280 ms - 382 inv. HTTP: /exchangeRate

279 ms - 382 inv, com.gjt.demo.server.handlers.DemoHttp

ServerS2orun

=<, W 54.4% - 25,132 ms - 381 inv. capped method splits reset splitting cap counter €
m_ 54,4% - 25,125 ms - 381 inv. com.gjt.mock.MockHelper.runnable
m 0.0% - 531 ps - 381 inv. java.util.concurrent. ThreadLoczlRandom.nextint
0 0.0% - 388 ps - 381 inv. java.lang.String.hashCode
0.0% - 372 ps - 381 inv, java.util.concurrent. ThreadLocalRandom.current
D 00% - 326 s - 381 inv. java.lang.5tring.equals
=< 0.2%- 75,634 us - 1inv, Time starmp: 1692953750811
0.1% - 26,186 ps - 381 inv, com.sun.net. httpserver HittpExchange.sendResponseHeaders
0.0% - 9,588 ps - 381 inv. java.io.OutputStream.close
0.0% - 8,646 ps - 382 inv. com.gjt.demo.server.handlers.DemoHttpServertoParameterMap
0.0% - 2,259 ps - 381 inv. java.lang.String valueOf
0.0% - 1,550 ps - 381 inv. java.lang.String.getBytes
0.0% - 902 s - 381 inv., java.io.OutputStream.write
0.0% - 388 ps - 381 inv. com.sun.net.httpserver.HttpExchange getResponseBody
0.0% - 380 ps - 382 inv. java.util. Map.get
0.0% - 296 ps - 382 inv. com.sun.net.httpserver.HttpExchange getRequestURI

o - @

(=l5515 5[5 515 /5)

To edit split methods after you have created them, go to the session settings dialog. If you
don't need a particular split method anymore, but want to keep it for future use, you can
disable it with the checkbox in front of the script configuration. This is better than just
merging it in the call tree, because the recording overhead may be significant.

@ Session Settings X

‘<: This list contains metheds that should be split into multiple branches in the
«all tree, similarly to request splitting of the "HTTP server” probe. A
configurable script returns a string that is displayed above the actual

Application Settings

method node. For example, you can split the call tree for different argument
Call Tree Recording values
Method Call Recording If this feature is abused, the call tree can become very large, adding

significant overhead.

Exceptional Methods
0com.ejt.demo.server‘handIerst;HandIer.onl‘v‘lessage@avax.]ms.Mes;age) +

Split Methods

Y Call Tree Filters
| Trigger Settings
; Databases

Q HTTR, RPC & JEE

Split by return value of script: | message.get/MSDestination(Jd | x

General Settings Copy Settings From “ Cancel

188

B.5 Call Tree Analyses

The call tree [p. 53] shows the actual call stacks that JProfiler has recorded. When analyzing
the call tree, there are a couple of transformations that can be applied to the call tree to
make it easier to interpret. These transformations can be time-consuming and change
the output format in a way that is incompatible with the functionality in the call tree view,
so new views with the results of the analyses are created.

To perform such an analysis, select a node in the call tree view and choose one of the call
tree analysis actions from the tool bar or the context menu.

© o <
View Show Record et e Show
BP0t cotings | TP lagend | CPU Back Fonward | coch (RS
Show Flame Graph Ctrl+Alt+F
Thread status: Thread selection: Collapse Recursions Ctri+Alt+L | level:
B Runnable ~ 88 Allthread groups Calculate Cumulated Qutgoing Calls Ctrl+Alt+G s =

- @_ 03 53,' - 2746 me - 1 inv. com.sun tn’olsja\ralc Calculate Backtraces To Selected Method Ctrl+Alt+B

% - 2,307 ms - 1inv. com.sun.tools jave Inline Async Executions Ctrl+Alt+E

() 41,6% - 1,220 ms - 1inv., com.sun.toolsjavac.mainJavaCompiler.compiled

- 813 ms - 1 inv, com.sun tools.javac.mainJavaCompiler.attribute
- 813 ms - 1 inv. com.sun.toelsjavac.comp.Attr.attrib

™= 277%- 813 ms - 1 inv. com.sun.toolsjavac.comp.Attr.attribClass
0.0% - 1 ps - 1 inv, com.sun.tools javac.treeJCTree.hasTa
4 g

@ 0.0%- 7 ps - 2 inv. com.sun.tools.javac.util AbstractLog.useSource

@ 0.0%-4ps-Tinv. com.sun.toolsjavac.comp.CompileStates.isDone

@ 0.0%- 1 ps - 1inv. com.sun.tools javac.api. MultiTaskListener.isEmpty

@ 0.0%-1ps - 1inv. com.sun.tools.javac.main.JavaCompiler.errarCount
@l 6.3% - 184 ms - 1 inv. com.sun.toelsjavac.mainJavaCompiler.desugar

J P g
(@15.4% - 157 ms - 1inv. com.sun.tools javac.main.JavaCompiler.generate
@l 2.2% - 63,365 ps - 1 inv. com.sun.tools.javac.main.JavaCompiler.flow
@ 0.0% - 35 ps - 1 inv. com.sun.toclsjavac.mainJavaCompiler$2.< clinit>
J P
@ 0.0% - 24 ps - 1 inv. com.sun.tools javac.main JavaCompiler.reportDeferredDiagnostics
@ 0.0%-16ps-1inv. com.sun.toolsjavac.comp. Tedo.poll
@ 0.0% - 7 s - 2 inv. com.sun.toeolsjavac.comp.Todo.size
J P
@ 0.0%- 2 ps - 1inv. com.sun.tools.javac.main.JavaCompilerwarningCount
@ 0.0%-1Tus-2inv. com.sun.toolsjavac.mainJavaCompiler.printCount
@ 0.0% - 1 ps - 1inv. com.sun.toolsjavac.util.Log.hasDiagnosticlistener
J] g

> @

A nested view will be created below the call tree view. If you invoke the same analysis
action again, the analysis will be replaced. To keep multiple analysis results at the same
time, you can pin the result view. In that case, the next analysis of the same type will create
a new view.

@ 6,890 recursions were collapsed in the selected call tree fragment @ x [4=]
Thread status: Thread selection: Aggregation level:
== Runnable | @8 All thread groups @ Methods

Call tree root: | com.sun.tools.javac.mainJavaCompiler.attribute — com.sun.toels javacr v Show more

@G) I 100.0% - 813 ms - 12 inv. com.sun toolsjavac.comp.Attr.attribClass
00 %) 100 N7 - 812 e - 31 ine Fam e tanle fauar famn At stk lace

In live sessions, the result views are not updated together with the call tree and show data
from the time when the analysis was made. To re-calculate the analysis for the current
datag, use the reload action. If the call tree itself has to be re-calculated, like in the allocation
tree with disabled auto-updates, the reload action takes care of that as well.

Collapsing recursions

A programming style that makes use of recursions leads to call trees that are difficult to
analyze. The "Collapse recursions” call tree analysis calculates a call tree where all
recursions are folded. The parent node of the current selection in the call tree serves as
the call tree root [p. 180] for the analysis. To analyze the entire call tree, select one of the
top-level nodes.

189

” Telemetries @ 6,890 recursions were collapsed in the selected call tree fragment @ x (‘? @

Thread status: Thread selection: Aggregation level:
'l:l' Live Memory == Runnable 88 Al thread groups @ Methods

Calltreeroot: | com.suntoolsjavac.mainJavaCompiler.attribute — com.sun.toolsjavacr * Show more

’
-ﬁ Heap Walker (D C) m— 100.0% - 213 ms - 12 inv. com.sun.tools,javac.comp.Attr.attribClass
@) w—100.0% - 813 ms - 31 inv. com.sun.toolsjavac.comp.Attr.attribClass
. (@ C) m— 30,7 - 311 ms - 12 inv. com.sun.toclsjavac.comp.AttrattribClassBody
CRUMiaw D@ 02%-1,613 ps-12inv. com.sun.toolsjavac.comp.Attr.isSerializable
@G) 0.0% - 173 ps - 12 inv. com.sun.toolsjavac.code Lintaugment
4 Call Tree @G} 0.0% - 173 ps - 24 inv, com.sun toolsjavac.util. AbstractLog.useSource
© 0.0% - 162 ps - 12 inv. com.sun.teolsjavac.comp.Check.checkClassOverrideEqualsin
©) 0.0% - 125 ps - 31 inv. com.sun.toolsjavac.code Types.supertype
5 0,0% - 72 ps - 12 inv. com.sun.toolsjavac.comp.Check.checkFunctionallnterface
2 0.0% - 48 ps - 4 inv. com.sun.tools,javac.code. Type hasTag
2 0.0% - 35 ps - 29 inv. com.sun.toolsjavac.comp.Check.checkMonCyclic
2 0,0% - 26 ps - 12 inv. com.sun.tools.javac.code.DeferredLintHandlerflush
=) 0.0% - 24 ps - 12 inv. com.sun.tools.javac.comp.Check.checkDeprecatedAnnotation
2 0.0% - 12 ps - 11 inv. com.sun.tools,javac.comp. TypeEnvs.get
% 0.0% - 11 ps - 22 inv. com.sun.tools.javac.tree)CTree.pos
% - 9 ps - 20 inv. com.sun.tools.javac.comp.Check.setlint
moved 166 us - 19 inv. com.sun.teolsjavac.comp Attr.attribClass

@

Collapsed Recursions
Hot Spots
Call Graph

Outlier Detection

00600000060
e

Complexity Analysis

@

Call Tracer

JavaScript XHR - D

A recursion is detected when the same method was already called higher up in the call
stack. In that case, the subtree is removed from the call tree and stitched back to the first
invocation of that method. That node in the call tree is then prefixed with an icon whose
tool tip shows the number of recursions. Below that node, stacks from different depths are
merged. The number of merged stacks is shown in the tool tip as well. The total number
of collapsed recursions is shown in the header, above the information about call tree
parameters that were set for the original call tree.

() () e—100.0% - 213 ms - 12 inv. com.sun.tools.javac.comp.Attr.attribClass

100.0% - 813 ms - 31 inv. com.sun toolsjavac.comp.Attr.attribClass
(0.2 — 0, 7%, - 211 ms - 12 inv. com.suntnolsiavac.comp.AttrattribClassBody
| 16 recursive calls have been stitched back to this node. AttrisSerializable

@® 00%- 175 ps - 1Zinv. comsun fools.javac.code lint.augment

@@ 0.0%-175 ps - 2 inv. com.sun.toolsjavac.util AbstractLog.useSource

.0% - 162 ps - 12 inv. com.sun tools.javac.comp.Check.checkClassOverrideEqualsAn
0% - 125 ps - 3T inv. com.sun.teolsjavac.code Types.supertype

0% - 72 ps - 12 inv, com.sun.toels.javac.comp.Check checkFunctionallnterface

For a simple recursion, the number of merged stacks is the number of recursions plus one.
So a node whose recursion tool tip shows "1 recursion” would contain a tree with nodes
that show "2 merged stacks” in their recursion tool tip. In more complex cases, recursions
are nested and produce overlapping merged call trees, so that the number of merged
stacks varies from stack depth to stack depth.

At the point where a subtree is removed from the call tree to be merged higher up, a
special “* "moved nodes" placeholder is inserted.

Analyzing cumulated outgoing calls

In the call tree, you can see the outgoing calls for a selected method, but only for one
particular call stack where that method has been invoked. The same method of interest
may have been invoked in different call stacks, and it's often useful to analyze a cumulated
call tree of all those invocations in order to get better statistics. The "Calculate cumulated
outgoing calls” analysis shows a call tree that sums all outgoing calls of a selected method,
regardless of how the method was invoked.

190

” Telernetries 145 top-level call sites of the selected method were merged (7] x (‘? (=]

Thread status: Thread selection: Aggregation level:
'l:l' Live Memory == Runnable 88 Al thread groups @ Methods
Collapse 333 recursions in the merged call tree fragment
’
'ﬁ Heap Walker @D+) e—100.0% - 545 ms - 661 inv. com.sun.toolsjavac.code.SymbolSClassSymbol.complete
(@) m— 00,93 - 944 ms - 727 inv. com.sun.toolsjavac.code Symbol.complete
(@) m— 17% - 866 ms - 169 inv. com.sun.tools javac.jvm.ClassReader$1.complete
I CPU Views @ @) — 01,7% - 866 ms - 169 inv. com.sun.tools,javac,jvm.ClassReader.complete

@G) W 55,77 - 620 ms - 28 inv. com.sun.toolsjavac.jvm.ClassReaderfillln{com.sun.tc
4 Call Tree @G ™ 253%- 238 ms - 141 inv. com.sun.teols.javac.jvm.ClassReader fillln{com.sun tool:
@G} 0.3% - 3,190 ps - 133 inv. com.sun.teclsjavac.comp.Annotate.flush
@G) 0.2% - 1,970 ps - 141 inv. com.sun.teols.javac.jvm.ClassReader.completeEnclosing

Cumulated Qutgein
S @@ 0.1%- 615 ps - 141 inv. com.sun.tools.javac.code.ScopeSErorScope. <init»

Hot Spots @ 0.0%-107 s - 144 inv. com.suntoclsjavac,jvm.ClassReader.completeOwners
@G) 0.0% - 53 ps - 100 inv. com.sun.toels javac.comp.Annotate.enterStart
Call Graph @@ 0.0%- 42 ps - 95 inv. com.sun.tools javac.comp.Annotate.enterDoneWithoutFlush
@l T.7% - 72,882 s - 12 inv. com.sun.toolsjavac.comp.MemberEnter.complete
Qutlier Detection @ 0.4%- 4,017 ps - 3 inv. com.sun.toolsjavac.codeSymtabs2.complete
. @ GJ 0.1% - 830 ps - 2 inv. com.sun.tools.javac.code.SymtabS1.complete
Complexity Analysis @G 0.0%- 118 ps - 16 inv. com.sun.toolsjavac.code TypeSErrorType <init>
Call Tracer
JavaScript XHR ~ @

For the selected method, JProfiler collects all its top-level invocations without considering
recursive calls and cumulates them in the result tree. The header shows how many such
top-level call sites were summed in that process.

At the top of the view, there is a checkbox that allows you to collapse recursions in the
result tree, similar to the "Collapse recursions” analysis. If recursions are collapsed, the top
level node and the first level of outgoing calls show the same numbers as the method
call graph.

Calculating backtraces

The "Calculate backtraces” analysis complements the "Calculate cumulated outgoing
calls” analysis. Like the latter, it sums all top-level calls of the selected method without
considering recursive calls. However, instead of showing outgoing calls, it shows the back
traces that contribute to the invocations of the selected method. The call originates at
the deepest node and progresses toward the selected method at the top.

’ Telernetries Merged backtraces for 166 call sites of the selected method (7] x (’*}) (=]
Thread status: Thread selection: Agagregation level: Summation mode:
i’:’l Live Memory == Runnable 8 All thread groups @ Methods Total times ~
Collapse 322 recursions in the merged call tree fragment
]
'ﬁ Heap Walker @+) w—100.0% - 545 ms - 681 hot spot inv. com.sun.toolsjavac.code SymbolSClassSymbol.c
() m— 55,0% - 651 ms - 59 hot spot inv. com.sun.toolsjavac.comp Enter.complete
D@ 184%-78939 ps- 18 hot spot inv. com.sun.tools.javac.jvm.ClassReader.loadClass
I CPU Views @1 7.0% - 66,024 us - 29 hot spot inv. com.sun.toolsjavac.code SymbelSClassSymbol.flags

@@ 15.0%- 46,914 ps - 12 hot spot inv. com.sun.tools,javac.compAttrvisitClassDef
(@1 3.8% - 35,643 s - 9 hot spot inv. com.sun.toolsjavac.code.SymbolSClassSymbal.members

P] ! !
@12.2%- 21,012 ps - T hot spot inv. com.sun.toolsjavac.code TypeSClassType.complete
(@1 2.0% - 18,465 ps - 41 hot spot inv. com.sun.toolsjavac.code.SymbolsClassSymbol getinterfaces
@@ 1.5%- 14,090 ps - 14 hot spot inv. com.sun tools.javac.jvm.ClassReaderS2.getEnclosingType
Hot Spots @ 1.3% - 12,089 ps - 66 hot spot inv. com.sun.toolsjavac.code Symbol$ClassSymbol.getSuperclass

@G 0.0%- 183 ps - 406 hot spot inv. com.sun.tools.javac.jvm.ClassWriter.enterlnner

4 Call Tree

Backtraces

Call Graph

Outlier Detection
Complexity Analysis
Call Tracer

JavaScript XHR = D

This analysis is similar to the hot spots view, only that by default it sums total times instead
of self-times for the selected method, and the hot spots view only shows methods whose
self-time is a significant fraction of the total time. At the top of the view there is a radio

191

button group labeled Summation mode that can be set to Self times. With that selection,
the summed values for the selected method match that of the default mode in the hot
spots view.

In the back traces, the invocation counts and times on the back trace nodes are only
related to the selected method. They show how much the invocations along that particular
call stack have contributed to the values of the selected method. Similar to the "Calculate

cumulated outgoing calls” analysis, you can collapse recursions and the first level in the
backtraces is equivalent to the incoming calls in the method call graph.

Call tree analyses in the call graph

Inthe call graph, each method is unique while in the call tree methods can occur in multiple
call stacks. For one selected method, the "Calculate cumulated outgoing calls” and the
"Calculate backtraces” analyses are a bridge between the viewpoints of the call tree and
the call graph. They put the selected method in the center and show the outgoing and

incoming calls as trees. With the Show Call Graph action, you can switch to the full graph
at any time.

Sometimes, you want to switch the perspective in the opposite direction and change from
graph to a tree view. When you are working in the call graph, you can show the cumulated

outgoing calls and the backtraces as trees for any selected node in the graph with the
same call tree analyses as in the call graph.

Thread status: Thread selection: Aggregation level:
Telemetries
== Runnable 88 Al thread groups @ Methods

1
B i
1’:‘- Live Memory c.5tj.comp.Enter \
a L1 1

- complete —

.
'ﬁ Heap Walker

I CPU Views

|
956 ms, 37 s self, 1inv. \ |

= CStlvm.ClassReader§2

3

E;Ixﬂu

- i
- getEnclosingType | 1
14,217 ps, BT ps self, 87 inv, \ ".I‘
|
Call Tree VY
Calculate Backtraces To Selected Method Ctrl+Alt+B Wil
Hot Spots . ssSymbol - A\
P Calculate Cumulated Outgoing Calls Ctrl+Alt+ G \.‘ \
3,0- i 55 Il
Call Graph r ol 3,03 N5 52, 15569 inv. (|
Wi
Qutlier Detection ’D —
]E[= c.s.tjjym.ClassReader
Complexity Analysis T completeOwners
99,442 ps, 113 s self, 148 inv
Call Tracer 2
JavaScript XHR = c.stj.code SymboliClassSymbol
2 = getinterfaces

18.505 us, 38 us self. 45 inv.
Threads

In the IntelliJ IDEA integration [p. 141], the call graph that is shown in the gutter of the editors
contains actions to show these trees directly.

Showing classes for allocations

A little bit different from the previous call tree analyses is the "Show classes” analysis in
the allocation call tree and the allocation hot spots views. It does not transform the call
tree to another tree, but shows a table with all allocated classes. The result view is similar
to the recorded objects view [p. 71|, but restricted for a particular allocation spot.

192

632 instances in 15 classes have been allocated at the .
' Telemetries selected call stack €P Reload analysis X ¢ e
Recorded allocations: Live objects at 00:03, 1/10 allocations, All classes
|':'| ErE Mehony Aggregation level: @ Methods
All Objects Allocation spot: Jjava.awt.Graphics2D.fill — bezier.BezierAnimSDemo.drawDemo — * Show more
Recorded Objects Name Instance Count Size
] java.util HashMapSNode I 171 (27 %) 5,472 bytes
4 Allocation Call Tree Jjava.awt.geom.AffineTransform 7 (0% 4,104 bytes
. java.awt.geom.Point2D5Double . 579 %) 1,824 bytes
Allocation Classes
java.awt.GradientPaintContext I 304 %) 1,920 bytes
Allocation Hot Spots Jjeva.awt.RenderingHints 304 %) 430 bytes
Jjava.awt.geom.Path2D5FloatSCopylterator Wl 29(4%) 928 bytes
Class Tracker Jjava.awt.geom.Point2DSFloat W 254 %) 696 bytes
Jjava.lang.Integer W 294%) 464 bytes
I Heap Walker java.lang.ref. WeakReference W 294%) 928 bytes
-ﬁ java.util. HashMap W 02 1,392 bytes
sun java2d.loops.GraphicsPrimitiveMgréPrimitiveSpec [l 29 (4 %) 464 bytes
I CPU Views sun.javald.pipe AlphaPaintPipesTileContext Ml 29 (4 %) 1,392 bytes
int[] Ml 22 (d%) 29,344 bytes
java.awt.qeom.Rectangle2DSFloat Wl 284 %) 896 bytes
T Threads Total from 15 rows: 632 (100 %) 51,648 bytes
@

In the analysis result views that show call trees, both the "Calculate cumulated outgoing
calls” and the "Calculate backtraces to selected method" analyses are available. Invoking
them creates new top-level analyses with independent parameters. Any call tree removals
from the previous analysis result view are not reflected in the new top-level analysis.

The Show Classes action, on the other hand, does not create a new top-level analysis
when used from a call tree analysis result view. Instead, it creates a nested analysis that
is two levels below the original view.

193

C Advanced CPU Analysis Views

C.10utlier Detection And Exceptional Method Recording

In some situations, it's not the average invocation time of a method that is a problem, but
rather that a method misbehaves every once in a while. In the call tree, all method
invocations are cumulated, so a frequently called method that takes 100 times as long as
expected once every 10000 invocations will not leave a distinct mark in the total times.

To tackle this problem, JProfiler offers the outlier detection view and the exceptional method
recording feature in the call tree.

Outlier detection view

The outlier detection view shows information about the call durations and invocation
counts of each method together with the maximum time that was measured for a single
call. The deviation of the maximum call time from the average time shows whether all
calls durations are in a narrow range or if there are significant outliers. The outlier coefficient
that is calculated as

(maximumtime - average tinme) / average tine

can help you to quantify methods in this respect. By default, the table is sorted such that
the methods with the highest outlier coefficient are at the top. Data in the outlier detection
view is available if CPU data has been recorded.

3 o
’ Telernetries Thread status: @ All states Change
Method Total Time Inv, Avg, Time Max. Time Qutlier Coeff, €
"i bezier.BezierAnimSDemo.block(boolean) 799 ms 423 1,890 us 200 ms 104,85
Wy e Memoy bezier.BezierAnimSDemo.step(int, int) 1915 200ms 0349

bezier.BezierAnimSDeme.paint(java.awt.Gra... 1,268 ms 49 3,028 ps 203 ms 66.1
'E Heap Walker java.lang.Thread.sleep(long) 4,480 ms 419 10,693 ps 12,968 ps 0.213

I CPU Views

Call Tree

Hot Spots

Call Graph

Outlier Detection
Complexity Analysis
Call Tracer

JavaScript XHR

Threads v @

To avoid excessive clutter from methods that are only called a few times and from methods
that are extremely short running, lower thresholds for the maximum time and the invocation
count can be set in the view settings. By default, only methods with a maximum time of
more than 10 ms and an invocation count greater than 10 are shown in the outlier statistics.

Configuring exceptional method recording

Once you have identified a method that suffers from exceptional call durations, you can
add it as an exceptional method in the context menu. The same context menu action is
also available in the call tree view.

194

Thread status: @) | ©X0 Al states Change

Method Total Time Inv. Avg. Time Max. Time Qutlier Coeff. €
bezier.BezierAnimSDemo.block(boolean) 799 ms 423 1,890 us 200 ms 104,85
bezier BezierAnimSDemottoo o oxt 202 ms 1419 1,915 ps 200 ms 103.49
bezwer‘BaierAmrnSDerrl @ Add As Exceptional Method & ms 419 3,028 ps 203 ms 66.1
Jjava.lang.Thread.sleepi] 0ms 419 10,693 ps 12,969 ps 0.213

= Show Source F4
i Show Bytecode

Sort Outlier Statistics »
£ Find Crl+F
T Export View Ctrl+R
View Settings Ctrl+T

When you register a method for exceptional method recording, a few of the slowest
invocations will be retained separately in the call tree. The other invocations will be merged
into a single method node as usual. The number of separately retained invocations can
be configured in the profiling settings. By default, it is set to 5.

When discriminating slow method invocations, a certain thread state has to be used for
the time measurement. This cannot be the thread status selection in the CPU views,
because that is just a display option and not a recording option. By default, the wall clock
time is used, but a different thread status can be configured in the profiling settings. The
same thread state is used for the outlier detection view.

€ Session Settings X
g

] [Enable CPU profil
Application Settings [Enable [Pl g

Aute-Tuning For Instrumentation

E: Call Tree Recording Enable auto-tuning @

A method n into the list of ignored
methods
' Call Tree Filters
Trigger Settings
; Databases
Call Tree Recording Optiens
0 HTTP, RPC & JEE CPU times for instrumentation: () Elapsed times) Estimated CPU times)
Instrument native methods o
o VM & Custom Probes Thread resolution for async sampling €
sl Exceptional Method Run Recording
:i;‘]} Advanced Settings
Maximum number of separately recorded method runs: 5% @
CPU Profili
e Time type for determining exceptional method runs: | EX0 All states v
Probes & JEE

Call Tree Splitting
Memary Profiling

Maximum number of splits: 128 | ¥ D
Thread Profiling

Miscellaneous Async And Remote Request Tracking

W Erahle acme and remnte reanect trackinn £3

General Settings Copy Settings From “ Cancel

In the session settings, you can remove exceptional methods or add new ones without
the context of the call tree or the outlier detection view. Also, the exceptional method
configuration provides the option to add exceptional method definitions for well-known
systems, like the AWT and JavaFX event dispatch mechanisms where exceptionally
long-running events are a major problem.

195

@ Session Settings X

il . X 1 This list contains metheds whose exceptional invocations are split in the call tree.
Application Settings ¢ Exceptional invocations are those where the total time spent in the methed is much
more time than the median time for that method.
%g Call Tree Recording You can find methods with pronounced exceptional invocations in the outlier
detection view and add themn from there.
Method Call Record
od -allRecording Exceptional invocations are only recorded if the method call recording type is set to
Exceptional Metheds Instrumentation.
Split Methods Exceptional invocations are not recorded for virtual threads.
0 bezier.BezierAnimSDemo.step(int, int) +
' Call Tree Filters

Search in Configured Class Path

. : Search in Other JAR or Class Files
Trigger Settings

Search in Profiled Classes

Enter Manually (Advanced)
; Databases

Common Exceptional Methods # I
@ HTTP, RPC & JEE

General Settings Copy Settings From “ Cancel

Exceptional methods in the call tree

Exceptional method runs are displayed differently in the call tree view.

. Thread status: 0 Thread selection: Aggregation level:
Telemetri
lemetnes O Allstates | @8 All thread groups v | | @ Methods ~

. 0_ 50.0% - 7,671 ms - 1 inv. bezier.BezierAnimSDemo.run
":" Live Memary m— 50.0% - 7,671 ms - 1 inv. java.awt.EventDispatchThread.run
@8 11.7%- 1,798 ms - 602 inv. bezier.BezierAnim$Demo.paint
0' 2.3% - 359 ms - 602 inv. bezier.BezierAnimS$Demo.drawDemo
b Heap Walker c‘ 1.3% - 203 ms - 397 inv, bezier.BezierAnim3Demao step [merged exceptional runs]

¥ my 1.3% - 200 ms - 1 inv. bezier.BezierAnim$Demo.step [exceptional run]

0 1.3% - 200 ms - 1inv. bezier.BezierAnimSDemo.block

I CPU Views @ 0.0% - 1 ps - 12 inv. bezier.BezierAnimSDemo.animate
@) 1.3%- 200 ms - 1inv. bezier.BezierAnimSDemo.step [exceptional run]
G-\ 1.3% - 200 mns - 1inv, bezier.BezierAnimSDemo.step [exceptional run]

e @) 1.3%- 200 ms - 1inv. bezier.BezierAnimSDemo.step [exceptional run]

Hot Spots) 1.3%- 200 ms - 1inv. bezier.BezierAnimSDemo.step [exceptional run]
W 1.2%- 186 ms - 601 inv, java.awt.Graphics.drawlmage

Call Graph @ 0.3% - 42,048 pc - 602 inv. bezier.BezierAnimSDemo.createGraphics2D
© 0.0% - 336 ps - 601 inv. java.awt.Graphics2D.dispose

Outlier Detection @ 0.0% - 4,513 ps - 602 inv. bezier.BezierAnimSDemo§1.run

Complexity Analysis
Call Tracer

JavaScript XHR

Threads . M7

The split method nodes have modified icons and show additional text:
« @ [exceptional run]

Such a node contains an exceptionally slow method run. By definition, it will have an
invocation count of one. If many other method runs are slower later on, this node may
disappear and be added to the "merged exceptional runs” node depending on the
configured maximum number of separately recorded method runs.

+ @ [merged exceptional runs]

Method invocations that do not qualify as exceptionally slow are merged into this node.
For any call stack, there can only be one such node per exceptional method.

+ @ [current exceptional run]

196

If an invocation was in progress while the call tree view was transmitted to the JProfiler
GU|, it was not yet known whether the invocation was exceptionally slow or not. The
‘current exceptional run” shows the separately maintained tree for the current invocation.
After the invocation completes, it will either be maintained as a separate “exceptional
run” node or be merged into the "merged exceptional runs” node.

Like for call tree splitting by probes [p.105] and split methods [p. 185], an exceptional method
node has a Merge Splitting Level action in the context menu that lets you merge and
unmerge all invocations on the fly.

Thread status: ﬂ Thread selection: Aggregation level:
O All states = . All thread groups hd @ Methods

() mmm 50,0% - 9,822 ms - 1 inv. bezier.BezierAnim$Demo.run
0 50,05 - 9,822 ms - 1 inv. java.awt.EventDispatchThread.run
@l 11.5% - 2,256 ms - 776 inv. bezier.BezierAnimSDemo.paint

ep [merged exceptional runs]

=3 Show Call Graph Lblock
I Show Threads mo.animate
[awDemo
G Add Method Trigger c
G ip [current exceptienal run]

[@ Add As Exceptional Method

createGraphics2D
=< Split Method with a Script

@0 (-] Intercept Method With Script Probe I
I 22 Unmerge splitting level Ctrl+Alt+M
Sg Rernove Selected Sub-Tree Delete
W Add Filter From Selection 3

197

C.2 Complexity Analysis
The complexity analysis view allows you to investigate the algorithmic complexity of
selected methods depending on their method parameters.

To refresh the details on big O notation, an introduction to algorithmic complexity " and
a comparative guide to complexities for common algorithms @) are recommended
readings.

First, you have to select one or more methods that should be monitored.

@ Configure Complexity Recordings X
Configured methods:
@ sort.Comparison.executeBubbleSort(int] , int) E?

Script returning the complexity as an integer: | i x
[m] sort.Comparison.executeSelectionSort{int]], int)
@ sort.Comparison.executelnsertionSort(int(], int)
@ sort.Comparison.executeQuickSort(int[1, int)

4

Cancel

@ Help

For each method, you can then enter a script whose return value of type | ong is used as
the complexity for the current method call. For example, if one of the method parameters
of typejava. util. Coll ectionisnamedi nputs, the script could bei nputs. si ze().

Edit X

@

Settings Edit Search

X P

Cut

Code Help
< N & %)
%* &
Modify Test
Classpath Compile

mm
Show
History

o

Copy Paste Find Replace Help

Please enter an expression (ne trailing semicolon) or a script (ends with a return statement) that censists of
regular Java code. The following parameters are available:

£ 100

- com jprofiler.api.agent.ScriptContext scriptContext

- jgva.lang.Class<?> ¢
- sort.Comparison currentObject

- int]] intArray
-int i

The expected return type is long

Script:

1 intArray.length

Cancel

Complexity recording is independent of CPU recording. You can start and stop complexity
recording directly in the complexity analysis view or by using a recording profile or a trigger
action [p. 27]. After recording has been stopped, a graph with the results is displayed
plotting the complexities on the x-axis against the execution times on the y-axis. To reduce
memory requirements, JProfiler can combine different complexities and execution times
into common buckets. The drop-down at the top allows you to switch between the different
configured methods.

V) https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
(2) https://bigocheatsheet.com/

198

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
https://bigocheatsheet.com/

The graph is a bubble chart, where the size of each data point is proportional to the number
of measurementsinit. If all measurements are distinct, you will see a regular scatter chart.
In the other extreme, if all method invocations have the same complexity and execution
time, you will see a single large circle.

” Telernetries Complexity recording: | (@ sort.Comparisen.executeBubbleSort(int]], int) v

Curve fits: Cuadratic (F°=0,997) [best fit] -

’i:!' Live Memaory
’
'ﬁ Heap Walker

I CPU Views
151

Call Tree £
£
Hot Spots 5
e E 101
Call Graph
Outlier Detection
54
Complexity Analysis -
-'-’-'
Call Tracer et
JavaScript XHR [T T T T T
0 1,000 2,000 3,000 4,000 5,000
Threads Complexity

If there are at least 3 data points, a curve fit with common complexities is shown. JProfiler
tries curve fits from several common complexities and initially shows you the best fit. The
drop-down for the curve fits allows you to show other curve fit models as well. The R* value
embedded in the description of the curve fit shows you how good the fit is. The models in
the drop-down are sorted in descending order with respect to R’, so the best model is
always the first item.

Complexity recording: @ sort.Comparison.executeBubbleSort(int] 1, int) hd

Curve fits: Quadratic (R"=0.997) [best fit]

204

Constant (R°=0

me in ms

Note that R* can be negative, because it is just a notation and not really the square of
anything. Negative values indicate a fit that is worse than a fit with a constant line. The
constant line fit always has an R* value of 0 and a perfect fit has a value of 1.

You can export the parameters of the currently displayed fit by choosing the "Properties”
option in the export dialog. For automated analysis in a quality assurance environment,
the command line export [p. 252] supports the properties format as well.

199

C.3 Call Tracer

Method call recording in the call tree cumulates calls with the same call stacks. Keeping
precise chronological information is usually not feasible because the memory requirements
are huge and the volume of the recorded data makes any interpretation quite difficult.

However, in limited circumstances, it makes sense to trace calls and keep the entire
chronological sequence. For example, you may want to analyze the precise interlacing of
method calls of several cooperating threads. A debugger cannot step through such a use
case. Alternatively, you would like to analyze a series of method invocations, but be able
to go back and forth and not just see them once like in the debugger. JProfiler provides
this functionality with the call tracer.

The call tracer has a separate recording action that can be activated in the call tracer
view, with a trigger [p. 27?or with the profiling API [p.129]. To avoid problems with excessive
memory consumption, a cap is set on the maximum number of collected call traces. That
cap is configurable in the view settings. The rate of collected traces heavily depends on
your filter settings.

Call tracing only works when the method call recording type is set to instrumentation.
Sampling does not keep track of single method calls, so it is technically not possible to
collect call traces with sampling. Calls into compact-filtered classes are recorded in the
call tracer, just like in the call tree. If you just want to focus on your own classes, you can
exclude these calls in the view settings.

@ Call Tracer View Settings X

Trace Recerding
Maximum number of recorded call traces: hDD,DDD v

Record calls into unprofiled classes &)

Time Display
© Relative to first trace
Relative to previous node
Relative to previous node of the same type
Method Display

[Show signature

Show class names in method nodes

The traced method calls are displayed in a tree with three levels that make it easier to
skip related calls by collapsing them. The three groups are I threads, @ packages and
9 classes. Each time the current value for any of these groups changes, a new grouping
node is created.

At the lowest level there are @ method entry and @ method exit nodes. Below the table
with the call traces, the stack trace of the currently selected method trace is shown. If call
traces into other methods have been recorded from the current method or if another
thread interrupts the current method, the entry and exit nodes for the that method will not
be adjacent. You can navigate on the method level only by using the Previous Method
and Next Method actions.

200

@ H 2 82 8 % ¢ % 23 0 U »

Start Save Session Start Stop Start Add View Record Hide

St Run GC Export Hel)
Center P Snapshot Seings | Recordings Recordings Tracking | Bookmark PO Cettings “p Traces | Selected Hidde

14,517 traces, 0 hidden element

” Telemetries =
L AWT-EventOueue-0 (33 traces) +0ps
java.awt (1 trace) +0ps
-‘:' Live Memory <] Jjava.awt.EventDispatchThread (1 trace) +0ps
. @ run() +0ps
bezier (32 traces) +0ps
b Heap Walker © bezier.BezierinimsDemo (32 traces) +0ps
(R paint(java.awt.Graphics) +0ps
@R step(int, int) +123 ps
I CPU Views (2 animate(float[] float[], == = + 127 ps
(@ animate(float]] float[], W Hide Selected Delete + 23T ps
T R animate(float]] floatl], © Show Hidden Cirl+AltsS + 241 ps
Q animate(float[], float] |, + 244 ps
Hot Spots @ animate(float[], float[|, = Show Source F4 + 245 ps
G animate(float|], float[|, i Show Bytecode + 246 ps
Call Graph @ animate(float|], float]], + 248 ps

e — s 1 Skip To Previous Method Trace Alt+Up —

bezier.BezierAnimSDemo.step(int, int) @ Skip To Next Method Trace Alt+ Down
bezier.BezierAnimSDemo.paint(java.a

Outlier Detection

Complexity Analysis

Jjava.awt.EventDispatchThread.run) /O Find Ctrl+F
Call Tracer
T Export View Ctrl+R
JavaScript XHR _—
View Settings Ctrl+T
Threads
@ 1 active recording VM #1 00:13 @ Profiling

The timing that is displayed on the traces and all grouping nodes refers to the first trace
by default, but can be changed to show relative times since the previous node. If the
previous node is the parent node, that difference will be zero. Also available is the option
to show relative times with respect to the previous node of the same type.

Even with appropriate filters, a huge number of traces can be collected in a very short
time. To eliminate traces that are of no interest, the call tracer allows you to quickly trim
the displayed data. For example, certain threads might not be relevant or traces in certain
packages or classes might not be interesting. Also, recursive method invocations can
occupy a lot of space and you might want to eliminate those single methods only.

You can hide nodes by selecting them and pressing the del et e key. All other instances
of the selected nodes and all associated child nodes will be hidden as well. At the top of
the view, you can see how many call traces out of all the recorded traces are still shown.
To show hidden nodes again, you can click on the Show Hidden tool bar button.

£ 8B T % L &% 0 |l OO

Start Stop Start Add View Record Hide Show | Previous Meat
N .) Run GC Export N Help "
ecordings Recordings Tracking Bogkmark Setings Traces | Selected Hidden | Methed Methed

6,597 of 14,517, 1 hidden element

: AWT-EventQueue-0 (9 traces) +0ps
java.awt (1trace) +0us

201

C.4 JavaScript XHR Origin Tracking

With JavaScript XHR origin tracking, you can split servlet invocations for different stack
traces in the browser during XMLHttpRequest ™ or Fetch ¥ requests, so you can better
correlate the activity in the profiled JVM with actions in the browser. in the following, "XHR"
designates both the XMLHttpRequest and the Fetch mechanisms.

Browser plugin

To use this feature, you have to use Google Chrome ©) as the browser and install the

JProfiler origin tracker extension @

[J [] @ about:blank x + -

&« (&) @ about:blank I Im} o

Extensions X

No access needed
These extensions don't need to see and change

information on this site.

@ JProfiler Origin Tracker J;l

‘.[§1 Manage Extensions

The Chrome extension adds a button with a @ JProfiler icon to the tool bar that starts
tracking. When you start tracking, the extension will intercept all XHR calls and report them
to a locally running JProfiler instance. As long as tracking has not been started, JProfiler
will show an information page that tells you how to set up JavaScript XHR origin tracking.

” Telemetries = JavaScript XHR Origin Tracki
= | pt g ng
":" Live Memaory IProfiler can track the JavaScript stack traces of XHR calls from a Chrome browser into the profiled JVM,
When XHR tracking is active, you get
]
ﬁ Heap Walker = Atree of JavaScript calls that initiate XHR calls into the profiled JWM
= JavaScript call tree splitting below the URL splitting level
I CRUMiex = Full JavaScript stack traces in the call tree
Call Tree To activate this feature, you have te install the JProfiler Chroeme extension and teggle the L IProfiler
tracking button in Chrome,
Hot Spots
Call Graph After you complete these actions, this notice will disappear and the JavaScript XHR call tree will be shown,

Outlier Detection
Complexity Analysis
Call Tracer

JavaScript XHR

Threads

When tracking is activated, the JProfiler extension will ask you to reload the page. This is
necessary for adding instrumentation. If you choose to not reload the page, event detection

may not work.

() https://xhr.spec.whatwg.org/
(2) https://fetch.spec.whatwg.org/
(3) http://www.google.com/chrome/

4 https://chrome.google.com/webstore/detail/jprofiler-origin-tracker/
mnicmpklpjkhohdbcdkflhochdfnmmbm

202

https://xhr.spec.whatwg.org/
https://fetch.spec.whatwg.org/
http://www.google.com/chrome/
https://chrome.google.com/webstore/detail/jprofiler-origin-tracker/mnicmpklpjkhohdbcdkflhochdfnmmbm

The tracking status is persistent on a per-domain basis. If you restart the browser while
tracking is active and visit the same URL, tracking will automatically be enabled, without
the need to reload the page.

JavasScript XHR tree

If the XHR calls are handled by a JVM that is profiled by an active profiling session in
JProfiler, the JavaScript XHR view will show a cumulated call tree of these calls. If the view
remains empty, you can switch the "Scope” at the top of the view to "All XHR calls” to check
if any XHR calls have been made.

Scope: | XHR calls that were recorded in this JVM hd

=4 http://localhost:8082/js/app-6f880a36.js:43582:.7

g completeQutstandingRequest (http: c
@ http://localhost:8082/}s/app-6f880a
& ScopeSapply (http://localhost:8
& ScopeSdigest (hitp
@ ScopeSeval (hitp
@ http://localhost: 8082/
@ processQueue (hitp
@ serverRequest (hitp
ga sendReq (http://localhost fj
@ http://localhost:3082/js/app-6330a36.
@ http://localhost:8082/)s/app-6f880a36,js:54520:28
@ http://lecalhost:B082/js/ app-6f280a36,js:74205:20
ga handler (hitp://localhost:308
& ScopesSapply (http://|
i ScopeSdigest (hitp
& ScopeSeval (hitp://locall a0
@ http:/flocalhost:8082/js/app
e processQueue (hitp://loc
g serverRequest (hitp c
ga sendReq (http://localhos fj J
@ http://localhost:8082/js/app-6f280a36.j5:48063:11 jump to execution site
&, mouseup on <a> [ng-mouseup: 'entryClicked(entry, Sevent)']
&, click on <buttens> [ng-click: 'settingsService.settings.readingMode = ‘all"]
g AMLHttpRequest.requestLoaded (http://localhost:8082/js/app-6f380a36.j 480879

306311 jump to execution site

Javascript & call stack nodes include information on the source file and the line number.
The function where the XHR call is made has a @ special icon and adjacent hyperlink in
case the XHR call was handled by the profiled JVM. The hyperlink will take you to the
Javascript splitting node in the call tree view [p. 53] where you can see the server side
call tree that was responsible for handling requests of this type.

At the top of the tree you find ‘. browser event nodes that show event name and element
name together with important attributes that help you pin down the source of the event.
Not all requests have an associated event.

The extension is aware of several popular JavaScript frameworks and walks the ancestor
hierarchy between the target node of an event up to the node where the event listener is
located, looking for attributes that are suitable for display and splitting the call tree. Failing
to find framework-specific attributes, it stops at an i d attribute. In the absence of an ID,
it searches for "control elements’ like a, but t on ori nput . All failing, the element where the
event listener is registered will be shown.

In some cases, the automatic detection of interesting attributes may not be suitable and
you may prefer a different call tree splitting. For example, some frameworks assign
automatic IDs, but it would be more readable to group all elements together with a
semantic description of the action. To achieve a different call tree splitting, add the HTML
attribute

data-jprofiler="..."

to the target element or an element between the target and the location of the event
listener. The text in that attribute will be used for splitting and other attributes will be
ignored.

203

Call tree splitting
In the call tree view, XHR calls will split the call tree for each separate combination of

browser event and call stack. The & splitting hodes show information about the browser
event. If no event is in progress, like in a call to set Ti meout (), the last few stack frames

are displayed inline.

Thread status: 0 Thread selection: Aggregation level:
== Runnable - 88 All thread groups A @ Methods +

) 50,6% - 938 ms - Sinv. org.eclipse jetty.util thread. QueuedThreadPool$3.run
@ = 45.2% - 712 ms - 3 inv. HTTP: frest/category/get
@ ® 12.7% - 200 ms - 3 inv. HTTP: /rest/category/entries
5.5% - 87,291 ps - 1inv. click on <button> [ng-click: 'settingsService.settings.readingMode = 'all"'] show more
15,5% - 87,284 ps - 1inv. com.commafeed.CommaFeedApplication$4.doFilter
ml 5.5% - 87,277 ps - 1 inv. io.dropwizard.servlets.CacheBustingFilter. doFilter
W 00%-2ps-1 inv. javax.servlet.http. HttpServletRequest. getRequestURI
W 00%-1us-1 inv. java.lang.5tring.contains
14.7% - 74,036 s - 1inv. http://localhost:8082/js/app-6f880a36.,js:48063:11 — sendReq — serverRequest — processCueue — hitp://loy
1 2.5% - 39,281 ps - 1inv. http://localhost:B082/]s/app-6fB880a36.js:48063:11 — sendReq — serverRequest — processQueue — http://loc
8% - 12,143 ps - 1 inv. HTTP: /rest/entry/mark
g 0.8%- 12,129 ps - 1 inv. mouseup on <a> [ng-mouseup: ‘entryClicked(entry, Sevent)'] show more
0.8% - 12,122 ps - 1 inv. com.commafeed.CommaFeedApplication$4.doFilter
0.8% - 12,112 ps - 1inv. io.dropwizard.servlets.CacheBustingFilter.doFilter
m 0.0% - 2 ps - 1 inv. javax.servlet.http.HttpServietRequest. getRequestURI
m 0.0% - 1 ps - 1inv. java.lang.5tring.contains
ﬂ 0.6% - 9,933 ps - 1 inv, HTTP: /rest/user/settings
U B 40.4% - 636 ms - 5 inv. java.util.concurrent. ThreadP oolExecutorSWorker.run

i &

@

The "show more" hyperlink on these nodes opens the same detail dialog that is opened
by the View->Show Node Details action. For JavasScript splitting nodes, the detail dialog
does not show the text of the node, but the entire browser call stack. To inspect the call
stack of other JavaScript splitting nodes, leave the non-modal detail dialog open and
click on those nodes. The detail dialog will update its contents automatically.

Details for Selected Element ®

http://localhost:8082/]s/app-6£880a36.]3:48063:11
sendReg (http://1
serverRequest
processQueue (t
http://localho.
Scope.feval (h
Scope.fdigest
Scope.fapply (I c
HTMLButtonElement. <anonymous>
HTMLButtonElement. jQuery.event.disp:
elemData.handle (http://localkl 3
HTMLButtonElement.<anonymous:
click on <button> [ng-click: 'settingsService.settings.readingMode = "all'']

atch

This Invocation Sub-Tree €& All Invocations &)

Total 87,291 us 87,291 us 97,213 us
Self T s T s 18 ps
Calls 1 1 2

204

D Heap Walker Features In Detail

D.1 HPROF And PHD Heap Shapshots

The HotSpot JVM and the Android Runtime both support heap snapshots in the HPROF
format, The IBM J9 JVM writes such snapshots in the PHD format. PHD files do not contain
garbage collector roots, so JProfiler simulates classes as roots. Finding class loader memory
leaks may be difficult with a PHD file.

Native heap snapshots can be saved without the profiling agent and incur a lower overhead
than JProfiler heap snapshots, because they are saved without the constraints of a general
purpose API. On the flip side, the native heap snapshots support less functionality than
JProfiler heap snapshots. For example, allocation recording information is not available,
S0 you cannot see where objects have been allocated. HPROF and PHD snapshots can be
opened in JProfiler withSession->Open Snapshot, just like you would open a JProfiler
snapshot. Only the heap walker will be available, all other sections will be grayed out.

In a live session, you can create and open an HPROF/PHD heap snapshot by invoking
Profiling->Save HPROF/PHD Heap Snapshot. For offline profiling [p. 129], there is a "Create
an HPROF heap dump” trigger action. It is usually used with the "Out of memory exception”
trigger to save an HPROF snapshot when an Qut Of Menor yEr r or is thrown.

@ Trigger Wizard - Out of memory exception X
1. Trigger type Configure actions for this trigger

2. Actions

3. Description Configured actions:

4. Group 1D 1 .

i ! create an HPROF/PHD heap dump +

4 Back Next b Finish Cancel

This corresponds to the VM parameter (')

- XX: +HeapDunmpOnQut OF Menor yEr r or
that is supported by HotSpot JVMs.
An alternative way to extract an HPROF heap dump from a running system is via the

command line tool j map that is part of the JRE. Its invocation syntax

jmap -dunp:live, fornat=b, fil e=<fil enane> <Pl D>

0 http://docs.oracle.com/javase/9/troubleshoot/command-line-optionsl.htm#JSTGD592

205

http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

is difficult to remmember and requires you to use the j ps executable to find out the PID first.
JProfiler ships with an interactive command line executable bi n/ j pdunp that is much
more convenient. It lets you select a process, can connect to processes running as a
service on Windows, has no problems with mixed 32-bit/64-bit JVMs and auto-numbers
HPROF snapshot files. Execute it with the - hel p option to get more information.

Taking HPROF heap snapshots without loading the profiling agent is also supported in the
JProfiler GUI. When attaching to a process, locally or remotely, you always have the
possibility to just take an HPROF heap snapshot.

@ IProfiler Start Center X

Start Center

© On this computer On another computer On a Kubernetes cluster
Open Container: Mone, showing top level processes Select Container
Session

Status: All detected HotSpot/Open9 IWWMs Show Services

‘ PID Process Mame

Quick bezler‘E‘-ez\erAmm block

Attach 17804 ChUsershingo\AppData\Local\JetBrains\Toolbox\apps\IDEA-Uhch-00232,.8660.185\jbr
18228 org.jetbrains jps.cmdline.Launcher C:/Users/inge/AppData/Local/JetBrains/Toolbox//apps/IDEA-...
o= 2172 org.jetbrains.kotlin.daemon.KotlinCompileDaemen --daemon-runFilesPath Ch\Users\inge\AppD...
22236 org.gradle.wrapper.GradleWrapperMain --daemon screenshotsLightEn
Mew 25664 org.jetbrains.idea.maven.server.RemoteMavenServer36
Session 26084 org.jetbrains kotlin.daemon.KotlinCompileDaemon --daemen-runFilesPath C:\Users\ingo\AppD...
27736 C:\Users\ingo\AppData\Local\letBrains\ Toolbox\bintjre
25888 org.gradle.launcher.daemon.bootstrap.GradleDaemon 8.3
Open
Snapshots
Legend: Profiling agent loaded JProfiler GUI connected Offline mode JFR running

m Heap Dump Only | @ Start JFR. (7] Close

HPROF snapshots can contain thread dumps. When an HPROF snapshot was saved as a
consequence of an Qut O Menor yEr r or, the thread dump may be able to convey what
part of the application was active at the time of the error. The thread that triggered the
error is marked with a special icon.

All thread groups
‘ Telemetries s drede

main
Maonitor Ctrl-Break

i
i h
2 Live Memory

system

Finalizer
b Heap Walker Reference Handler

Signal Dispatcher

Current Object Set
Thread Dump
I CPU Views
javalang.OutOfMemoryError.<init>() (line: 48)
javawutil ArrayList, <init= (int) (line: 132)
Threads misc. 00MTest.main(java.lang.5tring[]} (line: 41)

Menitors & Locks

Databases

P B > W

HTTP. RPC & JEE

206

D.2 Minimizing Overhead In The Heap Walker

For small heaps, taking a heap snapshot takes a couple of seconds, but for very large
heaps, this can be a lengthy process. Insufficient free physical memory can make the
calculations a lot slower. For example, if the JVM has a 50 GB heap and you are analyzing
the heap dump on your local machine with only 5 GB of free physical memory, JProfiler
cannot hold certain indices in memory and the processing time increases
disproportionately.

Because JProfiler mainly uses native memory for the heap analysis, it is not recommended
to increase the -Xnmx value in the bin/jprofiler.vnoptions file unless you have
experienced an Cut Of Menor yError and JProfiler has instructed you to make such a
modification. Native memory will be used automatically if it is available. After the analysis
has completed and the internal database has been built, the native memory will be
released.

For a live snapshot, the analysis is calculated immediately after taking the heap dump.
When you save a snapshot, the analysis is saved to a directory with the suffix . anal ysi s
next to the snapshot file. When you open the snapshot file, the heap walker will be available
very quickly. If you delete the . anal ysi s directory, the calculation will be performed again
when the snapshot is opened, so if you send the snapshot to somebody else, you don't
have to send the analysis directory along with it.

If you want to save memory on disk or if the generated . anal ysi s directories are
inconvenient, you can disable their creation in the general settings.

@ General Settings X

Ul Session Defaults Snapshots IDE Integrations Updates External Programs

Heap Dump Analysis
The heap walker needs to analyze the heap dump before it can be shown. Depending on the heap size, this
analysis can take a leng time. JProfiler can save the results of the analysis, so that snapshots can be
opened much faster.
Store heap dump analysis

If the analysis is missing, JProfiler will simply perform it again when you open the snapshot.

You can also use the jpanalyze command line tool to pre-analyze snapshots were taken automatically in
offline mode.

HPROF snapshots and JProfiler snapshots that were saved with offline profiling [p. 129] do
not have an . anal ysi s directory next to them, because the analysis is performed by the
JProfiler Ul and not by the profiling agent. If you do not want to wait for the calculation
when opening such snapshots, the j panal yze command line executable can be used to
pre-analyze [p. 252] snapshots.

It is advisable to open snapshots from writable directories. When you open a snapshot
without an analysis, and its directory is not writable, a temporary location is used for the
analysis. The calculation then has to be repeated each time the snapshot is opened.

A big part of the analysis is the calculation of retained sizes. If the processing time is too
long and you don't need the retained sizes, you can disable their calculation in the overhead

207

options of the heap walker options dialog. In addition to retained sizes, the "Biggest objects”
view will not be available either in that case. Not recording primitive data makes the heap
snapshot smaller, but you will not be able to see them in the reference views. The same

options are presented when opening snapshots if you choose Customize analysis in the
file chooser dialog.

@ Heap Snapshot Options X

Select recorded objects

Initially, the heap walker will show only those objects that have been
recorded in the dynamic memory view section.

Perform full GC in heap snapshot 0

Retain objects held by soft references -

Calculate retained sizes | @
Record primitive data o

208

D.3 Filters And Live Interactions

When looking for objects of interest in the heap walker, you often arrive at an object set
that has too many instances of the same class in it. To further trim the object set according
to your particular focus, the selection criteria could then involve their properties or
references. For example, you may be interested in HTTP session objects that contain a
particular attribute. In the merged outgoing reference view of the heap walker you can
perform selection steps that involve chains of references for the entire object set.

However, the outgoing references view where you see individual objects offers much more
powerful functionality to make selection steps that constrain references and primitive
fields.

© Classes Wl Allocations EE Biggest Objects 1 References O Time @ Inspections 3

Current object set: 4,474 instances of java.util.HashMap$Node
2 selection steps, 143 kB shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references v Use.. ¥ | Apply filter ... v | =3 Show In Graph 7:0:} | |[@

Object By restricting the selected value hallow Size Allocation Time (him:s)
o java.util. HashMapSNode (0x7a50) With a code snippet 32 bytes n/a
hash = 876200628
key & class javax.swing RepaintManager (0x15f
HANDLE_TOP_LEVEL_PAINT = true
BUFFER STRATEGY NOT SPECIFIED = 0

When you select a top-level object, a primitive value or a reference in the outgoing
references view, the Apply Filter->By Restricting The Selected Value action becomes
enabled. Depending on the selection, the filter value dialog offers different options.
Whatever options you configure, you always implicitly add the constraint that objects in
the new object set must have outgoing reference chains like the selected one. Filters
always work on the top-level objects by restricting the current set of objects into a possibly
smaller set.

© Classes Wl Allocations EE Biggest Objects ¥ References O Time @ Inspections +

Current object set: 4,474 instances of java.util.HashMap$Node
2 selection steps, 143 kB shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references - Use.. > Apply filter .. + Show In Graph | @
Object Retained Size Shallow Size Allocation Time (himss)
¥ java.util HashMapShode (0x7a50 1,488 kB 32 bytes n/a
hash = 876200628
key & class javax.swing RepaintManager (3 @) Filter Value ¥

HANDLE_TOP_LEVEL_PAINT = true

BUFFER_STRATEGY NOT _SPECIFIED = (T Select all objects from the current object set for which the following is true:

BUFFER_STRATEGY_SPECIFIED_ON = 1

BUFFER_STRATEGY_SPECIFIED_OFF = 2 @ The object has an outgoing reference chain just like the selected one

BL{FFEB‘STRA][(_;_Y‘—[YFF_: 2 # The selected primitive value satisfies the following condition:

Selection step 2: Class
java.util.HashMapSNede

4,474 instances of java.uti.HashMap&Node

Integer value | equals - 12345 hd

Selection step 1: All ohjects, after full GC, retainingswrerererences

T B I T T S R

Constraining primitive values works in both HPROF and JProfiler heap snapshots. For
reference types, you can ask JProfiler to filter non-null values, null values, and values of a
selected class. Filtering by the result of the t oSt ri ng() method is only available in live
sessions, exceptforj ava. | ang. Stringandj ava. | ang. d ass objects where JProfiler can
figure this out by itself.

209

© Classes Wl Allocations EE Biggest Objects 1 References o Time @ Inspections 3

Current object set: 4,474 instances of) B Fitter Value X

2 selection steps, 143 kB sl v Select all objects from the current object set for which the following is true:

Outgoing references M Use.. ¥ & The object has an outgoing reference chain just like the selected one
Object ﬁ The selected reference satisfies the following condition:

I:-iJava.utlI‘HashMapSNode (x7a50)

hash = 876200628 The reference is not null

key =/ class javax.swing.RepaintManager (i
HANDLE_TOP_LEVEL_PAINT = true
BUFFER_STRATEGY_NOT_SPECIFIED = |) The instance is of the type:
BUFFER_STRATEGY_SPECIFIED_ON = 1
BUFFER_STRATEGY_SPECIFIED_OFF = 2
BUFFER_STRATEGY TYPE= 2 Also match derived classes

The result of the toString() method satisfies the condition:

The reference is null

java.lang.String

Selection step 2: Class
java.util.HashMapSNode

4,474 instances of java.util.HashMapSNode

Selection step 1: All objects, after full GC, retainingswrerererences
- .

7 40T mleia it 4 A almmmem

The most powerful filter type is the code filter snippet. In the script editor, you have access
to the object or reference and can write an expression or script whose boolean return
value decides whether an instance should be retained in the current object set or not.

@ Settings Edit Search Code Help Edit X
P Z PR %O
gg) = [& L
) B Show . Modify Test
Copy Cut EEC Find Replace | o o eth Compie Help
Y Select all objects from the current object set for which the following is true:
9 The cbject has an outgeing reference chain just like the selected cne
& The selected reference passes the following filter script:
=:‘ Please enter an expression (ne trailing semicolon) or a script (ends with a return statement) that censists of
‘?'m regular Java code. The following parameters are available:
- com jprofiler.api.agent.ScriptContext scriptContext
- sun.awtimage.PixelConverter pixelConverter
The expected return type is boolean
Filter script:
1 k:ixelﬂnnverter. gethlphaMask() & 255 == 255 .

Of course this feature can only work for live sessions, because JProfiler needs access to
the live objects. Another consideration is that an object may have been garbage collected
since the heap snapshot was taken. In that case, such an object would not be included

in the new object set when a code snippet filter is executed.

Apart from filters, there are two other features in the outgoing references view for interacting
with individual objects: The Show toString() Values action invokes the t oSt ri ng() method
on all objects that are currently visible in the view and shows them directly in the reference
nodes. The nodes can become very long and the text may be cut off. Using the Show Node
Details action from the context menu helps you to see the entire text.

210

© Classes Wl Allocations .. Biggest Objects 1 References O Time @ Inspections 3

Current object set: 7 instances of sun_font.FontFamily
2 selection steps, 336 bytes shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references v Use.. ¥ Apply filter ... ¥ #3 Show In Graph

Object Retained Size Shallow Size Allocation Time (himss)

[sunfont.FontFamily ((x8d05) ["Font family: M... 224 bytes 48 bytes n/a

initialized = false

logicalFont = true

familyRank = 2

familyWidth = 0 Details for Selected Element ®

familyName ‘:)java.lang‘Strmg (Monaospaced"]

fontSequence 'SJava.ut\I.Arraystt (0x2d06) ["[sun.font.FontFz
M <un font FantFamily (02006 ["Font famile Ser...

sun.font.FontFamily (0x8d05) ["Font family: Monospaced
plain=null bold=null italic=null belditalic=null initialized=false"]

Selection step 2: Class
sun.font.FontFamily

7 instances of sun.font.FontFamily

Selection step 1: All objects, after full GC, retaining soft references

7 40T mleia it 4 A almmmem

A more general method of obtaining information from an object than calling the
toString() methodistorunan arbitrary script that returns a string. The Run Script action
next to the Show toString() Values action allows you to do that when a top-level object

or a reference is selected. The result of the script execution is displayed in a separate
dialog.

@ Settings Edit Search Code Help Edit X
i » \
¥ E PR+ & O
I Show Modiy Test
Undo Copy Cut Pase 0 Find Replace | 2 compie | MR

@ Run a script with the selected instance as a parameter.

The returned string will be displayed in a dialog.

Please enter an expression (ne trailing semicolon) or a script (ends with a return statement) that censists of
regular Java code. The following parameters are available:

- com jprofiler.api.agent.ScriptContext scriptContext
- java.lang.Class<?> ¢

The expected return type is java.lang.String

java.util.stream.Collectors;

2 Rrrays.stream{c.getDeclaredMethodsa())
3 .map{m -> m.toeString())

4 .collect (Collectors.jolning("\n"))

21

D.4 Finding Memory Leaks

Distinguishing regular memory usage from a memory leak is often not quite simple.
However, both excessive memory usage and memory leaks have the same symptoms
and so they can be analyzed in the same way. The analysis proceeds in two steps: Locating
suspicious objects and finding out why those objects are still on the heap.

Finding new objects

When an application with a memory leak is running, it consumes more and more memory
over time. Detecting the growth of memory usage is best done with the VM telemetries
and the differencing functionality [p. 71] in the "All objects” and the "Recorded objects’
views. With these views, you can determine if you have a problem and how severe it is.
Sometimes, the difference column in the instance tables already gives you an idea what
the problem is.

: -
- Telemetries Memory pool: | Heap
&

Overview

300 MB
Memary

Recorded Objects
Recorded Throughput
GC Activity 200 ME :
Classes
Threads
CPU Load

Custom Telemetries 100 ME -

-l:l' Live Memary

b Heap Walker

BN Freesize: 115.2MB ™ Used size: 1075 MB ®8 Committed size: 222.7MB » }9 }3 73

Any deeper analysis of a memory leak requires the functionality in the heap walker. To
investigate a memory leak around a particular use case in detail, the "Mark heap”
functionality [p. 81] is best suited. It allows you to identify new objects that have remained
on the heap since a particular previous point in time. For these objects, you have to check
whether they are still legitimately on the heap or if a faulty reference keeps them alive
even though the object serves no further purpose.

2 @ H 2 8 8 % C & O m|

st Stop save Sesfbcn J Start the recerdings in the selected recording profile l< = Help =n Mark
Center Snapshot Settings | R Settings Snzpshot| Heap

. Telemetries o No snapshot has been taken.

For a maximum of features:

'I:I' Live Memaory

Press ﬁ to take a JProfiler heap snapshot

Another way to isolate a set of objects that you are interested in is through allocation
recording. When taking a heap snapshot, you have the option to show all recorded objects.
However, you may not want to limit allocation recording to just a particular use case. Also,
allocation recording has a high overhead, so the Mark Heap action will have a
comparatively much smaller impact. Finally, the heap walker lets you select old and new

212

objects at any selection step with the Use new and Use old hyperlinks in the header if you
have marked the heap.

© Classes Wl Allocations EE Biggest Objects 1 References o Time @ Inspections 3

Current object set: 96,409 objects in 1,327 classes.

1 selection step, 7,565 kB shallow size

34,841 new instances (36.1%) since the last heap dump Use old

© Classes A Use.. v (& Group By Class Loaders Calculate estimated retained sizes
MName Instance Count Size
byte(] I (0,68 (21 %) 937 kB
java.lang.String I 1,296 (15 %) 357 kB
ava.util. HashMa ode), i)
i il.HashMapSMod I 0,132 (10 %) 324 kB
javalang.long I 5756 (5 %) 138 kB

Analyzing the biggest objects

If a memory leak fills up the available heap, it will dwarf other types of memory usage in
the profiled application. In that case, you don't have to examine new objects, but simply
analyze what objects are most important.

Memory leaks can have a very slow rate and may not become dominant for a long time.
Profiling such a memory leak until it becomes visible may not be practicable. With the
built-in facility in the JVM to automatically save an HPROF snapshot [p. 205] when an
Qut O Menor yEr ror is thrown, you can get a snapshot where the memory leak is more
important than the regular memory consumption. In fact, it's a good idea to always add

- XX: +HeapDunpOnQut OF Menor yEr r or

to the VM parameters or production systems, so you have a way to analyze memory leaks
that may be hard to reproduce in development environments.

If the memory leak is dominant, the top objects in the "Biggest objects” view of the heap
walker will contain the memory that was retained by mistake. While the biggest objects
themselves may be legitimate objects, opening their dominator trees will lead to the
leaked objects. In simple situations, there is a single object that will contain most of the
heap. For example, if a map is used to cache objects and that cache is never cleared,
then the map will show up in the dominator tree of the biggest object.

@ Classes Wl Allocations .- Biggest Objects i References o Time 7:9} Inspections 3

Current object set: 63,815 objects in 1,286 classes.

1 selection step, 5,476 kB shallow size

Mo grouping v | = Tree h Use.. v =3 Show In Graph @ = @
Object Retained Size
W sun.awt.AppContext (Dx6e53 I 1,545 kE (28 %)
D bezier.Bezierinim I :G kB (S %)

v 487 kB (99.9%) leakMap = java.util. HashMap

— 137 kB (99.9%) table @) java.util.HashMap$Nodel]
é{, Another 1,366 instances with a total retained size of 471 kB and a maximum single retained size of 912 bytes
.}é Anaother 6 instances with a total retained size of 376 bytes and @ maximum single retained size of 144 bytes

Iﬁ-i bezier.BezierAnimSDemo ((x51f4 | GRS
Iﬁ-iJava.utll‘zwp.leF|Ie550urce 0x316 112 4B (2 %)

1 com.jprofiler.agent.d.a (0x136 W 55,088 bytes (1 %)

@ sun.security.util. KnownQIDs 36 W 50,880 bytes (0 %)

W sun.security.provider.Sun (0x2950 W 49,176 bytes (0 %)

1 sun java2d.loops.GraphicsPrimitiveMgr (0x 129 1l 38,432 bytes (0 %)

@ javalang.invoke.MethodType (010 W 38,304 bytes (0 %)

Iﬁi Jjava.util.concurrent.CencurrentHashMap (02180 I 34192 bytes (0 %)

IJ sun.awt.ExtendedKeyCodes (0x 76 I 30336 bytes (0 %)
Ao i Kol e b Tl (Lol | IR e RN

213

Finding strong references chains from garbage collector roots

An object can only be a problem if it is strongly referenced. "Strongly referenced’, means
that there is at least one chain of references from a garbage collector root to the object.
"Garbage collector” roots (in short GC roots) are special references in the JVM that the
garbage collector knows about.

To find a reference chain from a GC root, you can use the Show Path To GC Root actions
in the "Incoming references” view or in the heap walker graph. Such reference chains may
be very long in practice, so they can generally be interpreted more easily in the “Incoming
references’ view. The references point from the bottom towards the object at the top level.
Only the reference chains that are the result of the search are expanded, other references
on the same levels are not visible until a node is closed and opened again or the Show
All Incoming References action in the context menu is invoked.

© Classes Wl Allocations EE Biggest Objects 1 References O Time @ Inspections 3

Current object set: 1,550 instances of java.awt.geom.GeneralPath
2 selection steps, 49 kB shallow size, Calculate retained and deep sizes Use retained objects

Incoming references v Use.. ¥ =3 Show In Graph @ s @ i Show Paths To GC Reot
Object Retained Size Shallow Size Allocation Time (himss)
J java.awt.geom.GeneralPath (0xBa8f) 248 bytes 32 bytes 0:0:07.2

@ value of java.util HashMapSNode (0:x2a2d
D element of java.util. HashMapSNUde[1(0
@ table of java.util.HashMap (0828
O leakMap of bezier, BEZIEI’AﬂIm 6178
0 this$0 of bezier.BezierAnimSDeme (0x614
Oj',java stack of Thread-0 in bezier.BezierAnimSDemo.run()

J java.awt.geom.GeneralPath 243 bytes 32 bytes 0:0:15.4
» java.awt.geom.GeneralPath 248 bytes 32 bytes nia
J java.awt.geom.GeneralPath 248 bytes 32 bytes 0:0:11.3
J java.awt.geom.GeneralPath 248 bytes 32 bytes n/a
J jeva.awt.geom.GeneralPath 248 bytes 32 bytes 0:0:07.2
J java.awt.geom.GeneralPath 248 bytes 32 bytes 0:0:15.4
» java.awt.geom.GeneralPath 248 bytes 32 bytes 0:0:11.3
» java.awt.geom.GeneralPath

248 bytes 32 bytes 0:0:07.2

SR SR T, YR . S ERT RN EE N

To get an explanation for types of GC roots and other terms that are used in the reference
nodes, use the tree legend.

@ Classes Wl Allocations EE Biggest Objects 7 References o Time 1:9:} Inspections »

Current object set: 1,550 instances of java.awt.geom.GeneralPath
2 selection steps, 49 kB shallow size, Calculate retained and deep sizes Use retained objects

Incoming references A Use..

Object Retained Size Shallow Size Allocation Time (himss)
¥ java.awt.geom.GeneralPath (0x 2257 248 bytes 32 bytes 0:0:07.2
@ value of java.util HashMapSNode (0x222d
D element of java.util, HashMapSNode[(0
@ table of java.util.HashMap (0xEat
3 leakMan of heier Rezierinim (06162

When you select nodes in the tree, the non-modal tree legend highlights all used icons
and terms in the selected node. Clicking on a row in the dialog will show an explanation
at the bottom.

214

Important types of garbage collector roots are references from the stack, references
created by native code through JNI and resources like live threads and object monitors
that are currently being used. In addition, the JVM adds in a couple of "sticky" references

Tree Legend

Node lcons
[] Instance in current ohject set
<] Class object in current object set
O Incoming reference
Reference cycle
[=] Inceming reference in path to GC root
o Class reference
i GC root
3{, Cutoff node
Terms And Abbreviations
JNI glebal Global reference from native JNI code
JNl lecal Local reference from native JNI code
array content Reference from an array
class loader Reference from a class loader
collection Reference from a Java collection
constant pool Reference from the constant pool of a class
field Reference from an instance field of an object

instance of class Reference from an instance to its class

interface Reference through implementing an interface
map key Reference from a key in a Java map

map value Reference from a value in a Java map
menitor used The monitor of an object is being used

An object that is used in an active stack frame cannot be garbage collected.

Stack frames can be active permanently if a method calls never returns.

The thread and the method name of the stack frame are specified.

to keep important systems in place.

Classes and classloaders have a special circular reference scheme. Classes are garbage

collected together with their classloader when

« no class loaded by that classloader has any live instances

 the classloader itself is unreferenced except by its classes

« none of the java.l ang. d ass objects are referenced except in the context of the

classloader

© Classes

il Allocations .. Biggest Objects K References o Time

Current object set: 134 instances of java.util. HashMap$Node
4 selection steps, 4,288 bytes shallow size, Calculate retained and deep sizes Use retained objects

Incoming references

ava.util. HashMapSMode ((x 702 5,344 bytes 32 bytes
J P

Object

@ Inspections

v Use.. ¥ #32 Show In Graph @ || @ i Show Paths To GC Root

Retained Size Shallow Size

D element of java.util.HashMapSNode[] (Dxcddc)
Q table of java.util.HashMap (0« 701)
@ resourceCache of javax.swing.UlDefaults (0 7b45)

@ element of javax.swing.UIDefaults]] (Dc

@ tables of javax.swing.UIManagerSLAFState (0x7b42)

@ value of java.util. HashMapSMode (0x 7Th41)

° element of java.util. HashMapSMode[] (Dxc3bl)

Q

table of java.util. HashMap (0 6236)
@ table of sun.awt. AppContext (6255

¥ R € static mainAppContext of class sun.awt.AppContext (Dx6aa)
i sticky class
DO constant of class com.sun.java.swing.SwingUtilities3 (0x5b2
DO constant of class com.sun java.swing.plaf.windows.AnimationController (0x22¢)

DO constant of class com.sun.java.swing.plafwindows.WindowsButtonUl (0xb 1)
Y - P R O S P-SU0 SO SRVE VTSROSOV S - SO X 2T

215

Allocation Time (him:s)

n

a

In most circumstances, classes are the last step on the path to the GC root that you are
interested in. Classes are not GC roots by themselves. However, in all situations where no
custom classloaders are used, it is appropriate to treat them as such. This is JProfiler's
default mode when searching for garbage collector roots, but you can change it in the
path to root options dialog.

@ Path Te GC Root Options X
Select options for the path to root analysis:
Calculating a single path to a garbage collector root is faster and often
sufficient for memory leak detection.
Single root O
Upto 2 roots
Allroots @

This search follows strong references only, as per the initial retention setting
for the heap dump.

Also follow soft, weak, phantom and finalizer references for this search O

IC] Stop search at classes IO

If you have problems interpreting the shortest path to a GC root, you can search for
additional paths. Searching for all paths to GC roots is not recommended in general
because it can produce a large number of paths.

In contrast to the live memory views, the heap walker never shows unreferenced objects.
However, the heap walker may not only show strongly referenced objects. By default, the
heap walker also retains objects that are only referenced by soft references, but eliminates
objects that are only referenced by weak, phantom or finalizer references. Because soft
references are not garbage collected unless the heap is exhausted, they are included
because otherwise you might not be able to explain large heap usages. In the options
dialog which is shown when you take a heap snapshot, you can adjust this behavior.

€ Heap Snapshot Options X

Select recorded objects

Initially, the heap walker will show only those objects that have been
recorded in the dynamic memaory view section,

C] Perform full GC in heap snapshot O

Retain objects held by strong referencesonly ~

soft
Show Overhead Option
weak

phantom m Cancel

finalizer

Having weakly referenced objects in the heap walker may be interesting for debugging
purposes. If you want to remove weakly referenced objects later on, you can use the
"Remove objects retained by weak references” inspection.

216

© Classes Wl Allocations EE Biggest Objects 1 References O Time

Current object set: 63,815 objects in 1,286 classes.

1 selection step, 5,476 kB shallow size

Awailable Inspections:

* Duplicate objects Description

Remove ohjects that are retained through a weak, soft or phantom reference.

:l Collections & Arrays

This will only work for weak reference types that you have not removed when

¢ Reference & field analysis taking the heap snapshot.
& \Weak references Configuraticn
Select weakly referenced objects Weak reference type: soft references v
Remove objects retained by weak references Status
' Stack references e Mot calculated 7:9:} Calculate inspection and create a new object set

0 Thread locals

© Classes & Class loaders

When searching for paths to GC roots, the reference types that were selected to retain
objects in the heap walker options dialog are taken into account. In that way, the path to
GC root search can always explain why an object was retained in the heap walker. In the
options dialog for the path to GC root search you can widen the acceptable reference

types to all weak references.

@ Path To GC Root Options X

Select options for the path to root analysis:

Calculating a single path to a garbage collector root is faster and often
sufficient for memory leak detection.

o Single root O

Up to 2 roots

Allroots @

This search follows strong references only, as per the initial retention setting
for the heap dump.

I Also follow soft, weak, phantom and finalizer references for this searchl O

Stop search at classes (7]

Eliminating entire object sets

Until now we have only looked at single objects. Often you will have many objects of the
same type that are part of a memory leak. In many cases, the analysis of a single object
will also be valid for the other objects in the current object set. For the more general case
where the objects of interest are referenced in different ways, the "Merged dominating
references” view will help you to find out which references are responsible for holding the

current object set on the heap.

217

© Classes Wl Allocations .. Biggest Objects 1 References o Time @ Inspections 3

Current object set: 4,474 instances of java.util.HashMap$Node
2 selection steps, 143 kB shallow size, Calculate retained and deep sizes Use retained objects

Merged dominating references ¥ || Objects to GC roots Use.. v @
T R Objectsto GCroots FRERVESFIRNNE)
B 7% - 3,457 instances| GC roots to ehjects ti.LHashMap

B 1% - 931 instances 0 250 instances of java.util.HashSet
W 13% - 821 instances () 1instance of bezier.BezierAnim
1 6% - 305 instances 0 53 instances of java.lang.Module
| 2% - 125 instances O 1 instance of sun.awt.resources.awt
| 2% - 125 instances (3.1 GC root
I 2% - 123 instances 0 class sun.font.TrueTypeFont
| 2% - 102 instances O 1 instance of sun.awt.windows.WToolkit
| 2% - 100 instances @Y 1 instance of sun.awt.windows.WDesktopProperties
I 2% - 96 instances O class sun.awt.ExtendedKeyCodes
I 1% - 89 instances ¥ 1 instance of com.sun.swing.internal.plaf.basic.resources.basic
| 1% - 63 instances @Y 37 instances of java.security.Provider§Service
| 1% - 539 instances o 5 instances of java.util.Collections$UnmodifiableMap
I 1% - 51 instances @ 1 instance of java.lang.ModulelLayer
| 1% - 49 instances @ class jdk.internal.misc. VM
I 1% - 49 instances & _class iava.securitv.Provider

All references may be transitive (7]

Each node in the dominating reference tree tells you how many objects in the current
object set will be eligible for garbage collection if you eliminate that reference. Objects
that are referenced by multiple garbage collector roots may not have any dominating
incoming reference, so the view may only help you with a fraction of the objects, or it may
even be empty. In that case, you have to use the merged incoming reference view and
eliminate garbage collector roots one by one.

218

E JDK Flight Recorder (JFR)

E.1 Support For JDK Flight Recorder (JFR)

JDK Flight Recorder (JFR) Vs a structured logging tool that records a broad range of
system-level events. Similar to the black box of an aircraft that continuously records flight
data for use in incident investigations, JFR continuously records a stream of events in the
JVM for use in diagnosing problems. The advantage of this approach is that it captures
chronologically detailed information about the system leading up to an incident. JFR is
designed to have a minimal impact on performance, and to be safe to run in production
environments over extended periods of time.

Starting with Java 17, JFR is also one of JProfiler's data sources. In addition to the native
agent that uses the profiling interface of the JVM, there are high-level systems in the JVM
that are of interest in a profiling context. One is the MBean system that provides data for
some telemetries in JProfiler, and the other is JFR that is used for the garbage collector
probe [p.119]. For that purpose, you do not interact with JFR, but JProfiler handles JFR event
streaming transparently.

JFR integration in JProfiler

JProfiler fully integrates JFR recording [p. 221], so you can easily capture data from running
JVMs on the local machine or on remote machines where JFR recording was not configured.

When you open a JFR snapshot in the JProfiler Ul, the available views and sections are
different from a regular profiling session. The centerpiece of the Ul is the event
browser [p. 225]. All other views that are available for JFR views are explained in a separate
chapter [p. 232].

As you work with event types, while setting filters and viewing analyses, JProfiler will
occasionally have to rescan the JFR snapshot file. JFR snapshot files are potentially huge,
and itis not viable to hold all data in memory or to calculate all analyses upfront. Because
of this, it is not recommended to open JFR snapshots from network drives.

When opening very large JFR snapshots, you can speed up snapshot processing and
reduce memory usage by clicking on the "Customize analysis” check box in the file chooser
and excluding the event categories that are not required for your analysis. The available
event categories cover single probes and view sections. Event types for CPU views, memory
views and for the telemetry views are not optional and have to be loaded.

For example, if you are only interested in CPU data, you can exclude all probes and the
event browser. JProfiler aims to be the fastest JFR viewer and opens typical JFR snapshots
quickly, but JFR recordings are potentially unbounded and you could be confronted with
a snapshot that is tens of gigabytes in size where the opening speed may become an
issue.

Stack traces in JFR snapshots

One important feature of JFR is the ability to log the entire stack trace for a certain event
type in an efficient way. For such events types, you can toggle stack trace recording in
the JFR settings. Many JVM application event types, especially the ones that are concerned
with threads, have stack trace recording enabled by default.

JFR only collects stack traces up to a fixed depth, so long stack traces are truncated.
Truncated traces are not suitable for building an understandable call tree, so these traces
are shown below a specially marked node. With the

0 https://en.wikipedia.org/wiki/ JDK_Flight_Recorder

219

https://en.wikipedia.org/wiki/JDK_Flight_Recorder

- XX: Fl i ght Recor der Opt i ons=st ackdept h=<nnnn>

VM parameter, you can increase the size of the collected traces in JFR and get rid of
truncated traces for your application.

220

E.2 Recording JFR Snapshots With JProfiler

Due to the benefits of running JFR in production JVMs with a minimal overhead and no
requirement to enable the profiling interface, JProfiler supports JFR recording directly in
the ULl While you can start JFR programmatically or by adding the -XX
St art Fl i ght Recor di ng VM parameter on the command line, JProfiler helps you to start
and stop recordings for JVMs that are already running.

When you attach to a JVM with JProfiler, you can choose to start and stop JFR recordings
instead of loading the native profiling agent. With JProfiler's extensive remote connection
capabilities, you can, for example, start JFR recordings in JVMs that run in Docker or
Kubernetes containers without the need to modify a container.

Starting and stopping JFR recordings

On the "Quick attach” tab of the start center, select a JVM and click on the Start JFR button
at the bottom of the dialog. Locally running JVMs are shown in the screenshot, but the
same button is also available when you attach to a remote JVM.

@ IProfiler Start Center »

Start Center

O On this computer On another computer On a Kubernetes cluster
|
Open Container: | [[] Mone, showing top level processes Select Container
Session
Status: All detected HotSpot/Open)9 IWMs ~ Show Services
‘ PID Process Mame
Quick 17804 ChUsershingo\AppData'Local\JetBrains\ Toolbox\apps\IDEA-U'\ch-01232.8660.185\jbr
Attach 18228 org.jetbrains.jps.crndline.Launcher C:/Users/ingo/AppData/Local/letBrains/Toolbox/apps/IDEA-...
beziel.BezierAnim block
= 21712 org.jetbrains. kotlin.daemon.KetlinCompileDaemon --daemen-runFilesPath Ch\Users\ingo\AppD...
p’ 22236 org.gradle.wrapper.GradleWrapperMain --daemon screenshotsLightEn
Mew 25664 org.jetbrains.idea.maven.server.RemoteMavenServer3
Session 26084 org.jetbrains.kotlin.daemon.KotlinCompileDaemen --daemon-runFilesPath C\Users\inge\AppD...
27736 C:\Users\ingo\AppData'Local\JetBrains\ Toolbox'\bin'jre
23883 org.gradle.launcher.daemon.bootstrap.GradleDaemon 8.3
Open
Snapshots
Legend: Profiling agent loaded JProfiler GUI connected Offline mode JFR running

m Heap Dump Only (7] Start JFR. (7] Close

In the JFR settings wizard, you can then select one of the event settings templates that
are transmitted fromthel i b/ j f r directory of the JRE that is used by the selected process.
By default, there are two such templates, "default” and “profile”, where "profile” records
more data and adds more overhead. If you create other files in that directory, you will be
able to select the corresponding templates in the wizard.

These template files contain the available events as well as configuration directives for
important high-level settings. Each of the high-level settings can be coupled to a number
of different events. This Ul is dynamically generated based on the contents of the template
file. Switching between the different profiles will show you the different default values.
There are many more event types that are not included in this Ul and which are only
configurable in the next step.

If you have already started a JFR recording for a JVM with the same set of event types,
JProfiler will offer you the option to use the last settings.

221

€ JFR Settings X

1. Recording Options JFR Recording options for the selected JVM
2, Adjust Configuration
3. Finished Maximum snapshot size: 1024 | | mB @
Available templates: profile
default
Settings for the selected te
Low overhead configuratil Last used for this type of VM
Garbage Collector Detailed hd
Allocation Profiling: Medium v
Compiler Detailed v

If you select that option, the high-level recording settings will not be available and you
can proceed to the next step to see the entire configuration and make further changes.

Another important setting on this step of the wizard is the maximum snapshot size. Due
to the nature of JFR recordings, the size of a snapshot can increase very quickly and might
fill up your entire hard disk. To avoid that, the maximum snapshot size constraint prevents
excessive storage utilization. When the maximum size is reached, older events will be
discarded while new events will continue to be recorded. This process is an automatic
mechanism of JFR.

In the next step of the wizard you can see a categorized tree of all event types with further
configuration for each event on the right side.

€ JFR Settings X
1. Recording Opticns Adjust selected event configuration

2. Adjust Configuration

3, Finished The configuration below is the result from your choices on the previous step. You can now make further

changes if required.

~ | Settings for the selected event:

B Flight Recorder Period: = 1000 ms (7]
Data Loss [jdk.Datal oss]
Flight Recording [jdk.ActiveRecording]
Flush [jdk Flush]
Recording Reason [jdk.DurnpReason]
Recording Setting [jdk. ActiveSetting]
B Java Application
Statistics
Class Loader Statistics [jdk.(
Class Loading Statistics [jdb
Direct Buffer Statistics [jdk DirectBufferSt

Java Thread Statistics [jdk JavaThread
Thread Allocation Statistics [jdk. ThreadAllocatic
Allocation in new TLAB [jdk
Allocation outside TLAB [jd!
File Force [jdk.FileFarce]
File Read [jdk.FileRead]

File Write [jdk.FileWrite]

jectAllocationOuts

@ Help 4 Back Next P Start Recording Cancel

Events may have a setting for a period, a threshold and a flag whether to record a stack
trace for each event or not. Both periods and thresholds are settings with time units and
you can press the down key to get a completion popup for the available units. Periods also
support the special values “everyChunk’, "beginChunk” and "endChunk” that are also
available from the completion popup. A “chunk” refers to a part of a JFR recording which
holds a contiguous set of event data and metadata and functions as the basic unit of
storage and data transport in a recording.

222

The more events are selected in the tree, the more data is being recorded. Some event
types generate huge amounts of data while some generate only few events.

Unlike the full profiling mode or the "Heap dump only” mode where you immediately see
some data in the Ul, starting a JFR snapshot only modifies the background color of the
JVMin the table when it is not selected so you can see that JProfiler has started a recording.
When the JVM is selected, the text of the JFR button at the bottom now shows you that
recording will be stopped.

@ IProfiler Start Center X

Start Center

o On this computer On another computer On a Kubernetes cluster
| 4
Open Container: | [[] Mone, showing top level processes Select Container
Session
Status: All detected HotSpot/Open)9 IWMs ~ Show Services
‘ PID Process Mame
Quick 17804 ChUsershingo\AppData'Local\JetBrains\ Toolbox\apps\IDEA-U'\ch-01232.8660.185\jbr
Attach 18228 org.jetbrains.jps.crndline.Launcher C:/Users/ingo/AppData/Local/letBrains/Toolbox/apps/IDEA-...
beziel.BezierAnim block
[® il 21712 org.jetbrains. kotlin.daemon.KetlinCompileDaemon --daemen-runFilesPath Ch\Users\ingo\AppD...
22236 org.gradle.wrapper.GradleWrapperMain --daemon screenshotsLightEn
Mew 25664 org.jetbrains.idea.maven.server.RemoteMavenServer3
Session 26084 org.jetbrains.kotlin.daemon.KotlinCompileDaemen --daemon-runFilesPath C\Users\inge\AppD...
27736 C:\Users\ingo\AppData'Local\JetBrains\ Toolbox'\bin'jre
23883 org.gradle.launcher.daemon.bootstrap.GradleDaemon 8.3
Open
Snapshots
Legend: Profiling agent loaded JProfiler GUI connected Offline mode JFR running

m Heap Dump Only (7] Stop JFR (7] Close

When you stop a JFR recording that was started by JProfiler, a JFR snapshot will be
transferred and opened in JProfiler. The snapshot is temporary and will be deleted when
you close the window. To save the snapshot to a permanent location, use the "Save
snapshot” action in the toolbar.

@ Session View Profiling Window Help IProfiler - O X
> H e

st | osae | Start 5 Start o Add L View el

Center " | Snapshot | 5= P etings =P

Event Browser
Flight Recorder (229 events
e _ . R Java Application (347 events

Terminated JVMs with JFR recordings

One mentioned use of JFR is to investigate the moments before a crash. In that case, the
JVM will not be available in the JVM table anymore to stop JFR recording and open the
JFR snapshot. If a JFR recording has been started in JProfiler and the JVM terminates before
you stop the recording, a special entry prefixed with "Terminated JFR:" will be added to the
JVM table. By double-clicking on that entry or using the "JFR" button, you can open the JFR
snapshot.

223

@ Attach To Running JVM X

o On this computer On another computer On a Kubernetes cluster

Container: | [l Mone, showing top level processes Select Container
Status: All detected HotSpot/Open9 IVMs ¥ Show Services

PID Process Name

17804 ChlUsers\ingohAppDatatLocal'JetBrains\ Toolbox\apps\IDEA-U\ch-0h232.8660.185 jbr
18228 org.jetbrains,jps.cmdline.Launcher C:/Users/ingo/AppData/Local/JetBrains/ Toolbox/a...
Telminated JFR: bezier.BezierAnim block

21712 org.jetbrains.kotlin.daemon.KotlinCompileDaemon --daemon-runFilesPath C:\Users\i...
22236 org.gradle.wrapper.GradleWrapperMain --daemon screenshotsLightEn

25664 org.jetbrains.idea.maven.server RemoteMavenServer36

26084 org.jetbrains.kotlin.daemon KotlinCompileDaemon --daemon-runFilesPath C:\Users\i...
27736 C:\Users\ingo\AppData\LocaltJetBrains\ Toolbox\binljre

28888 org.gradlelauncher.daemon.bootstrap.GradleDaemaon 8.3
Legend: Profiling agent loaded IProfiler GUI connected Offline mode JFR running

H Open Snapshot | @ Open Cancel

Once you open such an entry, it will be removed from the list. Just like for recordings that

are stopped manually, the opened JFR snapshot will be temporary and you have to save
it if you want to keep it for later analysis.

Showing externally started JFR recordings

In the example above, the JFR recording has been started and stopped in JProfiler. JFR
recordings that are started outside JProfiler can also be shown. Continuous JFR recordings
can easily be started with a VM parameter like

"-XX: StartFlight Recordi ng=naxsi ze=500mf i | enane=$TEMP/ nyapp. j f r, nane=Cont i nuous
recor di ng"

The indication via the special background color in the JVM table that a JFR recording is
running only refers to JFR recordings that were started in JProfiler. If you connect to a JVM
where a JFR recording has been started by other means, another dialog will be shown.

@ Select JFR recording X
Existing JFR recordings have been found in the selected VM. You can start a new
recording frem JProfiler or dump an existing recerding and open the resulting JFR

snapshot in JProfiler.

Start a new JFR. recording from JProfiler

Io Open a JFR snapshot for the selected recordlng:l

Continuous recording [running]

OK Cancel

You can now choose to start a new recording in JProfiler or to dump an existing recording
and show the resulting JFR snapshot in JProfiler. Externally started JFR recordings have a
separate life cycle and will not be stopped by JProfiler.

224

E.3 The JFR Event Browser

The event browser shows all data that has been recorded in a JFR snapshot.

Event Browser

Telemetries

Memery

CPU Views

Threads

Menitors & Locks

@ Diwmp

Probes

Flight Recorder (246 events

0 events)

Java Application (12
Statistics (519 events)

‘ Allocation in new TLAB (11,096 events) [j

0 Allocation outside TLAB (2713 events) [jc

‘ File Force (0 events) [jdk.FileForce]

0 File Read (0 events) [jdk.FileRead]

‘ File Write (0 events ileWrite]

OJava Error (22 event: JavaErrorThrow]

‘ Java Exception (435 events) [jdk.JavaExceptionTt

' Java Monitor Blocked (0 events) [jdkJavaMonitc

0 Java Monitor Inflated (D events) [jdk.Javalonito

‘ Java Monitor Wait (4,403 events) [jdk.JavaMonit:

0 Java Thread End (72 events) [jdk.ThreadEnd]

‘ Java Thread Park (330 events) [jdk. ThreadPark]

O Java Thread Sleep (1 event) [jdk.ThreadSlesp]

‘ Java Thread Start (72 events) [jdk. ThreadStart]

' Socket Read (73 events cki

0 Socket Write (0 eve

Select an event type to view data

JFR organizes event types into hierarchical categories that make up the tree on the left
side of the event browser. You can select a single event type to show the recorded events.
By default, JProfiler shows all registered event types, even if no events were recorded for
them. Alternatively, you can choose to hide empty event categories in the view settings

dialog.

JFR events

Events are shown as rows in the main table with the columns depending on the selection

in the tree of event types.

-

Flight Recorder (245 events)
Java Application

,.960 eve
Statistics (519 events)
0 Allocation in new TLAB |
‘ Allocation outside TLAB
' File Force (0 events) [jdk.
‘ File Read (0 events) [jdk.|
‘ File Write (0 events) [jdk.
DJava Error (22 eve [jdl
‘ Java Exception (433 even
0 Java Monitor Blocked (0
‘Java Menitor Inflated (0
OJava Monitor Wait (4,405
D Java Thread End (72 ever
0 Java Thread Sleep (1 ever
' Java Thread Start (72 eve
0 Socket Read (75 events) |
’ Socket Write (0 events) [j
Java Virtual Machine (95,597

Filter in all text columns ~ +

-

Start Time Duration Event Thread & Class Parked On
0:02.901 [Jul 15 PM] 539 ms AWT-EventQueue-0 (ID 27) java.util.concurrent.locks.?
0:03.913 [Jul 15 PM] 101 ms TimerQueue (ID 32 java.util.concurrent.locks.2
0:03.913 [Jul 19 PM] 101 ms AWT-EventQueue-0 (10 27) java.util.concurrent.locks.2
0:04.014 [Jul 19 PM] 16,097 ps TimerCQueue (1D 22 Jjava.util.concurrent.locks.?
0:04.015 [Jul PM] 15,423 ps AWT-EventQueue-0 (|0 27) java.util.concurrent.locks.2
0:04.212 [Jul PM] 1534 ms TimerQueue (1D 22 java.util.concurrent.locks.?
0:04.213 [Jul PM] 35,841 ps AWT-EventQueue-0 (1D 27) java.util.concurrent.locks.?
0:04.256 [Jul PM] 61,973 ps AWT-EventQueue-0 (1D 27) java.util.concurrent.locks.2
0:04.325 [Jul PM] 41,154 ps AWT-EventQueue-0 (ID 27) java.util.concurrent.locks.A

0:04.602 [Jul 15 PM] 10,182 ps TimerQueue (ID 32 java.util.concurrent.locks.2
Total from 530 rows: 115s
+ Selection 1., Hot Spots & Call Tree @ Time Line [Duration +
e
‘ 0:10 0:20 0:30 0:40 0:50 1:00
100 | | | I | |
i)
1
530 events log Fclip<inh - SIny. |

The events in the table are sorted chronologically by default. To avoid overloading the Ul,
only the first 10000 events are shown in the table. The analyses at the bottom are always
calculated from all events. If you set a filter, it will also check all events, not just the first
10000. This means that when setting a filter, events may show up in the table that were

previously not displayed.

225

You can also select multiple event types or entire categories. In that case, the union of
all selected events is shown in the table. Because each event type has its own set of
columns, only those columns that are common to all selected event types will be included.

v Filter in all text columns

v
Flight Recorder (246 events) Start Time Event Type Event Thread @)
Java Application (19,960 eve 0:00.266 [Jul 1 Java Thread End C2 CompilerThread?7 (10 13)
Statistics (319 events) 0:00.391 [Jul 1 Java Thread End C2 CompilerThreadt (10 12)
@ Allocation in new TLAE | 0:00.625 [Jul 1 Java Thread End C2 CompilerThread5 (10 11)
0:00.687 [Jul 1 Java Thread End C2 CompilerThread4 (1D 10)
Allocati tside TLAB
@ Allocation pusice 0:00.813 [Jul 1 Java Thread End C2 CompilerThread3 (10 9)
@ File Force (0 events) [dk. 500,813 [y 1 Java Thread End C2 CompilerThread2 (1D &)
@ File Read (0 events) [kl 0:00.814 Jul | Java Thread End C2 CompilerThread1 (1D 7)
@ File Write (0 events) [jdk. 0:01.236 [Jul 1 Java Thread End C2 CompilerThread3 (1D 11)
@ Java Error (22 events) [jd 0:01.346 [Jul 1 Java Thread End C2 CompilerThreadd (1D 10)
@ Java Exception (455 even 0:01.394 [Jul 1 Java Thread End 2 CompilerThread3 (10 9)
N 204 T lowim Thrnd Eend £ Pl Theaa A7 710 01
@ Java Menitor Blocked (0 602 rows
@ Java Menitor Inflated (01
e .
@ Java Monitor Wait | if Time Line
e — | |t 'REERERRREI EERRERRRE SERRERERE REEEERREERRRERERRE] |
" Java Thread End (72 eve 010 0:20 0:30 0:40 0:50 1:00
© Java Thread Park (530 ev 100 Il Il 1 ! I I
@ Java Thread Sleep (1 ever 0
@ Java Thread Start (72 eve
@SD(kEtREEd‘_'S events) | 1
602 events log ,@ ,Q }3 "-f

The number of available analyses may also be reduced because analysis views are added
based on the available columns.

Column widths are adjusted automatically based on their actual content until you resize
a column. Then, the width of columns with the same content type will be fixed to your
selection and will not change automatically anymore until you clear the column widths
in the view settings dialog. Scales in columns with units like time or memory are also
calculated automatically for each cell. If you prefer to fix the scale of a column for better
comparability, the view settings dialog offers an option for each such column. In this case,
the setting is persisted separately for each selected event type.

@ JFR Events View Settings X

General HotSpotsand Call Tree TimeLine Histograms

Time Axis
Scale to fit window 0

Show Bookmarks

Mone Intime scale) In entire view

Grid Lines for Time Axis

Mone At major ticks OAtmaJor and minor ticks

Grid Lines for Vertical Axis

Maone At major ticks oAtmaJnr and minor ticks

Event Counts

Logarithmic display for event counts

226

There are several ways to filter events. At the top of the table, there is a filter selector that
allows you to filter in all text columns or to select a single column and configure a filter
that matches the column type.

"7 Duration - > v 500 | % | ms A + Add

Flight Recorder (24

5 events) Duration 2 500 ms
Java Application 0

Start Time Duration Event Thread & Class Parked On
Statistics (519 events) 2.c7.07

0:02.901 [Jul 18, 2023 539 ms AWT-EventQueue-0 (ID 27) java.util.concurrent.locks.2

@ Allocation in new TLAB (0,04,905 [1ul 1 735 ms TimerQueue (I0 32 java.util.concurrent locks.2
. Allocation outside TLAB 0:05.564 [Jul 15 573 ms AWT-EventQueue-0 (ID 27) java.util.concurrent.locks.2
. File Force (0 events) [jdk. 0:03.857 [Jul 19 676 ms TimerQueue (10 32 Java.util.concurrent.locks.A
. File Read (0 events) [jdk.| 0:06.382 [Jul 508 ms TimerQueue (1D 22 Jjava.util.concurrent.locks.?
. File Write (0 events) [jdk. 0:06.888 [Jul 636 ms TimerCueue (1D 22 java.util.concurrent.locks.?

. X 0:08.232 [Jul 606 ms TimerQueue (ID 32 java.util.concurrent.locks.?
. Java Error (22 events) [jd| 0:08.839 [Jul 502 ms TimerQueue (1D 22 java.util.concurrent.locks.?
.Java Exception (433 even | [nannanri an ann amnm T oA 1r - - -
. Java Meniter Blocked (0 Total from 89 rows: 51,573 ms
:j:: mz:::::m‘:;ﬁeé :; + Selection 1\, Hot Spots & Call Tree Q;' Time Line Iml Duration +
@ Jove Thread End (72 ever ‘ 010 020 050 030 b5 100
.Java Thread Park (330 ew 10 1 ! ! 1 ! I !
. Java Thread Sleep (1 ever | i
.JavaThread Start (72 eve 1

. Socket Read (75 events) |
. Socket Write (0 even
Java Virtual Machine (2

89 events log ,@ ,Q }3 "--‘f

Another way to filter is to select a row of interest and use the context menu to select a
specific filter based on the values in the selected row. The filter selector at the top will be
adjusted, so that it displays your selection. You can now choose another value and add
the filter again, it will then replace the previous filter for the same column. In general, each
filter type can only be present once and setting the same filter again will replace the
previous filter.

S Duration v o= - 500 % | ms v + Add
Flight Recorder (2 Start Time Duration Event Thread & Class Parked On
Java Application (19,960 eve 0:02.901 [Jul 18, 2023 3:37:47 PM] 558 ms AWT-EventQueue-0 (1D 27) java.util.concurrent.locks.?
Statistics (512 events) 0:03.913 [Jul 19, 2ees sttt Bl e #=-=util.concurrent.locks.2
. Allocation in new TLAE | 0:03.913 [Jul 18, 2 Duratien util.concurrent.locks.2

0:04.014 [Jul
0:04.015 [Jul 15, 2

Filter Greater Than This | Event Thread atil.concurrent.locks.2

. Allocation cutside TLAB il t.locks.A
Filter Less Than This > Event Thread ID [reancuimen. nes.

. File Force (0 events) [jdk.

- 0:04.212 [Jul 19, 2 atil.concurrent.locks.2

. File Read (0 events] [jdk.| | l0:04,213 [Jul 19, 2 Sort Events » Class Parked On util.concurrent.locks.?

. File Write (0 events) [jdk. 0:04.256 [Jul 2 Park Timeout util.concurrent.locks.?
s i . J /2 Find Ctrl+F .

. Java Error (22 events) [jdl | |0:04.325 [Jul Address of Object Parked util.concurrent locks.A

@ Java Exception (455 even 0:04.602 [lul 15,2 4 Export View CireR s y=—=-ltil.concurrent.locks.A

Total from 5301
View Settings Ctrl+T
+ Selection i, Hot Spots & Call Tree Q; Time Line M Duration »

.Ja\ra Menitor Blocked (0
. Java Monitor Inflated (01
.Java Menitor Wait | 5
. Java Thread End (72 ever ‘
.Java Thread Park (330 ew 100

. Java Thread Sleep (1 ever
.Java Thread Start (72 eve
.SD(kEtREEd‘._'S events) | 1
. Socket Write (0 even
Java Virtual Machine (55,557

0:10 0:20 0:30 0:40 0:50 1:00
I I I | I I

10

530 events log ,@ ,@)3 ’--‘f

Stack traces

In JProfiler, the stack trace of a selected event is visible in the "Selection” tab of the split
pane below the event table.

227

[7] Statistics (519 events)

. Allocation in new TLAB [
. Allocation outside TLAB
. File Force (0 events) [jdk.

. File Read [
. File Write |
. Java Errar
. Java Exception (4
. Java Monitor Blocked (0
.Java Menitor Inflated (0
.Java Menitor Wait [
. Java Thread End (72
@ Java Thread Park (530 ew
. Java Thread Sleep (1 ever
. Java Thread Start
. Socket Read (75
@ socket Write (0 v

ava Virtual Machine

events) [jdk.|
) [k

Filter in all text columns ~ *

Start Time

0:03.913 [Jul 1
0:04.014 [Jul 1
0:04.015 [Jul 1
0:04.212 [Jul 1
0:04.213 [Jul 1
0:04.256 [Jul 1

|AWT-EventQueu

Event Thread &

Duration

1D 27)
101 ms TimerQueue (1D 2
101 ms AWT-EventGueue-0 (1D 27)

16,097 ps TimerQueue (1D 32)

15,423 ps AWT-EventQueue-0 (1D 27)
154 ms TimerQueue (1D 32)

35,841 ps AWT-EventQueue-0 (1D

61,973 ps AWT-EventQueue-0 (1D

Class Parke
java.util.concurrent.locks.2
java.util.concurrent.locks.2
Jjava.util.concurrent.locks.2
Jjava.util.concurrent.locks.?
java.util.concurrent.locks.?
java.util.concurrent.locks.?
java.util.concurrent.locks.?

10:04.325 [Jul 1 PM] 41,154 ps AWT-EventQueue-0 (ID 27) java.util.concurrent.locks.2
0:04.602 [Jul 1 PM] 10,182 ps TimerQueue (ID 32) java.util.concurrent.locks.2
Total from 530 rows: 115s

+ Selection 1., Hot Spots & Call Tree @g Time Line M Duration
Stack trace:

jdkinternal.misc.Unsafe.park(boolean, long)
Java.util.concurrent.locks.LockSupport.parkijava.lang. Object)

Java.util.concurrent.locks. AbstractQueuedSynchronizerSConditionObject.await()
java.awt.EventQueue.getMextBvent()

java.awt.EventDispatchThread. pumpOneEventForFilters(int)

java.awt.EventDispatchThread. pumpEventsForFilter(int, java.awt. Conditional, java.awt.EventFilter)

»

If you select multiple events, the selection tab changes to a view that shows you either
the hot spots or the cumulated call tree calculated from the stack traces of the selected
events.

te =

Filter in all text columns ~ *

Start Time Duration

Event Thread &
1D 27)

Class Parke
java.util.concurrent.locks.
sa.util.concurrent.locks.

538 ms|AWT-EventQue

101 ms{TimerQueue (ID 32)
101 ms|AWT-EventQue
16,087 ps TimerQueue (|0
15,423 ps AWT-EventQueue-0 (1D 27,

Statistics (519 events)
. Allocation in new TLAB |
. Allocation outside TLAB
. File Force (0 events) [jdk.

913 [Jul 1
0:04.014 [Jul 1
0:04.015 [Jul 1

D 27) |java.util.concurrent.Jocks.

java.util.concurrent.locks.2

java.util.concurrent.locks.2

0:04.212 [Jul 1 PM] 134 ms TimerQueue (1D 2 Jjava.util.concurrent.locks.?
@ File Read (0 events) [jdkl |0:04.213 Jul | PM] 35,841 s AWT-EventQueue-0 (1D 27) java.util.concurrent.locks.
. File Write (0 events) [jdk. 0:04,256 [Jul 1 PM] 61,973 ps AWT-EventQueue-0 (1D 27) java.util.concurrent.locks.2
. Java Error (22 0:04.325 [Jul 1 PM] 41,154 ps AWT-EventQueue-0 (ID 27) java.util.concurrent.locks.?

vents) [jdl
. Java Exception (435 &

10:04,602 [Jul 19, 10,182 ps TimerQueue (ID java.util.concurrent.locks.?

. Java Monitor Blocked (0 Total from 530 rows: 115s

. Java Monitor Inflated X X

. Java Monitor Wait (4,40 + Selection 1, Hot Spots i Call Tree Qg Time Line M Duration »
@ Java Thread End (72 ever Call tree from selected events - | Calculate hot spots for event counts =

(@ Java Thread Park (530 ew - -
1% - 2 evt. java.awt.EventDispatc read.run
() — 5.7% - 2 evt. EventDispatchThread

(D 33331 evt. java.lang.Thread.run

. Socket Write (0
" Java Virtual Machine

By default, event counts determine the percentages on the nodes in the call tree and hot
spots views. Some event types include other measurements that are suitable for this
purpose, such as a duration or allocated memory. If such measurements are available,
you can select them as the hot spot type from the second drop down in the selection tab.

228

Flight Recorder (246 events)
Java Application 0 eve
Statistics (519 events)

. Allocation in new TLAE (
. Allocation outside TLAB
. File Force (0 events) [jdk.
. File Read (0 events) [jdk.l
. File Write (0 events) [jdk.
@ Java Error (22 events) [j
. Java Exception (435 even
. Java Monitor Blocked (0
. Java Menitor Inflated (01

dl

Filter in all text columns

RMI TCP Connecticn
RMI TCP Connectioni
RMI TCP Connection
RMI TCP Connection

RMI TCP Connection(1)
RMI TCP Connection(1)-192.168.2... jdk.internal.org.objectweb.asm
53 PM] RMI TCP Connection(1)-192.168.2... java.lang.5tringBuilder

5 PM] RMI TCP Connection(1)-192.168.2... java.lang.5tring

5 PM] JFR Periodic Tasks (|D 46)

0:00.019 [Jul 1
0:00.020 [Jul 1
0:00.000 [Jul 1
0:00.000 [Jul 1 5
Cutoff total from 10,000 rows:

Event Thread @
RMITCP Connection(1)

Object Class @

ytel]
I

(]
i

jdkjfrintemal SecuritySupport!

.Java Monitor Wait (2,405 & Selection 1. Hot Spots aCaHTreE Q§'|'|meL|ne Im]AIIDcatl:>

. Java Thread End (72 ever Hot spots with backtraces from selected events v I Calculate hot spots for "Allocation Size”

. Java Thread Park

. Jave Thread Sleep (1 cver Hot Spot Memory Average Memory Events

@ Jave Thread Start (72 i jdk.internal.org.objectweb.... I 2 064 bytes (55 %) 2,064 bytes 1
ava Thread Start (72 eve i, jdkinternal.org.objectweb.... [1,504 bytes (40 %) 1,504 bytes 1

. Socket Read (75 events) | % java.util. Arrays.copyOfRange | 128 bytes (3 %) 42 bytes 3

. Socket Write (0 even L. java.lang.Stringlatini.news... 24 bytes (0 %) 24 bytes 1

Java Virtual Machine (2

The "Hot spots” and the "Call tree” views in the lower split pane contain the same views,
however, they are calculated for all events in the snapshot. Similar to the selection tab,
they also have a "hot spot type” drop down. In addition to showing all events, you can also
select a filter from these views. In the call tree view, selecting a particular call stack and
clicking on the Filter selected button will only show events with that call stack in the table
above. For the hot spots view, you can either select the hot spot at the top level or any
node in the back trace, so that only events will be shown whose stack trace ends with the
inverted call stack fragment to the selected node.

Filter in all text columns = Ci -

| Selected hot spot with backtrace I

Start Time Event Thread & Object Class (7] Allocation Size TLAB Size
0:05.084 [Jul 19, M1 AWT-EventQueue-0 (1D 27) byte[] 56 bytes 40,000 bytes
0:05,108 [Jul M] AWT-EventQueue-0 (ID 27) byte[] 208 bytes 40,152 bytes
0:05.126 [Jul] AWT-EventQueue-0 (1D 27) byte[] 112 bytes 40,056 bytes
0:05.129 [Jul] AWT-EventQueue-0 (1D 27) byte[] 192 bytes 40,136 bytes
0:05.132 [Jul AWT-EventQueue-0 (1D 27) byte[] 192 bytes 40,136 bytes
0:05.139 [Jul] AWT-EventQueue-0 (10 27) byte[] 184 bytes 40,128 bytes
0:05.140 [Jul Al AWT-EventQueue-0 (ID 27) byte[] 200 bytes 40,144 bytes
0:05.141 [Jul M1 AWT-EventQueue-0 (1D 27) byte[] 184 bytes 40,128 bytes
0:05.142 [Jul 19, M1 AWT-EventQueue-0 (1D 27) byte[] 288 bytes 40,232 bytes
Total from 400 rows: 65,928 bytes 10,004 kB
+ Selection 1, Hot Spots B Call Tree @ Time Line M Allocation Size [TLAE Size
Calculate hot spots for "Allocation Size" + Remove Filter Calculated from all 11,096 events
Hot Spot Meraory Average Memory Events
I 713 kB (35 %) 1,163 bytes 613

% java.utilArrays.copyOf(byte[], int)
@- 31.6% - 833 kB - 30 hot spot alloc. jdk.internal loader.Resource.getBytes

65,328 bytes - 400 hot spot alloc. java.lang AbstractStringBuilder.ensureCapacitylnternal
@13.2%- 65,216 bytes - 394 hot spot alloc. java.lang AbstractStringBuilder.append(java.lang.5tring)
@ 0.0%- 712 bytes - 6 hot spot alloc. java.lang.AbstractStringBuilder.append(char)
(0 0.3% - 6 760 butes - B3 hot snot allac. iava.util.zin.ZioFileSSource.oetFnfnPos

In the screenshot above, you can see that a node in the backtrace was selected as the
filter node. In addition to the regular call tree icon, it also includes a check mark. You can
remove filters with the tag label at the top or via the Remove filter button. The event count
in the table is equal to the number on the selected node. The hot spot tree still shows all
events without the filter that was set in the hot spot view.

This is a general feature of filters that are set from the analysis views: The analysis view
itself is calculated from all filtered events, but excluding the filter that was set in the
analysis view. This makes the analysis view more useful because you can see what part
of the total event set you have selected there.

229

Time line view

All JFR events have associated times, so every event type or set of event types has a time
line view that shows the chronological distribution of events.

Filter in all text columns + hd
Selected hot spot with backtrace Event starttime 10sto 20 s
Start Time Event Thread @ Object Class (7] Allocation Size TLAB Size
19 1] AWT-EventQueue-0 (1D 27 byte(] 192 bytes 70,132 bytes
1] AWT-EventQueue-0 (1D 27 byte(] 104 bytes 70,064 bytes
1] AWT-EventQueue-0 (1D 27 byte(] 200 bytes 70,160 bytes
1] AWT-EventQueue-0 (1D 27 byte(] 192 bytes 70,152 bytes
1] AWT-EventQueue-0 (1D 27 byte(] 104 bytes 70,064 bytes
] AWT-EventQueue-0 (1D 27 byte(] 200 bytes 70,160 bytes
] AWT-EventQueue-0 (1D 27 byte(] 56 bytes 37,472 bytes
[1 AWT-EventQueue-0 (1D 27 byte(] 104 bytes 37,520 bytes
0:10.454 [Jul 19] AWT-EventQueue-0 (1D 27 byte(] 104 bytes 37,520 bytes
Total from 198 rows: 31,464 bytes 3,466 kB
+ Selection 1, Hot Spots & Call Tree Q; Time Line M Allocation Size M TLAE Size
......... BEEEEEREEE R R
0:10 0:20 0:30 0:40 0:50 1:00
100 o | }
; f ‘I II
' il | A
198 out of 400 events log /Q /Q ;Q L}

To focus on a particular time range, you can drag along the time axis. In the above
example, we now have two filters: A filter from the backtrace of a hot spot and the filter
from the timeline view. Again, the time line view continues to show the entire time range
while other analysis views will now only show events from the selected time range.

The default display mode is logarithmic, so that regions of low event counts are still visible
against regions of high event counts. You can switch to linear mode by deselecting the
log button below the time line. By default, the entire time range is shown in the available
width, but you can switch to a variable time range and zoom and scroll just like in the
other telemetries in JProfiler. Also available are bookmarks where you can add a vertical
marker at selected time ranges. In that way, you can compadre moments in time across
different event types.

Histogram views

All measurements that can be summed for multiple events, such as durations and
allocation sizes, are treated in a special way: First, the columns of these measurements
in the event table have a total value at the bottom. Second, the call tree and hot spot
analysis views offer a "hot spot type" drop-down to calculate their trees with these
measurements instead of event counts. Finally, for each such measurement, a histogram
analysis is added to the lower split panel.

230

Filter in all text columns = hd

Duration 905 ms to 1,806 ms

Start Time Duration Event Thread &) Class Parked On Park Timeout
P 1,087 ms TimerQueue (1D 22 java.util.concurrent.locks.AbstractQueuedSy..,
1,358 ms TimerQueue (1D 22 java.util.concurrent.locks.AbstractQueuedSy...
1,647 ms TimerQueue (10 22 java.util.concurrent.locks. AbstractQueuedSy...
Total from 3 rows: 4,103 ms {
" Selection 1., Hot Spots & Call Tree O,;‘ Time Line [l Duration M Park Timeout
N N S B B B v L e e B
" 1s 25 3s
S 1000
E
S 100
E 0
1
H B BN
3 out of 530 events Duration log

Histograms show event counts on their vertical axis while the horizontal axis shows the
selected measurement and is divided into a number of bins, so that a distribution can be
calculated. Bin sizes and event counts are available from the tooltip.

The screenshot above shows how a filter has been set in the histogram. Just like for other
analysis views, the filter only applies to other analysis views, and the entire histogram is
still shown. As for the timeline view, the histogram has a logarithmic vertical axis by default.
Here, the selected events in the screenshot would not be visible with a linear axis.

231

E.4 Views In JFR Snapshots

Apart from the JFR event browser [p. 225], JProfiler uses some of the views that are available
for full profiling sessions and fills them with JFR data. This is possible because JFR collects
data for memory allocations and method executions. The main limitation is that the
recording rates are low, so getting enough data to see problematic hot spots can take a
long time.

Telemetries

With the exception of the "Recorded objects telemetry”, all telemetries in full profiling
sessions are also available in JFR snapshots with some limitations in the displayed data.
The memory telemetry does not show GC-specific pools, the threads telemetry does not
show thread counts by thread state and the recorded throughput telemetry shows sizes
instead of object counts and does not show the objects that being freed.

Event Browser

‘ Telemetries wmE

Overview Memory

Memery oME

Recorded Throughput 60 ME
GC Activi
ST Recorded Throughput
Classes
oms N

Threads s

CPU Load
GC Activity
'!' Memary
o 0% |

I CPU Views

— Row height: ——@ @ e |
Threads

i%%

The table below shows the event types that are used by the various telemetries and
whether they are enabled in both the "default” and the "profile” template.

Telemetry Event types Enabled in
profile

Memory jdk.GCHeapSummary, all
jdk.MetaspaceSummary

Recorded throughput jdk.ObjectAllocationSample, profile only
jdk.ObjectAllocationnNewTLAB,
jdk.ObjectAllocationOutsideTLAB

GC activity jdk.GarbageCollection all
Classes jdk.ClassLoadingStatistics all
Threads jdk.JavaThreadStatistics all
CPU load jdk.CPULoad all

232

Memory views

In the "Memory" section, two different event types are used to populate the views with
data. The ‘Live objects” view shows you a statistical representation of all classes and
instance counts that remain on the heap after a full garbage collection. This data is only
available if the j dk. Obj ect Count event is enabled, which is not the case for either of the
default JFR templates, because it comes with a significant overhead. You can also toggle
this setting in the high-level JFR configuration with the "Garbage collector” drop-down.
Prior to Java 17, this drop-down is labeled as "Memory profiling™.

If the j dk. Obj ect Count event was recorded more than once in the snapshot, the view will
show you the difference between the first and the last occurrences of the j dk.
Obj ect Count event. In that way, you get a sense of how the numbers changed during the
recording time and may provide some indication of a memory leak. If these times do not
coincide with the start and end points of the snapshot recording, corresponding bookmarks
are added in the telemetry views. Only classes with a total object size above a fixed
threshold (usually 1% of the heap) are included.

For any serious investigation consider using a full profiling session [p. 71] or taking an
HPROF snapshot [p. 205].

Event Browser Aggregation level: | @) Classes

Mame Instance Count Difference Size

’ byte[] I 17105 (23 %) +102,063 (+134.0 %) 17,099 kB

[EEmene java.lang.String I 172,729 (23 %) +98,477 (+133.0%) 4,145 kB

java.utilHashMapShode NN 66,292 (8 %) +50,545 (+321.0 %) 2,121 kB

n java.util.concurrent.Conc... [l 34,263 (4 %) +11,527 (+50.0 %) 1,000 kB

S0 Memory o ,

o long[1 I 29,888 (4 %) n/a 2,403 kB

jdk.internal jimage.mage... Il 27,209 (3 %) n/a 653 kB

Live Objects jdkinternaljimagelmage... Il 27,209 (3 %) nfa 870 kB

. java.lang.Object]] [PEEELNERS)] +8,242 (+47.0 %) 1,492 kB

kecnledDbi=cte java.util HashtableSEntry [l 24,457 (3 %) 10,110 (+70.0 %) 732 kB

A java.lang Object W 19,661 (2 %) +5,424 (+33.0 %) 314 kB

java.util LinkedHashMaps... Il 19,430 (2) +14,031 (+260.0 %) 777 kB

Allocation Hot Spots java.lang.Class[] W 17,595 (2 %) +2,833 (+19.0 %) 375 kB

java.util. HashMapSMode[1 Wl 15,243 (2 %) +10,005 (+191.0 %) 1,148 kB

I] jovalang.reflectMethod [l 14,949 (2 %) +1,507 (+12.0 %) 1315 kB

CPU Views . .

java.lang.Class M 14,538 (1 %) +4,887 (+51.0 %) 1,757 kB

java.util ArrayList Wi2842(0%) +5,529 (+76.0 %) 308 kB

f=—3 Threads java.lang.ref.WeakReferen... W1z221501%) +2,418 (+25.0 %) 390 kB

o java.util LinkedHashMap 1133501 %) nfa 634 kB

int] o137 (1% +3,042 (+50.0 %) 9,254 kB

™ frein I enf CnftDofocmnn B 01430714 0% TR AEE T 275 LD

g Monitors & Locks Total from 22 rows: 744,845 (100 %) +424,119 (+132.0 %) 48,390 kB
- > @

The "Recorded objects” view as well as the allocation views show you data from the j dk.

Obj ect Al | ocat i onSanpl eevent since Java 16 and thej dk. Qbj ect Al | ocat i onl nNewTLAB
and j dk. bj ect Al | ocat i onCQut si deTLAB events in earlier Java versions. The "Allocation
Profiling” drop-down in the high-level Ul also provides a way to enable these event types.

Contrary to the "Live objects” view, they only show objects that were allocated while
recording was active. Allocations are sampled by JFR but the size is reported as an estimate
for the total allocated size. Because of this discrepancy, the sizes reported by these views
do not correspond to the sample count multiplied by the average instance size. Otherwise,
these views have similar functionality to the memory views in full profiling session [p. 71].

CPU views

The "CPU views" include the call tree, the hot spots view as well as the call graph. Data in
the "Runnable’ thread state is based on the j dk. Execut i onSanpl e events that are recorded
by default in both standard JFR templates. However, the sampling rate is set to 20 ms by
default, which corresponds to the "Normal” option of the "Method sampling" setting in the
JFR high-level Ul. Considering that JFR only samples a very small humber of random

233

threads, getting sufficient data so that hot spots stand out sufficiently can take a very
long time. Consider lowering the period for the j dk. Execut i onSanpl e if necessary. Keep
in mind that this can lead to very large snapshot sizes because JFR does not cumulate
data.

Thread status: 0 Thread selection: Aggregation level: Hot spot options:
Event Browser B Runnable - 8 Allthread grou.. = @ Methods Self events
’ R Hot Spot Self Events MAverage Time Invocations
Lo 1. jdkinternal jrtfsJrtPath.n.., [INERMM 7 (11 %) na nia
i java.util.HashMapSTreet... NN 25 (7 %) na nfa
1. ji2000.2k.entropy.encod... I 17 (5 %) nfa nfa
|’:'| Memory 1. java.lang.StringLatint.ha... I 15 (4 %) na nia
1. jj2000.2k.entropy.encod.. [13 (4 %) na n/a
1., ji2000.2k.entropy.encod... I 13 (4 %) nfa nfa
I CPU Views 1. java.io.BufferedinputStre... I 12 (3 %) nfa n/a
i, java.lang.StringLatin.las... I 11 (3 %) nfa nfa
Call Tree 1. java.lang.AbstractStringB... Il 7 (2 %) n/a n/a
1. java.nio file.Files.provider Tl 6 (1 %) nfa n/a
Hot Spots %, java.util SpliteratorsS1Ad... Il 5 (1 %) nfa n/a
% jj2000.2k.wavelet.analysi... Il 5 (1 %) nfa nfa
Call Graph i java.awtimage.Compon... Bl 4 (1 %) nfa n/a
%, java.util. HashMap.qethlo... Il 4 (1 %) nfa nia
b= 1 java.util. HashMap.putVal [l 4 (1 %) nfa n/a
Threads i com.ejt.framework.grap.. B 3(0%) nfa nfa
%, java.util zip ZipFileSSourc... ll 3 (0 %) nfa nia
) £ ji2000.2k.codestream.wri... Il 3 (D %) nfa n/a
Q Meniters & Locks i, jj2000.2k.entropy.encod.. B 3(0%) nfa n/a
%, com.installdj.compiler.g... 12(0%) nfa n/a
1. iava.io.BufferedinnutStre... I 2 (0 %) nia nia
@ Probes
@

Due to the fact, that threads are sampled sporadically, it is not possible to estimate actual
execution times like in a full profiling session. Rather than times, the event counts are
shown in the call tree and the hot spots views. This is similar to async sampling [p. 66]
which has the same drawback. The other JFR thread states are "Waiting’, "Blocking” and
"Socket and file /0" and still measure times. Because of this discrepancy, the "All thread
states” mode is not available in the thread status selector.

Another consideration is that the non-runnable thread states are calculated from events
which have configurable minimum duration thresholds that are shown in the tool tip next
to the thread status selector. The actual total time of these thread states may be
significantly larger. The table with the event types used for assembling the thread states
is shown below:

Thread state Event types
Runnable jdk.ExecutionSample
Waiting jdk.JavaMonitorWait, jdk.ThreadSleep, jdk.ThreadPark
Blocking jdk.JavaMonitorEnter

Socket and file I/O jdk.SocketRead, jdk.SocketWrite, jdk.FileRead, jdk.FileWrite

The functionality of the views is explained in the help topic on the CPU views [p. 53]. Note
that many features of full profiling sessions are not available in a JFR context.

Thread and monitor views

From the chronological method sampling data, the thread history view can be calculated,
including the tool tips that show stack traces for waiting and blocking times.

234

Event Browser

. Telemetries
‘!:l. Memery

I CPU Views

Threads

Thread History

Thread Dumps

N

° Probes

Menitors & Locks

Both alive and dead - Sort by start time b hd

Threads
Common-Cleaner[InnocucusThrea...
Java2D Disposer [system]

AWT-Windows [sys

TimerQueue [systern]

IMX server connection timeout 43 [...
JFR Periodic Tasks [RMI Runtime]
JFR Recording Scheduler [RIMI Runt...
jprofiler_AgentCommunication|ma...
console_update [main]

Timer-0 [main]

Timer-1 [main]

Timer-3 [main]

Timer-4 [main]

Timer-2 [main]
pool-4-thread-1[main]
console_update [main]

el 1 bheand 1 leaninl

Waiting for monitor since 0:07.420.620 in: (2

n 1| Javalang.Objectwait{long)
java.lang.ref.ReferenceQueue.remove(long)
java.lang.ref.ReferenceQueue.remove()
sun.javald.Disposer.run()
javalang.Thread.run()

Show in monitor history

== Runnable = Waiting ™= Blocked ™ Socket and file /O /@ /@)"'l

Thread dumps are a feature in both JFR and JProfiler and are shown in the same view. In
this case, the event browser is not a substitute because it has no way of showing the
structured content of the thread dump column of the j dk. Thr eadDunp event. In the thread
dumps view you can also compare different thread dumps [p. 98].

Event Browser

. Telemetries
’i:!' Memary

I CPU Views

Threads

Thread History

Thread Dumps

i Menitors & Locks

o Probes

Thread dumps: x > || @

at 0:50.000.609
at 0:40.002.644
at 0:29.993.824
at 0:19.989.565
at 0:09.986.126

=1 Timer-1

A= Timer-2

A= Timer-3

= Timer-4

= TimerQueue

= WebSocketWorker-37

i WebsocketSelector3®

HEm console_update

HEm console_update

A= jprofiler_AgentCemmunication

HEm jprofiler_ius
== pool-1-thread-1

jdkintermal.misc.Unsafe.park()
java.util.concurrent.locks.LockSupport.park() (line: 194)
java.util.concurrent.locks.AbstractQueuedSynchronizerSCondition
java.awt.EventQueue.getMNextEvent() (line: 572)
java.awt.EventDispatchThread. pumpOneEventForFilters() (line: 190
java.awt.EventDispatchThread.pumpEventsForFilter() (line: 124)
Jjava.awt.EventDispatchThread.pumpEventsForHierarchy () (line: 11
Jjava.awt.EventDispatchThread.pumpEvents() (line: 109)
java.awt.EventDispatchThread. pumpEvents() (line: 101)
Jjava.awt.EventDispatchThread.run() (line: 80)

Fromthej dk. JavaMoni t or Wi t,j dk. Thr eadSl eep andj dk. Thr eadPar k events, JProfiler
calculates a monitor history similar to the one of a full profiling session [p. 98], only without
the information on blocking threads. If you require that information for solving your problem,
please switch to a full profiling session. This also means that the locking graphs from the
full profiling session are not available for JFR snapshots. The monitor usage statistics that
shows aggregate information on waiting events is present and shows waiting times only.

235

-) .
Event Browser All types Threshold in ms: 0 - v

Time Duration Type Menitor Address Monitor Class Waiting Thread
] 0:00.003 L..|___95.096 us|=_Wait..[0x21a7b273883_____|com.sunjmicrem... [RMI TCP Connectio.. |
[EEmene 0:00.094 [... 15,444 ps =3 Wait... 0x21a7h26e388 javalang.Object JFR Periodic Tasks [...
0:00.099 ... 3,399 ms 3 Wait... 0x21a7b273888 com.sun.jrmx.rem... RMITCP Connectio...
0:00.109 ... 15,435 ps 3 Wait... 0x21a7b26e888 javalang.Object JFR Periodic Tasks [...
l':'- gy 0:00.125 ... 15,310 usE=1 Wait... 0x21a7b26882 javalang.Object JFR Periodic Tasks ...
0:00.141 [.. 15,444 ps 3 Wait... 0x21a7b26e888 Jjavalang.Object JFR Periodic Tasks [...
I CPU Views 0:00.156 [... 15,469 us 3 Wait... (x21a7b26e888 Jjavalang.Object JFR Periodic Tasks [...
000,172 [... 15,493 ys = Wait... 0x21a7b26e888 javalang.Object JFR Periodic Tasks [...
0:00.187 [... 15,503 us =3 Wait... 0x21a7b26e888 javalang.Object JFR Periodic Tasks [...
= Threads 0:00.203 [... 15,479 ps =2 Wait.., 0x21a7b26e888 javalang.Object JFR Periodic Tasks [...
o 0:00.219 ... 15,422 ps 3 Wait... 0x21a7b26e888 java.lang.Object JFR Pericdic Tasks [...
0:00.234 ... 15,460 ps =1 Wait... 0x21a7b26e888 javalang.Object JFR Periodic Tasks [...
n Monitors & Lacks 00 2501 15427 e Wait M ?1aTh?R=R28 iava lann Chiect IFR Perindir Tacks [
1 Total fro... 692 s

T Recording thresholds: 10,000 ps blocking / 10,000 ps waiting

Filtered stack trace for waiting thread:

Monitor Usage Statistics java.lang.Objectwait(long)

com.sun.jmx.remoteinternal. ArrayMotificationBuffer.fetchNotifications{com.sunjmzx.remoteinternal. N
o Probes com.sun.jmx.remoteinternal. ArrayMotificationBufferSShareBuffer. fetchMNotifications(com.sun,jmx.remc

com.sun.jmx.remoteinternal. ServerMotifForwarder. fetchMotifs(long, long, int)

iavax.mananement.remote.rmi.RMIConnectionlmnl$4.nni

Probes

Some of the JVM probes in a full profiling session have equivalent data sources in JFR
snapshots. Their main advantage compared to the event browser is that they combine
multiple related event types. The table below shows the available probes with the event
types that are used as their data sources.

Probe Event types Enabled in
profile

Sockets jdk.SocketRead, jdk.SocketWrite all

Files jdk.FileRead, jdk.FileWrite all

Classes jdk.ClassLoad, jdk.ClassUnload, jdk.ClassDefine none

Exceptions jdk.JavaErrorThrow, jdk.JavaexceptionThrow errors in both,
exceptions in
none

Garbage jdk.GarbageCollection, jdk.GCPhasePause, all

Collector jdk.YoungGarbageCollection,

jdk.OldGarbageCollection, jdk. GCReferenceStatistics,
jdk.GCPhasePauselevel<n>, jdk. GCHeapSummary,
jdk.MetaspaceSummary, jdk. GCHeapConfiguration,
jdk.GCConfiguration,
jdk.YoungGenerationConfiguration,
jdk.GCSurvivorConfiguration,
jdk.GCTLABConfiguration

Class loading has a separate check box in the high-level JFR Ul that switches on all three
class loading events.

Each probe shows a number of views. In contrast to the event browser, the focus is on the
aggregated data and not on the single events. This is also how probes in JProfiler differ
conceptually from JFR data collection.

Except for the Garbage collector probe, all probes have the following views: The call tree
and hot spot views allow you to choose a single thread or a thread group as well as an

236

aggregation level. By default, all threads are shown and the aggregation level is set to
"Methods".

” Telemetries o Call Tree 1, Hot Spots M Telemetries Events Exceptions
Crested exceptions
Thread selection: Aggregation level:
’l Memery
’ m All thread groups A @ Methods
I CPU Views Hot Spot Events
i, java.lang.Exception I 49 (52 %)
— % javalang.MoSuchMethodException I 122 (30 %)
Threads %, java.lang.NoSuchMethodError l22(43%)
- 1. java.net.MalformedURLException 113 23%)
n . java.awt.lllegalComponentStateException 2(0%)
%, java.io.FileNotFoundException 2(0%)
| rEsaEleds i, java.lang.ClassNotFoundException 1(0%)

o Probes

Sockets
Files
Classes
Exceptions

Garbage Collector ~

The telemetries view displays one or more telemetries from the recorded data with an
overview page that shows all of them at once. The full telemetry can be opened by clicking

on the telemetry name. By dragging along the time axis, you can select the corresponding
events in the events view.

Sockets @
Event Browser & Call Tree I\, Hot Spots ! Telemetries Events /O operations for sockets =
' Telemetries Available probe telemetries: | Overview v
v
By vy ST g
0:10 0:20 0:30 0:40 0:50 1:00
I CPU Views
- Recorded Count
Threads A A
0 \
r? Monitors & Locks 2oytes
Recorded Write Throughput
o Probes
Obytes
Sockets 0 oytes ‘ ‘ ‘ ‘ ‘ ‘
Files
Row heightt ——@ o
Classes J p p }3

The events view is similar to the one in the JFR browser. However, it shows multiple event
types corresponding to the underlying JFR events and offers a type selector. Filtering and
stack trace display for single and multiple selection are handled just as in the event
browser. Also, there are histogram views for time and memory measurements where you
can select ranges by dragging along the horizontal axis.

237

. Telemetries & Call Tree i HotSpots [Telemetries Events Exceptions

Created axceptions

',:,' Memory Alltypes v | Filterin all text columns + | | Cb- v
Start Time Event Type Description Message Thread
g oo 00499 a1
0:04.996 [Jul Exception java.lang.MoSuchMethodE... com.ejt.framew... AWT-EventQue...
— 0:05.000 [Jul Exception javalang.MoSuchMethodE... com.jprofiler.fr... AWT-EventCue...
Threads 0:05.083 [Jul Exception Java.lang.Exception AWT-EventQue...
— 0:03.084 [Jul Exception java.lang.Exception AWT-EventQue...
0:05.084 [Jul Exception javalang.Exception AWT-EventQue...
n Monitors & Locks 0:05.084 [Jul Exception javalang.Exception AWT-EventQue...
t 0:05.085 [Jul Exception java.lang.Exception AWT-EventQue...
0:05.085 [Jul Exception java.lang.Exception AWT-EventQue...
o Probes 0:05.085 [Jul Exception java.lang.Exception AWT-EventQue...
0:05.085 [Jul Exception java.lang.Exception AWT-EventQue...
Sockets 0:05.168 [yl 19 Exception iavalana.MoSuchMethodE,., com.eit.framew,. AWT-EventCue, .,
Stack trace:
A= java.lang. Throwable.< init> (java.lang.String)
e java.lang.Exception.<init> (java.lang.String)

java.lang.ReflectiveOperationException.= init> (java.lang.String)
Exceptions java.lang.NoSuchMethodException. <init> {java.lang.5tring)

java.lang.Class.getDeclaredMethod(java.lang.String, java.lang.Class[])
Garbage Collector

The garbage collector view is special, because full profiling sessions can show the exact
same information in profiling sessions with Java 17 or higher. When the garbage collector
probe in the JVM probe category is recorded, JFR streaming is used to obtain the necessary
data. See the chapter on garbage collector analysis [p. 119] for more information.

238

F Configuration In Detail

F.1 Trouble Shooting Connection Problems

When a profiling session cannot be established, the first thing to do is to have a look at
the terminal output of the profiled application or application server. For application servers,
the stderr stream is often written to a log file. This may be a separate log file and not the
main log file of the application server. For example, the Websphere application server
writes a nati ve_st derr. | og file where only the stderr output is included. Depending on
the content of the stderr output, the search for the problem takes different directions:

Connection problems

If stderr contains "Waiting for connection ...", the configuration of the profiled
application is ok. The problem might then be related to the following questions:

+ Did you forget to start the "Attach to remote JVM" session in the JProfiler GUI on your
local machine? Unless the profiling agent is configured to start up immediately with
the "nowait" option, it will wait until the JProfiler GUI connects before letting the VM
continue to start up.

+ Is the host name or the IP address configured correctly in the session settings?

« Did you configure a wrong communication port? The communication port has nothing
to do with HTTP or other standard port numbers and must not be the same as any port
that is already in use. For the profiled application, the communication port is defined
as an option for the profiling VM parameter. With the VM parameter - agent pat h: <pat h
to jprofilerti |ibrary>=port=25000, a portof 25000 would be used.

« Do you try to connect to an agent with a direct connection that only listens on the
loopback interface? By default, the agent only listens on the loopback interface. You
can configure JProfiler to set up an SSH tunnel to the remote machine. If you don't require
encryption, you can also use the address=[| P addr ess] option for the - agent pat h
parameter.

« Is there a firewall between the local machine and the remote machine? There may be
firewalls for incoming as well as for outgoing connections or even firewalls on gateway
machines in the middle.

Port binding problems

If stderr contains an error message about not being able to bind a socket, the port is
already in use. In that case, check the following questions:

 Did you start the profiled application multiple times? Each profiled application needs
a separate communication port.

« Are there any zombie java processes of previous profiling runs that are blocking the
port?

+ Is there a different application that is using the communication port?

If there are no lines in stderr that are prefixed with JPr of i | er > and your application or
application server starts up normally, the - agent pat h: [path to jprofilerti library]
VM parameter has not been included in the Java call. You should find out which java call
in your startup script is actually executed and add the VM parameters there.

239

Attach problems

When attaching to a running JVM, you sometimes may not see the JVM of interest in the
list of all JVMs. To find the cause of this problem, it is important to understand how the
attach mechanism works. When a JVM is started, it writes a PID file into the the
hsper f dat a_$USERdirectory in the temporary directory by which is it discovered. Only the
same user or an admin user can then attach to the JVM. JProfiler can help you to connect
to a JVM as an admin user.

On Windows, use the Show Services button to show all JVM service processes. JProfiler
installs a helper service that will run with the system account that can connect to services
running with system accounts as well as with a configured user account. The name of
that service is "JProfiler helper” and is installed when you click on that button. You have to
confirm the UAC prompt to allow the installation of the service. When JProfiler exits, the
service is uninstalled again.

On Linux, you can use the user switcher in the attach dialog to attach with the root account.
This user switcher is shown when profiling a local JVM as well as when attaching to a
remote Linux or macOS machine. For the remote attach case, you can also switch to a
different non-root user. If you have the root password, always switch to root rather than
to the actual user that runs the service.

If a JVM is not visible on Linux even though you think it should be, the problem is usually
connected with the temporary directory. One possibility is that the access rights for the
/ t mp/ hsper f dat a_$USERdirectory are wrong. In that case, delete the directory and restart
the JVM. The process to be attached to must have write access to /tmp, otherwise attaching
is not support.

If you use systemd, the process you are interested in may have Pri vat eTnp=yes set in
its systemd service file. Then the pid file is written into a different location. JProfiler will
handle this if you change to the root user with the user switcher in the attach dialog or if
you use the CLI tools as root.

240

F.2 Scripts In JProfiler

JProfiler's built-in script editor allows you to enter custom logic in various places in the
JProfiler GUI, including custom probe configuration, split methods, heap walker filters and

many more.

@ settings Edit Search Code Help Edit X
= o Y
] = . L
¥ B & PR &« &% O
. Show . - Modify Test
Copy Cut Pate ey Find Repisce | o o oth Compik Help

Please enter an expression (ne trailing semicolon) or a script (ends with a return statement)
that consists of regular Java code. The following parameters are available:

E”“"]'l

- com.jprofiler.api.agent.ScriptCeontext scriptContext
- javax servlet.http. HitpServietRequest servietRequest

The expected return type is java.lang.String
Script:

lI This assumes that a query parameter named "action" is used
2 5tring action = servletRequest.getParamster ("action™);

3 5tring uri = servletRequest.getRequestlURI();

4if (action '= null) [

3 return uri + "?action=" + action;

£ _alea I

The box above the edit area shows the available parameters of the script as well as its
return type. By invoking Help->Show Javadoc Overview from the menu you can get more
information on classes from the com j profi |l er. api . * packages.

A number of packages can be used without using fully-qualified class names. Those
packages are:

+ java.util.*
+ java.io.*
You can put a number of import statements as the first lines in the text area in order to

avoid using fully qualified class names.

All scripts are passed an instance of com j profiler. api.agent. Scri pt Cont ext that
allows you to save state between successive invocations of the script.

To get the maximum editor functionality, it is recommended to configure a JDK in the
general settings. By default, the JRE that JProfiler runs with is used. In that case, code
completion does not offer parameter names and Javadoc for classes in the JRE.

241

@ General Settings X

Ul Session Defaults Snapshots IDE Integrations Updates External Programs

Default Session (7]

Edit Default Session Settings
If you have modified the default session settings, you may wish to restore the initial settings.

Reset Default Session Settings

JREs For Launching Profiling Sessions (7]

Default JRE: | 17 [C:\Users\ingo\jdls\jhrsdk-17-5135.1] + | Configure JREs

DK For Code Editor (7]
Currently Used JRE 7]

Script types

Scripts can be expressions. An expression doesn't have a trailing semicolon and evaluates
to the required return type. For example,

object.toString().contains("test")

would work as a filter script in the outgoing reference view of the heap walker.

Alternatively, a script consists of a series of Java statements with a return statement of
the required return type as the last statement:

i mport java.l ang. managenent . Managenent Fact ory;
return Managenent Fact ory. get Runti mneMXBean() . get Upti ne();

The above example would work for a script telemetry. JProfiler automatically detects
whether you have entered an expression or a script.

If you want to reuse a script that you have entered previously, you can select it from the

script history. If you click on the & Show History tool bar button, all previously used scripts
are shown. Scripts are organized by script signature, and the current script signature is
selected by default.

Code completion

Pressing CTRL- Space brings up a popup with code completion proposals. Also, typing a
dot (") shows this popup after a delay if no other character is typed. The delay is
configurable in the editor settings. While the popup is being displayed, you can continue
to type or delete characters with Backspace and the popup will be updated accordingly.
"Camel-hump” completion is supported. For example, typing NPE and hitting CTRL- Space
will propose j ava. | ang. Nul | Poi nt er Except i on among other classes. If you accept a
class that is not automatically imported, the fully qualified name will be inserted.

242

1 This assume hat a quer
2 String action = sewletRequest‘getkarameter(action”):
3 5tring uri = servletRequest.getReq @ getServletPath() String
4if (action '= numll) { @
= return uri + "?action=" + acti

§) else [Q

equestedSessionId() String
equestURI () String

return uri: @ emotelser() String

8} @ getQueryString () String
& @ getPathTranslated() String
@ athInfo() String
@ ethod () String

eader (3tring argl) String
@ getContextPath() String

The completion popup can suggest:

- O variables and script parameters. Script parameters are displayed in bold font.
. packages, when typing an import statement

+ Oclasses

« @ fields, when the context is a class

+ W methods, when the context is a class or the parameter list of a method

Parameters with classes that are neither contained in the configured session class path
nor in the configured JDK are marked as [unr esol ved] and are changed to the generic
java.l ang. Ooj ect type. To be able to call methods on such parameters and get code
completion for them, add the missing JAR files to the class path in the application settings.

Problem analysis

The code that you enter is analyzed on the fly and checked for errors and warning
conditions. Errors are shown as red underlines in the editor and red stripes in the right
gutter. Warnings such as an unused variable declaration are shown as a yellow
backgrounds in the editor and yellow stripes in the gutter. Hovering the mouse over an
error or warning in the editor as well as hovering the mouse over a stripe in the gutter area
displays the error or warning message.

The status indicator at the top of the right gutter is green if there are no warnings or errors
in the code, yellow if there are warnings and red if errors have been found. You can
configure the threshold for problem analysis in the editor settings.

243

@ Java Editor Settings X

Code Completion Popup Settings
Auto-impert classes during code completion
(v] Auto-popup code completion after dot

Delay: 1,000 ¥ ms

Popup height: 10 | ¥ | entries

Display Code Problems
MNone Errors only (7] C) Errors and Warnings (7]

JDK For Code Editor

The runtime libraries of the configured JDK will be used for code completion and script compilation.You
can configure a default JDK in the general settings.

© Default JDK

Override default JOK with

If the gutter icon in the top right corner of the dialog is green, your script is going to compile
unless you have disabled error analysis in the editor settings. In some situations, you might
want to try the actual compilation. Choosing Code->Test Compile from the menu will
compile the script and display any errors in a separate dialog. Saving your script with the
OK button will not test the syntactic correctness of the script unless the script is used right
away.

Key bindings

Pressing SHI FT- F1 opens the browser at the Javadoc page that describes the element
at the cursor position. Javadoc for the Java runtime library can only be displayed if a JDK
with a valid Javadoc location is configured for the code editor in the general settings.

All key bindings in the Java code editor are configurable. Choose Settings->Key Map from
the window menu to display the key map editor. Key bindings are saved in the file $HOVE/
.jprofileri14/editor_keymap. xnl . This file only exists if the default key map has been
copied. When migrating a JProfiler installation to a different computer, you can copy this
file to preserve your key bindings.

244

F.3 Custom Help

If you have an internal website that provides additional guidance for users, you can add
an extra help button to the toolbar and the "Help” menu. To do that, add the following
properties to the .vmoptions file:

-Dcustom hel p. url =https://wwv i nternal . website.com
- Dcust om hel p. t ool Bar Text =I nt er nal #hel p
- Dcust om hel p. act i onNanme=Show i nt ernal hel p

All three properties have to be defined to make the action visible in the Ul. The cust om
hel p. t ool Bar Text property is the text thatis displayed in the toolbar. It should be concise
and a second line can be added with a # separator as in the example above.

The location of the .vmoptions fileisunder<JProf il er installation directory>/bin/
jprofiler.vnoptions on Windows and Linux and / Applications/JProfiler. app/
Cont ent s/ vopt i ons. t xt on macOS. In addition, there are user-writable locations under
QUSERPROFI LE% . jprofilerl14\jprofiler.vmopti onsonWindows,$HOVE/ . j profil er 14/
jprofiler.vnoptionsonlLinuxand$HOVE/ Li brary/ Pref erences/jprofiler.vnoptions
on macOs.

245

F.4 Setting Profiling Settings At Startup

Before the profiling agent can start any recordings, the profiling settings have to be set.
This happens when you connect with the JProfiler Ul. Under some circumstances, it is
required that the profiling agent knows the profiling settings at startup. The main use
cases are:

« Offline profiling

Triggers or the APl are used to record data and save snapshots. The JProfiler GUI cannot
connect in this mode. See the help topic on offline profiling [p. 129] for more information.

« Profiling with jpcontroller on a headless machine

The command line utility jocontroller [p. 249] can be used instead of the JProfiler GUI to
record data and save snapshots interactively or with a non-interactive command file.
However, jpcontroller has no facility for configuring profiling settings, so they have to
be set in advance.

+ Remote attach to older OpenJ9 and IBM JVMs

Older OpendJ9 and IBM JVMs before 8u28], 11.0.11 and Java 17 do not have the ability to
redefine classes without endangering the stability of the profiled process, so profiling
settings have to be set at startup. The "Profiled JVM" step of the remote integration
wizard in JProfiler asks you about the type of the JVM, and if you select Older OpenJ9
and IBM JVMs there, the wizard will add the options discussed below.

In general, setting profiling settings at startup is the most efficient mode of operation,
because the least number of class redefinitions have to be performed. If the reduced
convenience is not a problem, it can be used for any kind of profiling session.

Setting profiling settings at startup

If you use an integration wizard, select the On a remote computer option on the "Local or
Remote” step and then the Apply configuration at startup option on the "Config
synchronization” step. The wizard will then add the same options as discussed in the
following paragraphs.

If you have added an - agent pat h VM parameter to your start script to load the profiling
agent, the profiling settings can be set by adding

,config=<path to config file>, id=<session |D>
to the - agent pat h parameter. A complete parameter will look like this:

-agentpath:/path/to/libjprofilerti.so=port=8849, nowait, config=/path/to/config,id=123

If you use j penabl e to load the profiling agent after the process has been started, you
can choose offline mode in the interactive execution and specify config and ID there.
Alternatively, pass the --offline, --config and --id arguments for non-interactive
execution.

Preparing the config file

The referenced config file can be the config file of the JProfiler installation on the current
machine, in which case the config parameter does not have to be specified at all. The
JProfiler config file is located at $HOMVE/ . jprofilerl4/jprofiler_config.xm or

246

%JSERPROFI LE% . j profilerl14\jprofiler_config.xm andisthedefaultfortheconfig
option of the - agent | i b VM parameter.

Often, automated profiling should be performed on a different machine and referencing
the local JProfiler config file is not possible. You can then prepare a session with the profiling
settings in the JProfiler Ul on your local machine, export it via Session->Export Session
Settings and transfer it to the machine where JProfiler is running on.

The session ID can be seen in the top-right corner of the "Application settings” tab of the
session settings dialog (see the screenshot below). If the exported file only contains one
session, the i d parameter does not have to be specified.

Synchronizing the config file

After you have completed the initial setup, you may want to adjust profiling settings for
future profiling runs. This requires that the config file is copied to the remote machine each
time you make a modification.

Remote sessions in JProfiler have a "Config synchronization” feature that can automate
this process for you.

€@ Session Settings X
| Application Settings Session name: | Application server on deme Id: E (7]

Session Type

Profiled VM

‘ Attach to an already running HotSpot/Openl@ JVM and profile it
Code Editor Attach Attach type: Select from all local IVMs) Attach to remote JVM Kubernetes
. £+ Launch a new JVM and profile it
@ Call Tree Recordin <
EA 9 &
Launch
'WF Call Tree Filters
Profiled JVM Settings
. . If you have not yet prepared a JWM for profiling, it is recommended to run an integration wizard. It will
Trigger Settings

create the remote session for you.

Databases S5H tunnel A Direct 55H to demo:8849 Edit (7]

Use SOCKS proxy
0 HTTP, RPC & JEE Execute start command
Execute stop command

JVM & Custemn Probes
Open browser with URL

Connection timeout: 60 % seconds Config Synchrenization Opticns

{é} Advanced Settings

Java File Path

Mote: the classpath is used for the bytecode viewer only.

Q Class path
Source path)

General Settings Copy Settings From “ Cancel

If the session is started via SSH, you can copy the config file via SSH directly to the remote
machine. Otherwise, you can still copy the config file to a local directory which may be
mounted on the remote machine. Finally, you can execute an arbitrary command, to copy
the config file by other means.

247

@ Config Synchrenization Options

The synchronization action configured below is performed each time the profiling
settings are changed.

Please choose the desired synchronization action:

Manual synchronization 0
) Copy with 55H to remate directory: @ | /home/build/config

Copy config file to directory: (7]

Execute command: 0

248

G Command Line Reference

G.1 Command Line Executables For Profiling

JProfiler includes a number of command line tools for setting up the profiling agent and
controlling profiling actions from the command line.

Loading the profiling agent into a running JVM

With the commmand line utility bi n/ j penabl e, you can load the profiling agent into any
running JVM with a version of 6 or higher. With commmand line arguments, you can automate
the process so that it requires no user input. The supported arguments are:

Usage: | penabl e [options]

j penabl e starts the profiling agent in a selected | ocal JVM so you can connect
toit froma different conputer. If the JProfiler QU is running locally, you
can attach directly fromthe JProfiler GU instead of running this executable.

* if no argunent is given, jpenable attenpts to discover |local JVMs that
are not being profiled yet and asks for all the required i nput on the conmand
l'i ne.

* with the follow ng argunents, you can partially or conpletely supply the
entire user input on the command |ine:

-d --pid=<PlI D> The PID of the JVMthat should be profiled
-n --noi nput Do not ask for user input under any circunstances
-h --help Show t his hel p

--opti ons=<OPT> Debuggi ng opti ons passed to the agent

QU node: (default)

-g --gui The JProfiler QU wll be used to attach to the JVM

-p --port=<nnnnn> The port on which the profiling agent should listen for
a connection fromthe JProfiler CU

-a --address=<IP> The address the profiling agent should listen on

O fline node:

-0 --offline The JVM wi Il be profiled in offline node
-c --config=<PATH> Path to the config file with the profiling settings
-i --id=<ID> ID of the session in the config file. Not required, if

the config file holds only a single session.

Note that the JVM has to be running as the sane user as jpenable, otherw se
JProfiler cannot connect to it.

An exception are Wndows services running under the | ocal system account if you
list theminteractively with jpenable.

Saving HPROF snapshots

If you just need a heap snapshot, consider using the bi n/ j pdunp command line tool that
saves an HPROF snapshot [p. 205] without loading the profiling agent into the VM:

249

Usage: jpdunp [options]

j pdunp dunps the heap froma locally running JVMto a file.
Hot spot VMs produce HPROF files, OpenJ9 VMs PHD files.
HPROF and PHD files can then be opened in the JProfiler GU .

* if no argunent is given, jpdunp lists all locally running JVMs.
* with the followi ng argunents, you can partially or conpletely supply the
entire user input on the command |ine:

-p --pid=<Pl D> The PID of the JVM whose heap shoul d be dunped
Wth a specified PID, no further questions will be asked.
-a --all Save all objects. If not specified, only |live objects are
dunped
-f --file=<PATH> Path to the dunp file. If not specified, the dunp file
<VM nane>. hprof is witten in the current directory.
If the file already exists, a nunber is appended.
-h --help Show t hi s hel p

Note that the JVM has to be running as the same user as jpdunp, otherw se
JProfiler cannot connect to it.

An exception are Wndows services running under the |ocal system account if you
list theminteractively wth jpdunp.

This has a lower overhead than loading the profiling agent and saving a JProfiler heap
snapshot. Also, because the profiling agent can never be unloaded, this method is suitable
for JVMs running in production.

Controlling the profiling agent

When you start the bi n/j pcontrol | er executable without arguments, it attempts to
connect to a profiled JVM on the local machine. If multiple profiled JVMs were discovered,
you can select one from a list. Because the discovery mechanism uses the attach API of
the Oracle JVM, this only works for Oracle JVMs starting with Java 6.

i pcontrol | er can only connect to JVMs where the profiling settings have been set, so it
does not work if the JVM was started with the "nowait” option for the - agent path VM
parameter. That option is set when choosing the Startup immediately, connect later with
the JProfiler GUI radio button on the "Startup mode” screen of an integration wizard and
no JProfiler GUI has yet connected to the agent. Using j penabl e without the --of f I i ne
argument also requires a connection from the JProfiler GUI before j pcontrol | er can
connect to the profiled process.

If you want to connect to a process on a remote computer, or if the JVM is not a HotSpot
JVM with a version of 6 or higher, you have to pass the VM parameter - Dj profil er.
j mxServer Port =[port] to the profiled JVM. An MBean server will be published on that
port, and you can specify the chosen port as an argument to j pcontrol | er. With the
additional VM parameter - Dj profiler.jmxPasswordFile=[file] you can specify a
properties file with key-value pairs of the form user =passwor d to set up authentication.
Note that these VM parameters are overridden by the com sun. managenent . j nxr enot e.
port VM parameter.

With the explicit setup of the JMX server, you can use the command line controller to
connect to aremote server by invokingj pcontrol | er host: port.If the remote computer
is only reachable via an IP address, you have to add - Dj ava. rmi . server. host name=[| P
addr ess] as a VM parameter to the remote VM.

250

By default,j pcont r ol | er is aninteractive command line utility, but you can also automate
profiling sessions with it without the need for manual input. An automated invocation
would pass[pid | host: port] toselecta profiled JVMaswellasthe--non-interactive
argument. In addition, a list of commands is read, either from stdin, or from a command
file that is specified with the - - command- f i | e argument. Each command starts on a new
line, lines that are blank or start with a "#" comment character are ignored.

Commands for this non-interactive mode are the same as the method names in the

Jprofiler MBean . They require the same number of parameters, separated by spaces.
String must be surrounded by double quotes if they contain spaces. In addition, a sl eep
<seconds> command is provided that pauses for a number of seconds. This allows you
to start recording, wait for some time and then save a snapshot to disk.

Note that the profiling settings have to be set in the profiling agent. This happens when
you connect with the JProfiler Ul. If you never connect with the JProfiler Ul, they have to set
them manually in the startup command or with jpenable, please see the help topic on
setting profiling settings at startup [p. 246] for more information.

The supported arguments of jpcontroller are shown below:

Usage: jpcontroller [options] [host:port | pid]

* if no argunent is given, jpcontroller attenpts to discover |ocal JVMs that
are being profiled

* if a single nunmber is specified, jpcontroller attenpts to connect to the JVM
with process ID[pid]. If that JVMis not profiled, jpcontroller cannot
connect. In that case, use the jpenable utility first.

* otherw se, jpcontroller connects to "host:port", where port is the value
that has been specified in the VM paraneter -Djprofiler.jnxServerPort=[port]
for the profiled JVM

The follow ng options are avail abl e:
-n --non-interactive Run an aut omat ed session where a |ist of commands
is read from stdin.
-f --command-fil e=<PATH> Read comands froma file instead of stdin. Only
applicabl e together with --non-interactive.

Syntax for non-interactive comands:
See the javadoc for RenpteControllerMBean (https://bit.ly/2D nDN5) for a
list of operations. Paraneters are separated by spaces and nust be quoted if
they contain spaces. For exanpl e:

addBookmark "Hello world"

st art CPURecordi ng true

start ProbeRecording builtin.JdbcProbe true true
sl eep 10

st opCPURecor di ng

st opProbeRecordi ng buil tin.JdbcProbe
saveSnapshot /path/to/snapshot.jps

The sl eep <seconds> command pauses for the specified nunber of seconds.
Enpty lines and lines starting with # are ignored.

V) https:/ [www.ej-technologies.com/resources/jprofiler/help/api/javadoc/com/jprofiler/api/agent/mbean/
RemoteControllerMBean.html

25]

https://www.ej-technologies.com/resources/jprofiler/help/api/javadoc/com/jprofiler/api/agent/mbean/RemoteControllerMBean.html

G.2 Command Line Executables For Working With Shapshots

When using offline profiling [p. 129] to save snapshots programmatically, it may also be
necessary to programmatically extract data or reports from those snapshots. JProfiler
offers two separate command line executables, one for exporting views from a snapshot
and one for comparing snapshots.

Exporting views from a snapshot

The executable bi n/ j pexport exports view data to various formats. If you execute it with
the - hel p option, you will get information on the available view names and view options.
For reasons of conciseness, duplicate help texts in the output below have been omitted.

Usage: jpexport "snapshot file" [gl obal options]
"view nanme" [options] "output file"
"view nane" [options] "output file"

where "snapshot file" is a snapshot file with one of the extensions:
.jps, .hprof, .hpz, .phd, .jfr
"view name" is one of the view nanmes |isted bel ow
[options] is a list of options in the format -option=val ue
"output file" is the output file for the export

d obal options:

- obf uscat or =none| pr oguar d| yguard
Deobfuscate for the sel ected obfuscator. Defaults to "none", for other
val ues the mappingFile option has to be specifi ed.

- mappi ngfi | e=<fil e>
The mapping file for the sel ected obfuscator.

- out put di r =<out put di rectory>
Base directory to be used when the output file for a viewis a
relative file.

-ignoreerrors=true|fal se
Ignore errors that occur when options for a view cannot be set and
continue with the next view The default value is "false", i.e., the
export is term nated, when the first error occurs.

- csvsepar at or =<separ at or char act er >
The field separator character for the CSV exports. Defaults to ',

- bi t map=f al se| true
Where appropriate, export a bitmap i mage i nstead of SVG for the nain
content. The default value is false.

Avai | abl e vi ew nanes and opti ons:
* Tel enetryHeap, Tel enetryObjects, Tel enetryThroughput, Tel enetryCC,
Tel enetryC asses, Tel enetryThreads, Tel emetryCPU
Opt i ons:
-format =htm | csv
Determ nes the output format of the exported file. If not present, the
export format will be determined fromthe extension of the output
file.
-m nwi dt h=<nunber of pi xel s>
M ni mum wi dt h of the graph in pixels. The default value is 800.
- m nhei ght =<nunber of pi xel s>
M ni mrum hei ght of the graph in pixels. The default value is 600.

* Bookmar ks, ThreadMonitor, CurrentMnitorUsage, MonitorUsageH story
Opti ons:
-format=htm | csv

* Al Objects
Opt i ons:

-format=htm | csv

252

-viewfilters=<comma-separated |ist>
Sets view filters for the export. If you set viewfilters, only the
speci fi ed packages and their sub-packages will be displayed by the
exported view.
-viewfilternmde=startsw th|endsw th|contains|equals
Sets the view filter node. The default value is "contains".
-viewfilteropti ons=casesensitive
Bool ean options for the view filter. By default, no options are set.
- aggr egat i on=cl ass| package| conmponent
Sel ects the aggregation |level for the export. The default value is
cl asses.
- expandpackages=true| f al se
Expand package nodes in the package aggregation |evel to show
contai ned cl asses. The default value is "false". Has no effect for
ot her aggregation levels and with csv output fornmat.

* Recorded(bj ects
like Al Objects, but with additional options:
-liveness=live| gc|all
Sel ects the liveness node for the export, i.e., whether to display
l'ive objects, garbage collected objects or both. The default value is
l'ive objects.

* AllocationTree
Opti ons:

-format =ht m | xm

-viewfilters=<conma-separated |ist>

-viewfiltermde=startsw th|endsw th|contains|equal s

-viewfilteropti ons=casesensitive

- aggr egat i on=net hod| cl ass| package| conponent
Sel ects the aggregation |level for the export. The default value is
nmet hods.

-class=<fully qualified class nanme>
Specifies the class for which the allocation data shoul d be
calculated. If enpty, allocations of all classes will be shown. Cannot
be used together with the package opti on.

- package=<ful ly qualified package nanme>
Specifies the package for which the allocation data shoul d be
calculated. If enpty, allocations of all packages will be shown.
Cannot be used together with the class option.

-liveness=live|gc|all

* Al | ocati onHot Spot s
Opt i ons:

-format =htm | csv| xm

-viewfilters=<comma-separated |ist>

-viewfiltermde=startsw th|endsw th|contains|equals

-viewfilteroptions=casesensitive

- aggr egat i on=net hod| cl ass| package| conponent

-class=<fully qualified class nanme>

- package=<ful ly qualified package name>

-liveness=live|gc|all

-unprofil edcl asses=separ at el y| addt ocal | i ng
Selects if unprofiled classes should be shown separately or be added
to the calling class. The default value is to show unprofil ed cl asses
separately.

-val uesummat i on=sel f | t ot al
Det ermi nes how the tinmes for hot spots are cal cul ated. Defaults to
"sel f".

- expandbackt races=true| f al se
Expand backtraces in HTM. or XM. format. The default value is "fal se".

* C assTracker
l'i ke Tel enetryHeap, but w th additional options:

253

-cl ass
The tracked class. If mssing, the first tracked class is exported.

* Call Tree
Opti ons:
-format =ht m | xm
-viewfilters=<conma-separated |ist>
-viewfiltermde=startsw th|endsw th|contains|equal s
-viewfilteropti ons=casesensitive
- aggr egat i on=net hod| cl ass| package| conponent
-t hr eadgr oup=<nane of thread group>
Selects the thread group for the export. If you specify "thread" as
well, the thread will only be searched in this thread group, otherw se
the entire thread group will be shown.
-t hread=<nanme of thread>
Sel ects the thread for the export. By default, the call tree is nerged
for all threads.
-t hreadst at us=al | | runni ng| wai ti ng| bl ocki ng| neti o
Sel ects the thread status for the export. The default value is
"runni ng".

* Hot Spot s
Opt i ons:
-format =ht m | csv| xml
-viewfilters=<conma-separated |ist>
-viewfilternpde=startswi th|endsw th|contains|equal s
-viewfilteropti ons=casesensitive
- aggr egat i on=net hod| cl ass| package| conponent
-t hr eadgr oup=<nane of thread group>
-t hr ead=<name of thread>
-t hreadstatus=al | | runni ng| wai ti ng| bl ocki ng| neti o
- expandbackt races=true| f al se
-unprofil edcl asses=separ at el y| addt ocal | i ng
-val uesunmat i on=sel f | t ot al

* QutlierDetection
Opt i ons:
-format=htm | csv
-threadstatus=al | | runni ng| wai ti ng| bl ocki ng| neti o
-viewfilters=<comma-separated |ist>
-viewfiltermde=startsw th|endsw th|contains|equals
-viewfilteroptions=casesensitive

* Conpl exity
Opti ons:

-format=htm | csv| properties

-fit=best|constant|linear|quadratic| cubic|exponential]|logarithmc|n_log_n
The fit that should be exported. The default value is "best". No curve
fitting data is exported to CSV.

- met hod=<net hod nanme>
The nethod nane for which the conplexity graph should be exported. If
not given, the first method will be exported. Otherw se, the first
net hod nane that starts with the given text will be exported.

-wi dt h=<nunber of pixel s>

- hei ght =<nunber of pixel s>

* ThreadH story
I'i ke Tel emetryHeap, but with changed options:
-format =ht m

* MonitorUsageStatistics
Opti ons:

-format=htm | csv
-type=noni tors| t hr eads| cl asses

254

Sel ects the entity for which the nonitor statistics should be
cal cul ated. The default value is "nonitors".

* ProbeTi meLi ne
i ke ThreadHi story, but with additional options:
- pr obei d=<i d>
The internal ID of the probe that should be exported. Run "jpexport
--listProbes" to list all available built-in probes and for an
expl anati on of custom probe nanes.

* ProbeControl Qoj ects
Opt i ons:
- pr obei d=<i d>
-format=htm | csv

* ProbeCal | Tree
Opt i ons:
- pr obei d=<i d>
-format=htm | xm
-viewfilters=<comma-separated |ist>
-viewfilternmde=startsw th|endsw th|contains|equal s|w | dcard|regex
-viewfilteropti ons=excl ude, casesensitive
- aggr egat i on=ret hod| cl ass| package| conponent
-t hr eadgr oup=<nane of thread group>
-t hread=<nane of thread>
-t hreadst at us=al | | runni ng| wai ti ng| bl ocki ng| neti o
Sel ects the thread status for the export. The default value is "all"

* ProbeHot Spot s
l'i ke ProbeCall Tree, but with additional or changed options:
-format =htm | csv| xm
- expandbackt races=true| f al se

* ProbeTel enetry
i ke Tel emetryHeap, but with additional options:
- pr obei d=<i d>
-tel emetrygroup
Sets the one-based i ndex of the telenmetry group that should be
exported. This refers to the entries that you see in the drop-down
Iist above the probe telenetry view The default value is "1".

* ProbeEvents
Opt i ons:
- pr obei d=<i d>
-format =htm | csv| xm

* ProbeTracker
l'i ke Tel enetryHeap, but with additional options:
- pr obei d=<i d>
- i ndex=<nunber >
Sets the zero-based i ndex of the drop-down |ist that contains the
tracked el ements. The default value is O.

Some examples for using the export executable are:

jpexport test.jps Tel emetryHeap heap. htnl
j pexport test.jps Recordedbj ects -aggregati on=package - expandpackages=true objects. htnl
j pexport test.jps -ignoreerrors=true -outputdir=/tnp/export

Recor dedbj ect s obj ects. csv
Al l ocati onTree -cl ass=java.lang. String allocations.xm

255

Comparing snapshots

The executable bi n/ j pconpar e compares different snapshots [p. 134] and exports them
to HTML or a machine-readable format. Its - hel p output is reproduced below, again
without any duplicate explanations.

Usage: jpconpare "snapshot file"[,"snapshot file",...] [gl obal options]
"conparison name" [options] "output file"
"conpari son nane" [options] "output file"

where "snapshot file" is a snapshot file with one of the extensions:
.jps, .hprof, .hpz, .phd, .jfr
"conpari son nane" is one of the conparison nanmes |isted bel ow
[options] is a list of options in the format -option=val ue
"output file" is the output file for the export

d obal options

- out put di r=<out put directory>
Base directory to be used when the output file for a conparison is a
relative file.

-ignoreerrors=true|fal se
Ignore errors that occur when options for a conpari son cannot be set
and continue with the next conparison. The default value is "fal se"
i.e., the export is term nated, when the first error occurs.

- csvsepar at or =<separ at or character >
The field separator character for the CSV exports. Defaults to ',"'.

- bi t map=f al se| true
Where appropriate, export a bitmap i mage i nstead of SVG for the nmain
content. The default value is false

-sortbyti ne=fal se|true
Sort the specified snapshot files by nodification time. The default
value is fal se

-listfile=<fil ename>
Read a file that contains the paths of the snapshot files, one
snapshot file per line

Avai | abl e conpari son nanes and options:
* (bj ects
Opt i ons:
-format=htm | csv
Determ nes the output format of the exported file. If not present, the
export format will be determined fromthe extension of the output
file
-viewfilters=<comma-separated |ist>
Sets view filters for the export. If you set viewfilters, only the
speci fi ed packages and their sub-packages will be displayed by the
exported view.
-viewfiltermde=startsw th|endsw th|contains|equals
Sets the view filter node. The default value is "contains".
-viewfilteropti ons=casesensitive
Bool ean options for the view filter. By default, no options are set.
- aggr egat i on=cl ass| package| conponent
Sel ects the aggregation |evel for the export. The default value is

cl asses.
-liveness=live| gc| al
Sel ects the liveness node for the export, i.e., whether to display

live objects, garbage collected objects or both. The default value is
live objects.

-obj ect s=al | | recor ded| heapwal ker
Conpare all objects (JVMIl only) or recorded objects, or objects in
the heap wal ker. The default is all objects for .jps files and
heapwal ker for HPROF/ PHD fil es.

256

* Al |l ocati onHot Spot s

*

*

*

Opti ons:

-format=htnm | csv

-viewfilters=<conmma-separated |ist>

-viewfilternmde=startsw th|endsw th|contains|equals

-viewfilteropti ons=casesensitive

- aggr egat i on=net hod| cl ass| package| conponent
Sel ects the aggregation |level for the export. The default value is
nmet hods.

-liveness=live|gc|all

-unprofil edcl asses=separ at el y| addt ocal | i ng
Selects if unprofiled classes should be shown separately or be added
to the calling class. The default value is to show unprofiled classes
separately.

-val uesunmat i on=sel f| t ot al
Det erm nes how the tines for hot spots are calcul ated. Defaults to
"sel f".

-cl asssel ection
Cal cul ate the conparison for a specific class or package. Specify a
package with a wildcard, like 'java.aw.*".

Al | ocati onTree

Opt i ons:
-format =ht m | xm
-viewfilters=<conma-separated |ist>
-viewfilternpde=startswi th|endsw th|contains|equal s
-viewfilteropti ons=casesensitive
- aggr egat i on=net hod| cl ass| package| conponent
-liveness=live|gc|all
-cl asssel ecti on

Hot Spot s
Opt i ons:

-format=htm | csv

-viewfilters=<comma-separated |ist>

-viewfiltermde=startsw th|endsw th|contains|equals

-viewfilteropti ons=casesensitive

-firstthreadsel ection
Cal cul ate the conparison for a specific thread or thread group.
Specify thread groups |like 'group.*" and threads in specific thread
groups like 'group.thread' . Escape dots in thread names wth
backsl| ashes.

- secondt hr eadsel ecti on
Cal cul ate the conparison for a specific thread or thread group. Only
available if 'firstthreadselection' is set. |f enpty, the sane val ue
as for 'firstthreadsel ection' will be used. Specify thread groups |ike
"group.*' and threads in specific thread groups |ike 'group.thread .
Escape dots in thread names with backsl ashes.

-t hreadst at us=al | | runni ng| wai ti ng| bl ocki ng| neti o
Sel ects the thread status for the export. The default value is
"runni ng".

- aggr egat i on=net hod| cl ass| package| conponent

-di fferencecal cul ati on=total | aver age
Sel ects the difference cal culation method for call tinmes. The default
value is total tinmes.

-unprofil edcl asses=separ at el y| addt ocal | i ng

-val uesummat i on=sel f | t ot al

Cal | Tree

Opt i ons:
-format =ht m | xm
-viewfilters=<conma-separated |ist>
-viewfilternpde=startswi th|endsw th|contains|equal s
-viewfilteropti ons=casesensitive

257

-firstthreadsel ection

- secondt hr eadsel ecti on

-t hreadst at us=al | | runni ng| wai ti ng| bl ocki ng| neti o
- aggr egat i on=net hod| cl ass| package| conponent

-di fferencecal cul ati on=tot al | aver age

* Tel emet ryHeap
Opti ons:

-format=htm | csv

-m nw dt h=<nunber of pixel s>
M ni mum wi dt h of the graph in pixels. The default value is 800.

- m nhei ght =<nunber of pi xel s>
M ni mrum hei ght of the graph in pixels. The default value is 600.

-val uet ype=current | maxi munf bookmar k
Type of the value that is calculated for each snapshot. Default is the
current val ue.

- booknar kname
If valuetype is set to 'bookmark', the name of the bookmark for which
t he val ue shoul d be cal cul at ed.

- measur enent s=maxi num fr ee, used
Measurenments that are shown in the conparison graph. Concatenate
mul tiple values with commas. The default value is 'used'.

- menor yt ype=heap| nonheap
Type of the nmenory that should be anal yzed. Default is 'heap'.

- menor ypool
If a special nmenory pool should be analyzed, its nane can be specified
with this parameter. The default is enpty, i.e. no special nmenory
pool .

* Tel emetryChj ects
Opt i ons:

-format =htm | csv

-m nw dt h=<nunber of pixel s>

- m nhei ght =<nunber of pixel s>

-val uet ype=current | maxi nur booknmar k

- booknar kname

- measur enent s=t ot al , nonarrays, arrays
Measurenents that are shown in the conparison graph. Concatenate
mul tiple values with commas. The default value is 'total"'.

* Tel enetryd asses
l'i ke Tel enetryQOhj ects, but with changed options:
-nmeasurenents=total ,filtered,unfiltered

* Tel emetryThr eads
like Tel emetryCbjects, but with changed options:
- measur enent s=t ot al , runnabl e, bl ocked, neti o, wai ti ng

* ProbeHot Spot s
Opti ons:

-format =htm | csv

-viewfilters=<comma-separated |ist>

-viewfiltermde=startsw th|endsw th|contains|equal s|w | dcard|regex

-viewfilteropti ons=excl ude, casesensitive

-firstthreadsel ection

- secondt hr eadsel ecti on

-t hreadst atus=al | | runni ng| wai ti ng| bl ocki ng| neti o

- aggr egat i on=ret hod| cl ass| package| conponent

-di fferencecal cul ati on=total | aver age

- pr obei d=<i d>
The internal ID of the probe that should be exported. Run "jpexport
--listProbes" to list all available built-in probes and for an
expl anati on of custom probe nanes.

258

* ProbeCal | Tree
|'i ke ProbeHot Spots, but w th changed options
-format =ht m | xm

* ProbeTel enetry
like Tel emetryCbjects, but with additional or changed options

- measur enent s
The one-based indices of the neasurements in the telenetry group that
are shown in the conparison graph. Concatenate nultiple values with
commas, like "1,2". The default value is to show all measurenents.

- pr obei d=<i d>

-tel emet rygroup
Sets the one-based index of the telenmetry group that should be
exported. This refers to the entries that you see in the drop-down
Iist above the probe telenmetry view The default value is "1".

Automatic output formats

Most views and comparisons support multiple output formats. By default, the output format
is deduced from the extension of the output file:

* .html

The view or comparison is exported as an HTML file. A directory namedj prof i | er _i mages
will be created that contains images used in the HTML page.

+ .CSV
The data is exported as CSV data where the first line contains the column names.

When using Microsoft Excel, CSV is not a stable format. Microsoft Excel on Windows takes
the separator character from the regional settings. JProfiler uses a semicolon as the
separatorin locales that use a comma as a decimal separator and a comma in locales
that use a dot as a decimal separator. If you need to override the CSV separator
character you can do so by setting the global csvsepar at or option.

« .xml
The data is exported as XML. The data format is self-descriptive.

If you would like to use different extensions, you can use the f or mat option to override the
choice of the output format.

Analyzing snapshots

If the generated snapshots have heap dumps in them, you can use the bi n/ j panal yze
executable to prepare the heap dump analysis in advance [p. 81]. Opening the snapshot
in the JProfiler GUI will then be very fast. The usage information of the tool is shown below:

Usage: jpanal yze [options] "snapshot file" ["snapshot file" ...]

where "snapshot file" is a snapshot file with one of the extensions:
.jps, .hprof, .hpz, .phd, .jfr
[options] is a list of options in the format -option=val ue

Opt i ons
- obf uscat or =none| pr oguar d| yguard
Deobf uscate for the selected obfuscator. Defaults to "none", for other
val ues the mappingFile option has to be specified
- mappi ngfi | e=<fil e>

259

The mapping file for the sel ected obfuscator.

-renoveunr ef erenced=true| f al se
If unreferenced or weakly referenced objects shoul d be renpved.

-retai ned=true|fal se
Cal cul ate retained sizes (biggest objects). renpveunreferenced will be
set to true.

-retai nsoft=true|fal se
If unreferenced objects are renpved, specifies if soft references
shoul d be ret ai ned.

-ret ai nweak=true| f al se
If unreferenced objects are renpved, specifies if weak references
shoul d be ret ai ned.

- ret ai nphant o=t rue| f al se
I f unreferenced objects are renoved, specifies if phantom references
shoul d be ret ai ned.

-retainfinalizer=true|false
If unreferenced objects are renpved, specifies if finalizer references
shoul d be ret ai ned.

The renoveUnr ef er enced, the retai ned and all the retai n* command line options
correspond to the options in the heap walker options dialog.

260

G.3 Gradle Tasks

JProfiler supports profiling from Gradle with special tasks. In addition. JProfiler offers a
number of command line executables for working with snapshots [p. 252] that have
corresponding Gradle tasks.

Using Gradle tasks

To make the JProfiler Gradle tasks available in a Gradle build file, you can use the pl ugi ns
block

pl ugi ns {
id 'comjprofiler' version 'XY.Z
}

If you do not want to use the Gradle plugin repository for this purpose, the Gradle plugin
is distributed in the file bi n/ gradl e. j ar.

Next, you have to tell the JProfiler Gradle plugin where JProfiler is installed.

jprofiler {
instalIDir = file('/path/to/jprofiler/hone')
}

Profiling from Gradle

With tasks of typecom j profil er. gradl e. JavaPr of i | e you can profile any Java process.
This class extends Gradle's built-in JavaExec, so you can use the same arguments for
configuring the process. For profiling tests, use tasks of type com jprofiler.gradle.
Test Prof i | e that extend the Gradle Test task.

Without any further configuration, both tasks start an interactive profiling session where
the profiling agent waits on the default port 8849 for a connection from the JProfiler GUL.
For offline profiling, you have to add a couple of attributes that are shown in the table
below.

Attribute Description Required
offline Whether the profiling run should be in offline mode. No, of fli ne
- -] i and nowai t
nowait Whether profiling should startimmediately or whether | -qnnot both
the profiled JVM should wait for a connection from the betrue.
JProfiler GUL
sessionid Defines the session ID from which profiling settings Required if
should be taken. Has no effect if neither nowai t nor
offline are set because in that case the profiling - offline is
session is selected in the GUI. set
* nowai t isset
foralb5 JvM
configFile Defines the config file from which the profiling settings No

should be read.

261

Attribute Description Required

port Defines the port number on which the profiling agent No
should listen for a connection from the JProfiler GUI.
This must be the same as the port configured in the
remote session configuration. If not set or zero, the
default port (8849) will be used. Has no effect if

of fli ne is set because in that case there is no
connection from the GUI.

debugOptions | If you want to pass any additional library parameters No
for tuning or debugging purposes, you can do that
with this attribute.

An example for profiling a Java class with a main method that is compiled by the
containing project is given below:

task run(type: comjprofiler.gradle.JavaProfile) {
mai nCl ass = ' com nycor p. MyMai nCl ass
cl asspath sourceSets. main. runtined asspath
offline = true
sessionld = 80
configFile = file('path/to/jprofiler_config.xm")

You can see a runnable example of this task in the api / sanpl es/ of f | i ne sample project.
Unlike the standard JavaExec task, the JavaProfil e task can also be started in the
background by calling cr eat ePr ocess() onit. See the api / sanpl es/ mhean sample project
for a demonstration of this feature.

If you need the VM parameter that is required for profiling, the com j profil er. gradl e.
Set Agent pat hProperty task will assign it to a property whose name is configured with
the pr oper t yNane attribute. Applying the JProfiler plugin automatically adds a task of this
type named set Agent Pat hPr operty to your project. For getting the VM parameter that
would be used in the previous example, you can simply add

set Agent Pat hProperty {
propertyName = 'profilingVnParaneter'
offline = true
sessionld = 80
configFile = file('path/to/jprofiler_config.xm")

to your project and add a dependency to set Agent Pat hProperty to some other task.
Then you can use the project property profi | i ngVnPar anet er in the execution phase of
that task. When assigning the property to other task properties, surround its usage with a
doFirst {...} code block in order to make sure that you are in the Gradle execution

phase and not in the configuration phase.
Exporting data from snapshots

The com jprofiler.gradle. Export task can be used to export views from a saved
snapshot and replicates the arguments of the bi n/ j pexport command line tool [p. 252].
It supports the following attributes:

262

Attribute Description Required
snapshotFile | The path to the snapshot file. This must be a file with a Yes
.] ps extension.
ignoreErrors | Ignore errors that occur when options for a view cannot No
be set and continue with the next view. The default value
is f al se, meaning that the export is terminated when
the first error occurs.
csvSeparator | The field separator character for the CSV exports. No
Defaultsto ",".
obfuscator Deobfuscate class and method nhames for the selected No
obfuscator. Defaults to "none’, for other values the
mappi ngFi | e option has to be specified. One of none,
pr oguar d or yguar d.
mappingFile | The mapping file for the selected obfuscator. May only Only if
be set if the obf uscat or attribute is specified. obf uscator is
specified

On the export task, you call the vi ews method and pass a closure to it in which you call

vi ew(nane, file[,

options]) one or multiple times. Each call to vi ew produces one

output file. The nane argument is the view name. For a list of available view names, please
see the help page on the j pexport command line executable [p. 252]. The argumentfil e
is the output file, either an absolute file or a file relative to the project. Finally, the optional

opt i ons argument is a map with the export options for the selected view.

An example for using the export task is:

task export(type: comjprofiler.gradle. Export) {
snapshotFile = file(' snapshot.jps')

views {

view('Call Tree', 'call Tree.htm ")
vi ew(' Hot Spots', 'hotSpots.htm "',
[threadStatus: 'all', expandBacktraces: 'true'])

Comparing snapshots

Like the bi n/ j pconpar e command line tool [p.252],thecom j profi | er. gradl e. Conpar e
task can compare two or more snapshots. It attributes are:

Attribute Description Required
snapshotFiles | The snapshot files that should be compared. You can pass Yes
any | t er abl e containing objects that gradle resolves to file
collections.
sortByTime If set to t r ue all supplied snapshots files are sorted by their No
file modification time, otherwise they are compared in the
order they were specified in the snapshot Fi | es attribute.

263

Attribute Description Required

ignoreErrors | Ignore errors that occur when options for a comparison No
cannot be set and continue with the next comparison. The
default value is f al se, meaning the export is terminated
when the first error occurs.

Just like exported views are defined for the Export task, the Conpare task has a
conpar i sons method where nested callsto conpari son(nane, file[, options]) define
the comparisons that should be performed. The list of available comparison names is
available on the help page of the | pconpar e command line executable [p. 252].

An example for using the compare task is:

task conpare(type: comjprofiler.gradle.Conpare) {
snapshotFiles = files('snapshotl.jps', 'snapshot2.jps')
conpari sons {
conparison('CallTree', 'callTree.htnml")
conpari son(' Hot Spots', 'hotSpots.csv',
[val ueSunmation: 'total', format: 'csv'])

or, if you want to create a telemetry comparison for multiple snapshots:

task conpare(type: comjprofiler.gradle. Conpare) {
snapshotFiles = fileTree(dir: 'snapshots', include: '*.jps')
sortByTime = true
conparisons {
conparison(' Tel enetryHeap', 'heap.htm', [val ueType: 'naximum])
conpari son(' ProbeTel emetry', 'jdbc.htm ', [probeld: 'JdbcProbe'])

Analyzing heap snapshots

The gradle taskcom j profi | er. gradl e. Anal yze has the same functionality as the bi n/
j panal yze command line tool [p. 252].

The task has a snapshot Fi | es attribute like the Conpar e task to specify the processed
snapshots and obfuscator and mappi ngfil e attributes like the Export task for
deobfuscation. The attributes renmpveUnreferenced, retainSoft, retainWak,
retai nPhantom retainFinalizer and retai ned correspond the arguments of the
command line tool.

An example for using the Anal yze task is given below:

task anal yze(type: comjprofiler.gradle.Analyze) {

snapshotFiles = fileTree(dir: 'snapshots', include: '*.jps')
retai nWweak = true
obfuscator = 'proguard'

mappi ngFile = file(' obfuscation.txt")

264

G.4 Ant Tasks

The Ant V) tasks provided by JProfiler are very similar to the Gradle tasks. This chapter
highlights the differences to the Gradle tasks and shows examples for each Ant task.

All Ant tasks are contained in the archive bi n/ ant . j ar. In order to make a task available
to Ant, you must firstinsert at askdef element that tells Ant where to find the task definition.
All examples below include that taskdef. It must occur only once per build file and can
appear anywhere on the level below the project element.

It is not possible to copy the ant . j ar archive to thel i b folder of your Ant distribution, you
have to reference a full installation of JProfiler in the task definition.

Profiling from Ant

Thecom jprofiler.ant.Profil eTask isderived from the built-in Java task and supports
all its attributes and nested elements. The additional attributes are the same as for the
Profi |l eJava Gradle task [p. 261]. Ant attributes are case-insensitive and usually written
in lower case.

<t askdef nanme="profile"
cl assname="com jprofiler.ant.Profil eTask"
cl asspat h="<path to JProfiler installation>/bin/ant.jar"/>

<target name="profile">
<profile classnane="M/Mai nd ass" offline="true" sessioni d="80">
<cl asspat h>
<fileset dir="lib" includes="*.jar" />
</ cl asspat h>
</profile>
</target>

Exporting data from snapshots

With the com j profil er. ant. Export Task you can export view from snapshots, just like
with the Expor t Gradle task [p. 261]. Views are specified differently than in the Gradle task:

they are nested directly below the task element and options are specified with nested
opti on elements.

<t askdef name="export"
cl assnane="com j profiler.ant. Export Task"
cl asspat h="<path to JProfiler installation>bin/ant.jar"/>

<target nanme="export">
<export snapshotfil e="snapshots/test.jps">
<vi ew nanme="Cal | Tree" file="calltree.htm"/>
<vi ew nane="Hot Spots" fil e="hotspots. htm ">
<opti on nane="expandbacktraces" val ue="true"/>
<option nanme="aggregati on" val ue="cl ass"/>
</ vi ew>
</ export >
</target>

Comparing snapshots

The com jprofiler.ant.ConpareTask corresponds to the Conpare Gradle task and
performs comparisons between two ore more snapshots. Like for the com j profil er.

U)han/ontopocheorg

265

http://ant.apache.org

ant . Export Task, comparisons are directly nested below the element and options are

nested for each conpari son element. The snapshot files are specified with a nested file
set.

<t askdef nane="conpare"

cl assnane="com j profil er.ant. ConpareTask"
cl asspat h="<path to JProfiler installation>bin/ant.jar"/>

<t arget nane="conpare">
<conpare sortbytime="true">
<fil eset dir="snapshots">
<i ncl ude name="*.jps" />
</fileset>
<conpari son name="Tel enetryHeap" fil e="heap. htm"/>
<conpari son nane="Tel enetryThreads" file="threads. htm ">
<option nane="neasurenents" val ue="inactive, active"/>
<option name="val uetype" val ue="booknark"/ >
<opti on nane="booknar knane" val ue="test"/>
</ conpari son>
</ conpar e>
</target>

Analyzing heap snapshots

Like the Anal yze Gradle task, the equivalent com j profil er. ant. Anal yzeTask for Ant

prepares the heap snapshot analysis in snapshots that have been saved with offline

profiling for faster access in the GUL. The snapshots that should be processed are specified
with a nested file set.

<t askdef nanme="anal yze"

cl assnanme="com j profiler.ant. Anal yzeTask"
cl asspat h="<path to JProfiler installation>/bin/ant.jar"/>

<target nanme="anal yze">
<anal yze>
<fileset dir="snapshots" includes="*.jps" />
</ anal yze>
</target>

266

	Introduction
	Architecture
	Installing
	Profiling a JVM
	Recording data
	Snapshots
	Telemetries
	CPU profiling
	Method call recording
	Memory profiling
	The heap walker
	Thread profiling
	Probes
	GC analysis
	MBean browser
	Offline profiling
	Comparing snapshots
	IDE integrations
	Custom probes
	Probe concepts
	Script probes
	Injected probes
	Embedded probes

	Call tree features in detail
	Auto-tuning for instrumentation
	Async and remote request tracking
	Viewing parts of the call tree
	Splitting the call tree
	Call tree analyses

	Advanced CPU analysis views
	Outlier detection
	Complexity analysis
	Call tracer
	Javascript XHR

	Heap walker features in detail
	HPROF snapshots
	Minimizing overhead
	Filters and live interactions
	Finding memory leaks

	JDK Flight Recorder (JFR)
	JFR overview
	Recording JFR snapshots
	JFR event browser
	JFR views

	Configuration in detail
	Trouble shooting connection problems
	Scripts
	Custom help
	Profiling settings at startup

	Command line reference
	Executables for profiling
	Executables for snapshots
	Gradle tasks
	Ant tasks

