
The definitive guide to JProfiler

All you need to know as a performance professional

© 2023 ej-technologies GmbH. All rights reserved.

Index

Introduction ... 4

Architecture ... 5

Installing ... 7

Profiling a JVM ... 10

Recording data .. 26

Snapshots .. 39

Telemetries .. 44

CPU profiling .. 52

Method call recording .. 65

Memory profiling .. 70

The heap walker .. 80

Thread profiling ... 97

Probes .. 104

GC analysis .. 118

MBean browser ... 124

Offline profiling ... 128

Comparing snapshots .. 133

IDE integrations ... 140

A Custom probes .. 148

A.1 Probe concepts ... 148

A.2 Script probes ... 155

A.3 Injected probes ... 159

A.4 Embedded probes .. 164

B Call tree features in detail .. 168

B.1 Auto-tuning for instrumentation .. 168

B.2 Async and remote request tracking ... 171

B.3 Viewing parts of the call tree ... 177

B.4 Splitting the call tree .. 182

B.5 Call tree analyses .. 186

C Advanced CPU analysis views .. 191

C.1 Outlier detection .. 191

C.2 Complexity analysis .. 195

C.3 Call tracer .. 197

C.4 Javascript XHR ... 199

D Heap walker features in detail .. 202

D.1 HPROF snapshots ... 202

D.2 Minimizing overhead ... 204

D.3 Filters and live interactions ... 206

D.4 Finding memory leaks ... 209

E JDK Flight Recorder (JFR) ... 216

E.1 JFR overview ... 216

E.2 Recording JFR snapshots .. 218

E.3 JFR event browser ... 222

E.4 JFR views ... 229

F Configuration in detail ... 236

F.1 Trouble shooting connection problems ... 236

F.2 Scripts ... 238

F.3 Custom help ... 242

G Command line reference ... 243

G.1 Executables for profiling ... 243

G.2 Executables for snapshots .. 246

G.3 Gradle tasks .. 255

G.4 Ant tasks .. 259

Introduction To JProfiler

What is JProfiler?

JProfiler is a professional tool for analyzing what is going on inside a running JVM. You can use
it in development, for quality assurance and for firefighting missions when your production
system experiences problems.

There are four main topics that JProfiler deals with:

• Method calls

This is commonly called "CPU profiling". Method calls can be measured and visualized in
different ways. The analysis of method calls helps you to understand what your application
is doing and find ways to improve its performance.

• Allocations

Analyzing objects on the heap with respect to their allocations, reference chains and garbage
collection falls into the category of "memory profiling". This functionality enables you to fix
memory leaks, use less memory in general and allocate fewer temporary objects.

• Threads and locks

Threads can hold locks, for example, by synchronizing on an object. When multiple threads
cooperate, deadlocks can occur and JProfiler can visualize them for you. Also, locks can be
contended,meaning that threads have towait before they can acquire them. JProfiler provides
insight into threads and their various locking situations.

• Higher level subsystems

Many performance problems occur on a higher semantic level. For example, with JDBC calls,
you probably want to find out which SQL statement is the slowest. For subsystems like that,
JProfiler offers "probes" that attach specific payloads to the call tree.

JProfiler's UI is delivered as a desktop application. You can interactively profile a live JVM or profile
automatically without using the UI. Profiling data is persisted in snapshots that can be opened
with the JProfiler UI. In addition, command line tools and build tool integrations help you with
automating profiling sessions.

How do I continue?

This documentation is intended to be read in sequence, with later help topics building on the
content of previous ones.

First, a technical overview over the architecture [p. 5] will help you to understand how profiling
works.

The help topics on installing JProfiler [p. 7] and profiling JVMs [p. 10] will get you up and running.

Following that, the discussion of data recording [p. 26] and snapshots [p. 39] take you to a level
of understanding where you can explore JProfiler on your own.

Subsequent chapters build your expertise with respect to different functionality in JProfiler. The
sections at the end are optional readings that should be consulted if you need certain features.

We appreciate your feedback. If you feel that there's a lack of documentation in a certain area
or if you find inaccuracies in the documentation, please don't hesitate to contact us at
support@ej-technologies.com.

4

mailto:support@ej-technologies.com

JProfiler Architecture

The big picture of all important interactions involving the profiled application, the JProfiler UI
and all command line utilities is given below.

remote or local

local

Profiled JVM

 JProfiler
MBean

jpcontroller

publishes

connects via
socket

connects
via JMX

loads with
-agentpath

controls with
offline profiling

jpenable

jpdump

Command line arguments

jpexport

jpcompare

jpanalyze

transmits
data

takes HPROF
heap dump

loads via
attach JProfiler

agent

Snapshots

loads the profiling agent

profiling data

controls recording

command line tool

process component

data

JProfiler UI

The profiling agent

The "JVM tool interface" (JVMTI) is a native interface that a profiler uses to gain access to
information and add hooks for inserting its own instrumentation. This means that at least part

5

of the profiling agent must be implemented as native code and so a JVM profiler is not

platform-independent. JProfiler supports a range of platforms that are listed on the web site (1).

A JVM profiler is implemented as a native library that is loaded either at startup or at some point
later on. To load it at startup, a VM parameter -agentpath:<path to native library> is
added to the command line. You rarely have to add this parameter manually, because JProfiler
will add it for you, for example, in an IDE integration, an integration wizard or if it launches the
JVM directly. However, it's important to know that this is what enables profiling.

If the JVM succeeds in loading the native library, it calls a special function in the library to give
the profiling agent a chance to initialize itself. JProfiler will then print a couple of diagnostic
messages prefixed with JProfiler> so you know that profiling is active. The bottom line is that
if you pass the -agentpath VM parameter, the profiling agent is either loaded successfully or
the JVM does not start.

Once loaded, the profiling agent asks the JVMTI to be notified of all kinds of events, such as thread
creation or class loading. Some of these events directly deliver profiling data. Using the class
loading event, the profiling agent instruments classes as they are loaded and inserts its own
bytecode to perform its measurements.

JProfiler can load the agent into an already running JVM, either by using the JProfiler UI, or with
the bin/jpenable command line tool. In that case, a substantial number of already loaded
classes may have to be retransformed in order to apply the required instrumentation.

Recording data

The JProfiler agent only collects the profiling data. The JProfiler UI is started separately and
connects to the profiling agent through a socket. This means that it is actually irrelevant if the
profiled JVM is running on the local machine or on a remote machine - the communication
mechanism between the profiling agent and the JProfiler UI is always the same.

From the JProfiler UI, you can instruct the agent to record data, display the profiling data in the
UI and save snapshots to disk. As an alternative to the UI, the profiling agent can be controlled

through its MBean (2). A command line tool that uses this MBean is bin/jpcontroller.

Yet another way to control the profiling agent is with a predefined set of triggers and actions. In
that way, the profiling agent can operate in unattended mode. This is called "offline profiling" in
JProfiler and is useful for automating profiling sessions.

Snapshots

While the JProfiler UI can show live profiling data, it is often necessary to save snapshots of all
recorded profiling data. Snapshots are either saved manually in the JProfiler UI or automatically
by trigger actions.

Snapshots can be opened and compared in the JProfiler UI. For automated processing, the
command line tools bin/jpexport and bin/jpcompare can be used to extract data and create
HTML reports from previously saved snapshots.

A low-overhead way of obtaining a heap snapshot from a running JVM is to use the bin/jpdump
command line tool. It uses the built-in functionality of the JVM to save an HPROF snapshot that
can be opened by JProfiler and does not require the profiling agent to be loaded.

(1) https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html
(2) https://en.wikipedia.org/wiki/Java_Management_Extensions

6

https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html
https://en.wikipedia.org/wiki/Java_Management_Extensions

Installing JProfiler

Executable installers are provided forWindows and Linux/Unix that lead you step-by step through
the installation. If a previous installation is detected, the installation is streamlined.

On macOS, JProfiler uses the standard installation procedure for UI applications: a DMG archive
that you can mount in the Finder by double-clicking on it, then you can drag the JProfiler
application bundle to the /Applications folder. That folder is visible as a symbolic link in the
DMG itself.

On Linux/Unix, installers are not executable after download, so you have to prepend sh when
executing them. The installer performs a command line installation if you pass the parameter
-c. Completely unattended installations for Windows and Linux/Unix are performed with the
parameter -q. In that case, you can pass the additional argument -dir <directory> in order
to choose the installation directory.

7

After you run an installer, it will save a file .install4j/response.varfile that contains the
entire user input. You can take that file and use it to automate unattended installations by passing
the argument -varfile <path to response.varfile> on the command line.

To set licensing information for unattended installations, pass -Vjprofiler.licenseKey=
<license key> -Vjprofiler.licenseName=<user name> and optionally -Vjprofiler.
licenseCompany=<company name> as command line arguments. If you have a floating license,
use FLOAT:<server name or IP address> instead of the license key.

Archives are also provided as ZIP files for Windows and as .tar.gz files for Linux. The command

tar xzvf filename.tar.gz

will extract a .tar.gz archive into a separate top-level directory. To start JProfiler, execute bin/
jprofiler in the extracted directory. On Linux/Unix, the file jprofiler.desktop can be used
to integrate the JProfiler executable into your window manager. For example, on Ubuntu you
can drag the desktop file into the launcher side bar in order to create a permanent launcher
item.

Distributing the profiling agent to remote machines

JProfiler has two parts: The desktop UI together with the command line utilities that operate on
snapshots, on the one hand, and the profiling agent together with the command line utilities
that control the profiled JVM, on the other hand. The installers and archives that you download
from the website contain both parts.

For remote profiling, however, you only need the profiling agent to be installed on the remote
side.While you can simply extract an archivewith the JProfiler distribution on the remotemachine,
you may want to limit the number of required files, especially when automating a deployment.
Also, the profiling agent is freely redistributable, so you can ship it with your application or install
it on customer machines for trouble-shooting.

To get a minimal package with the profiling agent, the remote integration wizards shows you
the download link for the appropriate agent archive as well as the download page with the agent
archives for all supported platforms. In the JProfiler GUI, invoke Session->IntegrationWizards->New
Server/Remote Integration, select the "Remote" option and then proceed to the Remote installation
directory step.

8

The URL for the HTML overview page for a particular JProfiler version is

https://www.ej-technologies.com/download/jprofiler/agent?version=14.0

The format of the download URLs for the single agent archives is

https://download.ej-technologies.com/jprofiler/jprofiler_agent_<platform>_14_0.<extension>

where platform corresponds to the agent directory name in the bin directory and extension
is zip on Windows, .tgz on macOS and .tar.gz for Linux/Unix. For Linux, x86 and x64 are
grouped together, so for Linux x64 the URL is

https://download.ej-technologies.com/jprofiler/jprofiler_agent_linux-x86_14_0.tar.gz

The agent archive contains the required native agent libraries together with the jpenable,
jpdump andjpcontroller executables. The executables in the archive only require Java 6 as a
minimum version, while the profiling agent works with Java 5 or higher.

The sub-directories that you see after extracting the agent archive on the remote machine are
described below. They are a subset of a full JProfiler installation on the respective target platform.

top-level directory after extraction

.install4j

bin

<platform-64>

<platform-32>

lib

agent JAR file and helper executables

native libraries for 64-bit JVMs

native libraries for 32-bit JVMs

support libraries for attach functionality

runtime for launchers

9

Profiling A JVM

To profile a JVM, JProfiler's profiling agent has to be loaded into the JVM. This can happen in two
different ways: By specifying an -agentpath VM parameter in the start script or by using the
attach API to load the agent into an already running JVM.

JProfiler supports both modes. Adding the VM parameter is the preferred way to profile and is
used by the integration wizards, the IDE plugins, and session configurations that launch a JVM
from within JProfiler. Attaching works both locally as well as remotely over SSH.

-agentpath VM parameter

It is useful to understand how the VM parameter that loads the profiling agent is composed.
-agentpath is a generic VMparameter provided by the JVM for loading any kind of native library
that uses the JVMTI interface. Because the profiling interface JVMTI is a native interface, the
profiling agent must be a native library. This means that you can only profile on the explicitly

supported platforms (1). 32-bit and 64-bit JVMs also need different native libraries. Java agents,
on the other hand, are loaded with the -javaagent VM parameter and only have access to a
limited set of capabilities.

After -agentpath:, the full path name to the native library is appended. There is an equivalent
parameter -agentlib:where you only specify the platform-specific library name, but then you
have to make sure that the library is contained in the library path. After the path to the library,
you can add an equals sign and pass options to the agent, separated by commas. For example,
on Linux, the whole parameter could look like this:

-agentpath:/opt/jprofiler10/bin/linux-x64/libjprofilerti.so=port=8849,nowait

The first equals sign separates the path name from the parameters, the second equals sign is
part of the parameter port=8849. This common parameter defines the port on which the
profiling agent is listening to connections from the JProfiler GUI. 8849 is actually the default port,
so you can also omit that parameter. If you want to profile multiple JVMs on the same machine,
you have to assign different ports, though. The IDE plugins and the locally launched sessions
assign this port automatically, for integration wizards you have to choose the port explicitly.

The second parameter nowait tells the profiling agent not to block the JVM at startup and wait
for a JProfiler GUI to connect. Blocking at startup is the default because the profiling agent does
not receive its profiling settings as command line parameters but from the JProfiler GUI or
alternatively from a config file. The command line parameters are only for bootstrapping the
profiling agent, telling it how to get started and for passing debug flags.

By default, the JProfiler agent binds the communication socket to all available network interfaces.
If this is not desirable for security reasons, you can add the option address=[IP address] in
order to select a specific interface or loopback to only listen for request from the local machine.
The latter is added automatically for JVMs that are launched by the JProfiler UI or by IDE
integrations.

Locally launched sessions

Like "Run configurations" in an IDE, you can configure locally launched sessions directly in JProfiler.
You specify the class path, the main class, working directory, VM parameters and arguments,
and JProfiler launches the session for you. All the demo sessions that ship with JProfiler are locally
launched sessions.

(1) https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html

10

https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html
https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html

A special launch mode is "Web Start" where you select the URL of the JNLP file, and JProfiler will

launch a JVM to profile it. This feature supports OpenWebStart (2), legacy WebStart from pre-Java
9 Oracle JREs is not supported.

(2) https://openwebstart.com/

11

https://openwebstart.com/

Locally launched sessions can be converted to standalone sessions with the conversion wizards
by invoking Session->ConversionWizards from themainmenu. Convert Application Session to Remote
simply creates a start script and inserts the -agentpath VMparameter into the Java call. Convert
Application Session to Offline creates a start script for offline profiling [p. 128] which means that
the config is loaded on startup and the JProfiler GUI is not required. Convert Application Session
to Redistributed Session does the same thing, but creates a directory jprofiler_redist next
to it that contains the profiling agent as well as the config file so you can ship it to a different
machine where JProfiler is not installed.

If you develop the profiled application yourself, consider using an IDE integration [p. 140] instead
of a launched session. It will be more convenient and give you better source code navigation. If
you do not develop the application yourself, but already have a start script, consider using the
remote integration wizard. It will tell you the exact VM parameter that you have to add to the
Java invocation.

Integration wizards

JProfiler's integration wizards handle many well-known third party containers with start scripts
or config files that can be modified programmatically to include additional VM parameters. For
some products, start scripts can be generated where VM parameters are passed as arguments
or via environment variables.

12

In all cases, you have to locate some specific file from the third-party product, so JProfiler has
the necessary context to perform its modifications. Some generic wizards only give you
instructions on what you have to do in order to enable profiling.

The first step in each integration wizard is the choice whether to profile on the local machine or
on a remote machine. In the case of the local machine you have to provide less information,
because JProfiler already knows the platform, where JProfiler is installed and where its config
file is located.

13

An important decision is the "startup mode" that was discussed above. By default, the profiling
settings are transmitted from the JProfiler UI at startup, but you can also tell the profiling agent
to let the JVM start immediately. In the latter case, the profiling settings can be applied once the
JProfiler GUI connects.

However, you can also specify a config file with the profiling settings, which ismuchmore efficient.
This is done on the Config synchronization step. The main problem in this case is that you have
to synchronize the config file with the remote side each time you edit the profiling settings locally.
The most elegant way is to connect to the remote machine via SSH on the Remote address step,
then the config file can be transferred automatically via SSH.

14

At the end of the integration wizard, a session will be created that starts profiling and - in the
non-generic cases - also starts the third party product, such as an application server.

External start scripts are handled by the Execute start script and Execute stop script options on the
Application settings tab of the session configuration dialog and URLs can be shown by selecting
the Open browser with URL check box. This is also the place where you can change the address
of the remote machine and the config synchronization options.

15

The integration wizards all handle cases where the profiled JVM is running on a remotemachine.
However, when a config file or start script has to be modified, you have to copy it to your local
machine and transfermodified versions back to the remotemachine. Itmay bemore convenient
to directly run the command line tool jpintegrate on the remote machine and let it perform
its modifications in place. jpintegrate requires a full installation of JProfiler and has the same
JRE requirements as the JProfiler GUI.

When an error occurs while starting a remote profiling session, see the trouble-shooting
guide [p. 236] for a checklist of steps that you can take to fix the problem.

16

IDE integrations

The most convenient way to profile an application is through an IDE integration. If you usually
start your application from your IDE during development, the IDE already has all the required
information and the JProfiler plugin can simply add the VM parameter for profiling, start JProfiler
if necessary and connect the profiled JVM to a JProfiler main window.

All IDE integrations are contained in the integrations directory in the JProfiler installation. In
principle, the archives in that directory can be installed manually with the plugin installation
mechanisms in the respective IDEs. However, the preferred way to install IDE integrations is to
invoke Session->IDE integrations from the main menu.

Profiling sessions from the IDE do not get their own session entry in JProfiler, because such a
session could not be started from the JProfiler GUI. Profiling settings are persisted on a per-project
or a per-run-configuration basis, depending on the settings in the IDE.

When connected to an IDE, JProfiler shows a window switcher in the tool bar that makes it easy
to jump back to the associated window in the IDE. All the Show Source actions now show the
source directly in the IDE instead of the built-in source viewer in JProfiler.

IDE integrations are discussed in detail in a later chapter [p. 140].

Attach mode

You do not necessarily have to decide beforehand that you intend to profile a JVM. With the
attach functionality in JProfiler, you can select a running JVM and load the profiling agent on the
fly. While attach mode is convenient, it has a couple of drawbacks that you should be aware of:

• You have to identify the JVM that you want to profile from a list of running JVMs. This can
sometimes be tricky if a lot of JVMs are running on the same machine.

• There is additional overhead because potentially many classes have to be redefined to add
instrumentation.

• Some features in JProfiler are not available in attach mode. This is mostly because some
capabilities of the JVMTI can only be switched on when the JVM is being initialized and are not
available in later phases of the JVM's lifecycle.

• Some features require instrumentation in a large fraction of all classes. Instrumenting while
a class is being loaded is cheap, adding instrumentation later on when the class has already
been loaded is not. Such features are disabled by default when you use attach mode.

17

• Attach functionality is supported for OpenJDK JVMs, Oracle JVMs with version 6 or higher,
recent OpenJ9 JVMs (8u281+, 11.0.11+ or Java 17+) or IBM JVMs that are based on such a
release. The VM parameters -XX:+PerfDisableSharedMem and -XX:
+DisableAttachMechanism must not be specified for the JVM.

The Quick Attach tab in JProfiler's start center lists all JVMs that can be profiled. The background
color of the list entries indicates whether a profiling agent has already been loaded, whether a
JProfiler GUI is currently connected or if offline profiling has been configured.

When you start a profiling session, you can configure profiling settings in the session settings
dialog. When you repeatedly profile the same process, you do not want to re-enter the same
configuration again and again, so a persistent session can be saved when you close a session
that has been createdwith the quick attach feature. The next time youwant to profile this process,
start the saved session from the Open Session tab instead of the Quick Attach tab. You will still
have to select a running JVM, but the profiling settings are the same ones that you have already
configured before.

Attaching to local services

The attach API in the JVM requires that the invoking process runs as the same user as the process
that you want to attach to, so the list of JVMs that are displayed by JProfiler is limited to the
current user. Processes launched by different users are mostly services. The way to attach to
services differs for Windows, Linux and Unix-based platforms.

On Windows, the attach dialog has a Show Services button that lists all locally running services.
JProfiler launches bridge executables to be able to attach to those processes no matter what
user they are running with.

18

On Linux, JProfiler supports switching the user directly in the UI through PolicyKit that is part of
most Linux distributions. By clicking Switch user in the attach dialog, you can enter a different
user name and authenticate with the system password dialog.

On Unix-based platforms including macOS, you can execute the command line tool jpenable
as a different user with su or sudo, depending on your Unix variant or Linux distribution. On
macOS and Debian-based Linux distributions like Ubuntu, sudo is used.

With sudo, call

sudo -u userName jpenable

with su, the required command line is

su userName -c jpenable

jpenable will let you select JVMs and tell you the port on which the profiling agent is listening.
On the Quick Attach tab of the start center, you can then select the On another computer option
and configure a direct connection to localhost and the given profiling port.

19

Attaching to JVMs on remote machines

The most demanding setup for profiling is remote profiling - the JProfiler GUI runs on your local
machine and the profiled JVM on another machine. For a setup where you pass the -agentpath
VM parameter to the profiled JVM, you have to install JProfiler on the remote machine and set
up a remote session on your local machine. With the remote attach functionality in JProfiler, no
such modifications are required. You just need SSH credentials to log into the remote machine.

The SSH connection enables JProfiler to upload the agent package that was discussed in the
"Installing JProfiler" [p. 7] help topic and execute the contained command line tools on the
remote machine. You don't need SSH to be set up on your local machine, JProfiler ships with its
own implementation. In the most straightforward setup you just define host, user name and
authentication.

With an SSH connection, JProfiler can perform an automatic discovery of running JVMs or connect
to a specific port on which a profiling agent is already listening. For the latter case, you can use
jpenable or jpintegrate on the remote machine as described above and prepare a special
JVM for profiling. Then, the SSH remote attach can be configured to directly connect to the
configured profiling port.

20

Automatic discovery will list all JVMs on the remote machine that have been started as the SSH
login user. In most cases, this will not be the user that has started the service that you would
like to profile. Because users that start services usually are not allowed for SSH connections,
JProfiler adds a Switch User hyperlink that lets you use sudo or su to switch to that user.

In complex network topologies, you sometimes cannot connect directly to the remote machine.
In that case, you can tell JProfiler to connect with a multi-hop SSH tunnel in the GUI. At the end
of the SSH tunnel you can make one direct network connection, usually to "127.0.0.1".

21

HPROF snapshots can only be taken for JVMs that were started with the SSH login user. This is
because HPROF snapshots require an intermediate file that is written with the access rights of
the user that has started the JVM. For security reasons, it is not possible to transfer file rights to
the SSH login user for download. No such restriction exists for full profiling sessions.

Attaching to JVMs running in Docker containers

Docker containers usually do not have SSH servers installed, and while you can use jpenable in
a Docker container, the profiling port will not be accessible from the outside unless you have
specified it in your Docker file.

In JProfiler, you can attach to a JVM running in a local Docker Desktop installation in Windows or
macOS by selecting the Docker container in the quick attach dialog. By default, JProfiler detects
the path to the docker executable automatically. Alternatively, you can configure it on the
"External tools" tab of the general settings dialog.

22

After you select the container, all JVMs that run inside the Docker container will be shown. When
you select a JVM, JProfiler will use Docker commands to automatically install the profiling agent
in the selected container, prepare the JVM for profiling and tunnel the profiling protocol to the
outside.

For remote Docker installations, you can use the SSH remote attach functionality and then select
a Docker container on the remote machine. If the login user is not in the docker group, you can
first switch the user as described above.

With the Select container hyperlink in the remote attach dialog you can choose a running Docker
container and show all JVMs that are running in it.

Attaching to JVMs running on Kubernetes clusters

To profile a JVM that is running on a Kubernetes cluster, JProfiler uses the kubectl command
line tool, both for discovering pods and containers, as well as to connect to a container, list its
JVMs and finally to connect to a selected JVM.

The kubectl command line tool may be available on your local computer or alternatively on a
remote machine to which you have SSH access. JProfiler directly supports both scenarios. For
local installations, JProfiler will try to detect the path to kubectl automatically, but you can
configure an explicit path on the "External tools" tab of the general settings dialog.

23

JProfiler lists all detected containers in a tree with three levels. At the top are namespace nodes
that contain child nodes with the detected pods. The leaf nodes are the containers themselves
and one of them has to be chosen to proceed to the selection of a running JVM .

kubectl may require additional command line options for authentication in order to be able
to connect to the Kubernetes cluster. These options can be entered at the top of the container
selection dialog. Because these optionsmay be sensitive information, they are only saved to disk
if you explicitly select the checkbox to remember themacross restarts. Deselecting this checkbox
will clear any previously saved information immediately.

Setting the display name of running JVMs

In the JVM selection table, the displayed process name is the main class of the profiled JVM
together with its arguments. For launchers generated by exe4j or install4j, the executable name
is displayed.

If you wish to set the displayed name yourself, for example, because you have several processes
with the same main class that would otherwise be undistinguishable, you can set the VM
parameter-Djprofiler.displayName=[name]. If the name contains spaces, use single quotes:

24

-Djprofiler.displayName='My name with spaces' and quote the entire VM parameter
with double quotes if necessary. In addition to -Djprofiler.displayName JProfiler also
recognizes -Dvisualvm.display.name.

25

Recording Data

The main purpose of a profiler is to record runtime data from various sources that is useful for
solving common problems. The principal problem with this task is that a running JVM generates
such data at an enormous rate. If the profiler always recorded all types of data, it would create
an unacceptable overhead or quickly use up all availablememory. Also, you oftenwant to record
data around a particular use case and not see any unrelated activity.

This is why JProfiler offers fine-grained mechanisms for controlling the recording of information
that you are actually interested in.

Scalar values and telemetries

From a profiler's viewpoint, the least problematic form of data is scalar values, for example, the
number of active threads or the number of open JDBC connections. JProfiler can sample such
valueswith a fixedmacroscopic frequency - usually once per second - and show you the evolution
over time. In JProfiler, views that show such data are called telemetries [p. 44]. Most telemetries
are always recorded because the overhead of the measurement and the memory consumption
are small. If data is recorded for a long time, older data points are consolidated so that memory
consumption does not grow linearly with time.

There are also parametrized telemetries, such as the number of instances for each class. The
extra dimensionmakes a permanent chronological recording unsustainable. You can tell JProfiler
to record telemetries of the instance counts of a number of selected classes, but not of each
and every class.

26

To continue the previous example, JProfiler is able to show you the instance counts of all classes,
but without the chronological information. This is the "All objects" view, and it shows each class
as a row in a table. The frequency for updating the view is lower than once per second and may
be adjusted automatically depending on how much overhead the measurement causes.
Determining the instance counts of all classes is relatively expensive and takes longer the more
objects are on the heap. JProfiler limits the update frequency of the "All objects" view so that the
overhead of the measurement never exceeds 10% over time in extreme cases. You can freeze
the views to temporarily stop recording. Also, if the view is not active, data will not be recorded
and there is no associated overhead.

Somemeasurements capture enum-like values, such as the execution status a thread is currently
in. This kind of measurement can be displayed as a colored time line and consumes a lot less
memory than numerical telemetries. In the cases of thread statuses, the "Thread history" view
shows the timelines for all threads in the JVM. Just like for the telemetries with numeric values,
older values are consolidated and made more coarse-grained to reduce memory consumption.

27

Allocation recording

If you are interested in instance counts that have been allocated during a certain time interval,
JProfiler has to track all allocations. Contrary to the "All objects" view where JProfiler can iterate
over all objects in the heap to get information on demand, tracking single allocations requires
that additional code has to be executed for each object allocation. Thatmakes it a very expensive
measurement that can significantly change the runtime characteristics of the profiled application,
such as the performance hot spots, especially if you allocatemany objects. This is why allocation
recording has to be started and stopped explicitly.

Views that have an associated recording initially show an empty page with a recording button.
The same recording button is also found in the toolbar.

Allocation recording not only records the number of allocated instances, it also records the
allocation stack traces. Keeping stack traces for each allocated recording inmemorywould create
excessive overhead, so JProfiler cumulates recorded stack traces into a tree. This also has the
advantage that you can interpret the data much more easily. However, the chronological aspect
is lost and there is no way to extract certain time ranges from the data.

28

Memory analysis

Allocation recording can only measure where objects are allocated and has no information on
the references between objects. Any memory analysis that requires references, such as solving
a memory leak, is done in the heap walker. The heap walker takes a snapshot of the entire heap
and analyzes it. This is an invasive operation that pauses the JVM - potentially for a long time -
and requires a large amount of memory.

A more lightweight operation is marking all objects on the heap before you start a use case, so
that you can find all newly allocated objects when you take a heap snapshot later on.

The JVM has a special trigger for dumping the entire heap to a file that is named after the old
HPROF profiling agent. This is not related to the profiling interface and does not operate under
its constraints. For this reason, the HPROF heap dump is faster and uses less resources. The
downside is that you will not have a live connection to the JVM when viewing the heap snapshot
in the heap walker and that some features are not available.

29

Method call recording

Measuring how long method calls take is an optional recording, just like allocation recording.
Method calls are cumulated into a tree, and there are various views that show the recorded data
from different perspectives, such as a call graph. The recording for this type of data is called
"CPU recording" in JProfiler.

Under particular circumstances it may be useful to see the chronological sequence of method
calls, especially if multiple threads are involved. For these special cases, JProfiler offers the "Call
tracer" view. That view has a separate recording type that is not tied to the more general CPU
recording. Note that the call tracer produces toomuch data to be useful for solving performance
problems, it is only intended for a specialized form of debugging.

The call tracer depends on CPU recording and automatically switches it on if necessary.

Another specialized view that has its own recording is the "Complexity analysis". It onlymeasures
the execution times of selected methods and does not require CPU recording to be enabled. Its
additional data axis is a numeric value for the algorithmic complexity of a method call that you
can calculate with a script. In this way, you can measure how the execution time of a method
depends on its parameters.

30

Monitor recording

To analyze why threads are waiting or blocking, the corresponding events have to be recorded.
The rate of such events varies greatly. For a multi-threaded program where threads frequently
coordinate tasks or share common resources, there can be an enormous number of such events.
This is why such chronological data is not recorded by default.

When you switch on monitor recording, the "Locking history graph" and the "Monitor history"
view will start to show data.

To eliminate noise and reduce memory consumption, very short events are not recorded. The
view settings give you the possibility to adjust these thresholds.

31

Probe recording

Probes show higher-level subsystems in the JVM, such as JDBC calls or file operations. By default,
no probes are recorded and you can toggle recording separately for each probe. Some probes
will add very little or no overhead, and somewill create a considerable amount of data, depending
on what your application is doing and how the probes are configured.

Just like allocation recording andmethod call recording, probe data is cumulated and chronological
information is discarded except for time lines and telemetries. However, most probes also have
an "Events" view that allows you to inspect the single events. This adds a potentially large overhead
and has a separate recording action. The status of that the recording action is persistent, so that
when you toggle probe recording, the associated event recording is toggled as well if you have
switched it on previously.

32

The JDBC probe has a third recording action for recording JDBC connection leaks. The associated
overheadwith looking for connection leaks is only incurred if you are actually trying to investigate
such a problem. Just like the event recording action, the selection state of the leak recording
action is persistent.

Recording profiles

In many situations, you want to start or stop various recordings together with a single click. It
would be impractical to visit all the corresponding views and toggle the recording buttons one

33

by one. This is why JProfiler has recording profiles. Recording profiles can be created by clicking
on the Start Recordings button in the tool bar.

Recording profiles define one particular combination of recordings that can be activated
atomically. JProfiler tries to give you a rough impression on the overhead that you create by the
selected recordings and tries to discourage problematic combinations. In particular, allocation
recording and CPU recording do not go well together because allocation recording will distort
the timings of CPU data significantly.

You can activate recording profiles at any time while a session is running. Recording profiles are
not additive, they stop all recordings that are not included in the recording profile. With the Stop
Recordings button you stop all recordings no matter how they have been activated. To check

34

what recordings are currently active, hover the mouse over the recordings label in the status
bar.

A recording profile can also be activated directly when you start profiling. The "Session startup"
dialog has an Initial recording profile drop-down. By default, no recording profile is selected, but
if you need data from the startup phase of the JVM, this is the place to configure the required
recordings.

Recording with triggers

Sometimes you want to start a recording when a particular condition occurs. JProfiler has a
system for defining triggers [p. 128] that execute a list of actions. The available trigger actions
also include changes to the active recordings.

For example, you could want to start a recording only when a particular method is executed. In
that case, you would go to the session settings dialog, activate the Trigger Settings tab and define
a method trigger for that method. For the action configuration, you have a number of different
recording actions available.

35

The "Start recording" action controls those recordings without any parameters. Usually, when
you stop and re-start a recording, all previously recorded data is cleared. For the "CPU data" and
"Allocation data" recordings, you also have the option to keep the previous data and continue
cumulating across multiple intervals.

Method triggers can be added conveniently in the call tree by using the "Add method trigger"
action in the context menu. If you already have a method trigger in the same session, you can
choose to add a method interception to an existing trigger.

36

By default, triggers are active when the JVM is started for profiling. There are two ways to disable
triggers at startup: You can disable them individually in the trigger configuration or deselect the
Enable triggers on startup check box in the session startup dialog. During a live session, you can
enable or disable all triggers by choosing Profiling->(Enable|Disable) Triggers from the menu or
clicking on the trigger recording state icon in the status bar.

Sometimes, you need to toggle trigger activation for groups of triggers at the same time. This is
possible by assigning the same group ID to the triggers of interest and invoking Profiling->Enable
Triggers Groups from the menu.

Recording with jpcontroller

JProfiler has a command line executable for controlling the recordings in any JVM that is already
being profiled. jpcontroller requires that the JProfiler MBean is published, otherwise it will
not be able to connect to the profiled JVM. This is only the case if the profiling agent has already
received profiling settings. Without profiling settings, the agent would not know what to record
exactly.

One of the following conditions has to apply:

• You have already connected to the JVM with a JProfiler GUI

• The profiled JVM was started with an -agentpath VM parameter that included both the
nowait and the config parameters. In the integrationwizards, this corresponds to the Startup
immediately mode and the Apply configuration at startup option in the Config synchronization
step.

• The JVMwasprepared for profilingwith thejpenable executable and the-offlineparameter
was specified. See the output of jpenable -help for more information.

Specifically, jpcontroller will not work if the profiled JVM was started only with the nowait
flag. In the integrationwizards, the Apply configuration when connecting with the JProfiler GUI option
on the Config synchronization step would configure such a parameter.

37

jpcontroller presents youwith a loopingmulti-levelmenu for all recordings and their parameters.
You can also save snapshots with it.

Programmatic way to start recordings

Yet another way to start recording is through the API. In the profiled VM, you can call the com.
jprofiler.api.controller.Controller class to start and stop recordings programmatically.
See the chapter on offline profiling [p. 128] for more information and for how to get the artifact
that includes the controller class.

If youwant to control recordings in a different JVM, you can access the sameMBean in the profiled
JVM that is also used by jpcontroller. Setting up programmatic usage of the MBean is
somewhat involved and requires quite a bit of ceremony, so JProfiler ships with an example that
you can reuse. Check the fileapi/samples/mbean/src/MBeanProgrammaticAccessExample.
java. It records CPU data for 5 seconds in another profiled JVM and saves a snapshot to disk.

38

Snapshots

Until now, we have only looked at live sessions where the JProfiler GUI obtains the data from the
profiling agent that is running inside the profiled JVM. JProfiler also supports snapshots where
all profiling data is written to a file. This can be of advantage in several scenarios:

• You record profiling data automatically, for example, as part of a test so that connecting with
a JProfiler GUI is not possible.

• Youwant to compare profiling data fromdifferent profiling sessions or look at older recordings.

• You want to share profiling data with somebody else.

Snapshots include data from all recordings, including heap snapshots. To save disk space,
snapshots are compressed, except for heap walker data which has to remain uncompressed to
allow for direct memory mapping.

Saving and opening snapshots in the JProfiler GUI

When you are profiling a live session, you can create snapshots with the Save Snapshot tool bar
button. JProfiler pulls all profiling data from the remote agent and saves it to a local file with a
".jps" extension. You can save multiple such snapshots during the course of a live session. They
are not opened automatically and you can continue to profile.

Saved snapshots are added automatically to the File->Recent Snapshots menu, so you can
conveniently open a snapshot that you have just saved. When opening a snapshot while the live
session is still running, you have a choice of terminating the live session or opening another
JProfiler window.

When you use the snapshot comparison feature in JProfiler, the list of snapshots is populated
with all the snapshots that you have saved for the current live session. This makes it easy to
compare different use cases.

39

In general, you can open snapshots by invoking Session->Open Snapshot from the main menu or
by double-clicking the snapshot file in the file manager. JProfiler's IDE integrations also support
opening JProfiler snapshots through the generic Open File actions in the IDEs themselves. In that
case, you get source code navigation into the IDE instead of the built-in source code viewer.

When you open a snapshot, all the recording actions are disabled and only views with recorded
data are available. To discover what kind of data has been recorded, hover the mouse over the
recording label in the status bar.

Profiling short-lived programs

For a live session, all profiling data resides in the process of the profiled JVM. Sowhen the profiled
JVM is terminated, the profiling session in JProfiler is closed as well. To continue profiling when
a JVM exits, you have two options, both of which can be activated in the session startup dialog.

40

• You can prevent the JVM from actually exiting and keep it artificially alive as long as the JProfiler
GUI is connected. This may be undesirable when you are profiling a test case from the IDE
and want to see the status and total time in the test console of the IDE.

• You can ask JProfiler to save a snapshotwhen the JVM terminates and switch to it immediately.
The snapshot is temporary and will be discarded when you close the session unless you use
the Save Snapshot action first.

Saving snapshots with triggers

The final result of an automated profiling session is always a snapshot or a series of snapshots.
In triggers, you can add a "Save a snapshot" action that saves the snapshot on the machine
where the profiled JVM is running. When the trigger runs during a live session, the snapshot is
also saved on the remotemachine andmay not include parts of the data that have already been
transmitted to the JProfiler GUI.

There are two basic strategies for saving snapshots with triggers:

• For test cases, start recording in the "JVM startup" trigger and add a "JVM exit" trigger to save
the snapshot when the JVM is terminated.

• For exceptional conditions like the "CPU load threshold" trigger or for periodic profiling with
a "Timer trigger", save the snapshot after recording somedatawith a "Sleep" action in between.

41

HPROF heap snapshots

In situationswhere taking a heap snapshot produces toomuch overhead or consumes toomuch
memory, you can use theHPROF heap snapshots that the JVMoffers as a built-in feature. Because
the profiling agent is not required for this operation, this is interesting for analyzing memory
problems in JVMs that are running in production.

With JProfiler, there are three ways to obtain such snapshots:

• For live sessions, the JProfiler GUI offers an action in themainmenu to trigger an HPROF heap
dump.

• JProfiler has a special "Out of memory exception" trigger to save an HPROF snapshot when

an OutOfMemoryError is thrown. This corresponds to the VM parameter (1)

-XX:+HeapDumpOnOutOfMemoryError

that is supported by HotSpot JVMs.

(1) http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

42

http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

• The jmap executable in the JDK (2) can be used to extract an HPROF heap dump from a running
JVM.

JProfiler includes the command line tool jpdump that is more versatile than jmap. It lets you
select a process, can connect to processes running as a service onWindows, has no problems
with mixed 32-bit/64-bit JVMs and auto-numbers HPROF snapshot files. Execute it with the
-help option for more information.

JDK Flight Recorder snapshots

JProfile fully supports opening snapshots saved by Java Flight Recorder (JFR). The UI is notably
different in this case and is adjusted to the capabilities of JFR. See the JFR help topics [p. 216] for
more details.

(2) https://docs.oracle.com/en/java/javase/11/tools/jmap.html#GUID-D2340719-82BA-4077-B0F3-2803269B7F41

43

https://docs.oracle.com/en/java/javase/11/tools/jmap.html#GUID-D2340719-82BA-4077-B0F3-2803269B7F41

Telemetries

One aspect of profiling is monitoring scalar measurements over time, for example, the used
heap size. In JProfiler, such graphs are called telemetries. Observing telemetries gives you a
better understanding of the profiled software, allows you to correlate important events over
different measurements and may prompt you to perform a deeper analysis with other views in
JProfiler if you notice unexpected behavior.

Standard telemetries

In the "Telemetries" section of the JProfiler UI, a number of telemetries are recorded by default.
For interactive sessions, they are always enabled. Some telemetries require that a special type
of data is recorded. In that case, a recording action will be shown in the telemetry.

To comparemultiple telemetries on the same time axis, the overview showsmultiple small-scale
telemetries on top of each other with a configurable row height. Clicking on the telemetry title
activates the full telemetry view. The default order of the telemetries in the overview may not
be suitable, for example, because you want to correlate selected telemetries side by side. In that
case you can reorder them with drag and drop in the overview.

The full view shows a legend with current values andmay havemore options than what is visible
in the overview. For example, the "Memory" telemetry allows you to select singlememory pools.

44

JProfiler has a large number of probes [p. 104] that record events from high-level systems in the
JVMand important frameworks. Probes have telemetries that are displayed in the corresponding
probe views. To compare these telemetries to the system telemetries, you can add selected
probe telemetries to the top-level telemetries section. From the toolbar, choose Add
telemetries->Probe Telemetry and select one or more probe telemetries.

Each added probe telemetry gets its own view in the telemetry section and is also displayed in
the overview.

45

Once a probe telemetry has been added, data is only shown if probe data has been recorded.
If not, the telemetry description contains an inline button to start recording.

The contextmenu for probe telemetries contains the recording actions as well an action to show
the corresponding probe view.

46

Similar to the probe views, the VM telemetries for the recorded objects depend on memory
recording and also have a recording button and a similar context menu.

Finally, there are "tracking" telemetries that monitor a scalar value that is selected in another
view. For example, the class tracker view allows you to select a class and monitor its instance
count over time. Also, each probe has a "Tracker" viewwhere selected hot spots or control objects
are monitored.

Bookmarks

JProfilermaintains a list of bookmarks that are shown in all telemetries. In an interactive session,
you can add a bookmark at the current time by clicking on the Add Bookmark tool bar button, or
by using the Add Bookmark Here feature in the context menu.

47

Bookmarks can not only be created manually, they are added automatically by the recording
actions to indicate the beginning and the end of a particular recording. With trigger actions or
with the controller API, you can add bookmarks programmatically.

Bookmarks have color, a line style and also a name that shows up in the tool tip. You can edit
existing bookmarks and change these properties.

If right-clicking several bookmarks in a telemetry is too inconvenient, you can use the Profiling->Edit
Bookmarks action from the menu to get a list of bookmarks. This is also the place where you can
export bookmarks to HTML or CSV.

48

Custom telemetries

There are two ways to add your own telemetries: Either you write a script in the JProfiler UI to
supply a numeric value or you select a numeric MBean attribute.

To add a custom telemetry, click on the Configure Telemetries tool bar button that is visible in the
"Telemetries" section. In a script telemetry, you have access to all classes that are configured in
the classpath of the current JProfiler session. If a value is not available directly, add a static
method to your application that you can call in this script.

The above example shows a call to a platformMBean. Graphing scalar values of MBeans is more
conveniently done with an MBean telemetry. Here, an MBean browser allows you to select a
suitable attribute. The attribute value must be numeric.

49

You can bundle several telemetry lines into a single telemetry. That's why the configuration is
split into two parts: the telemetry itself and the telemetry line. In the telemetry line, you just edit
the data source and the line caption, in the telemetry you can configure unit, scale and stacking
which apply to all contained lines.

In a stacked telemetry, the single telemetry lines are additive and an area graph can be shown.
The scale factor is useful to convert a value to a supported unit. For example, if the data source
reports kB, the problem is that there is no matching "kB" unit in JProfiler. If you set the scale
factor to -3, the values will be converted to bytes and by choosing "bytes" as the unit for the
telemetry, JProfiler will automatically display the appropriate aggregate unit in the telemetry.

Custom telemetries are added at the end of the "Telemetries" section in the order in which they
are configured. To reorder them, drag them to the desired position in the overview.

50

Overhead considerations

At first sight, it would seem that telemetries consume memory linearly with time. However,
JProfiler consolidates older values and makes them progressively more coarse-grained in order
to limit the total amount of memory consumed per telemetry.

The CPU overhead of telemetries is limited by the fact that their values are only polled once per
second. For the standard telemetries, there is no additional overhead for this data collection.
For custom telemetries, the overhead is governed by the underlying script or MBean.

51

CPU Profiling

When JProfiler measures the execution times of method calls together with their call stacks, we
call it "CPU profiling". This data is presented in a variety of ways. Depending on the problem you
are trying to solve, one or the other presentation will be most helpful. CPU data is not recorded
by default, you have to switch on CPU recording [p. 26] to capture interesting use cases.

Call tree

Keeping track of all method calls and their call stacks would consume a considerable amount of
memory and could only be kept up for a short time until all memory is exhausted. Also, it is not
easy to intuitively grasp the number of method calls in a busy JVM. Usually, that number is so
great that locating and following traces is impossible.

Another aspect is that many performance problems only become clear if the collected data is
aggregated. In that way, you can tell how important method calls are with respect to the entire
activity in a certain time period. With single traces, you have no notion of the relative importance
of the data that you are looking at.

This is why JProfiler builds a cumulated tree of all observed call stacks, annotated with the
observed timings and invocation counts. The chronological aspect is eliminated and only the
total numbers are kept. Each node in the tree represents one call stack that was observed at
least once. Nodes have children that represent all the outgoing calls that were seen at that call
stack.

A

B

A

B

C

A

B

D

A: 7 ms

B: 6 ms

C: 3 ms

D: 1 ms

A

C

2 ms 1 ms 3 ms 1 ms

C: 1 ms

method invocations with call stacks call tree

The call tree is the first view in the "CPU views" section, and it's a good starting point when you
start CPU profiling, because the top-down view that followsmethod calls from the starting points
to the most granular end points is most easily understood. JProfiler sorts children by their total
time, so you can open the tree depth-first to analyze the part of the tree that has the greatest
performance impact.

52

While all measurements are performed for methods, JProfiler allows you to take a broader
perspective by aggregating the call tree on the class or package level. The aggregation level
selector also contains a "JEE/Spring components" mode. If your application uses JEE or Spring,
you can use this mode to see only JEE and Spring components on a class level. Splitting nodes
like URLs are retained in all aggregation levels.

Call tree filters

If methods from all classes are shown in the call tree, the tree is usually too deep to be
manageable. If your application is called by a framework, the top of the call tree will consist of
framework classes that you don't care about and your own classes will be deeply buried. Calls
into libraries will show their internal structure, possibly with hundreds of levels of method calls
that you are not familiar with and not in a position to influence.

The solution to this problem is to apply filters to the call tree, so that only some classes are
recorded. As a positive side-effect, less data has to be collected, and fewer classes have to be
instrumented, so the overhead is reduced.

By default, profiling sessions are configured with a list of excluded packages from commonly
used frameworks and libraries.

53

Of course this list is incomplete so it's much better that you delete it and define the packages of
interest yourself. In fact, the combination of instrumentation [p. 65] and the default filters is so
undesirable that JProfiler suggests changing it in the session startup dialog.

The filter expressions are compared against the fully qualified class name, so com.mycorp.
matches classes in all nested packages, like com.mycorp.myapp.Application. There are three
types of filters, called "profiled", "compact" and "ignored". All methods in "profiled" classes are
measured. This is what you need for your own code.

54

In a class that is contained by a "compact" filter, only the first call into that class is measured,
but no further internal calls are shown. "Compact" is what you want for libraries, including the
JRE. For example, when calling hashMap.put(a, b) you probably want to see HashMap.put()
in the call tree, but not more than that - its inner workings should be treated as opaque unless
you are the developer of the map implementation.

Finally, "ignored" methods are not profiled at all. They may be undesirable to instrument due to
overhead considerations, or they may simply be distracting in the call tree, such as internal
Groovy methods that are inserted between dynamic calls.

Entering packages manually is error prone, so you can use the package browser. Before you
start the session, the package browser can only show you packages in the configured class path
which often does not cover all the classes that are actually loaded. At runtime, the package
browser will show you all loaded classes.

The configured list of filters is evaluated from top to bottom for each class. At each stage, the
current filter type may change if there is a match. It's important what kind of filter starts off the
list of filters. If you start with a "profiled" filter, the initial filter type of a class is "compact", meaning
that only explicit matches are profiled.

a.*

a.b.*

a.b.c.*

a.A a.b.B a.b.c.C
Default:

1

2

3

Result:

d.D

profiled

compact

match

If you start it with a "compact" filter, the initial filter type of a class is "profiled". In this case, all
classes are profiled except for explicitly excluded classes.

55

a.*

a.b.*

a.b.c.*

a.A a.b.B a.b.c.C
Default:

1

2

3

Result:

d.D

profiled

compact

match

Call tree times

To interpret the call tree correctly, it's important to understand the numbers that are displayed
on the call tree nodes. There are two times that are interesting for any node, the total time and
the self time. The self-time is the total time of the nodeminus the total time in the nested nodes.

Usually, the self-time is small, except for compact-filtered classes. Most often, a compact-filtered
class is a leaf node and the total time is equal to the self-time because there are no child nodes.
Sometimes, a compact-filtered class will invoke a profiled class, for example, via a callback or
because it's the entry point of the call tree, like the run method of the current thread. In that
case, some unprofiled methods have consumed time, but are not shown in the call tree. That
time bubbles up to the first available ancestor node in the call tree and contributes to the self-time
of the compact-filtered class.

A: self time 1 ms

C: self time 3 ms

B: self time 2 ms

profiled

compact

B: self time 6 msX: self time 3 ms

Y: self time 1 ms

actual call sequence filtered call sequence

The percentage bar in the call tree shows the total time, but the self-time portion is shown with
a different color. Methods are shown without their signatures unless two methods on the same
level are overloaded. There are various ways to customize the display of the call tree nodes in

56

the view settings dialog. For example, you may want to show self-times or average times as text,
always showmethod signatures or change the used time scale. Also, the percentage calculation
can be based on the parent time instead of the time for the entire call tree.

Thread status

At the top of the call tree there are several view parameters that change the type and scope of
the displayed profiling data. By default, all threads are cumulated. JProfiler maintains CPU data
on a per-thread basis, and you can show single threads or thread groups.

At all times, each thread has an associated thread status. If the thread is ready to process bytecode
instructions or is currently executing them on a CPU core, the thread status is called "Runnable".
That thread state is of interest when looking for performance bottlenecks, so it is selected by
default.

Alternatively, a thread may be waiting on a monitor, for example, by calling Object.wait() or
Thread.sleep() in which case the thread state is called "Waiting". A thread that is blocked
while trying to acquire a monitor, such as at the boundary of a synchronized code block is in
the "Blocking" state.

Finally, JProfiler adds a synthetic "Net I/O" state that keeps track of the times when a thread is
waiting for network data. This is important for analyzing servers and database drivers, because
that time can be relevant for performance analysis, such as for investigating slow SQL queries.

57

If you are interested in wall-clock times, you have to select the thread status "All states" and also
select a single thread. Only then can you compare times with durations that you have calculated
with calls to System.currentTimeMillis() in your code.

If you want to shift selected methods to a different thread status, you can do so with a method
trigger and an "Override thread status" trigger action, or by using the ThreadStatus class in
the embedded [p. 164] or injected [p. 159] probe APIs.

Finding nodes in the call tree

There are two ways to search for text in the call tree. First, there is the quicksearch option that
is activated by invoking View->Find from themenu or by directly starting to type into the call tree.
Matches will be highlighted and search options are available after pressing PageDown. With the
ArrowUp and ArrowDown keys you can cycle through the different matches.

Another way to search for methods, classes or packages is to use the view filter at the bottom
of the call tree. Here you can enter a comma-separated list of filter expressions. Filter expressions
that start with a "-" are like ignored filters. Expressions that start with a "!" are like compact filters.
All other expressions are like profiled filters. Just like for the filter settings, the initial filter type
determines if classes are included or excluded by default.

Clicking on the icon to the left of the view settings text field shows the view filter options. By
default, the matching mode is "Contains", but "Starts with" may be more appropriate when
searching for particular packages.

58

Flame graphs

Anotherway to view the call tree is as a flame graph. You can show the entire call tree or a portion
of it as a flame graph by invoking the associated call tree analysis [p. 186].

A flame graph shows the entire content of a call tree in one image. Calls originate at the bottom
of the flame graph and propagate towards the top. The children of each node are arranged in
the row directly above it. Child nodes are sorted alphabetically and are centered on their parent
node. Due to the self-time that is spent in each node, the "flames" get progressivelymore narrow
toward the top. More information about nodes is displayed in the tool tip where you can mark
text to copy it to the clipboard.

59

If the tool tip near the mouse cursor disturbs your analysis, you can lock it with the button in its
upper right corner and then move it to a convenient location with the gripper at the top of the
tool tip. The same button or a double click on the flame graph close the tool tip.

Flame graphs have a very high information density, so itmay be necessary to narrow the displayed
content by focusing on selected nodes and their hierarchy of descendant nodes. While you can
zoom in on areas of interest, you can also set a new root node by double-clicking on it or by
using the context menu. When changing roots multiple times in a row, you can move back again
in the history of roots.

Another way to analyze flame graphs is to add colorizations based on class names, package
names or arbitrary search terms. Colorizations can be added from the context menu and can
be managed in the colorizations dialog. The first matching colorization is used for each node.
Colorizations are persisted across profiling sessions and are used globally for all sessions and
snapshots.

In addition to colorizations, you can use the quick search functionality to find nodes of interest.
With the cursor keys you can cycle through match results while the tooltip is being displayed for
the currently highlighted match.

Hot spots

If your application is running too slowly, you want to find the methods that take most of the
time. With the call tree, it is sometimes possible to find these methods directly, but often that
does not work because the call tree can be broad with a huge number of leaf nodes.

60

In that case, you need the inverse of the call tree: A list of all methods sorted by their total self
time, cumulated from all different call stacks and with back traces that show how the methods
were called. In a hot spot tree, the leafs are the entry points, like the main method of the
application or the runmethod of a thread. From the deepest nodes in the hot spot tree, the call
propagates upward to the top-level node.

The invocation counts and execution times in the backtraces do not refer to the method nodes,
but rather to the number of times that the top-level hot spot node was called along this path.
This is important to understand: At a cursory glance, you would expect the information on a
node to quantify calls to that node. However, in a hot spot tree, that information shows the
contribution of the node to the top-level node. So you have to read the numbers like this: Along
this inverted call stack, the top-level hot spot was called n timeswith a total duration of t seconds.

Method A
Count 5

Method C
Count 3

Method C
Count 1

Method B
Count 2

Call Tree Hot spots

Method C
Count 4

Method A
Count 3

Method B
Count 1

backtraces

hot spot
invocation
counts

inv
er
sio
n

61

By default, the hot spots are calculated from self-time. You can also calculate them from total
time. This is not very useful for analyzing performance bottlenecks, but can be interesting if you
would like to see a list of all methods. The hot spot view only shows a maximum number of
methods to reduce overhead, so a method you are looking for may not be displayed at all. In
that case, use the view filters at the bottom to filter the package or the class. Contrary to the call
tree, the hot spot view filters only filter the top-level nodes. The cutoff in the hot spot view is not
applied globally, but with respect to the displayed classes, so new nodes may appear after
applying a filter.

Hot spots and filters

The notion of a hot spot is not absolute but depends on the call tree filters. If you have no call
tree filters at all, the biggest hot spots will most likely always be methods in the core classes of
the JRE, like string manipulation, I/O routines or collection operations. Such hot spots would not
be very useful, because you often don't directly control the invocations of these methods and
also have no way of speeding them up.

In order to be useful to you, a hot spotmust either be amethod in your own classes or amethod
in a library class that you call directly. In terms of the call tree filters, your own classes are in
"profiled" filters and the library classes are in "compact" filters.

When solving performance problems, you may want to eliminate the library layer and only look
at your own classes. You can quickly switch to that perspective in the call tree by selecting the
Add to calling profiled class radio button in the hot spot options popup.

Call graph

Both in the call tree as well in the hot spots view each node can occur multiple times, especially
when calls are made recursively. In some situations, you are interested in a method-centric
statistics where each method only occurs once and all incoming and outgoing calls are visible.
Such a view is best displayed as a graph and in JProfiler, it is called the call graph.

62

One drawback of graphs is that their visual density is lower than that of trees. This is why JProfiler
abbreviates package names by default and hides outgoing calls with less than 1% of the total
time by default. As long as the node has an outgoing expansion icon, you can click on it again to
show all calls. In the view settings, you can configure this threshold and turn off package
abbreviation.

When expanding the call graph, it can get messy very quickly, especially if you backtrackmultiple
times. Use the undo functionality to restore previous states of the graph. Just like the call tree,
the call graph offers quick search. By typing into the graph, you can start the search.

The graph and the tree views each have their advantages and disadvantages, so you may
sometimes wish to switch from one view type to another. In interactive sessions, the call tree
and hot spots views show live data and are updated periodically. The call graph, however, is
calculated on request and does not change when you expand nodes. The Show in Call Graph
action in the call tree calculates a new call graph and shows the selected method.

63

Switching from the graph to the call tree is not possible because the data is usually not comparable
anymore at a later time. However, the call graph offers call tree analyses with its View->Analyze
actions that can show you trees of cumulated outgoing calls and backtraces for each selected
node.

Beyond the basics

The ensemble of call tree, hot spots view and call graph has many advanced features that are
explained in detail in a different chapter [p. 168]. Also, there are other advanced CPU views that
are presented separately [p. 191].

64

Method Call Recording

Recordingmethod calls is one of themost difficult tasks for a profiler, because it operates under
conflicting constraints: Results should to be accurate, complete andproduce such a small overhead
that the conclusions you draw from themeasured data do not become incorrect. Unfortunately,
there is no single type of measurement that fulfills all these requirements for all types of
applications. This is why JProfiler requires you to make a decision on which method to use.

Sampling versus instrumentation

Measuring method calls can be done with two fundamentally different techniques called
"sampling" and "instrumentation", each of which has advantages and drawbacks:With sampling,
the current call stacks of threads are inspected periodically. With instrumentation, the bytecode
of selected classes is modified to trace method entry and exit. Instrumentation measures all
invocations and can produce invocation counts for all methods.

When processing sampling data, the full sampling period (typically 5 ms) is attributed to the
sampled call stack. With a large number of samples, a statistically correct picture emerges. The
advantage of sampling is that it has a very low overhead because it happens infrequently. No
bytecode has to be modified, and the sampling period is much larger than the typical duration
of a method call. The downside is that you cannot determine any method invocation counts.
Additionally, short running methods that are called only a few times might not show up at all.
This does not matter if you are looking for performance bottlenecks, but can be inconvenient if
you are trying to understand the detailed runtime characteristics of your code.

Method A: +5 ms

Method B: +5 ms

Method X: +5 ms

Method A: +5 ms

Method B: +5 ms

Method Y: +5 ms

timeT T + 5 ms

Instrumentation, on the other hand, can introduce a large overhead if many short-running
methods are instrumented. This instrumentation distorts the relative importance of performance
hot spots because of the inherent overhead of the time measurement, but also because many
methods that would otherwise be inlined by the hot spot compiler must now remain separate
method calls. For method calls that take a longer amount of time, the overhead is insignificant.
If you can find a good set of classes that mainly perform high-level operations, instrumentation
will add a very low overhead and can be preferable to sampling. JProfiler's overhead hotspot
detection can also improve the situation after some runs. Additionally, the invocation count is
often important information that makes it much easier to see what is going on.

65

Method A

X: 3.5 ms Y: 4.5 ms

time in ms

Profiling agent

en
tr
y

en
tr
y

en
tr
y

ex
it

ex
it

ex
it

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Method B: 11 ms

calls

calls calls

Full sampling versus async sampling

JProfiler offers two different technical solutions for sampling: "Full sampling" is done with a
separate thread that pauses all threads in the JVM periodically and inspects their stack traces.
However, the JVM only pauses threads at certain "safe points" thereby introducing a bias. If you
have highlymulti-threaded CPUbound code, the profiled distribution of hotspotsmay be skewed.
On the other hand, if code also performs significant I/O, this bias will generally not be a problem.

To help with getting accurate numbers for highly CPU-bound code, JProfiler also offers async
sampling. With async sampling, a profiling signal handler is called on the running threads
themselves. The profiling agent then inspects the native stack and extracts the Java stack frames.
Themain benefit is that there is no safe-point bias with this samplingmethod, and the overhead
for highly multi-threaded CPU-bound applications is lower. However, only the "Running" thread
state can be observed for the CPU views while "Waiting", "Blocking" or "Net I/O" thread states
cannot be measured in this way. Probe data is always collected with bytecode instrumentation,
so you will still get all thread states for JDBC and similar data.

Async sampling suffers from truncated traces where only the end of the call stack is available.
This is why the call tree is often not as useful for async sampling as the hot spots view. Async
sampling is only supported on Linux and macOS.

Starting with Java 17, JProfiler can avoid using a global safe point for sampling on Hotspot JVMs
andoperate full samplingwith near-zero overhead. Compared to async sampling, it still introduces
some kind of safe point bias for single threads, but no longer the overhead of a global safe point
for all threads in the JVM. Considering the drawbacks of async sampling, using full sampling is
recommended for Java 17+.

66

time

Sampling thread

Thread 2

Thread 1

safe point biasFull sampling:

Async sampling:

Thread 2

Thread 1

T T + 5 ms

Choosing a method call recording type

Whichmethod call recording type to use for profiling is an important decision and there no right
choice for all circumstances, so you need to make an informed decision. When you create a new
session, the session startup dialog will ask you which method call recording type you want to
use. At any later point in time you can change the method call recording type in the session
settings dialog.

As a simple guide, consider the following questions that test whether your application falls into
one of two clear categories on opposite sides of the spectrum:

67

• Is the profiled application I/O bound?

This is the case for many web applications that wait on REST service and JDBC database calls
most of the time. In that case, instrumentation will be the best option under the condition
that you carefully select your call tree filters to only include your own code.

• Is the profiled application heavily multi-threaded and CPU bound?

For example, this could be the case for a compiler, image processing application or a web
server that is running a load test. If you are profiling on Linux or macOS, you should choose
async sampling to get the most accurate CPU times in this case.

Otherwise, "Full sampling" is generally the most suitable option and is suggested as the default
for new sessions.

Native sampling

Because async sampling has access to the native stack, it can also perform native sampling. By
default, native sampling is not enabled because it introduces a lot of nodes into call trees and
shifts the focus of hot spot calculation to native code. If you do have a performance problem in
native code, you can choose async sampling and enable native sampling in the session settings.

JProfiler resolves the path of the library that belongs to each native stack frame. On nativemethod
nodes in the call tree, JProfiler shows the file name of the native library in square brackets at the
beginning.

68

With respect to the aggregation level, native libraries act like classes, so in the "classes" aggregation
level all subsequent calls within the same native library will be aggregated into a single node.
The "packages" aggregation level aggregates all subsequent native method calls into a single
node regardless of the native library.

To eliminate selected native libraries, you can remove a node [p. 177] from that native library and
choose to remove the entire class.

69

Memory Profiling

There are twoways of getting information about objects on the heap. On the one hand, a profiling
agent can track the allocation and the garbage collection of each object. In JProfiler, this is called
"allocation recording". It tells you where objects have been allocated and can also be used to
create statistics about temporary objects. On the other hand, the profiling interface of the JVM
allows the profiling agent to take a "heap snapshot" in order to inspect all live objects together
with their references. This information is required to understandwhy objects cannot be garbage
collected.

Both allocation recording and heap snapshots are expensive operations. Allocation recording
has a large impact on the runtime characteristics, because the java.lang.Object constructor
has to be instrumented and the garbage collector continuously has to report to the profiling
interface. This is why allocations are not recorded by default, and you have to start and stop
recording [p. 26] explicitly. Taking a heap snapshot is a one-time operation. However, it can
pause the JVM for several seconds and the analysis of the acquired data may take a relatively
long time, scaling with the size of the heap.

JProfiler splits its memory analysis into two view sections: The "Live memory" section presents
data that can be updated periodically whereas the "Heap walker" section shows a static heap
snapshot. Allocation recording is controlled in the "Live memory" section, but the recorded data
is also displayed by the heap walker.

The three most common problems that can be solved with memory profiling are: Finding a
memory leak [p. 209], reducing memory consumption and reducing the creation of temporary
objects. For the first two problems, you will mainly use the heap walker, mostly by looking at
who is holding on to the biggest objects in the JVM and where they were created. For the last
problem you can only rely on the live views that show recorded allocations, because it involves
objects that have already been garbage collected.

Tracking instance counts

To get an overview of what objects are on the heap, the "All objects" view shows you a histogram
of all classes and their instance counts. The data that is shown in this view is not collected with
allocation recording but by performing a mini heap snapshot that only calculates the instance
counts. The larger the heap, the longer it takes to perform this operation, so the update frequency
of the view is automatically lowered according to the measured overhead. When the view is not
active, no data is collected and the view does not generate any overhead. As with most views
that are updated dynamically, a Freeze tool bar button is available to stop updating the displayed
data.

70

The "Recorded objects" view, on the other hand, only shows the instance counts for objects that
have been allocated after you have started allocation recording. When you stop allocation
recording, no new allocations are added, but garbage collection continues to be tracked. In this
way, you can see what objects remain on the heap for a certain use case. Note that objects may
not be garbage collected for a long time. With the Run GC tool bar button you can speed up this
process.

When looking for a memory leak, you often want to compare instance counts over time. To do
that for all classes, you can use the differencing functionality of the view. With the Mark Current
toolbar button, a Difference column is inserted and the histogram of the instance counts shows
the baseline values at the time of the marking in green color.

71

For selected classes, you can also show a time-resolved graph with the Add Selection to Class
Tracker action from the context menu.

Allocation spots

When allocation recording is active, JProfiler takes note of the call stack each time an object is
allocated. It does not use the exact call stack, for example, from the stack-walking API, because
that would be prohibitively expensive. Instead, the same mechanism is used that is configured
for CPU profiling. This means that the call stack is filtered according to the call tree filters [p. 52]
and that the actual allocation spot can be in amethod that is not present in the call stack, because
it is from an ignored or compact-filtered class. However, these changes are intuitively easy to
understand: A compact-filteredmethod is responsible for all allocations that aremade in further
calls to compact-filtered classes.

72

If you use sampling, the allocation spots become approximate andmay be confusing. Unlike for
time measurements, you often have a clear idea of where certain classes can be allocated and
where not. Because sampling paints a statistical rather than an exact picture, you may see
allocation spots that are seemingly impossible, such as java.util.HashMap.get allocating
one of your own classes. For any kind of analysis where exact numbers and call stacks are
important, it is recommended to use allocation recording together with instrumentation.

Just like for CPU profiling, the allocation call stacks are presented as a call tree, only with allocation
counts and allocated memory rather than invocation counts and time. Unlike for the CPU call
tree, the allocation call tree is not displayed and updated automatically because the calculation
of the tree is more expensive. JProfiler can show you the allocation tree not only for all objects,
but also for a selected class or package. Together with other options, this is configured in the
options dialog that is shown after you ask JProfiler to calculate an allocation tree from the current
data.

A useful property of the CPU call tree is that you can follow the cumulated time from top to
bottom because each node contains the time that is spent in the child nodes. By default, the
allocation tree behaves in the same way, meaning that each node contains the allocations that
are made by the child nodes. Even if allocations are only performed by leaf nodes deep down
in the call tree, the numbers propagate up to the top. In this way, you can always see which path
is worth investigating when opening branches of the allocation call tree. "Self-allocations" are
those that are actually performed by a node and not by its descendants. Like in the CPU call tree,
the percentage bar shows them with a different color.

73

In the allocation call tree, there are often a lot of nodes where no allocations are performed at
all, especially if you show allocations for a selected class. These nodes are only there to show
you the call stack leading to the node where the actual allocation has taken place. Such nodes
are called "bridge" nodes in JProfiler and are shown with a gray icon as you can see in the screen
shot above. In some cases, the cumulation of allocations can get in the way and you only want
to see the actual allocation spots. The view settings dialog of the allocation tree offers an option
to showuncumulated numbers for that purpose. If activated, bridge nodeswill always show zero
allocations and have no percentage bar.

The allocation hot spots view is populated together with the allocation call tree and allows you
to directly focus on the methods that are responsible for creating the selected classes. Like the
recorded objects view, the allocation hot spots view supports marking the current state and
observing the differences over time. A difference column is added to the view that shows how
much the hot spots have changed since the timewhen theMark Current Values actionwas invoked.
Because the allocation views are not updated periodically by default, you have to click on the
Calculate tool bar button to get a new data set that is then compared to the baseline values.
Auto-update is available in the options dialog but not recommended for large heap sizes.

74

Allocation recording rate

Recording each and every allocation adds a significant overhead. Inmany cases, the total numbers
for allocations are not important and relative numbers are sufficient to solve problems. That is
why JProfiler only records every 10th allocation by default. This reduces the overhead to roughly
1/10 compared to recording all allocations. If you would like to record all allocations, or if even
fewer allocations are sufficient for your purpose, you can change the recording rate in the
recorded objects view as well as the parameter dialog of the allocation call tree and hot spot
views.

The setting can also be found on the "Advanced Settings->Memory profiling" step of the session
settings dialog where it can be adjusted for offline profiling sessions.

The allocation recording rate influences the VM telemetries for "Recorded objects" and "Recorded
throughput" whose values will be measured at the configured fraction. When comparing
snapshots [p. 133], the allocation rate of the first snapshot will be reported, and other snapshots
will be scaled accordingly, if necessary.

Analyzing allocated classes

When calculating the allocation tree and allocation hot spot views, you have to specify the class
or package whose allocations you want to see up-front. This works well if you already focused
on particular classes, but is inconvenient when trying to find allocation hot spots without any
pre-conceptions. One way is to start to look at the "Recorded objects" view and use the actions
in the context menu for switching to the allocation tree or allocation hot spot views for the
selected class or package.

75

Another way is to start with the allocation tree or allocation hot spots for all classes and use the
Show classes action to show the classes for a selected allocation spot or allocation hot spot.

The histogram of the allocated classes is shown as a call tree analysis [p. 186]. This action also
works from other call tree analyses.

76

The classes analysis view is static and is not updated when the allocation tree and hot spot views
are recalculated. The Reload Analysis actionwill first update the allocation tree and then recalculate
the current analysis view from the new data.

Analyzing garbage collected objects

Allocation recording cannot only show the live objects, but also keeps information on garbage
collected objects. This is useful when investigating temporary allocations. Allocating a lot of
temporary objects can produce significant overhead, so reducing the allocation rate often
improves performance considerably.

To show garbage collected objects in the recorded objects view, change the liveness selector to
either Garbage collected objects or Live and garbage collected objects. The options dialog of the
allocation call tree and allocation hot spot views has an equivalent drop-down.

However, JProfiler does not collect allocation tree information for garbage-collected objects by
default, because the data for live objects only can be maintained with far less overhead. When
switching the liveness selector in the "Allocation Call Tree" or "Allocation Hotspots" view to a
mode that includes garbage collected objects, JProfiler suggests changing the recording type.
This is a change in the profiling settings, so all previously recorded data will be cleared if you
choose to apply the change immediately. If you would like to change this setting in advance, you
can do so in "Advanced Settings" -> "Memory Profiling" in the session settings dialog.

77

Next stop: heap walker

Any more advanced type of question will involve references between objects. For example, the
sizes that are displayed in the recorded objects, allocation tree and allocation hot spot views are
shallow sizes. They just include the memory layout of the class, but not any referenced classes.
To see howheavy objects of a class really are, you oftenwant to know the retained size, meaning
the amount of memory that would be freed if those objects were removed from the heap.

This kind of information is not available in the livememory views, because it requires enumerating
all objects on the heap and performing expensive calculations. That job is handled by the heap
walker. To jump from a point of interest in the live memory views into the heap walker, the Show
in Heap Walker tool bar button can be used. It will take you to the equivalent view in the heap
walker.

If no heap snapshot is available, a new heap snapshot is created, otherwise JProfiler will ask you
whether to use the existing heap snapshot.

78

In any case, it is important to understand that the numbers in the live memory views and in the
heapwalkerwill often be very different. Apart from the fact that the heapwalker shows a snapshot
at a different point in time than the livememory views, it also eliminates all unreferenced objects.
Depending on the state of the garbage collector, unreferenced objects can occupy a significant
portion of the heap.

79

The Heap Walker

Heap snapshots

Any heap analysis that involves references between objects requires a heap snapshot, because
it is not possible to ask the JVMwhat the incoming references to an object are. You have to iterate
over the entire heap to answer that question. From that heap snapshot, JProfiler creates an
internal database that is optimized for producing the data required for serving the views in the
heap walker.

There are two sources of heap snapshots: JProfiler heap snapshots and HPROF/PHD heap
snapshots. JProfiler heap snapshots support all available features in the heapwalker. The profiling
agent uses the profiling interface JVMTI to iterate over all references. If the profiled JVM is running
on a differentmachine, all information is transferred to the localmachine and further calculations
are performed there. HPROF/PHD snapshots are created with a built-in mechanism in the JVM
and are written to disk in a standard format that JProfiler can read. HotSpot JVMs can create
HPROF snapshots, and Eclipse OpenJ9 JVMs provide PHD snapshots.

On the overview page of the heap walker, you can choose if a JProfiler heap snapshot or an
HPROF/PHD heap snapshot should be created. By default, the JProfiler heap snapshot is
recommended. The HPROF/PHD heap snapshot is useful in special situations that are discussed
in another chapter [p. 202].

Selection steps

The heapwalker consists of several views that show different aspects of a selected set of objects.
Right after you take the heap snapshot, you are looking at all objects on the heap. Each view has
navigation actions for turning some selected objects into the current object set. The header
area of the heap walker shows information on how many objects are contained in the current
object set.

80

Initially, you are looking at the "Classes" view which is similar to the "All objects" view in the live
memory section [p. 70]. By selecting a class and invoking Use->Selected Instances, you create a
newobject set that only contains instances of that class. In the heapwalker, "using" alwaysmeans
creating a new object set.

For the new object set, showing the classes view of the heap walker would not be interesting,
because it would effectively just filter the table to the previously selected class. Instead, JProfiler
suggests another view with the "New object set" dialog. You can cancel this dialog to discard the
new object set and return to the previous view. The outgoing references view is suggested, but
you could also choose another view. This is just for the initially displayed view, you can switch
views in the view selector of the heap walker afterward.

The header area now tells you that there are two selection steps and includes links for calculating
the retained and deep sizes or for using all objects that are retained by the current object set.
The latter would add another selection step and suggest the classes view because there would
likely be multiple classes in that object set.

81

In the lower part of the heap walker, the selection steps up to this point are listed. Clicking on
the hyperlinks will take you back to any selection step. The first data set can also be reached
with the Go To Start button in the tool bar. The back and forward buttons in the tool bar are
useful if you need to backtrack in your analysis.

Classes view

The view selector at the top of the heapwalker contains five views that showdifferent information
for the current object set. The first one of those is the "Classes" view.

The classes view is similar to the "All objects" view in the live memory section and has an
aggregation level chooser that can group classes into packages. In addition, it can show estimated
retained sizes for classes. This is the amount of memory that would be freed if all instances of
a class were removed from the heap. If you click on the Calculate estimated retained sizes hyperlink,
a new Retained Size column is added. The displayed retained sizes are estimated lower bounds,
calculating the exact numbers would be too slow. If you really need an exact number, select the
class or package of interest and use the Calculate retained and deep sizes hyperlink in the header
of the new object set.

Based on your selection of one or more classes or packages, you can select the instances
themselves, the associated java.lang.Class objects, or all retained objects. Double-clicking
is the quickest selection mode and uses the selected instances. If multiple selection modes are
available, as in this case, a Use drop-down menu is shown above the view.

82

When solving class loader-related problems, you often have to group instances by their class
loader. The Inspections tab offers a "Group by class loaders" inspection that is made available
on the classes view, because it is especially important in that context. If you execute that analysis,
a grouping table at the top shows all class loaders. Selecting a class loader filters the data
accordingly in the view below. The grouping table remains in place when you switch to the other
views of the heapwalker until you performanother selection step. Then, the class loader selection
becomes part of that selection step.

Allocation recording views

The information where objects have been allocated can be important when narrowing down
suspects for a memory leak or when trying to reduce memory consumption. For JProfiler heap
snapshots, the "Allocations" view shows the allocation call tree and the allocation hot spots for
those objectswhere allocations havebeen recorded.Other objects are grouped in the "unrecorded
objects" node in the allocation call tree. For HPROF/PHD snapshots, this view is not available.

Like in the classes view, you can select multiple nodes and use the Use Selected button at the top
to create a new selection step. In the "Allocation hot spots" viewmode, you can also select nodes
in the back traces. This will only select objects in the associated top-level hot spot that have been
allocated on a call stack that ends with the selected back trace.

83

Another piece of information that JProfiler can save when recording allocations is the time when
an object was allocated. The "Time" view in the heap walker shows a histogram of the allocation
times for all recorded instances in the current object set. You can click and drag to select one or
multiple intervals and then create a new object set with the Use Selected button.

For a more precise selection of a time interval, you can specify a range of bookmarks [p. 44]. All
objects between the first and last selected bookmark will then be marked.

In addition to the time view, allocation times are displayed as a separate column in the reference
views. However, allocation time recording is not enabled by default. You can switch it on directly
in the time view or edit the setting in Advanced Settings ->Memory Profiling in the session settings
dialog.

Biggest objects view

The biggest objects view shows a list of the most important objects in in the current object set.
"Biggest" in this context means the objects that would free most memory if they were removed
from the heap. That size is called the retained size. In contrast, the deep size is the total size
of all objects that are reachable through strong references.

Each object can be expanded to show outgoing references to other objects that are retained by
this object. In this way, you can recursively expand the tree of retained objects that would be
garbage collected if one of the ancestors were to be removed. This kind of tree is called a
"dominator tree". The information displayed for each object in this tree is similar to the outgoing
reference view except that only dominating references are displayed.

84

Not all dominated objects are directly referenced by their dominators. For example, consider
the references in the following figure:

GC root

dominates directly dominates directly

d
o
m
in
at
es

in
d
ir
ec
tl
y

Object A

Object B2Object B1

Object C

Object A dominates objects B1 and B2, and it does not have a direct reference to object C. Both
B1 and B2 reference C. Neither B1 nor B2 dominates C, but A does. In this case, B1, B2 and C are
listed as direct children of A in the dominator tree, and C will not be listed a child of B1 and B2.
For B1 and B2, the field names in A by which they are held are displayed. For C, "[transitive
reference]" is displayed on the reference node.

At the left side of each reference node in the dominator tree, a size bar shows what percentage
of the retained size of the top-level object is still retained by the target object. The numbers will
decrease as you drill down further into the tree. In the view settings, you can change the
percentage base to the total heap size.

85

The dominator tree has a built-in cutoff that eliminates all objects that have a retained size that
is lower than 0.5% of the retained size of the parent object. This is to avoid excessively long lists
of small dominated objects that distract from the important objects. If such a cutoff occurs, a
special "cutoff" child node will be shown that notifies you about the number of objects that are
not shown on this level, their total retained size and the maximum retained size of the single
objects.

Instead of showing single objects, the dominator tree can also group biggest objects into classes.
The grouping drop-down at the top of the view contains a checkbox that activates this display
mode. In addition, you can add a class loader grouping at the top level. The class loader grouping
is applied after the biggest objects are calculated and showswho loaded the classes of the biggest
objects. If you want to analyze the biggest objects for one particular class loader instead, you
can use the "Group by class loader" inspection first.

The viewmode selector above the biggest objects view allows you to switch to a sunburst diagram.
The diagram is composed of a series of concentric segmented rings and shows the entire content
of the dominator tree up to a maximum depth in one single image. References originate in the
innermost ring and propagate towards the outer rim of the circle. This visualization gives you a
flattened perspectivewith high information density that allows you to discover reference patterns
and see large primitive and object arrays at a glance through their special color coding.

If the current object set is the entire heap, the total circumference of the circle corresponds to
the used heap size. Because the biggest object view only shows objects that retain more than
0.1% of the total heap, this means that a substantial sector will be empty, corresponding to all
objects that are not retained by those biggest objects.

86

Clicking on any ring segment sets a new root for the circle, thereby expanding the maximum
depth that you can see in the diagram. Clicking on the hollow center of the diagram restores the
previous root. If a new root has been set, the total circumference of the circle corresponds to
the retained size of the root object. An empty sector represents the self-size of the root object
and additional objects that are not present in the list of biggest retained objects. If the current
object set is not the entire heap, the total circumference of the circle corresponds to the sum of
all displayed biggest objects and no empty sector is shown.

87

More information about instances and their immediately retained objects is displayed on the
right side of the diagramwhen you hover over themwith themouse. When themouse is outside
any ring segment, the list on the right side shows the biggest objects in the innermost ring.
Hovering over that list highlights the corresponding ring segments and clicking on a list item sets
a new root for the diagram. To create a new object set, you can choose from the actions in the
context menu, both on the ring segments as well on the list items.

Reference views

Unlike the previous views, the reference views are only available if you have performed at least
one selection step. For the initial object set these views are not useful, because the incoming
and outgoing reference views show all individual objects and the merged reference views can
only be interpreted for a focused set of objects.

The outgoing references view is similar to the view that a debugger would show in an IDE. When
opening an object, you can see the primitive data and references to other objects. Any reference
type can be selected as a new object set, and you can select multiple objects at once. Like in the
classes view, you can select retained objects or associated java.lang.Class objects. If the
selected object is a standard collection, you can also select all contained elements with a single
action. For class loader objects, there is an option to select all loaded instances.

88

Fields with null references are not shown by default because that informationmay be distracting
for a memory analysis. If you want to see all fields for debugging purposes, you can change this
behavior in the view settings.

Beside the simple selection of displayed instances, the outgoing references view has powerful
filtering capabilities [p. 206]. For live sessions, both outgoing and incoming reference views have
advanced manipulation and display functionality that is discussed in the same chapter.

The incoming references view is the main tool for solving memory leaks. To find out why an
object is not garbage collected, the Show Paths To GC Root button will find reference chains to
garbage collector roots. The chapter on memory leaks [p. 209] has detailed information on this
important topic.

89

Merged references

Checking references for a lot of different objects can be tedious, so JProfiler can show you the
merged outgoing and incoming references of all objects in the current object set. By default, the
references are aggregated by classes. If instances of a class are referenced by other instances
of the same class, a special node is inserted that shows the original instances plus the instances
from these class-recursive references. Thismechanismautomatically collapses internal reference
chains in common data structures, such as in a linked list.

You can also choose to show the merged references grouped by field. In that case, each node
is a reference type, such as a particular field of a class or the content of an array. For standard
collections, internal reference chains that would break cumulation are compacted, so you see
reference types like "map value of java.lang.HashMap". Unlike for class aggregation, this
mechanism only works for explicitly supported collections from the standard library of the JRE.

In the "Merged outgoing references" view, the instance counts refer to the referenced objects.
In the "Merged incoming references" view, you see two instance counts on each row. The first
instance count shows how many instances in the current object set are referenced along this
path. The bar icon at the left side of the node visualizes this fraction. The second instance count
after the arrow icon refers to the objects that hold the references to the parent node. When
performing a selection step, you can choosewhether youwant to select objects from the current
object set that are referenced in the selected way or if you are interested in the objects with the
selected reference - the reference holders.

90

With the "Merged dominating references" view you can find out which references must be
removed so that some or all of the objects in the current object set can be garbage collected.
The dominating reference tree can be interpreted as the merged inverse of the dominator tree
in the biggest objects view, aggregated for classes. The reference arrows may not express a
direct reference between the two classes, but there may be other classes in between that hold
non-dominating references. In the case of multiple garbage collector roots, no dominating
references may exist for some or all objects in the current object set.

By default, the "Merged dominating references" view shows incoming dominating references
and by opening the tree, you can reach the objects that are held by the GC roots. Sometimes,
the reference tree may lead to the same root objects along many different paths. By choosing
the "GC roots to objects" view mode in the drop-down at the top of the view, you can see the
reverse perspective where the roots are at the top level and the objects in the current object set
are in the leaf nodes. In that case, the references go from the top level towards the leaf nodes.
Which perspective is better depends on whether the references you want to eliminate are close
to the current object set or close to the GC roots.

91

Inspections

The "Inspections" view does not show data by itself. It presents a number of heap analyses that
create new object sets according to rules that are not available in the other views. For example,
you may want to see all objects that are retained by a thread local. This would be impossible to
do in the reference views. Inspections are grouped into several categories and explained in their
descriptions.

An inspection can partition the calculated object set into groups. Groups are shown in a table
at the top of the heapwalker. For example, the "Duplicate strings" inspection shows the duplicate
string values as groups. If you are in the reference view, you can then see the java.lang.String
instanceswith the selected string value below. Initially, the first row in the group table is selected.
By changing the selection, you change the current object set. The Instance Count and Size columns
of the group table tell you how large the current object set will be when you select a row.

92

The group selection is not a separate selection step in the heap walker, but it becomes part of
the selection step made by the inspection. You can see the group selection in the selection step
pane at the bottom. When you change the group selection, the selection step pane is updated
immediately.

Each inspection that creates groups decides which groups are most important in the context of
the inspection. Because this does not always correspond to the natural sort order of one of the
other columns, the Priority column in the group table contains a numeric value that enforces the
sort order for the inspection.

Inspections can be expensive to calculate for large heaps, so the results are cached. In this way,
you can go back in the history and look at the results of previously calculated inspectionswithout
waiting.

Heap walker graph

The most realistic representation of instances together with their references is a graph. While
the graph has a low visual density and is impractical for some types of analyses, it still is the best
way to visualize relationships between objects. For example, circular references are difficult to
interpret in a tree, but immediately evident in a graph. Also, it may be beneficial to see incoming
and outgoing references together, which is impossible in a tree structure where you can see
either one or the other.

The heap walker graph does not automatically show any objects from the current object set, nor
is it cleared when you change the current object set. You manually add selected objects to the
graph from the outgoing references view, the incoming references view or the biggest objects
view by selecting one or more instances and using the Show In Graph action.

93

Package names in the graph are shortened by default. Like in the CPU call graph, you can enable
the full display in the view settings. References are painted as arrows. If you move the mouse
over the reference, a tooltip window will be displayed that shows details for the particular
reference. Instances that weremanually added from the reference views have a blue background.
The more recently an instance has been added, the darker the background color. Garbage
collector roots have a red background and classes have a yellow background.

By default, the reference graph only shows the direct incoming and outgoing references of the
current instance. You can expand the graph by double-clicking on any object. This will expand
either the direct incoming or the direct outgoing references for that object, depending on the
direction you'removing in. With the expansion controls on the left and right sides of an instance,
you can selectively open incoming and outgoing references. If you need to backtrack, use the
undo functionality to restore previous states of the graph, so you don't get distracted by too
many nodes. To trim the graph, there are actions for removing all unconnected nodes or even
for removing all objects.

Like in the incoming references view, the graph has a Show Path To GC Root button that will
expand one ormore reference chains to a garbage collector root [p. 209] if available. In addition,

94

there is a Find Path Between Two Selected Nodes action that is active if two instances are selected.
It can search for directed and undirected paths and optionally also along weak references. If a
suitable path is found, it is shown in red.

Initial object set

When you take a heap snapshot, you can specify options that control the initial object set. If you
have recorded allocations, the Select recorded objects check box restricts the initially displayed
objects to those that have been recorded. The numbers will usually differ from those in the live
memory views, because unreferenced objects are removed by the heap walker. Unrecorded
objects are still present in the heap snapshot, they are just not displayed in the initial object set.
With further selection steps you can reach unrecorded objects.

In addition, the heap walker performs a garbage collection and removes weakly referenced
objects, except for soft references. This is usually desirable because weakly referenced objects
are distracting when looking for memory leaks where only strongly referenced objects are
relevant. However, in those cases where you are interested in weakly referenced objects, you
can tell the heap walker to retain them. The four weak reference types in the JVM are "soft",
"weak", "phantom" and "finalizer" and you can choose which of them should be sufficient for
retaining an object in the heap snapshot.

If present, weakly referenced objects can be selected or removed from the current object set by
using the "Weak reference" inspections in the heap walker.

Marking the heap

Often you want to look at the objects that have been allocated for a particular use case. While
you could do this by starting and stopping allocation recording around that use case, there is a
much better way that has a lot less overhead and preserves the allocation recording feature for
other purposes: The Mark Heap action that is advertised on the heap walker overview and that
is also available in the Profilingmenu or as a trigger actionmarks all objects on the heap as "old".
When you take the next heap snapshot, it is now clear what the "new" objects should be.

95

If there was a previous heap snapshot or a mark heap invocation, the title area of the heap
walker shows the new instance count and two links titled Use new and Use old that allow you to
select either the instances that have been allocated since that point in time, or the surviving
instances that were allocated before. This information is available for each object set, so you can
drill down first and select new or old instances later on.

96

Thread Profiling

Using threads incorrectly can create many different kinds of problems. Too many active threads
can result in thread starvation, threads can block each other and impact the liveness of your
application or acquiring locks in the wrong order can lead to deadlocks. In addition, information
about threads is important for debugging purposes.

In JProfiler, thread profiling is split into two view sections: The "Threads" section deals with the
life-cycle of threads and with capturing thread dumps. The "Monitors & locks" section offers
functionality for analyzing the interaction of multiple threads.

Inspecting threads

The thread history view shows each thread as a colored row in a time-line where the color
indicates the recorded thread status. Threads are sorted by their creation time, by name or by
their thread group and can be filtered by name. You can also rearrange the order of threads
yourself via drag and drop. Whenmonitor events have been recorded, you can hover over parts
of a thread where it was in the "Waiting" or "Blocked" state and see the associated stack trace
with a link into the monitor history view.

A tabular view of all threads is available in the thread monitor view. If CPU recording is active
while a thread is being created, JProfiler saves the name of the creating thread and displays it

97

in the table. At the bottom, the stack trace of the creating thread is shown. For performance
reasons, no actual stack trace is requested from the JVM, but the current information from CPU
recording is used. This means that the stack traces will only show those classes that satisfy the
filter settings for call tree collection.

If you enable the recording of estimated CPU times in the profiling settings, a CPU Time column
is added to the table. CPU time is only measured when you record CPU data.

Like most debuggers, JProfiler can also take thread dumps. The stack traces of thread dumps
are the full stack traces provided by the JVM and do not depend on CPU recording. Different
thread dumps can be compared in a diff viewer when you select two thread dumps and click the
Show Difference button. It is also possible to compare two threads from a single thread dump by
selecting them and choosing Show Difference from the context menu.

98

Thread dumps can also be taken with the "Trigger thread dump" trigger action or via the API.

Analyzing locking situations

Every Java object has an associatedmonitor that can be used for two synchronization operations:
A thread can wait on a monitor until another thread issues a notification on it, or it can acquire
a lock on a monitor, possibly blocking until another thread has given up the ownership of the
lock. In addition, Java offers classes in the java.util.concurrent.locks package for
implementing more advanced locking strategies. Locks in that package do not use monitors of
objects but a different native implementation.

JProfiler can record locking situations for both of the above mechanisms. In a locking situation,
there are one ormultiple threads, amonitor or an instance of java.util.concurrent.locks.
Lock aswell as awaiting or blocking operation that takes a certain amount of time. These locking
situations are presented in a tabular fashion in the monitor history view, and visually in the
locking history graph.

The locking history graph focuses on the entire set of relationships of all involved monitors and
threads rather than the duration of isolatedmonitor events. Threads andmonitors participating
in a locking situation are painted as blue and gray rectangles, if they are part of a deadlock, they

99

are painted in red. Black arrows indicate ownership of a monitor, yellow arrows extend from
waiting threads to the associated monitors, while a dashed red arrow indicates that a thread
wants to acquire a monitor and is currently blocking. Stack traces are available when hovering
over blocking orwaiting arrows if CPUdata has been recorded. Those tool tips contain hyperlinks
that take you to the corresponding row in the monitor history view.

The tabular monitor history view shows monitor events. They have a duration that is displayed
as a column, so you can find the most important events by sorting the table. For any selected
row in the tabular view, you can jump to the graph with the Show in Graph action.

Each monitor event has an associated monitor. TheMonitor Class column shows the class name
of the instance whose monitor is used, or "[rawmonitor]" if no Java object is associated with the
monitor. In any case, monitors have a unique ID that is displayed in a separate column, so you
can correlate the usage of the same monitor over multiple events. Each monitor event has a
waiting thread that is performing the operation and optionally an owning thread that is blocking
the operation. If available, their stack traces are shown in the lower part of the view.

If you have further questions about a monitor instance, the Show in Heap Walker action in both
monitor history view and locking history graph provides a link into the heap walker and selects
the monitor instance as a new object set.

Limiting the events of interest

One fundamental problem with analyzing monitor events is that applications may generate
monitor events at an extraordinary rate. That is why JProfiler has default thresholds for waiting
and blocking events belowwhich events are immediately discarded. These thresholds are defined
in the view settings and can be increased in order to focus on longer events.

100

To the recorded events, you can further apply filters. Themonitor history view offers a threshold,
an event type and a text filter at the top of the view. The locking history graph allows you to
select a thread or a monitor of interest and only show locking situations that involve themarked
entities. Events of interest are shown with a different color in the time line, and there is a
secondary navigation bar to step through those events. If the current event is not an event of
interest, you can see how many events are between the current event and the next event of
interest in either direction.

In addition to locking situations where the selected thread or monitor are present, the locking
situations where it is removed from the graph are shown as well. This is because each monitor
event is defined by two such locking situations, onewhere an operation is started and onewhere
it has ended. This also means that a completely empty graph is a valid locking situation that
indicates that there are no more locks in the JVM.

Another strategy to reduce the number of events that need your attention is to cumulate locking
situations. In the locking history graph, there is a time line at the bottom that shows all recorded
events. Clicking and dragging in it selects a time range and data from all contained events is
shown in the locking graph above. In a cumulated graph, each arrow can containmultiple events
of the same type. In that case, the tool tip window shows the number of events as well as the
total time of all contained events. A drop-down list in the tool tip window shows the time stamps
and lets you switch between the different events.

101

Deadlock detection

The "Current locking graph" and the "Current monitors" views operate on a "monitor dump"
that is triggered with an action in the JProfiler UI. With a monitor dump, you can inspect events
that are still in progress. This includes deadlocks which are events that never finish and cannot
be shown in the history views.

Blocking operations are usually short-lived, but in the event of a deadlock, both views will display
a permanent view of the issue. In addition, the current locking graph shows the threads and
monitors that produce a deadlock in red, so you can spot such a problem immediately.

Taking a newmonitor dump will replace the data in the both views. You can also trigger monitor
dumps with the "Trigger monitor dump" trigger action or via the API.

Monitor usage statistics

To investigate blocking and waiting operations from a more elevated perspective, the monitor
statistics view calculates reports from themonitor recording data. You can groupmonitor events
bymonitors, thread names, or classes of monitors and analyze cumulated counts and durations
for each row.

102

103

Probes

CPU and memory profiling are primarily concerned with objects and method calls, the basic
building blocks of an application on the JVM. For some technologies, a more high-level approach
is required that extracts semantic data from the running application and displays it in the profiler.

The most prominent example for this is profiling calls to a database with JDBC. The call tree
shows when you use the JDBC API and how long those calls take. However, different SQL
statements may be executed for each call, and you have no idea which of those calls are
responsible for a performance bottleneck. Also, JDBC calls often originate from many different
places in your application and it is important to have a single view that shows all database calls
instead of having to search for them in the generic call tree.

To solve this problem, JProfiler offers a number of probes for important subsystems in the JRE.
Probes add instrumentation into specific classes to collect their data anddisplay them in dedicated
views in the "Databases" and "JEE & Probes" view sections. In addition, probes can annotate data
into the call tree so you can see both generic CPU profiling as well as high-level data at the same
time.

If you are interested in gettingmore information about a technology that is not directly supported
by JProfiler, you can write your own probe [p. 159] for it. Some libraries, containers or database
drivers may ship with their own embedded probe [p. 164] that becomes visible in JProfiler when
they are used by your application.

Probe events

Because probes add overhead, they are not recorded by default, but you have to start
recording [p. 26] separately for each probe, either manually or automatically.

Depending on the capabilities of the probe, probe data is displayed in a number of views. At the
lowest level are probe events. Other views show data that cumulates probe events. By default,
probe events are not retained evenwhen a probe is being recorded.When single events become
important, you can record them in the probe events view. For some probes, like the file probe,
this is generally not advisable because they usually generate events at a high rate. Other probes,
like the "HTTP server" probe or the JDBC probe may generate events at a much lower rate and
so recording single events may be appropriate.

104

Probe events capture a probe string from a variety of sources, including method parameters,
return values, the instrumented object and thrown exceptions. Probes may collect data from
multiple method calls, for example, like the JDBC probe that has to intercept all setter calls for
prepared statements in order to construct the actual SQL string. The probe string is the basic
information about the higher-level subsystem that is measured by the probe. In addition, an
event contains a start time, an optional duration, the associated thread and a stack trace.

At the bottom the of the table, there is a special row that shows the total number of displayed
events and sums all numeric columns in the table. For the default columns, this only includes
the Duration column, Together with the filter selector above the table, you can analyze the
collected data for selected subsets of events. By default, the text filter works on all text field
columns, but you can choose a specific filter column from the drop-down before the text field.
Filter options are also available from the context menu, for example, to filter all events with a
duration larger than that of the selected event.

Other probe views also offer options to filter probe events: In the probe telemetries view you
can select a time range, in the probe call tree view you can filter events from the selected call

105

stack, the probe hot spots view offers a probe event filter based on the selected back trace or
hot spot and the control object and time line views offer actions to filter probe events for the
selected control object.

Stack traces of selected probe events are shown at the bottom. If multiple probe events are
selected, the stack traces are cumulated and shown either as a call tree, as probe hot spots with
back traces or as CPU hot spots with back traces.

Next to the stack trace views, histogram views for event durations and optionally for recorded
throughput are shown. You can select a duration range in these histograms with the mouse in
order to filter probe events in the table above.

Probes can record different kinds of activities and associate an event typewith their probe events.
For example, the JDBC probe shows statements, prepared statements and batch executions as
event types with different colors.

106

To prevent excessive memory usage when single events are recorded, JProfiler consolidates
events. The event cap is configured in the profiling settings and applies to all probes. Only the
most recent events are retained, older events are discarded. This consolidation does not affect
the higher-level views.

Probe call tree and hot spots

Probe recording works closely together with CPU recording. Probe events are aggregated into
a probe call tree where the probe strings are the leaf nodes, called "payloads". Only call stacks
where a probe event has been created are included in that tree. The information on the method
nodes refers to the recorded payload names. For example, if an SQL statement was executed
42 times at a particular call stack with a total time of 9000 ms, this adds an event count of 42
and a time of 9000 ms to all ancestor call tree nodes. The cumulation of all recorded payloads
forms the call tree that shows you which call paths consume most of the probe-specific time.
The focus of the probe tree is the payloads, so the view filter searches for payloads by default,
although its context menu also offers a mode to filter classes.

If CPU recording is switched off, the back traces will only contain a "No CPU data was recorded"
node. If CPU data was only partially recorded, theremay be amixture of these nodes with actual
back traces. Even if sampling is enabled, JProfiler records the exact call traces for probe payloads
by default. If you want to avoid this overhead, you can switch it off in the profiling settings. There
are several other tuning options for probe recording that can be adjusted to increase data
collection or reduce overhead.

107

Hot spots can be calculated from the probe call tree. The hot spot nodes are now payloads and
not method calls like in the CPU view section [p. 52]. This is often the most immediately useful
view of a probe. If CPU recording is active, you can open the top-level hot spots and analyze the
method backtraces, just like in the regular CPU hot spots view. The numbers on the back trace
nodes indicate how many probe events with what total duration were measured along the call
stack extending from the deepest node to the node just below the hot spot.

Both probe call tree as well as probe hot spots view allow you to select a thread or thread group,
the thread status and an aggregation level for method nodes, just like in the corresponding CPU
views. When you come from the CPU views to compare data, it is important to keep in mind that
the default thread status in the probe views is "All states" and not "Runnable" like in the CPU
views. This is because a probe event often involves external systems like database calls, socket

108

operations or process executions where it is important to look at the total time and not only on
the time that the current JVM has spent working on it.

Control objects

Many libraries that provide access to external resources give you a connection object that you
can use for interactingwith the resource. For example, when starting a process, the java.lang.
Process object lets you read from the output streams and write to the input stream. When
working with JDBC, you need a java.sql.Connection object to perform SQL queries. The
generic term that is used in JProfiler for this kind of object is "control object".

Grouping the probe events with their control objects and showing their life cycle can help you
to better understand where a problem comes from. Also, creating control objects is often
expensive, so you want to make sure that your application does not create too many and closes
them properly. For this purpose, probes that support control objects have a "Time line" and a
"Control objects" view, where the latter may be named more specifically, for example,
"Connections" for the JDBC probe. When a control object is opened or closed, the probe creates
special probe events that are shown in the events view, so you can inspect the associated stack
traces.

In the time line view, each control object is shown as a bar whose coloring shows when the
control object was active. Probes can record different event types and the time line is colored
accordingly. This status information is not taken from the list of events, whichmay be consolidated
or not even available, but is sampled every 100 ms from the last status. Control objects have a
name that allows you to identify them. For example, the file probe creates control objects with
the file namewhile the JDBC probe shows the connection string as the name of the control object.

The control objects view shows all control objects in tabular form. Both open and closed control
objects are present by default. You can use the controls at the top to restrict the display to open
or closed control objects only or to filter the contents of a particular column. In addition to the
basic life cycle data for control objects, the table shows data for the cumulated activity of each
control object, for example, the event count and the average event duration.

Different probes show different columns here, the process probe, for example, shows separate
sets of columns for read and write events. This information is also available if single event
recording is disabled. Just like for the events view, the total row at the bottom can be used
together with filtering to get cumulated data on partial sets of control objects.

109

A probe can publish certain properties in a nested table. This is done to reduce the information
overload in the main table and give more space to table columns. If a nested table is present,
such as for the file and process probes, each row has an expansion handle at the left side that
opens a property-value table in place.

The time line, control objects view and the events view are connected with navigation actions.
For example, in the time line view, you can right-click a row and jump to each of the other views
so that only the data from the selected control object is displayed. This is achieved by filtering
the control object ID to the selected value.

Telemetries and tracker

From the cumulated data that is collected by a probe, several telemetries are recorded. For any
probe, the number of probe events per second and some average measure for probe events
like the average duration or the throughput of an I/O operation are available. For probes with
control objects, the number of open control objects is also a canonical telemetry. Each probe
can add additional telemetries, for example, the JPA probe shows separate telemetries for query
counts and entity operation counts.

110

The hot spots view and the control objects view show cumulated data that can be interesting to
track over time. These special telemetries are recorded with the probe tracker. The easiest way
to set up tracking is to add new telemetries with the Add Selection to Tracker action from the hot
spots or control object views. In both cases, you have to choose if you want to track times or
counts. When tracking control objects, the telemetry is a stacked area graph for all different
probe event types. For tracked hot spots, the tracked times are split into the different thread
states.

Probe telemetries can be added to the "Telemetries" section [p. 44] in order to compare them
to system telemetries or to custom telemetries. You then also have control over probe recording
with the context menu actions in the telemetry overview.

JDBC and JPA

The JDBC and JPA probes work hand in hand. In the events view of the JPA probe, you can expand
single events to see the associated JDBC events if the JDBC probe was recorded along with the
JPA probe.

111

Similarly, the hot spots view adds a special "JDBC calls" node to all hot spots that contains the
JDBC calls that were triggered by the JPA operation. Some JPA operations are asynchronous and
are not executed immediately, but at some arbitrary later point in time when the session is
flushed. When looking for performance problems, the stack trace of that flush is not helpful, so
JProfiler remembers the stack traces of where existing entities have been acquired or where
new entities have been persisted and ties them to the probe events. In that case, the back traces
of the hot spot are contained inside a node that is labeled "Deferred operations", otherwise a
"Direct operations" node is inserted.

Other probes like the MongoDB probe support both direct and asynchronous operations.
Asynchronous operations are not executed on the current thread but somewhere else, either
on one or multiple other threads in the same JVM or in another process. For such probes, the
back traces in the hot spots are sorted into "Direct operations" and "Async operation" container
nodes.

A special problem in the JDBC probe is that you can only get good hot spots if literal data like IDs
is not included in the SQL strings. This is automatically the case if prepared statements are used,
but not if regular statements are executed. In the latter case, you will likely get a list of hot spots,
where most queries are executed just once. As a remedy, JProfiler offers a non-default option
in the JDBC probe configuration for replacing literals in unprepared statements. For debugging

112

purposes, youmay still want to see the literals in the events view. Deactivating that option reduces
memory overhead, because JProfiler will not have to cache so many different strings.

On the other hand, JProfiler collects the parameters for prepared statements and shows a
complete SQL stringwithout placeholders in the events view. Again, this is useful when debugging,
but if you do not need it, you can switch it off in the probe settings in order to conservememory.

JDBC connection leaks

The JDBC probe has a "Connection leaks" view that shows open virtual database connections
that have not been returned to their database pool. This only affects virtual connections that
are created by a pooled database source. Virtual connections block a physical connection until
they are closed.

There are two types of leak candidates, "unclosed" connections and "unclosed collected"
connections. Both types are virtual connections where the connection objects that have been
handed out by the database pool are still on the heap, but close() has not been called on them.
"Unclosed collected" connections have been garbage collected and are definite connection leaks.

113

"Unclosed" connection objects are still on the heap. The greater the Open Since duration, the
more likely such a virtual connection is a leak candidate. A virtual connection is considered as a
potential leak when it has been open for more than 10 seconds. However, close()may still be
called on it, and then the entry in the "Connection leaks" view would be removed.

The connection leaks table includes a Class Name column that shows the name of the connection
class. This will tell you which type of pool has created the connection. JProfiler explicitly supports
a large number of database drivers and connection pools and knows which classes are virtual
and physical connections. For unknownpools or database drivers, JProfilermaymistake a physical
connection for a virtual one. Since physical connections are often long-lived, it would then show
up in the "Connection leaks" view. In this case, the class name of the connection object will help
you to identify it as a false positive.

By default, when you start probe recording, the connection leak analysis is not enabled. There
is a separate recording button in the connection leaks view whose state corresponds to the
Record open virtual connections for connection leak analysis check box in the JDBC probe settings.
Just like for event recording, the state of the button is persistent, so if you start the analysis once,
it will automatically be started for the next probe recording session.

Payload data in the call tree

When looking at the CPU call tree, it is interesting to see where probes have recorded payload
data. That data may help you to interpret the measured CPU times. That is why many probes
add cross-links into the CPU call tree. For example, the class loader probe can show you where
class loading has been triggered. This is otherwise not visible in the call tree and can add
unexpected overhead. A database call that is otherwise opaque in the call tree view can be further
analyzed in the corresponding probe with a single click. This even works for call tree analyses
where the analysis is automatically repeated in the context of the probe call tree view when you
click on the probe link.

114

Another possibility is to show the payload information inline directly in the CPU call tree. All
relevant probes have an Annotate in call tree option in their configuration for that purpose. In
that case, no links into the probe call tree are available. Each probe has its own payload container
node. Events with the same payload names are aggregated, and the number of invocations and
total times are displayed. Payload names are consolidated on a per-call stack basis, with the
oldest entries being aggregated into an "[earlier calls]" node. Themaximumnumber of recorded
payload names per call stack is configurable in the profiling settings.

Call tree splitting

Some probes do not use their probe strings to annotate payload data into the call tree. Rather,
they split the call tree for each different probe string. This is especially useful for server-type
probes, where youwant to see the call tree separately for each different type of incoming request.
The "HTTP server" probe intercepts URLs and gives you fine grained control over what parts of
the URL should be used for splitting the call tree. By default, it only uses the request URI path
without any parameters.

115

For more flexibility, you can define a script that determines the split string. In the script, you get
the current javax.servlet.http.HttpServletRequest as a parameter and return the
desired string.

What'smore, you are not limited to a single splitting level, but can definemultiple nested splittings.
For example, you can split by the request URI path first and then by the user name that is extracted
from theHTTP session object. Or, you can group requests by their requestmethod before splitting
by the request URI.

By using nested splittings, you can see separate data for each level in the call tree. When looking
at the call tree, a level might get in the way and you would find yourself in need of eliminating it
from the "HTTP server" probe configuration. More conveniently and without loss of recorded
data, you can temporarily merge and unmerge splitting levels in the call tree on the fly by using
the context menu on the corresponding splitting nodes.

116

Splitting the call tree can cause considerable memory overhead, so it should be used carefully.
To avoid memory overload, JProfiler caps the maximum number of splits. If the splitting cap for
a particular split level has been reached, a special "[capped nodes]" splitting node is added with
a hyperlink to reset the cap counter. If the default cap is too low for your purposes, you can
increase it in the profiling settings.

117

Garbage Collector Analysis

Understanding and analyzing the runtime characteristics of the garbage collector (GC) is important
for several reasons. Firstly, GC pauses can directly impact the responsiveness of your application.
By understanding how the garbage collector is performing, you can optimize its settings to reduce
these pauses. In general, frequent long GC cycles may indicate that the heap is too small, or that
too many temporary objects are being created.

With the help of the garbage collector probe you can solve these problems and make more
informed decisions when tuning your JVM settings, such as selecting the appropriate garbage
collector, heap size, or other JVM parameters.

The garbage collector probe has different views than the other probes and also uses a different
data source. It does not obtain its data from the profiling interface of the JVM but uses JFR

streaming to analyzeGC-related events from the JDK flight recorder (1). Because of the dependency
on JFR event streaming, the GC probe is only available when you profile Java 17 or higher on a
Hotspot JVM.When you open JFR snapshots [p. 216], the exact same probe is available, regardless
of the used Java version.

Garbage collections view

The main view in the garbage collector probe is the "Garbage collections" table. It shows all
recorded garbage collections as rows with their most important metrics as columns.

The "Cause" column shows you why a garbage collection was triggered. For example, a call to
System.gc() triggered a full garbage collection. You can see that from the associated "G1Full"
value in the "Collector" column. It also caused a substantial pause of 20 ms which is why it is
generally not a good idea to call System.gc(). Other causes trigger the collection of the young
generation space ("G1New") or the old GC collection of the G1 collector ("G1Old") that cleans up
unreferenced objects in the old generation. You can see that the old GC collections consistently
take longer than the young generation collections although the young generation collections
collect more objects.

Collected references with special GC handling are shown as "final", "weak", "soft" and "phantom"
references in separate columns.

The reason there are separate columns for the longest pause and the sum of pauses is that each
garbage collection is composed of multiple phases that produce separate pauses. Also, the

(1) https://en.wikipedia.org/wiki/JDK_Flight_Recorder

118

https://en.wikipedia.org/wiki/JDK_Flight_Recorder

"Duration" of a garbage collection is not equal to the sumof pauses, because a garbage collection
only partially pauses the JVM while it is executing. You can see that the "G1Old" collections in
the screenshot only pause for about a fifth of their duration.

To inspect the various phases of a garbage collection, you can toggle the tree icon in the "GC ID"
column.

In the screenshot above, a mixed GC collection of the G1 collector ("G1Old") was expanded. You
can see that most of the time is spent in "Class Unloading", which does not pause the JVM. On
the right, you can see further statistics for the garbage collection. Here, the used heap stayed
the same while the used metaspace went up by 0.1%.

The phases of each collector are different. In the screenshot above, a full collection is shown. It
spends a lot of timemarking live objects in the entire heap. At the end of the collection, the used
heap was reduced by 15.7%, while the metaspace remained the same.

While analyzing garbage collections, filtering is an important tool to compare different subsets
of garbage collections. At the top of the table, there is a filter selector that lets you choose any
column and configure a corresponding filter. An easier way to see similar garbage collections is
to use the context menu on the table and select a filter condition based on the column values
in the selected row.

119

You can add multiple filters to narrow down the garbage collections of interests. Active filters
are shown as labels at the top of the table. It is also possible to add filters from the nested GC
phases tables.

Telemetries

The GC probe produces a number of telemetries which are available in the "Telemetries" probe
view.

120

If you are interested in minimizing GC pauses, the "Longest pause" telemetry at the top will be
the most interesting one. You can drag along the time axis of the telemetry to select the
corresponding garbage collections in the "Garbage Collections" view. For better vertical resolution,
you can select a single telemetry from the drop-down at the top or by clicking on the name of
the telemetry.

In the screenshot above you can see the sum of pauses over time. JProfiler presents summable
measurements by building a histogram of the recorded data. The bin width depends on the
available horizontal space, so histogram bins will change depending on the zoom level and, if
"scale to fit" is enabled, depending on the width of the window. What stays the same is the total
area under all histogram bins.

The heap and metaspace telemetries are based on the statistics that you can see when
expanding a garbage collection. This means that the data is not regularly sampled like for the
memory telemetries in a full profiling session. If no garbage collection occurs during a time
period, there will be no data. For a JVM with little allocation activity, there can be long stretches
along the time axis where the graph is just interpolated between two garbage collections.

Each of these telemetries has two data lines: "Before GC" and "After GC". The differences are
typically large for the "Used Heap" telemetry. At each time, you can see how much work the
garbage collection has performed by comparing the values of the two data lines. You can look

121

at the tooltip to get the precise values. For the "Committed heap" telemetry and the metaspace
telemetries, the differences between both lines will often be small.

If you are analyzing a JFR snapshot [p. 216], the same data from the jdk.GCHeapSummary JFR
event type is also used in the "Memory" telemetry in the telemetry section. In that case, however,
both the "Before GC" and "After GC" values are shown in the same data line and data is not
aggregated to a once per-second granularity as in the GC probe telemetries, so the graph will
look different.

GC Summary

TheGC summary shows youmeasurements that are aggregated over the entire recording period.
Eachmeasurement provides the number of garbage collections, aswell as the average,maximum
and the total values. Themost important data at the top are the "Pause times" that directly affect
the liveness of your application.

The other top-level category shows the total times of all collections which is then split into two
subcategories for young and old collections.

GC Configuration

When you tune your garbage collector, you may want to inspect the common properties that
can either be set explicitly or that are set implicitly by the garbage collector itself.

122

These properties are common to all garbage collectors and help you understand the differences
between garbage collectors.

GC Flags

Finally, the GC-specific flags give you an idea what properties of a garbage collector can be tuned
and lets you check their actual values.

The "Origin" column shows you how the flag was set. "Default" values have not been modified
from the standard settings while "Ergonomic" flags have been adjusted automatically by the
garbage collector. If you set specific GC flags on the command line, they will be reported as
"Command line" in origin.

123

MBean Browser

Many application servers and frameworks such as Apache Camel (1) use JMX to expose a number
of MBeans for configuration and monitoring purposes. The JVM itself also publishes a number

of platform MXBeans (2) that present interesting information around the low-level operations in
the JVM.

JProfiler includes an MBean browser that shows all registered MBeans in the profiled VM. The
remote management level of JMX for accessing MBean servers is not required, because the
JProfiler agent is already running in-process and has access to all registered MBean servers.

JProfiler supports the type system ofOpenMBeans. Besides defining a number of simple types,
Open MBeans can define complex data types that do not involve custom classes. Also, arrays
and tables are available as data structures. With MXBeans, JMX offers an easy way to create
Open MBeans automatically from Java classes. For example, the MBeans provided by the JVM
are MXBeans.

WhileMBeans have no hierarchy, JProfiler organizes them into a tree by taking the object domain
name up to the first colon as the first tree level and using all properties as recursively nested
levels. The property value is shown first with the property key in brackets at the end. The type
property is prioritized to appear right below the top-level node.

Attributes

At the top level of the tree table showing the MBean content, you see the MBean attributes.

The following data structures are shown as nested rows:

• Arrays

Elements of primitive arrays and object arrays are shown in nested rows with the index as
the key name.

• Composite data

All items in a composite data type are shown as nested rows. Each item can be an arbitrary
type, so nesting can continue to an arbitrary depth.

(1) https://camel.apache.org/camel-jmx.html
(2) https://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

124

https://camel.apache.org/camel-jmx.html
https://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

• Tabular data

Most frequently you will encounter tabular data in MXBeans where instances of java.util.
Map aremapped to a tabular data type with one key column and one value column. If the type
of the key is a simple type, the map is shown "inline", and each key-value pair is shown as a
nested row. If the key has a complex type, a level of "map entry" elements with nested key
and value entries is inserted. This is also the case for the general tabular type with composite
keys and multiple values.

Optionally, MBean attributes can be editable in which case an edit icon will be displayed next
to their value and the Edit Value action becomes active. Composite and tabular types cannot be
edited in the MBean browser, but arrays or simple types are editable.

If a value is nullable, such as an array, the editor has a checkbox to choose the null state.

Array elements are separated by semicolons. One trailing semicolon can be ignored, so 1 and
1; are equivalent. A missing value before a semicolon will be treated as a null value for object
arrays. For string arrays, you can create empty elements with double quotes ("") and elements
that contain semicolons by quoting the entire element. Double quotes in string elements must
be doubled. For example, entering a string array value of

"Test";"";;"embedded "" quote";"A;B";;

creates the string array

new String[] {"Test", "", null, "embedded \" quote", "A;B", null}

JProfiler can create custom telemetries from numeric MBean attribute values. When you define
an MBean telemetry line [p. 44] for a custom telemetry, an MBean attribute browser will be
shown that lets you choose an attribute that provides the telemetry data. When you are already
working in the MBean Browser, the Add Telemetry For Value action in the context menu provides
a convenient way to create a new custom telemetry.

125

A telemetry can also track nested values in composite data or tabular data with simple keys and
single values. When you chose the nested row, a value path is built where path components are
separated by forward slashes.

Operations

In addition to inspecting and modifying MBean attributes, you can invoke MBean operations
and check their return values. MBean operations are methods on the MBean interface that are
not setters or getters.

The return value of an operation may have a composite, tabular or array type, so a new window
with a content similar to the MBean attribute tree table is shown. For a simple return type, there
is only one row named "Return value". For other types, the "Return value" is the root element
into which the result is added.

126

MBean operations can have one or more arguments. When you enter them, the same rules and
restrictions apply as when editing an MBean attribute.

127

Offline Profiling

There are two fundamentally different ways to profile an application with JProfiler: By default,
you profile with the JProfiler GUI attached. The JProfiler GUI provides you with buttons to start
and stop recording and shows you all recorded profiling data.

There are situations where you would like to profile without the JProfiler GUI and analyze the
results later on. For this scenario, JProfiler offers offline profiling. Offline profiling allows you to
start the profiled application with the profiling agent but without the need to connect with a
JProfiler GUI.

However, offline profiling still requires some actions to be performed. At least one snapshot has
to be saved, otherwise no profiling data will be available for analysis later on. Also, to see CPU
or allocation data, you have to start recording at some point. Similarly, if you wish to be able to
use the heap walker in the saved snapshot, you have to trigger a heap dump.

Profiling API

The first solution to this problem is the controller API. With the API, you can programmatically
invoke all profiling actions in your code. In the api/samples/offline directory, there is a
runnable example that shows you how to use the controller API in practice. Execute ../gradlew
in that directory to compile and run it and study theGradle build filebuild.gradle to understand
how the test program is invoked.

The Controller API is themain interface formanaging profiling actions at run time. It is contained
in bin/agent.jar in your JProfiler installation or as a Maven dependency with the coordinates

group: com.jprofiler
artifact: jprofiler-probe-injected
version: <JProfiler version>

and the repository

https://maven.ej-technologies.com/repository

If the profiling API is used during a normal execution of your application, the API calls will just
quietly do nothing.

The drawback of this approach is that you have to add the JProfiler agent library to the class path
of your application during development, add profiling instructions to your source code and
recompile your code each time you make a change to the programmatic profiling actions.

Triggers

With triggers [p. 26], you can specify all profiling actions in the JProfiler GUI without modifying
your source code. Triggers are saved in the JProfiler config file. The config file and the session
ID are passed to the profiling agent on the command line when you start with offline profiling
enabled, so the profiling agent can read those trigger definitions.

128

In contrast to the profiling API, where you add API calls to your source code, triggers are activated
when a certain event occurs in the JVM. For example, instead of adding an API call for a certain
profiling action at the beginning or at the end of a method, you can use a method invocation
trigger. As another use case, instead of creating your own timer thread to periodically save a
snapshot, you can use a timer trigger.

Each trigger has a list of actions that are performed when the associated event occurs. Some of
these actions correspond to profiling actions in the controller API. In addition, there are other
actions that go beyond the controller functionality such as the action to print method calls with
parameters and return values or the action to invoke interceptor scripts for a method.

Configuring offline profiling

If you have configured a launched session in JProfiler, you can convert it to an offline session by
invoking Session->ConversionWizards->Convert Application Session To Offline from themainmenu.
This will create a start script with the appropriate VM parameters and take the profiling settings
from the same session that you use in the JProfiler UI. If you want to move the invocation to
another computer, you have to use Session->Export Session Settings to export the session to a
config file and make sure that the VM parameter in the start script references that file.

129

When profiling an application server with the integration wizards, there is always a start script
or config file that is being modified so that the VM parameters for profiling are inserted into the
Java invocation. All integration wizards have a "Profile offline" option on the "Startup" step in
order to configure the application server for offline profiling instead of interactive profiling.

You may want to pass the VM parameter yourself to a Java call, for example, if you have a start
script that is not handled by the integration wizards. That VM parameter has the format

-agentpath:<path to jprofilerti library>=offline,id=<ID>[,config=<path>]

and is available from the [Generic application] wizard.

Passing offline as a library parameter enables offline profiling. In this case, a connection with
the JProfiler GUI is not possible. The session parameter determines which session from the
config file should be used for the profiling settings. The ID of a session can be seen in the top
right corner of the Application settings tab in the session settings dialog. The optional config
parameter points to the config file. This is a file that you can export by invoking Session->Export
Session Settings. If you omit the parameter, the standard config file will be used. That file is located
in the .jprofiler14 directory in your user home directory.

130

Offline profiling with Gradle and Ant

When you start offline profiling from Gradle or Ant, you can use the corresponding JProfiler
plugins to make your work easier. A typical usage of the Gradle task for profiling tests is shown
below:

plugins {
 id 'com.jprofiler' version 'X.Y.Z'
 id 'java'
}

jprofiler {
 installDir = file('/opt/jprofiler')
}

task run(type: com.jprofiler.gradle.TestProfile) {
 offline = true
 configFile = file("path/to/jprofiler_config.xml")
 sessionId = 1234
}

The com.jprofiler.gradle.JavaProfile task profiles any Java class in the same way that
you execute it with the standard JavaExec task. If you use some other method of launching
your JVM that is not directly supported by JProfiler, the com.jprofiler.gradle.
SetAgentPathProperty task can write the required VM parameter to a property. It is added
by default when applying the JProfiler plugin, so you can simply write:

setAgentPathProperty {
 propertyName = 'agentPathProperty'
 offline = true
 configFile = file("path/to/jprofiler_config.xml")
 sessionId = 1234
}

and then use agentPathProperty as a project property reference elsewhere after the task has
been executed. The features of all Gradle tasks and the corresponding Ant tasks are documented
in detail in separate chapters [p. 243].

Enabling offline profiling for running JVMs

With the command line utility bin/jpenable, you can start offline profiling in any running JVM
with a version of 1.6 or higher. Just like for the VM parameter, you have to specify an offline
switch, a session ID and an optional config file:

jpenable --offline --id=12344 --config=/path/to/jprofiler_config.xml

With an invocation like this, you have to select a process from a list of running JVMs. With the
additional arguments --pid=<PID> --noinput other you can automate the process so that
it requires no user input at all.

On the other hand, when enabling offline profiling on the fly, it may be necessary to manually
start some recordings or to save a snapshot. This is possible with the bin/jpcontroller
command line tool.

If the profiling agent is only loaded, but no profiling settings have been applied, no recording
actions can be switched on and so jpcontroller will not be able to connect. This includes the

131

case where you enable profiling with jpenable, but without the offline parameter. If you
enable offline mode, the profiling settings are specified and jpcontroller can be used.

More information on the jpenable and jpcontroller executables is available in the command
line reference [p. 243].

132

Comparing Snapshots

Comparing the runtime characteristics of your current application against a previous version is
a common quality assurance technique for preventing performance regressions. It also can be
helpful for solving performance problems within the scope of a single profiling session, where
youmay want to compare two different use cases and find out why one is slower than the other.
In both cases, you save snapshots with the recorded data of interest and use the snapshot
comparison functionality in JProfiler by invoking Session->Compare Snapshots in NewWindow from
the menu or clicking the Compare Multiple Snapshots button on the Open Snapshots tab of the
start center.

Selecting snapshots

Comparisons are created and viewed in a separate top-level window. First, you add a number
of snapshots in the snapshot selector. Then you can create comparisons from two or more of
the listed snapshots by selecting the snapshots of interest and clicking on a comparison tool bar
button. The order of the snapshot files in the list is significant because all comparisons will
assume that snapshots further down in the list have been recorded at a later time. Apart from
arranging snapshots manually, you can sort them by name or creation time.

Unlike for the views in JProfiler'smainwindow, the comparison views have fixed viewparameters
that are shown at the top instead of drop-down lists that let you adjust the parameters on the
fly. All comparisons showwizards for collecting the parameters for the comparison, and you can

133

perform the same comparisonmultiple timeswith the sameparameters. Thewizards remember
their parameters from previous invocations so you don't have to repeat the configuration if you
compare several sets of snapshots. At any point, you can shortcut the wizard with the Finish
button or jump to another step by clicking on the step in the index.

When a comparison is active, the snapshots that were analyzed are shownwith number prefixes.
For comparisons that workwith two snapshots, the displayed differences are themeasurements
from snapshot 2 minus the measurements from snapshot 1.

For the CPU comparisons, you can use the same snapshot as the first and second snapshot and
select different threads or thread groups in the wizard.

Comparisons with tables

The simplest comparison is the "Objects" memory comparison. It can compare data from the
"All objects", "Recorded objects" or the "Classes" view of the heap walker. The columns in the
comparison show differences for instance counts and size, but only the Instances Count column
shows the bidirectional bar chart where increases are painted in red and to the right, while
decreases are painted in green and to the left.

134

In the view settings dialog you can choose whether you want this bar chart to display absolute
changes or percentages. The other value is displayed in parentheses. This setting also determines
how the column is sorted.

The measurement in the first data column is called the primary measure, and you can switch it
from the default instance counts to shallow sizes in the view settings.

135

The context menu of the table gives you a shortcut into the other memory comparisons with
the same comparison parameters and for the selected class.

Like the objects comparison, CPU hot spot, probe hot spot and allocation hot spot comparisons
are shown in a similar table.

Comparisons with trees

For each of the CPU call tree, the allocation call tree and the probe call tree you can calculate
another tree that shows the differences between the selected snapshots. In contrast to the
regular call tree views, the inline bar diagramnow displays the change, either in red for increases
or in green for decreases.

136

Depending on the task at hand, it may make it easier for you if you only see call stacks that are
present in both snapshot files and that have changed from one snapshot file to the other. You
can change this behavior in the view settings dialog.

For the CPU and probe call tree comparisons it may be interesting to compare the average times
instead of the total times. This is an option on the "View parameters" step of the wizard.

137

Telemetry comparisons

For telemetry comparisons you can compare more than two snapshots at the same time. If you
don't select any snapshots in the snapshot selector, the wizard will assume that you want to
compare all of them. Telemetry comparisons do not have a time axis, but show the numbered
selected snapshots as an ordinal x-axis instead. The tool tips contain the full nameof the snapshot.

The comparison extracts one number from each snapshot. Because telemetry data is
time-resolved, there are multiple ways to do so. The "comparison type" step of the wizard gives
you the option to use the value when the snapshot was saved, calculate the maximum value or
find the value at a selected bookmark.

138

139

IDE Integrations

When you profile your application, the methods and classes that come up in JProfiler's views
often lead to questions that can only be answered by looking their source code. While JProfiler
provides a built-in source code viewer for that purpose, it has limited functionality. Also, when
a problem is found, the next move is usually to edit the offending code. Ideally, there should be
a direct path from the profiling views in JProfiler to the IDE, so you can inspect and improve code
without any manual lookups.

Installing IDE integrations

JProfiler offers IDE integrations for IntelliJ IDEA, eclipse and NetBeans. To install an IDE plugin,
invoke Session->IDE Integrations from the main menu. The plugin installation for IntelliJ IDEA is
performed with the plugin management in the IDE, for other IDEs the plugin is installed directly
be JProfiler. The installer also offers this action to make it easy to update the IDE plugin along
with the JProfiler installation. The integration wizard connects the plugin with the current
installation directory of JProfiler. In the IDE plugin settings, you can change the used version of
JProfiler at any time. The protocol between the plugin and the JProfiler GUI is backwards
compatible and can work with older versions of JProfiler as well.

The IntelliJ IDEA integration can also be installed from the pluginmanager. In that case, the plugin
will ask you for the location of the JProfiler executable when you profile for the first time.

On different platforms, the JProfiler executable is located in different directories. On Windows,
it's bin\jprofiler.exe, on Linux or Unix bin/jprofiler and on macOS there is a special
helper shell script Contents/Resources/app/bin/macos/jprofiler.sh in the JProfiler
application bundle for the IDE integrations.

Source code navigation

Everywhere a class name or a method name is shown in JProfiler, the context menu contains a
Show Source action.

140

If the session was not started from the IDE, the built-in source code viewer is shown that utilizes
line number tables in the compiled class files to find methods. A source file can only be found if
its root directory or a containing ZIP file is configured in the application settings

Together with the source code display, a bytecode viewer based on the jclasslib bytecode viewer
(1) shows the structure of the compiled class file.

(1) https://github.com/ingokegel/jclasslib

141

https://github.com/ingokegel/jclasslib
https://github.com/ingokegel/jclasslib

If the session is launched from the IDE, the integrated source code viewer is not used and the
Show Source action defers to the IDE plugin. The IDE integrations support launched profiling
sessions, opening saved snapshots as well as attaching to running JVMs.

For live profiling sessions, you start the profiled application for the IDE similarly to running or
debugging it. The JProfiler plugin will then insert the VM parameter for profiling and connect a
JProfiler window to it. JProfiler is running as a separate process and is started by the plugin if
required. Source code navigation requests from JProfiler are sent to the associated project in
the IDE. JProfiler and the IDE plugin cooperate to make window switching seamless without
blinking task bar entries, just as if you were dealing with a single process.

When starting the session, the "Session startup" dialog lets you configure all profiling settings.
The configured profiling settings that are used for a launched session are remembered by JProfiler
on a per-project or on a per-run-configuration basis, depending on the IDE integrations. When
a session is profiled for the first time, the IDE plugin automatically determines a list of profiled
packages based on the topmost classes in the package hierarchy of your source files. At any later
point, you can go to the filter settings step in the session settings dialog and use the reset button
to perform this calculation again.

For snapshots, the IDE integration is set up by opening a snapshot file from within the IDE with
the File->Open action or by double-clicking on it in the project window. Source code navigation
from JProfiler will then be directed into the current project. Finally, the IDE plugin adds an Attach
to JVM action to the IDE that lets you select a running JVM and get source code navigation into
the IDE, similar to the mechanism for snapshots.

Sometimes you may want to switch to the IDE without a particular class or method in mind. For
that purpose, the tool bar in the JProfiler window has an Activate IDE button that is shown for
profiling sessions that are opened by an IDE integration. The action is bound to the F11 key, just
like the JProfiler activation action in the IDE, so you can switch back and forth between the IDE
and JProfiler with the same key binding.

142

IntelliJ IDEA integration

To profile your application from IntelliJ IDEA, choose one of the profiling commands in the Run
menu, the context menu in the editor, or click on the corresponding toolbar button.

JProfiler can profile most run configuration types from IDEA, including application servers. To
configure further settings, edit the run configuration, choose the Startup/Connection tab, and
select the JProfiler entry. The screen shot below shows the startup settings for a local server
configuration. Depending on the run configuration type, you can adjust JVM options or retrieve
profiling parameters for remote profiling.

143

The profiled application is then started just as with the usual "Run" commands. Precise source
code navigation is implemented for Java and Kotlin.

On the JProfiler tab of the IDE settings, you can adjust the used JProfiler executable and whether
you always want to open a new window in JProfiler for new profiling sessions.

The JProfiler tool window in IDEA is shownwhen you profile a run configuration from IDEA, when
you open a JProfiler snapshot or when you attach to a running JVM.

144

The action in the tool bar with the JProfiler icon activates the JProfiler window. On the right side
of the tool bar, several toggle buttons give access to important recording actions in JProfiler. If
a recording is active, the corresponding toggle button is selected.

Of particular relevance is the CPU recording action, because CPU graph data can be shown directly
in the IDE. The only parameter for graph calculation that is offered in the IDE is the thread status.
To configure advanced parameters like thread selection or to use the call tree root, call tree
removal and call tree view filter settings from the call tree view, you can generate the graph in
the JProfiler window, it will then be shown in the IDE as well.

When you calculate a graph, the list of hot spots will be populated and the source code will be
annotated with gutter icons for incoming and outgoing calls. The popup on the gutter icons
shows an inline graph, clicking on a method will navigate to it. The list of hot spots shows you
interesting entry points for analyzing the graph. When double-clicking on a table row, the source
code is shown.

The Show in JProfiler button contains actions that activate the JProfiler window, either the selected
node in the method graph or the corresponding call tree analysis in the method graph. For
outgoing calls, the "Cumulated outgoing calls" analysis is offered, for the incoming calls, the
"Backtraces" analysis is shown. All these actions are also available in the context menu of the
hot spot list or as keyboard actions.

145

eclipse integration

The eclipse plugin can profile most common launch configuration types including test run
configurations and WTP run configurations. The eclipse plugin only works with the full eclipse
SDKs and not with partial installations of the eclipse framework.

To profile your application from eclipse, choose one of the profiling commands in the Runmenu
or click on the corresponding toolbar button. The profile commands are equivalent to the debug
and run commands in eclipse and are part of eclipse's infrastructure, except for the Run->Attach
JProfiler to JVMmenu item which is added by the JProfiler plugin.

146

If themenu item Run->Profile ... does not exist in the Java perspective, enable the "Profile" actions
for this perspective underWindow->Perspective->Customize Perspective by bringing the Action Set
Availability tab to front and selecting the Profile checkbox.

Several JProfiler-related settings including the location of the JProfiler executable can be adjusted
in eclipse under Window->Preferences->JProfiler.

NetBeans integration

In NetBeans, you can profile standard, free form and Maven projects that use the exec Maven
plugin. To profile your application from NetBeans, choose one of the profiling commands in the
Run menu or click on the corresponding toolbar button. For Maven projects that start an
application in another way and for Gradle projects, start the project normally and use the
Profile->Attach JProfiler To A Running JVM action in the menu.

For free formprojects, you have to debug your application once before trying to profile it, because
the required filenbproject/ide-targets.xml is set up by the debug action. JProfiler will add
a target named "profile-jprofiler" to it with the same contents as the debug target and will try to
modify the VM parameters as needed. If you have problems profiling a free form project, check
the implementation of this target.

You can profile web applications with the integrated Tomcat or with any other Tomcat server
configured in NetBeans. When your main project is a web project, selecting Profile main project
with JProfiler starts the Tomcat server with profiling enabled.

If you use NetBeans with the bundled GlassFish Server and your main project is set up to use a
GlassFish Server, selecting Profile main project with JProfiler starts the application server with
profiling enabled.

The location of the JProfiler executable and the policy for opening new JProfiler windows can be
adjusted under Miscellaneous->JProfiler in the options dialog.

147

A Custom Probes

A.1 Probe Concepts

To develop a custom probe for JProfiler, you should be aware of some basic concepts and
terminology. The common basis of all of JProfiler's probes is that they intercept specific methods
and use the intercepted method parameters and other data sources to build a string with
interesting information that you would want to see in the JProfiler UI.

The initial problem when defining a probe is how to specify the intercepted methods and get an
environment where you can use the method parameters and other relevant objects for building
the string. In JProfiler, there are three different ways to do that:

• A script probe [p. 155] is completely defined in the JProfiler UI. You can right-click a method
in the call tree, choose the script probe action and enter an expression for the string in a
built-in code editor. This is great for experimentingwith probes, but only exposes a very limited
segment of the capabilities of custom probes.

• The embedded probe [p. 164] API can be called from your own code. If you write a library, a
database driver or a server, you can ship probes with your product. Anybody who profiles
your product with JProfiler, will get your probes added automatically to the JProfiler UI.

• With the injected probe [p. 159] API, you can write probes for 3rd party software in your IDE
using the full capability of JProfiler's probe system. The APImakes use of annotations to define
the interceptions and to inject method parameters and other useful objects.

Profiled JVM

JProfiler UI

Script
probe

Profiled application

Profiling
agent

Embedded
probe

Injected
probe

The next question is: what should JProfiler do with the string that you have created? There are
two different strategies available: payload creation or call tree splitting.

Payload creation

The string that is built by a probe can be used to create aprobe event. The event has a description
that is set to that string, a duration that is equal to the invocation time of the interceptedmethod,
as well as an associated call stack. At their corresponding call stacks, probe descriptions and

148

timings are cumulated and saved as payloads into the call tree. While events are consolidated
after a certainmaximumnumber, the cumulated payloads in the call tree show the total numbers
for the entire recording period. If both CPU data and your probe are being recorded, the probe
call tree view will show the merged call stacks with the payload strings as leaf nodes and the
CPU call tree view will contain annotated links into the probe call tree view.

Method 1

Method 2

Payloads

Payload A, count 3, time 600 ms

Payload B, count 2, time 300 ms

Method 3

Payload A, time 200 ms

Payload A, time 100 ms

Payload A, time 300 ms

Payload B, time 100 ms

Payload B, time 200 ms

Call tree with annotated payloadsProbe Events

...

chronological cumulated

Just like for CPU data, payloads can be shown in a call tree or in a hot spots view. The hot spots
show which payloads are responsible for most of the expended time, and the back traces show
you which parts of your code are responsible for creating these payloads. In order to get a good
list of hot spots, the payload strings should not contain any unique IDs or timestamps, because
if every payload string is different, there will be no cumulation and no clear distribution of hot
spots. For example, in the case of a prepared JDBC statement, the parameters should not be
included in the payload string.

Script probes create payloads automatically from the return value of the configured script.
Injected probes are similar, they return the payload description from an interception handler
method annotated with PayloadInterception either as a string or as a Payload object for
advanced functionality. Embeddedprobes, on theother hand, create payloadsby callingPayload.
exit with the payload description as an argument, where the time between Payload.enter
and Payload.exit is recorded as the probe event duration.

Payload creation is most useful if you're recording calls to services that happen at different call
sites. A typical example is a database driver where the payload string is some form of query
string or command. The probe takes the perspective of the call site, where the work that is
measured is performed by another software component.

Call tree splitting

The probe can also take the perspective of the execution site. In that case, it is not important
how the interceptedmethod is called, but rather whatmethod calls are executed after it. A typical
example is a probe for a servlet container where the extracted string is a URL.

More important than creating payloads is now the ability to split the call tree for each distinct
string that is built by the probe. For each such string, a splitting node will be inserted into the
call tree that contains the cumulated call tree of all corresponding invocations. Where otherwise
there would be just one cumulated call tree, now there is a set of splitting nodes segmenting the
call tree into different parts that can be analyzed separately.

149

Method 1, 1 inv., 1400 ms

Method 2, 3 inv., 200 ms

Method 3, 1 inv., 400 ms

Method 2, 1 inv., 700 ms

Method 3, 2 inv., 100 ms

Split string A

Split string B

Call tree with splitsCall tree without splits

Method 1, 1 inv., 1400 ms

Method 2, 4 inv., 900 ms

Method 3, 3 inv., 500 ms

Multiple probes can produce nested splits. A single probe by default produces only one split
level, unless it has been configured as reentrant which is not supported for script probes.

In the JProfiler UI, call tree splitting is not bundled with the script probe feature, but is a separate
feature [p. 182]called "Split methods". They just split the call tree without creating payloads, so
no probe viewwith name and description is required. Injected probes return the split string from
an interception handlermethod annotatedwith SplitInterception, while embedded probes
call Split.enter with the split string.

Telemetries

Customprobes have twodefault telemetries: The event frequency and the average event duration.
Injected and embedded probes support additional telemetries that are created with annotated
methods in the probe configuration classes. In the JProfiler UI, script telemetries are independent

150

from the script probe feature and are found in the "Telemetries" section, under the Configure
Telemetries button in the tool bar.

Telemetrymethods are polled once per second. In the Telemetry annotation, you can configure
the unit and a scale factor. With the line attribute, multiple telemetries can be combined into
a single telemetry view. With the stacked attribute of the TelemetryFormat you canmake the
lines additive and show themas a stacked line graph. The telemetry-related APIs in the embedded
and injected probes are equivalent but only applicable for their respective probe types.

Control objects

Sometimes it is interesting to tie probe events to associated long-lived objects that are called
"control objects" in JProfiler. For example, in a database probe, that role is taken by the physical
connection that executes a query. Such control objects can be opened and closed with the
embedded API and the injected probe API which generate corresponding events in the probe
events view.When a probe event is created, the control object can be specified, so that the probe
event contributes to the statistics that is shown in the "Control objects" view of the probe.

151

Control objects have display names that have to be specified when they are opened. If a new
control object is used when creating a probe event, the probe has to provide a name resolver
in its configuration.

In addition, probes can define custom event types via an enum class. When the probe event is
created, one of those types can be specified and shows up in the events view where you can
filter for single event types. More importantly, the timeline view of the probe that shows control
objects as lines on a time axis is colored according to the event type. For a probe without custom
event types, the coloring shows the idle state where no events are recorded and the default
event state for the duration of probe events. With custom types, you can differentiate states, for
example, "read" and "write".

152

Recording

Like for all probes, custom probes do not record data by default, but you have to enable and
disable recording as necessary. While you can use the manual start/stop action in the probe
view, it is often necessary to switch on probe recording at the beginning. Because JProfiler does
not know about custom probes in advance, the recording profiles have a Custom probes check
box that applies to all custom probes.

Similarly, you can choose All custom probes for the trigger actions that start and stop probe
recording.

153

For programmatic recording, you can callController.startProbeRecording(Controller.
PROBE_NAME_ALL_CUSTOM, ProbeRecordingOptions.EVENTS) to record all customprobes,
or pass the class name of the probe in order to be more specific.

154

A.2 Script Probes

Developing a custom probe in your IDE requires a clear understanding of the interception point
and the benefits that the probe will provide. With script probes, on the other hand, you can
quickly define simple probes directly in the JProfiler GUI and experiment without having to learn
any API. Unlike embedded or injected custom probes, script probes can be redefined during a
running profiling session, leading to a fast edit-compile-test loop.

Defining script probes

A script probe is defined by selecting an intercepted method and entering a script that returns
the payload string for the probe. Multiple such method-script pairs can be bundled in a single
probe.

The script probe configuration is accessed in the session settings. This is the place to create and
delete script probes as well as for saving your script probes to a set that can be imported by
other profiling sessions.

Each script probe needs a name and optionally a description. The name is used to add a probe
view to JProfiler's view selector in the "JEE & Probes" section. The description is shown in the
header of the probe view and should be a short explanation of its purpose.

For selecting amethod you havemultiple options, including selecting a class from the configured
classpath or selecting a class from the profiled classes if the profiling session is already running.
In the second step, you can then select a method from the selected class.

155

A much easier way to select the intercepted method is from the call tree view. In the context
menu, the Intercept MethodWith Script Probe action will ask you if you want to create a new probe
or add an interception to an existing probe.

Probe scripts

In the script editor, you have access to all parameters of the intercepted method as well as the
object on which themethod was called. If you need access to the return value of the intercepted
method or any thrown exceptions, you have to write an embedded or injected probe.

In this environment, your script can construct the payload string, either as an expression or as
a sequence of statements with a return statement. The simplest version of such a script simply
returns parameter.toString() for one parameter or String.valueOf(parameter) for a
parameter with a primitive type. If it returns null, no payload will be created.

If you record CPU and probe data at the same time, the call tree view in the CPU section will
show links into the probe view at the appropriate call stacks. Alternatively, you can select to show
the payload strings inline in the CPU call tree view. The "Payload interceptions->Call tree
annotations" step of the probe wizard contains this option.

156

One more parameter that is available to the script is the script context, an object of type com.
jprofiler.api.agent.ScriptContext that allows you to store data between invocations of
any script that is defined for the current probe. For example, let's suppose that the intercepted
method A only sees objects that have no good text representation, but the association between
object and display name could be obtained by intercepting method B. Then you could intercept
method B in the same probe and save the object-to-text association directly to the script context.
In method A you would then get that display text from the script context and use it to build the
payload string.

Method A, intercepts:

· object c
· name n

scriptContext.putObject(c,n);
return null;

Timed method B, intercepts:

· object c

return scriptContext.getObject(c);

1

2

157

If these kinds of concerns get too complex, you should consider switching to the embedded or
injected probe APIs.

Missing capabilities

Script probes are designed to facilitate an easy entry to custom probe development, but they
are missing a couple of capabilities from the full probe system that you should be aware of:

• Script probes cannot do call tree splitting. In the JProfiler UI this is a separate feature as
explained in the custom probes concepts [p. 148]. Embedded and injected probes offer call
tree splitting functionality directly.

• Script probes cannot create control objects or create custom probe event types. This is only
possible with embedded or injected probes.

• Script probes cannot access return values or thrown exceptions, unlike embedded and injected
probes.

• Script probes cannot handle reentrant interceptions. If a method is called recursively, only
the first call into it is intercepted. Embedded and injected probes offer you fine-grained control
over reentrant behavior.

• It is not possible to bundle telemetries other than default telemetries into the probe view.
Instead, you can use the script telemetry feature as shown in the custom probes
concepts. [p. 148]

158

A.3 Injected Probes

Similarly to script probes, injected probes define interception handlers for selected methods.
However, injected probes are developed outside the JProfiler GUI in your IDE and rely on the
injected probe API that is provided by JProfiler. The API is licensed under the permissive Apache
License, version 2.0, making it easy to distribute the associated artifacts.

The best way to get started with injected probes is to study the example in the api/samples/
simple-injected-probe directory of your JProfiler installation. Execute ../gradlew in that
directory to compile and run it. The gradle build file build.gradle contains further information
about the sample. The example in api/samples/advanced-injected-probe shows more
features of the probe system, including control objects.

Development environment

The probe API that you need for developing an injected probe is contained in the single artifact
with maven coordinates

group: com.jprofiler
artifact: jprofiler-probe-injected
version: <JProfiler version>

where the JProfiler version corresponding to this manual is 14.0.

Jar, source and javadoc artifacts are published to the repository at

https://maven.ej-technologies.com/repository

You can either add the probe API to your development class path with a build tool like Gradle
or Maven, or use the JAR file

api/jprofiler-probe-injected.jar

in the JProfiler installation.

To browse the Javadoc, go to

api/javadoc/index.html

That javadoc combines the javadoc for all APIs that are published by JProfiler. The overview for
the com.jprofiler.api.probe.injected package is a good starting point for exploring the
API.

Probe structure

An injected probe is a class annotated with com.jprofiler.api.probe.injected.Probe.
The attributes of that annotation expose configuration options for the entire probe. For example,
if you create a lot of probe events that are not interesting for individual inspection, the events
attribute allows you to disable the probe events view and reduce overhead.

@Probe(name = "Foo", description = "Shows foo server requests", events = "false")
public class FooProbe {
 ...
}

159

To the probe class, you add specially annotated static methods in order to define interception
handlers. The PayloadInterception annotation creates payloads while the
SplitInterception annotation splits the call tree. The return value of the handler is used as
the payload or the split string, depending on the annotation. Like for script probes, if you return
null, the interception has no effect. Timing information is automatically calculated for the
intercepted method.

@Probe(name = "FooBar")
public class FooProbe {
 @PayloadInterception(
 invokeOn = InvocationType.ENTER,
 method = @MethodSpec(className = "com.bar.Database",
 methodName = "processQuery",
 parameterTypes = {"com.bar.Query"},
 returnType = "void"))
 public static String fooRequest(@Parameter(0) Query query) {
 return query.getVerbose();
 }

 @SplitInterception(
 method = @MethodSpec(className = "com.foo.Server",
 methodName = "handleRequest",
 parameterTypes = {"com.foo.Request"},
 returnType = "void"))
 public static String barQuery(@Parameter(0) Request request) {
 return request.getPath();
 }
}

As you can see in the above example, both annotations have a method attribute for defining the
interceptedmethodswith a MethodSpec. In contrast to script probes, the MethodSpec can have
an empty class name, so all methods with a particular signature are intercepted, regardless of
the class name. Alternatively, you can use the subtypes attribute of the MethodSpec to intercept
entire class hierarchies.

Unlike for script probes where all parameters are available automatically, the handler methods
declare parameters to request values of interest. Each parameter is annotatedwith an annotation
from the com.jprofiler.api.probe.injected.parameter package, so the profiling agent
knows which object or primitive value has to be passed to the method. For example, annotating
a parameter of the handler method with @Parameter(0) injects the first parameter of the
intercepted method.

Method parameters of the intercepted method are available for all interception types. Payload
interceptions can access the return value with @ReturnValue or a thrown exception with
@ExceptionValue if you tell the profiling agent to intercept the exit rather than the entry of
themethod. This is donewith the invokeOn attribute of the PayloadInterception annotation.

In contrast to script probes, injected probes handlers can be called for recursive invocations of
the intercepted method if you set the reentrant attribute of the interception annotation to
true. With a parameter of type ProbeContext in your handler method, you can control the
probe's behavior for nested invocations by calling ProbeContext.getOuterPayload() or
ProbeContext.restartTiming().

Advanced interceptions

Sometimes a single interception is not sufficient to collect all necessary information for building
the probe string. For that purpose, your probe can contain an arbitrary number of interception
handlers annotated with Interception that do not create payloads or splits. Information can
be stored in static fields of your probe class. For thread safety in a multi-threaded environment,

160

you should use ThreadLocal instances for storing reference types and the atomic numeric
types from the java.util.concurrent.atomic package for maintaining counters.

Under some circumstances, you need interceptions for both method entry and method exit. A
common case is if you maintain state variables like inMethodCall that modify the behavior of
another interception. You can set inMethodCall to true in the entry interception, which is the
default interception type. Now you define another staticmethod directly below that interception
and annotate it with @AdditionalInterception(invokeOn = InvocationType.EXIT).
The intercepted method is taken from the interception handler above, so you do not have to
specify it again. In the method body, you can set your inMethodCall variable to false.

...

private static final ThreadLocal<Boolean> inMethodCall =
 ThreadLocal.withInitial(() -> Boolean.FALSE);

@Interception(
 invokeOn = InvocationType.ENTER,
 method = @MethodSpec(className = "com.foo.Server",
 methodName = "internalCall",
 parameterTypes = {"com.foo.Request"},
 returnType = "void"))
public static void guardEnter() {
 inMethodCall.set(Boolean.TRUE);
}

@AdditionalInterception(InvocationType.EXIT)
public static void guardExit() {
 inMethodCall.set(Boolean.FALSE);
}

@SplitInterception(
 method = @MethodSpec(className = "com.foo.Server",
 methodName = "handleRequest",
 parameterTypes = {"com.foo.Request"},
 returnType = "void"),
 reentrant = true)
public static String splitRequest(@Parameter(0) Request request) {
 if (!inMethodCall.get()) {
 return request.getPath();
 } else {
 return null;
 }
}

...

You can see aworking example of this use case in api/samples/advanced-injected-probe/
src/main/java/AdvancedAwtEventProbe.java.

Control objects

The control objects view is not visible unless the controlObjects attribute of the Probe
annotation is set to true. For working with control objects, you have to obtain a ProbeContext
by declaring a parameter of that type in your handler method. The sample code below shows
how to open a control object and associate it with a probe event.

161

@Probe(name = "Foo", controlObjects = true, customTypes = MyEventTypes.class)
public class FooProbe {
 @Interception(
 invokeOn = InvocationType.EXIT,
 method = @MethodSpec(className = "com.foo.ConnectionPool",
 methodName = "createConnection",
 parameterTypes = {},
 returnType = "com.foo.Connection"))
 public static void openConnection(ProbeContext pc, @ReturnValue Connection c) {
 pc.openControlObject(c, c.getId());
 }

 @PayloadInterception(
 invokeOn = InvocationType.EXIT,
 method = @MethodSpec(className = "com.foo.ConnectionPool",
 methodName = "createConnection",
 parameterTypes = {"com.foo.Query", "com.foo.Connection"},
 returnType = "com.foo.Connection"))
 public static Payload handleQuery(
 ProbeContext pc, @Parameter(0) Query query, @Parameter(1) Connection c) {
 return pc.createPayload(query.getVerbose(), c, MyEventTypes.QUERY);
 }

 ...

}

Control objects have a defined lifetime, and the probe view records their open and close times
in the timeline and the control objects view. If possible, you should open and close control objects
explicitly by calling ProbeContext.openControlObject() and ProbeContext.
closeControlObject(). Otherwise you have to declare a static method annotated with
@ControlObjectName that resolves the display names of control objects.

Probe events can be associated with control objects if your handler method returns instances
of Payload instead of String. The ProbeContext.createPayload()method takes a control
object and a probe event type. The enum with the allowed event types has to be registered with
the customTypes attribute of the Probe annotation.

Control objects have to be specified at the start of the time measurement which corresponds
to the method entry. In some cases, the name of payload string will only be available at method
exit because it depends on the return value or other interceptions. In that case, you can use
ProbeContext.createPayloadWithDeferredName() to create a payload object without a
name. Define an interception handler annotated with @AdditionalInterception(invokeOn
= InvocationType.EXIT) right below and return a String from that method, it will then
automatically be used as the payload string.

Overriding the thread state

Whenmeasuring execution times for database drivers or native connectors to external resources,
it sometimes becomes necessary to tell JProfiler to put some methods into a different thread
state. For example, it is useful to have database calls in the "Net I/O" thread state. If the
communication mechanism does not use the standard Java I/O facilities, but some native
mechanism, this will not automatically be the case.

With a pair of ThreadState.NETIO.enter() and ThreadState.exit() calls, the profiling
agent adjusts the thread state accordingly.

162

...

@Interception(invokeOn = InvocationType.ENTER, method = ...)
public static void enterMethod(ProbeContext probeContext, @ThisValue JComponent
component) {
 ThreadState.NETIO.enter();
}

@AdditionalInterception(InvocationType.EXIT)
public static void exitMethod() {
 ThreadState.exit();
}

...

Deployment

There are two ways to deploy injected probes, depending on whether you want to put them on
the classpath or not. With the VM parameter

-Djprofiler.probeClassPath=...

a separate probe class path is set up by the profiling agent. The probe classpath can contain
directories and class files, separated with ';' on Windows and ':' on other platforms. The profiling
agent will scan the probe classpath and find all probe definitions.

If it's easier for you to place the probe classes on the classpath, you can set the VM parameter

-Djprofiler.customProbes=...

to a comma-separated list of fully qualified class names. For each of these class names, the
profiling agent will try to load an injected probe.

163

A.4 Embedded Probes

If you control the source code of the software component that is the target of your probe, you
should write an embedded probe instead of an injected probe.

Most of the initial effort when writing an injected probe goes into specifying the intercepted
methods and selecting the injected objects asmethod parameters for the handlermethod. With
embedded probes, this is not necessary because you can call the embedded probe API directly
from the monitored methods. Another advantage of embedded probes is that deployment is
automatic. Probes ship together with your software and appear in the JProfiler UI when the
application is profiled. The only dependency you have to ship is a small JAR file licensed under
the Apache 2.0 License that mainly consists of empty method bodies serving as hooks for the
profiling agent.

Development environment

The development environment is the same as for injected probes, with the difference that the
artifact name is jprofiler-probe-embedded instead of jprofiler-probe-injected and
that you ship the JAR file with your application instead of developing the probe in a separate
project. The probe API that you need for adding an embedded probe to your software component
is contained in the single JAR artifact. In the javadoc, start with the package overview for com.
jprofiler.api.probe.embedded when you explore the API.

Just like for injected probes, there are two examples for embedded probes as well. In api/
samples/simple-embedded-probe, there is an example that gets you started with writing an
embedded probe. Execute ../gradlew in that directory to compile and run it and study the
gradle build file build.gradle to understand the execution environment. For more features,
including control objects, go to the example in api/samples/advanced-embedded-probe.

Payload probes

Similar to injected probes, you still need a probe class for configuration purposes. The probe
classmust extendcom.jprofiler.api.probe.embedded.PayloadProbeorcom.jprofiler.
api.probe.embedded.SplitProbe, depending on whether your probe collects payloads or
splits the call tree. With the injected probe API, you use different annotations on the handler
methods for payload collection and splitting. The embedded probe API, on the other hand, has
no handler methods and needs to shift this configuration to the probe class itself.

public class FooPayloadProbe extends PayloadProbe {
 @Override
 public String getName() {
 return "Foo queries";
 }

 @Override
 public String getDescription() {
 return "Records foo queries";
 }
}

Whereas injected probes use annotations for configuration, you configure embedded probes
by overriding methods from the base class of the probe. For a payload probe, the only abstract
method is getName(), all other methods have a default implementation that you can override
if required. For example, if you want to disable the events view to reduce overhead, you can
override isEvents() to return false.

For collecting payloads andmeasuring their associated timing youuse apair ofPayload.enter()
and Payload.exit() calls

164

public void measuredCall(String query) {
 Payload.enter(FooPayloadProbe.class);
 try {
 performWork();
 } finally {
 Payload.exit(query);
 }
}

The Payload.enter() call receives the probe class as an argument, so the profiling agent knows
which probe is the target of the call, the Payload.exit() call is automatically associated with
the same probe and receives the payload string as an argument. If you miss an exit call, the call
tree would be broken, so this should always be done in a finally clause of a try block.

If the measured code block does not produce any value, you can call the Payload.execute
method insteadwhich takes the payload string and a Runnable. With Java 8+, lambdas ormethod
references make this method invocation very concise.

public void measuredCall(String query) {
 Payload.execute(FooPayloadProbe.class, query, this::performWork);
}

The payload string must be known in advance in that case. There is also a version of execute
that takes a Callable.

public QueryResult measuredCall(String query) throws Exception {
 return Payload.execute(PayloadProbe.class, query, () -> query.execute());
}

The problem with the signatures that take a Callable is that Callable.call() throws a
checked Exception and so you have to either catch it or declare it on the containing method.

Control objects

Payload probes can open and close control objects by calling the appropriate methods in the
Payload class. They are associated with probe events by passing them to a version of the
Payload.enter() or Payload.execute() methods that take a control object and a custom
event type.

public void measuredCall(String query, Connection connection) {
 Payload.enter(FooPayloadProbe.class, connection, MyEventTypes.QUERY);
 try {
 performWork();
 } finally {
 Payload.exit(query);
 }
}

The control object viewmust be explicitly enabled in the probe configuration, and custom event
types must be registered in the probe class as well.

165

public class FooPayloadProbe extends PayloadProbe {
 @Override
 public String getName() {
 return "Foo queries";
 }

 @Override
 public String getDescription() {
 return "Records foo queries";
 }

 @Override
 public boolean isControlObjects() {
 return true;
 }

 @Override
 public Class<? extends Enum> getCustomTypes() {
 return Connection.class;
 }
}

If you do not explicitly open and close your control objects, the probe class must override
getControlObjectName in order to resolve display names for all control objects.

Split probes

The split probe base class has no abstract methods, because it can be used to just split the call
tree without adding a probe view. In that case, the minimal probe definition is just

public class FooSplitProbe extends SplitProbe {}

One important configuration for split probes is whether they should be reentrant. By default,
only the top-level call is split. If you would like to split recursive calls as well, override
isReentrant() to return true. Split probes can also create a probe view and publish the split
strings as payloads if you override isPayloads() to return true in the probe class.

To perform a split, make a pair of calls to Split.enter() and Split.exit().

public void splitMethod(String parameter) {
 Split.enter(FooSplitProbe.class, parameter);
 try {
 performWork(parameter);
 } finally {
 Split.exit();
 }
}

Contrary to to payload collection, the split string has to be passed to the Split.enter()method
together with the probe class. Again, it is important that Split.exit() is called reliably, so it
should be in a finally clause of a try block. Split also offers execute()methodswith Runnable
and Callable arguments that perform the split with a single call.

Telemetries

It is particularly convenient to publish telemetries for embedded probes, because being in the
same classpath you can directly access all staticmethods in your application. Just like for injected
probes, annotate static public methods in your probe configuration class with @Telemetry and

166

return a numeric value. See the chapter on probe concepts [p. 148] for more information. The
@Telemetry annotations of the embedded and the injected probe APIs are equivalent, they are
just in different packages.

Another parallel functionality between embedded and injected probe API is the ability to modify
the thread statewith the ThreadState class. Again, the class is present in both APIs with different
packages.

Deployment

There are no special steps necessary to enable embedded probeswhen profilingwith the JProfiler
UI. However, the probe will only be registered when the first call into Payload or Split is made.
Only at that point will the associated probe view be created in JProfiler. If you prefer the probe
view to be visible from the beginning, as is the case for built-in and injected probes, you can call

PayloadProbe.register(FooPayloadProbe.class);

for payload probes and

SplitProbe.register(FooSplitProbe.class);

for split probes.

Youmay be consideringwhether to call themethods of Payload and Split conditionally,maybe
controlled by a command line switch in order to minimize overhead. However, this is generally
not necessary because the method bodies are empty. Without the profiling agent attached, no
overhead is incurred apart from the construction of the payload string. Considering that probe
events should not be generated on a microscopic scale, they will be created relatively rarely, so
that building the payload string should be a comparatively insignificant effort.

Another concern for containers may be that you do not want to expose external dependencies
on the class path. A user of your container could also use the embedded probe API which would
lead to a conflict. In that case, you can shade the embedded probe API into your own package.
JProfiler will still recognize the shaded package and instrument the API classes correctly. If
build-time shading is not practical, you can extract the source archive andmake the classes part
of your project.

167

B Call Tree Features In Detail

B.1 Auto-Tuning And Ignored Methods

If the method call recording type is set to instrumentation, all methods of profiled classes are
instrumented. This creates significant overhead for methods that have very short execution
times. If such methods are called very frequently, the measured time of those methods will be
far too high. Also, due to the instrumentation, the hot spot compiler might be prevented from
optimizing them. In extreme cases, such methods become the dominant hot spots, although
this is not true for an uninstrumented run. An example is the method of an XML parser that
reads the next character. Such a method returns very quickly, but may be invoked millions of
times in a short time span.

This problem is not present when the method call recording type is set to sampling. However,
sampling does not provide invocation counts, only shows longermethod calls, and several views
do not have their full functionality when sampling is used.

To alleviate the problem with instrumentation, JProfiler has a mechanism called auto-tuning.
From time to time, the profiling agent checks for methods with high instrumentation overhead
and transmits them to the JProfiler GUI. In the status bar, an entry alerting to the presence of
overhead hot spots will be shown.

You can click on that status bar entry to review the detected overhead hot spots and choose to
accept them into the list of ignored methods. These ignored methods will then not be
instrumented. When a session is terminated, the same dialog is shown.

After you apply the new profiling settings, all ignored methods will be missing in the call tree.
Their execution time will be added to the self-time of the calling method. If later on you find that

168

some ignored methods are indispensable in the profiling views, you can remove them in the
Ignored Methods tab in the session settings.

The default configuration for ignored methods includes the call site classes for Groovy that are
used for the dynamic method dispatch, but make it difficult to follow the actual call chain.

If you want to manually add ignored methods, you can do so in the session settings, but a much
easier way is to select a method in the call tree and invoke the Ignore Method action from the
context menu.

In the filter settings, you can also ignore entire classes or packages by setting the type of the
filter entry to "Ignored". The Add Filter From Selectionmenu contains actions that depend on the
selected node and suggest ignoring the class or packages up to the top-level package. Depending
on whether the selected node is compact-profiled or profiled, you also see actions for changing
the filter to the opposite type.

169

In case you don't want to see any messages about auto-tuning, you can disable it in the profiling
settings. Also, you can configure the criteria for determining an overhead hot spot. A method is
considered an overhead hot spot if both of the following conditions are met:

• The total time of all its invocations exceeds a threshold in per mille of the entire total time in
the thread

• Its average time is lower than an absolute threshold in microseconds

170

B.2 Async And Remote Request Tracking

Asynchronous execution of tasks is a common practice, both in plain Java code and even more
so with reactive frameworks. Code that is adjacent in your source file is now executed on two
or more different threads. For debugging and profiling, these thread changes present two
problems: On the one hand, it is not clear how expensive an invoked operation is. On the other
hand, an expensive operation cannot be traced back to the code that caused its execution.

JProfiler provides different solutions to this problem depending on whether the call stays in the
same JVM or not. If the async execution takes place in the same JVM that invokes it, the "Inline
Async Executions" call tree analysis [p. 186] calculates a single call tree that contains both call
sites as well as execution sites. If a request to a remote JVM is made, the call tree [p. 52] contains
hyperlinks to call sites and execution sites, so you can seamlessly navigate both ways between
different JProfiler top-level windows that show profiling sessions for the involved JVMs.

Enabling Async And Remote Request Tracking

Async mechanisms can be implemented in various ways, and the semantics of starting tasks on
a separate thread or in a different JVM cannot be detected in a generic way. JProfiler explicitly
supports several common asynchronous and remote request technologies. You can enable or
disable them in the request tracking settings. By default, request tracking is not enabled. It is
also possible to configure request tracking in the session startup dialog that is shown directly
before a session is started.

In JProfiler's main window, the status bar indicates if some async and remote request tracking
types are enabled and gives you a shortcut to the configuration dialog.

JProfiler detects if an async request tracking type that is not activated is used in the profiled JVM
and shows you a notification icon next to the async and remote request tracking icon in the
status bar. By clicking on the notification icon, you can activate the detected tracking types. Async
and remote request tracking can produce substantial overhead and should only be activated if
necessary.

171

Async Tracking

If at least one async tracking type is activated, the call tree and hot spot views for CPU, allocation
and probe recording show information about all activated tracking types together with a button
that calculates the "Inline Async Executions" call tree analysis. In the result views of that analysis,
the call tree of all async executions is connected with the call sites by way of an "async
execution" node. By default, the async execution measurements are not added to the ancestor
nodes in the call tree. Because it is sometimes useful to see aggregated values, a checkbox at
the top of the analysis allows you to do that where appropriate.

The simplest way to offload a task on another thread is to start a new thread. With JProfiler, you
can follow a thread from its creation to the execution site by activating the "Thread start" request
tracking type. However, threads are heavy-weight objects and are usually reused for repeated
invocations, so this request tracking type is more useful for debugging purposes.

Themost important and generic way to start tasks on other threads uses executors in the java.
util.concurrent package. Executors are also the basis for many higher-level third party
libraries that deal with asynchronous execution. By supporting executors, JProfiler supports a
whole class of libraries that deal with multi-threaded and parallel programming.

Apart from the generic cases above, JProfiler also supports two GUI toolkits for the JVM: AWT
and SWT. Both toolkits are single-threaded, whichmeans that there is one special event dispatch
thread that can manipulate GUI widgets and perform drawing operations. In order not to block
theGUI, long-running tasks have to be performedonbackground threads. However, background
threads often need to update theGUI to indicate progress or completion. This is donewith special
methods that schedule a Runnable to be executed on the event dispatch thread.

In GUI programming, you often have to followmultiple thread changes in order to connect cause
and effect: The user initiates an action on the event dispatch thread, which in turn starts a
background operation via an executor. After completion, that executor pushes an operation to
the event dispatch thread. If that last operation creates a performance problem, it's two thread
changes away from the originating event.

172

Finally, JProfiler supports Kotlin coroutines (1), Kotlin'smulti-threading solution that is implemented
for all Kotlin backends. The async execution itself is the point where a coroutine is launched. The
dispatching mechanism of Kotlin coroutines is flexible and can actually involve starting on the
current thread, in which case the "async execution" node has an inline part that is then reported
separately in the text of the node.

Suspending methods can interrupt the execution which is then possibly resumed on different
threads. Methods where suspension was detected have an additional "suspend" icon with a
tooltip that shows the number of actual calls versus the semantic invocations of the method.
Kotlin coroutines can be suspended deliberately, but because they are not bound to threads,
the waiting time will not appear anywhere in the call tree. To see the total time taken until a
coroutine execution is finished, a "suspended" time node is added below the "async execution"
node that captures the entire suspension time for the coroutine. Depending on whether you are
interested in the CPU time or in the wall clock time of async executions, you can add or remove
those nodes on the fly with the "Show suspended times" check box at the top of the analysis.

Tracking unprofiled call site

By default, both executor and Kotlin coroutine tracking only track async executions where the
call site is in a profiled class. This is because frameworks and libraries can use these async
mechanisms in a way that is not directly related to the execution of your own code, and the
added call and execution sites would just add overhead and distraction. However, there are use
cases for tracking unprofiled call sites. For example, a framework can start a Kotlin coroutine on
which your own code is then executed.

If such call sites in unprofiled classes are detected, the tracking information in the call tree and
hot spot views shows a corresponding notification message. In live sessions, you can switch on
tracking for unprofiled call sites separately for executor and Kotlin coroutine tracking directly
from those views. These options can be changed at any time on the "CPU profiling" step of the
session settings dialog.

(1) https://kotlinlang.org/docs/reference/coroutines.html

173

https://kotlinlang.org/docs/reference/coroutines.html

It is important to understand that Kotlin coroutines can only be tracked when their launch
happenedwhile CPU recordingwas active. If you start CPU recording later on, the async executions
from Kotlin coroutines cannot be inlined. JProfiler will notify you just like for the detection of call
sites in unprofiled classes. If you need to profile long-lived coroutines that are started at the
beginning of the application, then using the attach mode is not an option. In that case, launch
the JVM with the -agentpath VM parameter [p. 10] and start CPU recording at startup.

Remote Request Tracking

For selected communication protocols, JProfiler is able to insert meta-data and track requests
across JVM boundaries. The supported technologies are:

• HTTP: HttpURLConnection, java.net.http.HttpClient, ApacheHttp Client 4.x, Apache Async Http
Client 4.x, OkHttp 3.9+ on the client side, any Servlet-API implementation or Jetty without
Servlets on the server side

• Additional support for async JAX-RS calls for Jersey Async Client 2.x, RestEasy Async Client 3.x,
Cxf Async Client 3.1.1+

• Web services: JAX-WS-RI, Apache Axis2 and Apache CXF

• RMI

• gRPC

• Remote EJB calls: JBoss 7.1+ and Weblogic 11+

In order to be able to follow the request in JProfiler you have to profile both VMs and open them
at the same time in separate JProfiler top-level windows. This works with both live sessions as
well as with snapshots. If the target JVM is not currently open, or if CPU recording was not active
at the time of the remote call, clicking on a call site hyperlink will show an error message.

When tracking remote requests, JProfiler makes call sites and execution sites explicit in the call
trees of the involved JVMs. A call site in JProfiler is the last profiledmethod call before a recorded
remote request is performed. It starts a task at an execution site that is located in a different
VM. JProfiler allows you to jump between call sites and execution sites by using hyperlinks that
are shown in the call tree view.

174

Call sites have the same identity with respect to remote request tracking for all threads. This
means that when you jump from call sites to execution sites and vice versa, there is no
thread-resolution and the jump always activates the "All thread groups" as well as the "All thread
states" thread status selection, so that the target is guaranteed to be part of the displayed tree.

Call sites and execution sites are in a 1:n relationship. A call site can start remote tasks on several
execution sites, especially if they are in different remote VMs. In the same VM,multiple execution
sites for a single call site are less common because they would have to occur at different call
stacks. If a call site calls more than one execution site, you can choose one of them in a dialog.

An execution site is a synthetic node in the call tree that contains all executions that were started
by one particular call site. The hyperlink in the execution site node takes you back to that call
site.

If the same call site invokes the same execution site repeatedly, the execution site will show the
merged call tree of all its invocations. If that is not desired, you can use the exceptional
methods [p. 191] feature to split the call tree further, as shown in the screen shot below.

175

Unlike execution sites which are only referenced from a single call site, call sites themselves can
link to several execution sites. With the numeric ID of a call site, you can recognize the same call
site if you see it referenced from different execution sites. In addition, a call site displays the ID
of the remote VM. The ID of the profiled VM can be seen in the status bar. It is not the unique
ID that JProfiler manages internally, but a display ID that starts at one and is incremented for
each new profiled VM that is opened in JProfiler.

176

B.3 Viewing Parts Of The Call Tree

Call trees often contain too much information. When you want to reduce the displayed detail,
there are several possibilities: you can restrict the displayed data to one particular sub-tree,
remove all unwanted data, or use a more coarse-grained filter for displaying method calls. All
of these strategies are supported by JProfiler.

Setting call tree roots

If you profile a use case that consists of multiple tasks that run sequentially, each sub-tree can
be analyzed separately. Once you have found the entry point to such a sub-task, the surrounding
call tree is only a distraction and the timing percentages in the sub-tree inconveniently refer to
the root of the entire call tree.

To focus on a particular sub-tree, JProfiler offers the Set As Root context action in the call tree
and the allocation call tree views.

After setting a call tree root, information about the selected root is shown at the top of the view.
A single scrollable label shows the last few stack elements leading up to the root and a detail
dialog with the entire stack of the call tree root can be displayed by clicking on the Show More
button.

177

When you use the set root action recursively, the call stack prefixes will simply be concatenated.
To go back to the previous call tree, you can either use the Back button of the call tree history
to undo one root change at a time, or the Reset Root And Show All action in the context menu to
go back to the original tree in a single step.

What is most important about changing the call tree root, is that the hot spots view will show
data that is calculated for the selected root only, and not for the entire tree. At the top of the
hot spots view, you will see the current call tree root just like in the call tree view to remind of
you the context of the displayed data.

Removing parts of the call tree

Sometimes it's helpful to see how the call treewould look like if a certainmethodwas not present.
For example, this can be the case when you have to fix several performance problems in one
go, because you are working with a snapshot from a production system that cannot be iterated

178

quickly like in your development environment. After solving themain performance problem, you
thenwant to analyze the second one, but that can only be seen clearly if the first one is eliminated
from the tree.

Nodes in the call tree can be removed together with their sub-trees by selecting them and hitting
the Delete key or by choosing Remove Selected Sub-Tree from the contextmenu. Times in ancestor
nodes will be corrected accordingly as if the hidden nodes did not exist.

There are three removal modes. With the Remove all invocationsmode, JProfiler searches for all
invocations of the selected method in the entire call tree and removes them together with their
entire sub-trees. The Remove sub-tree only option only removes the selected sub-tree. Finally,
the Set self-time to zero leaves the selected node in the call tree bug sets its self-time to zero. This
is useful for container nodes like Thread.run that may include a lot of time from unprofiled
classes.

Just like for the Set As Root action, removed nodes influence the hot spots view. In this way, you
can check what the hot spots would look like if those methods were optimized to the point of
not being important contributions.

When you remove a node, the header area of both the call tree and the hot spots views will show
a line with the count of the removed nodes and a Restore Removed Sub-Trees button. Clicking on
that button will bring up a dialog where you can select removed elements that should be shown
again.

179

Call tree view filters

The third feature in the call that has an influence on the displayed data in the hot spots view is
the view filter. When you change your call tree filters, it has a large effect on the calculated hot
spots [p. 52]. To emphasize this interdependence with the call tree view, the hot spots view
shows the call tree view filter in a line above the view together with a button to remove the
additional filters.

Setting a call tree root, removing parts of the call tree and view filters can be used together, with
the limitation that view filters have to be set last. As soon as view filters are configured in the
call tree, the Set As Root and >Remove Selected Sub-Tree actions do not work anymore.

Interaction with the call graph

Invoking the Show Graph action in either the call tree or the hot spots view will show a graph that
is limited to the same call tree root, does not include the removed methods and uses the
configured call tree view filters. At the top of the graph, the information about these changes is
displayed in a similar form as in the call tree.

180

When creating a new graph in the graph view itself, check boxes in the wizard let you choose
which of these call tree adjustment features should be taken into account for the calculation of
the call graph. Each check box is only visible if the corresponding feature is currently used in the
call tree view.

181

B.4 Splitting The Call Tree

Call trees are cumulated for repeated invocations of the same call stacks. This is necessary
because of memory overhead and the need for consolidating data in order to make it
understandable. However, sometimes you want to break the cumulation at selected points so
you can view parts of the call tree separately.

JProfiler has a concept of splitting the call tree with special nodes that are inserted into the call
stack and show semantic information that has been extracted from themethod invocation above
the inserted node. These splitting nodes allow you to see additional payload information directly
inside the call tree and to analyze their contained sub-trees separately. Each splitting type can
be merged and unmerged on the fly with the actions in the context menu and has a cap on the
total number of splitting nodes so that the memory overhead is bounded.

Call tree splitting and probes

Probes [p. 104] can split the call tree according to the information that they collect at selected
methods of interest. For example, the "HTTP server" probe splits the call tree for each different
URL. The splitting in this case is highly configurable, so you can include only the desired parts of
the URL, some other information from the servlet context or even produce multiple splitting
levels.

If you write your own probe, you can split the call tree in the same way, with both the
embedded [p. 164] and the injected [p. 159] custom probe systems.

Splitting methods with scripts

The same splitting functionality that is available for probes can be used directly in the call tree,
with the Split Method With a Script action. In the screen shot below, we want to split the call tree
for a JMS message handler to see the handling of different types of messages separately.

182

Instead of writing a probe, you just enter a script that returns a string. The string is used for
grouping the call tree at the selected method and is displayed in the splitting node. If you return
null, the current method invocation is not split and added to the call tree as usual.

The script has access to a number of parameters. It is passed the class of the selected method,
the instance for non-static methods, as well as all method parameters. In addition, you get a
ScriptContext object that can be used to store data. If you need to recall some values from
previous invocations of the same script, you can invoke the getObject/putObject and
getLong/putLong methods in the context. For example, you may want to split only the first
time a particular value for method parameter is seen. You could then use

if (scriptContext.getObject(text) != null) {
 scriptContext.putObject(text);
 return text;
} else {
 return null;
}

183

as part of your splitting script.

Splitting nodes are inserted below the selected method. For the example in the screen shot
above, we now see the handling code for each JMS message destination separately.

The splitting location is bound to a method, not to the selected call stack. If the same method is
present somewhere else in the call tree, it will be split as well. If you use the Merge splitting level
action, all splits will be merged into a single node. That node gives you a chance to unmerge the
split again.

If you produce too many splits, a node labeled capped method splits will contain all further split
invocations, cumulated into a single tree. With the hyperlink in the node, you can reset the cap
counter and record some more splitting nodes. For a permanent increase in the maximum
number of splits, you can increase the cap in the profiling settings.

184

To edit split methods after you have created them, go to the session settings dialog. If you don't
need a particular split method anymore, but want to keep it for future use, you can disable it
with the checkbox in front of the script configuration. This is better than just merging it in the
call tree, because the recording overhead may be significant.

185

B.5 Call Tree Analyses

The call tree [p. 52] shows the actual call stacks that JProfiler has recorded. When analyzing the
call tree, there are a couple of transformations that can be applied to the call tree to make it
easier to interpret. These transformations can be time-consuming and change the output format
in a way that is incompatible with the functionality in the call tree view, so new views with the
results of the analyses are created.

To perform such an analysis, select a node in the call tree view and choose one of the call tree
analysis actions from the tool bar or the context menu.

A nested view will be created below the call tree view. If you invoke the same analysis action
again, the analysis will be replaced. To keep multiple analysis results at the same time, you can
pin the result view. In that case, the next analysis of the same type will create a new view.

In live sessions, the result views are not updated together with the call tree and show data from
the time when the analysis was made. To re-calculate the analysis for the current data, use the
reload action. If the call tree itself has to be re-calculated, like in the allocation tree with disabled
auto-updates, the reload action takes care of that as well.

Collapsing recursions

A programming style that makes use of recursions leads to call trees that are difficult to analyze.
The "Collapse recursions" call tree analysis calculates a call tree where all recursions are folded.
The parent node of the current selection in the call tree serves as the call tree root [p. 177] for
the analysis. To analyze the entire call tree, select one of the top-level nodes.

186

A recursion is detected when the same method was already called higher up in the call stack. In
that case, the sub-tree is removed from the call tree and stitched back to the first invocation of
that method. That node in the call tree is then prefixed with an icon whose tool tip shows the
number of recursions. Below that node, stacks from different depths are merged. The number
of merged stacks is shown in the tool tip as well. The total number of collapsed recursions is
shown in the header, above the information about call tree parameters that were set for the
original call tree.

For a simple recursion, the number of merged stacks is the number of recursions plus one. So
a node whose recursion tool tip shows "1 recursion" would contain a tree with nodes that show
"2 merged stacks" in their recursion tool tip. In more complex cases, recursions are nested and
produce overlapping merged call trees, so that the number of merged stacks varies from stack
depth to stack depth.

At the point where a sub-tree is removed from the call tree to be merged higher up, a special
"moved nodes" placeholder is inserted.

Analyzing cumulated outgoing calls

In the call tree, you can see the outgoing calls for a selected method, but only for one particular
call stack where that method has been invoked. The same method of interest may have been
invoked in different call stacks, and it's often useful to analyze a cumulated call tree of all those
invocations in order to get better statistics. The "Calculate cumulated outgoing calls" analysis
shows a call tree that sums all outgoing calls of a selectedmethod, regardless of how themethod
was invoked.

187

For the selectedmethod, JProfiler collects all its top-level invocationswithout considering recursive
calls and cumulates them in the result tree. The header shows howmany such top-level call sites
were summed in that process.

At the top of the view, there is a checkbox that allows you to collapse recursions in the result
tree, similar to the "Collapse recursions" analysis. If recursions are collapsed, the top level node
and the first level of outgoing calls show the same numbers as the method call graph.

Calculating backtraces

The "Calculate backtraces" analysis complements the "Calculate cumulated outgoing calls"
analysis. Like the latter, it sums all top-level calls of the selected method without considering
recursive calls. However, instead of showing outgoing calls, it shows the back traces that contribute
to the invocations of the selectedmethod. The call originates at the deepest node and progresses
toward the selected method at the top.

This analysis is similar to the hot spots view, only that by default it sums total times instead of
self-times for the selected method, and the hot spots view only showsmethods whose self-time
is a significant fraction of the total time. At the top of the view there is a radio button group

188

labeled Summation mode that can be set to Self times. With that selection, the summed values
for the selected method match that of the default mode in the hot spots view.

In the back traces, the invocation counts and times on the back trace nodes are only related to
the selected method. They show how much the invocations along that particular call stack have
contributed to the values of the selected method. Similar to the "Calculate cumulated outgoing
calls" analysis, you can collapse recursions and the first level in the backtraces is equivalent to
the incoming calls in the method call graph.

Call tree analyses in the call graph

In the call graph, each method is unique while in the call tree methods can occur in multiple call
stacks. For one selected method, the "Calculate cumulated outgoing calls" and the "Calculate
backtraces" analyses are a bridge between the viewpoints of the call tree and the call graph.
They put the selected method in the center and show the outgoing and incoming calls as trees.
With the Show Call Graph action, you can switch to the full graph at any time.

Sometimes, you want to switch the perspective in the opposite direction and change from graph
to a tree view. When you are working in the call graph, you can show the cumulated outgoing
calls and the backtraces as trees for any selected node in the graph with the same call tree
analyses as in the call graph.

In the IntelliJ IDEA integration [p. 140], the call graph that is shown in the gutter of the editors
contains actions to show these trees directly.

Showing classes for allocations

A little bit different from the previous call tree analyses is the "Show classes" analysis in the
allocation call tree and the allocation hot spots views. It does not transform the call tree to
another tree, but shows a table with all allocated classes. The result view is similar to the recorded
objects view [p. 70], but restricted for a particular allocation spot.

189

In the analysis result views that show call trees, both the "Calculate cumulated outgoing calls"
and the "Calculate backtraces to selectedmethod" analyses are available. Invoking them creates
new top-level analyses with independent parameters. Any call tree removals from the previous
analysis result view are not reflected in the new top-level analysis.

The Show Classes action, on the other hand, does not create a new top-level analysis when used
from a call tree analysis result view. Instead, it creates a nested analysis that is two levels below
the original view.

190

C Advanced CPU Analysis Views

C.1 Outlier Detection And Exceptional Method Recording

In some situations, it's not the average invocation time of a method that is a problem, but rather
that a method misbehaves every once in a while. In the call tree, all method invocations are
cumulated, so a frequently called method that takes 100 times as long as expected once every
10000 invocations will not leave a distinct mark in the total times.

To tackle this problem, JProfiler offers the outlier detection view and the exceptional method
recording feature in the call tree.

Outlier detection view

The outlier detection view shows information about the call durations and invocation counts of
eachmethod together with themaximum time that wasmeasured for a single call. The deviation
of themaximumcall time from the average time showswhether all calls durations are in a narrow
range or if there are significant outliers. The outlier coefficient that is calculated as

(maximum time - average time) / average time

can help you to quantify methods in this respect. By default, the table is sorted such that the
methods with the highest outlier coefficient are at the top. Data in the outlier detection view is
available if CPU data has been recorded.

To avoid excessive clutter frommethods that are only called a few times and frommethods that
are extremely short running, lower thresholds for the maximum time and the invocation count
can be set in the view settings. By default, only methods with a maximum time of more than 10
ms and an invocation count greater than 10 are shown in the outlier statistics.

Configuring exceptional method recording

Once you have identified a method that suffers from exceptional call durations, you can add it
as an exceptional method in the context menu. The same context menu action is also available
in the call tree view.

191

When you register a method for exceptional method recording, a few of the slowest invocations
will be retained separately in the call tree. The other invocations will be merged into a single
method node as usual. The number of separately retained invocations can be configured in the
profiling settings. By default, it is set to 5.

When discriminating slowmethod invocations, a certain thread state has to be used for the time
measurement. This cannot be the thread status selection in the CPU views, because that is just
a display option and not a recording option. By default, the wall clock time is used, but a different
thread status can be configured in the profiling settings. The same thread state is used for the
outlier detection view.

In the session settings, you can remove exceptionalmethods or add newoneswithout the context
of the call tree or the outlier detection view. Also, the exceptional method configuration provides
the option to add exceptional method definitions for well-known systems, like the AWT and
JavaFX event dispatchmechanismswhere exceptionally long-running events are amajor problem.

192

Exceptional methods in the call tree

Exceptional method runs are displayed differently in the call tree view.

The split method nodes have modified icons and show additional text:

• [exceptional run]

Such a node contains an exceptionally slowmethod run. By definition, it will have an invocation
count of one. If many other method runs are slower later on, this node may disappear and
be added to the "merged exceptional runs" node depending on the configured maximum
number of separately recorded method runs.

• [merged exceptional runs]

Method invocations that do not qualify as exceptionally slow are merged into this node. For
any call stack, there can only be one such node per exceptional method.

• [current exceptional run]

193

If an invocation was in progress while the call tree view was transmitted to the JProfiler GUI,
it was not yet known whether the invocation was exceptionally slow or not. The "current
exceptional run" shows the separately maintained tree for the current invocation. After the
invocation completes, it will either be maintained as a separate "exceptional run" node or be
merged into the "merged exceptional runs" node.

Like for call tree splitting by probes [p. 104] and split methods [p. 182], an exceptional method
node has aMerge Splitting Level action in the context menu that lets you merge and unmerge all
invocations on the fly.

194

C.2 Complexity Analysis

The complexity analysis view allows you to investigate the algorithmic complexity of selected
methods depending on their method parameters.

To refresh the details on big O notation, an introduction to algorithmic complexity (1) and a

comparative guide to complexities for common algorithms (2) are recommended readings.

First, you have to select one or more methods that should be monitored.

For each method, you can then enter a script whose return value of type long is used as the
complexity for the current method call. For example, if one of the method parameters of type
java.util.Collection is named inputs, the script could be inputs.size().

Complexity recording is independent of CPU recording. You can start and stop complexity
recording directly in the complexity analysis view or by using a recording profile or a trigger
action [p. 26]. After recording has been stopped, a graph with the results is displayed plotting
the complexities on the x-axis against the execution times on the y-axis. To reduce memory
requirements, JProfiler can combine different complexities and execution times into common
buckets. The drop-downat the top allows you to switch between the different configuredmethods.

(1) https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
(2) https://bigocheatsheet.com/

195

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
https://bigocheatsheet.com/

The graph is a bubble chart, where the size of each data point is proportional to the number of
measurements in it. If all measurements are distinct, you will see a regular scatter chart. In the
other extreme, if all method invocations have the same complexity and execution time, you will
see a single large circle.

If there are at least 3 data points, a curve fit with common complexities is shown. JProfiler tries
curve fits from several common complexities and initially shows you the best fit. The drop-down
for the curve fits allows you to show other curve fit models as well. The R2 value embedded in
the description of the curve fit shows you how good the fit is. The models in the drop-down are
sorted in descending order with respect to R2, so the best model is always the first item.

Note that R2 can be negative, because it is just a notation and not really the square of anything.
Negative values indicate a fit that is worse than a fit with a constant line. The constant line fit
always has an R2 value of 0 and a perfect fit has a value of 1.

You can export the parameters of the currently displayed fit by choosing the "Properties" option
in the export dialog. For automated analysis in a quality assurance environment, the command
line export [p. 246] supports the properties format as well.

196

C.3 Call Tracer

Method call recording in the call tree cumulates calls with the same call stacks. Keeping precise
chronological information is usually not feasible because the memory requirements are huge
and the volume of the recorded data makes any interpretation quite difficult.

However, in limited circumstances, it makes sense to trace calls and keep the entire chronological
sequence. For example, youmaywant to analyze the precise interlacing ofmethod calls of several
cooperating threads. A debugger cannot step through such a use case. Alternatively, you would
like to analyze a series of method invocations, but be able to go back and forth and not just see
them once like in the debugger. JProfiler provides this functionality with the call tracer.

The call tracer has a separate recording action that can be activated in the call tracer view, with
a trigger [p. 26] or with the profiling API [p. 128]. To avoid problems with excessive memory
consumption, a cap is set on themaximumnumber of collected call traces. That cap is configurable
in the view settings. The rate of collected traces heavily depends on your filter settings.

Call tracing only works when the method call recording type is set to instrumentation. Sampling
does not keep track of single method calls, so it is technically not possible to collect call traces
with sampling. Calls into compact-filtered classes are recorded in the call tracer, just like in the
call tree. If you just want to focus on your own classes, you can exclude these calls in the view
settings.

The tracedmethod calls are displayed in a treewith three levels thatmake it easier to skip related
calls by collapsing them. The three groups are threads, packages and classes. Each time
the current value for any of these groups changes, a new grouping node is created.

At the lowest level there are method entry and method exit nodes. Below the table with
the call traces, the stack trace of the currently selected method trace is shown. If call traces into
other methods have been recorded from the current method or if another thread interrupts the
current method, the entry and exit nodes for the that method will not be adjacent. You can
navigate on the method level only by using the Previous Method and Next Method actions.

197

The timing that is displayed on the traces and all grouping nodes refers to the first trace by
default, but can be changed to show relative times since the previous node. If the previous node
is the parent node, that difference will be zero. Also available is the option to show relative times
with respect to the previous node of the same type.

Even with appropriate filters, a huge number of traces can be collected in a very short time. To
eliminate traces that are of no interest, the call tracer allows you to quickly trim the displayed
data. For example, certain threads might not be relevant or traces in certain packages or classes
might not be interesting. Also, recursive method invocations can occupy a lot of space and you
might want to eliminate those single methods only.

You can hide nodes by selecting them and pressing the delete key. All other instances of the
selected nodes and all associated child nodes will be hidden as well. At the top of the view, you
can see howmany call traces out of all the recorded traces are still shown. To show hidden nodes
again, you can click on the Show Hidden tool bar button.

198

C.4 JavaScript XHR Origin Tracking

With JavaScript XHR origin tracking, you can split servlet invocations for different stack traces in

the browser during XMLHttpRequest (1) or Fetch (2) requests, so you can better correlate the
activity in the profiled JVM with actions in the browser. in the following, "XHR" designates both
the XMLHttpRequest and the Fetch mechanisms.

Browser plugin

To use this feature, you have to use Google Chrome (3) as the browser and install the JProfiler

origin tracker extension (4).

The Chrome extension adds a button with a JProfiler icon to the tool bar that starts tracking.
When you start tracking, the extension will intercept all XHR calls and report them to a locally
running JProfiler instance. As long as tracking has not been started, JProfiler will show an
information page that tells you how to set up JavaScript XHR origin tracking.

When tracking is activated, the JProfiler extensionwill ask you to reload the page. This is necessary
for adding instrumentation. If you choose to not reload the page, event detectionmay not work.

The tracking status is persistent on a per-domain basis. If you restart the browser while tracking
is active and visit the same URL, tracking will automatically be enabled, without the need to
reload the page.

(1) https://xhr.spec.whatwg.org/
(2) https://fetch.spec.whatwg.org/
(3) http://www.google.com/chrome/
(4) https://chrome.google.com/webstore/detail/jprofiler-origin-tracker/mnicmpklpjkhohdbcdkflhochdfnmmbm

199

https://xhr.spec.whatwg.org/
https://fetch.spec.whatwg.org/
http://www.google.com/chrome/
https://chrome.google.com/webstore/detail/jprofiler-origin-tracker/mnicmpklpjkhohdbcdkflhochdfnmmbm
https://chrome.google.com/webstore/detail/jprofiler-origin-tracker/mnicmpklpjkhohdbcdkflhochdfnmmbm

JavaScript XHR tree

If the XHR calls are handled by a JVM that is profiled by an active profiling session in JProfiler, the
JavaScript XHR view will show a cumulated call tree of these calls. If the view remains empty, you
can switch the "Scope" at the top of the view to "All XHR calls" to check if any XHR calls have been
made.

Javascript call stack nodes include information on the source file and the line number. The
function where the XHR call is made has a special icon and adjacent hyperlink in case the XHR
call was handled by the profiled JVM. The hyperlink will take you to the Javascript splitting node
in the call tree view [p. 52] where you can see the server side call tree that was responsible for
handling requests of this type.

At the top of the tree you find browser event nodes that show event name and element name
togetherwith important attributes that help you pin down the source of the event. Not all requests
have an associated event.

The extension is aware of several popular JavaScript frameworks andwalks the ancestor hierarchy
between the target node of an event up to the node where the event listener is located, looking
for attributes that are suitable for display and splitting the call tree. Failing to find
framework-specific attributes, it stops at an id attribute. In the absence of an ID, it searches for
"control elements" like a, button or input. All failing, the element where the event listener is
registered will be shown.

In some cases, the automatic detection of interesting attributes may not be suitable and you
may prefer a different call tree splitting. For example, some frameworks assign automatic IDs,
but it would bemore readable to group all elements together with a semantic description of the
action. To achieve a different call tree splitting, add the HTML attribute

data-jprofiler="..."

to the target element or an element between the target and the location of the event listener.
The text in that attribute will be used for splitting and other attributes will be ignored.

200

Call tree splitting

In the call tree view, XHR calls will split the call tree for each separate combination of browser
event and call stack. The splitting nodes show information about the browser event. If no
event is in progress, like in a call to setTimeout(), the last few stack frames are displayed inline.

The "show more" hyperlink on these nodes opens the same detail dialog that is opened by the
View->Show Node Details action. For JavaScript splitting nodes, the detail dialog does not show
the text of the node, but the entire browser call stack. To inspect the call stack of other JavaScript
splitting nodes, leave the non-modal detail dialog open and click on those nodes. The detail
dialog will update its contents automatically.

201

D Heap Walker Features In Detail

D.1 HPROF And PHD Heap Snapshots

The HotSpot JVM and the Android Runtime both support heap snapshots in the HPROF format,
The IBM J9 JVM writes such snapshots in the PHD format. PHD files do not contain garbage
collector roots, so JProfiler simulates classes as roots. Finding class loader memory leaks may
be difficult with a PHD file.

Native heap snapshots can be savedwithout the profiling agent and incur a lower overhead than
JProfiler heap snapshots, because they are saved without the constraints of a general purpose
API. On the flip side, the native heap snapshots support less functionality than JProfiler heap
snapshots. For example, allocation recording information is not available, so you cannot see
where objects have been allocated. HPROF and PHD snapshots can be opened in JProfiler
withSession->Open Snapshot, just like you would open a JProfiler snapshot. Only the heap walker
will be available, all other sections will be grayed out.

In a live session, you can create andopen anHPROF/PHDheap snapshot by invoking Profiling->Save
HPROF/PHD Heap Snapshot. For offline profiling [p. 128], there is a "Create an HPROF heap dump"
trigger action. It is usually used with the "Out of memory exception" trigger to save an HPROF
snapshot when an OutOfMemoryError is thrown.

This corresponds to the VM parameter (1)

-XX:+HeapDumpOnOutOfMemoryError

that is supported by HotSpot JVMs.

An alternative way to extract an HPROF heap dump from a running system is via the command
line tool jmap that is part of the JRE. Its invocation syntax

jmap -dump:live,format=b,file=<filename> <PID>

(1) http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

202

http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

is difficult to remember and requires you to use the jps executable to find out the PID first.
JProfiler ships with an interactive command line executable bin/jpdump that is much more
convenient. It lets you select a process, can connect to processes running as a service onWindows,
has no problemswithmixed 32-bit/64-bit JVMs and auto-numbers HPROF snapshot files. Execute
it with the -help option to get more information.

TakingHPROF heap snapshotswithout loading the profiling agent is also supported in the JProfiler
GUI. When attaching to a process, locally or remotely, you always have the possibility to just take
an HPROF heap snapshot.

HPROF snapshots can contain thread dumps. When an HPROF snapshot was saved as a
consequence of an OutOfMemoryError, the thread dump may be able to convey what part of
the application was active at the time of the error. The thread that triggered the error is marked
with a special icon.

203

D.2 Minimizing Overhead In The Heap Walker

For small heaps, taking a heap snapshot takes a couple of seconds, but for very large heaps, this
can be a lengthy process. Insufficient free physical memory can make the calculations a lot
slower. For example, if the JVM has a 50 GB heap and you are analyzing the heap dump on your
local machine with only 5 GB of free physical memory, JProfiler cannot hold certain indices in
memory and the processing time increases disproportionately.

Because JProfiler mainly uses native memory for the heap analysis, it is not recommended to
increase the -Xmx value in the bin/jprofiler.vmoptions file unless you have experienced
an OutOfMemoryError and JProfiler has instructed you to make such a modification. Native
memory will be used automatically if it is available. After the analysis has completed and the
internal database has been built, the native memory will be released.

For a live snapshot, the analysis is calculated immediately after taking the heap dump. When
you save a snapshot, the analysis is saved to a directory with the suffix .analysis next to the
snapshot file. When you open the snapshot file, the heap walker will be available very quickly.
If you delete the .analysis directory, the calculationwill be performed againwhen the snapshot
is opened, so if you send the snapshot to somebody else, you don't have to send the analysis
directory along with it.

If you want to savememory on disk or if the generated .analysis directories are inconvenient,
you can disable their creation in the general settings.

HPROF snapshots and JProfiler snapshots that were saved with offline profiling [p. 128] do not
have an .analysis directory next to them, because the analysis is performed by the JProfiler
UI and not by the profiling agent. If you do not want to wait for the calculation when opening
such snapshots, the jpanalyze command line executable can be used to pre-analyze [p. 246]
snapshots.

It is advisable to open snapshots from writable directories. When you open a snapshot without
an analysis, and its directory is not writable, a temporary location is used for the analysis. The
calculation then has to be repeated each time the snapshot is opened.

A big part of the analysis is the calculation of retained sizes. If the processing time is too long
and you don't need the retained sizes, you can disable their calculation in the overhead options
of the heap walker options dialog. In addition to retained sizes, the "Biggest objects" view will
not be available either in that case. Not recording primitive data makes the heap snapshot

204

smaller, but you will not be able to see them in the reference views. The same options are
presented when opening snapshots if you choose Customize analysis in the file chooser dialog.

205

D.3 Filters And Live Interactions

When looking for objects of interest in the heap walker, you often arrive at an object set that has
too many instances of the same class in it. To further trim the object set according to your
particular focus, the selection criteria could then involve their properties or references. For
example, you may be interested in HTTP session objects that contain a particular attribute. In
the merged outgoing reference view of the heap walker you can perform selection steps that
involve chains of references for the entire object set.

However, the outgoing references view where you see individual objects offers much more
powerful functionality to make selection steps that constrain references and primitive fields.

When you select a top-level object, a primitive value or a reference in the outgoing references
view, the Apply Filter->By Restricting The Selected Value action becomes enabled. Depending on
the selection, the filter value dialog offers different options. Whatever options you configure,
you always implicitly add the constraint that objects in the new object set must have outgoing
reference chains like the selected one. Filters always work on the top-level objects by restricting
the current set of objects into a possibly smaller set.

Constraining primitive values works in both HPROF and JProfiler heap snapshots. For reference
types, you can ask JProfiler to filter non-null values, null values, and values of a selected class.
Filtering by the result of the toString() method is only available in live sessions, except for
java.lang.String and java.lang.Class objects where JProfiler can figure this out by itself.

206

The most powerful filter type is the code filter snippet. In the script editor, you have access to
the object or reference and canwrite an expression or script whose boolean return value decides
whether an instance should be retained in the current object set or not.

Of course this feature can only work for live sessions, because JProfiler needs access to the live
objects. Another consideration is that an objectmay have been garbage collected since the heap
snapshot was taken. In that case, such an object would not be included in the new object set
when a code snippet filter is executed.

Apart from filters, there are two other features in the outgoing references view for interacting
with individual objects: The Show toString() Values action invokes the toString()method on all
objects that are currently visible in the view and shows them directly in the reference nodes. The
nodes can become very long and the text may be cut off. Using the Show Node Details action
from the context menu helps you to see the entire text.

207

A more general method of obtaining information from an object than calling the toString()
method is to run an arbitrary script that returns a string. The Run Script action next to the Show
toString() Values action allows you to do that when a top-level object or a reference is selected.
The result of the script execution is displayed in a separate dialog.

208

D.4 Finding Memory Leaks

Distinguishing regular memory usage from a memory leak is often not quite simple. However,
both excessive memory usage and memory leaks have the same symptoms and so they can be
analyzed in the same way. The analysis proceeds in two steps: Locating suspicious objects and
finding out why those objects are still on the heap.

Finding new objects

When an application with a memory leak is running, it consumes more and more memory over
time. Detecting the growth of memory usage is best done with the VM telemetries and the
differencing functionality [p. 70] in the "All objects" and the "Recorded objects" views. With these
views, you can determine if you have a problem and how severe it is. Sometimes, the difference
column in the instance tables already gives you an idea what the problem is.

Any deeper analysis of amemory leak requires the functionality in the heapwalker. To investigate
a memory leak around a particular use case in detail, the "Mark heap" functionality [p. 80] is
best suited. It allows you to identify newobjects that have remained on the heap since a particular
previous point in time. For these objects, you have to check whether they are still legitimately
on the heap or if a faulty reference keeps them alive even though the object serves no further
purpose.

Another way to isolate a set of objects that you are interested in is through allocation recording.
When taking a heap snapshot, you have the option to show all recorded objects. However, you
may not want to limit allocation recording to just a particular use case. Also, allocation recording
has a high overhead, so the Mark Heap action will have a comparatively much smaller impact.
Finally, the heap walker lets you select old and new objects at any selection step with the Use
new and Use old hyperlinks in the header if you have marked the heap.

209

Analyzing the biggest objects

If a memory leak fills up the available heap, it will dwarf other types of memory usage in the
profiled application. In that case, you don't have to examine new objects, but simply analyze
what objects are most important.

Memory leaks can have a very slow rate andmay not become dominant for a long time. Profiling
such a memory leak until it becomes visible may not be practicable. With the built-in facility in
the JVM to automatically save anHPROF snapshot [p. 202]whenanOutOfMemoryError is thrown,
you can get a snapshot where the memory leak is more important than the regular memory
consumption. In fact, it's a good idea to always add

-XX:+HeapDumpOnOutOfMemoryError

to the VM parameters or production systems, so you have a way to analyze memory leaks that
may be hard to reproduce in development environments.

If the memory leak is dominant, the top objects in the "Biggest objects" view of the heap walker
will contain thememory that was retained bymistake. While the biggest objects themselvesmay
be legitimate objects, opening their dominator trees will lead to the leaked objects. In simple
situations, there is a single object that will contain most of the heap. For example, if a map is
used to cache objects and that cache is never cleared, then themapwill showup in the dominator
tree of the biggest object.

210

Finding strong references chains from garbage collector roots

An object can only be a problem if it is strongly referenced. "Strongly referenced", means that
there is at least one chain of references from a garbage collector root to the object. "Garbage
collector" roots (in short GC roots) are special references in the JVM that the garbage collector
knows about.

To find a reference chain from a GC root, you can use the Show Path To GC Root actions in the
"Incoming references" view or in the heap walker graph. Such reference chainsmay be very long
in practice, so they can generally be interpreted more easily in the "Incoming references" view.
The references point from the bottom towards the object at the top level. Only the reference
chains that are the result of the search are expanded, other references on the same levels are
not visible until a node is closed and opened again or the Show All Incoming References action in
the context menu is invoked.

To get an explanation for types of GC roots and other terms that are used in the reference nodes,
use the tree legend.

When you select nodes in the tree, the non-modal tree legend highlights all used icons and terms
in the selected node. Clicking on a row in the dialog will show an explanation at the bottom.

211

Important types of garbage collector roots are references from the stack, references created by
native code through JNI and resources like live threads and object monitors that are currently
being used. In addition, the JVM adds in a couple of "sticky" references to keep important systems
in place.

Classes and classloaders have a special circular reference scheme. Classes are garbage collected
together with their classloader when

• no class loaded by that classloader has any live instances

• the classloader itself is unreferenced except by its classes

• none of the java.lang.Class objects are referenced except in the context of the classloader

Inmost circumstances, classes are the last step on the path to theGC root that you are interested
in. Classes are not GC roots by themselves. However, in all situations where no custom

212

classloaders are used, it is appropriate to treat them as such. This is JProfiler's default mode
when searching for garbage collector roots, but you can change it in the path to root options
dialog.

If you have problems interpreting the shortest path to a GC root, you can search for additional
paths. Searching for all paths to GC roots is not recommended in general because it can produce
a large number of paths.

In contrast to the livememory views, the heapwalker never showsunreferencedobjects. However,
the heap walkermay not only show strongly referenced objects. By default, the heap walker also
retains objects that are only referenced by soft references, but eliminates objects that are only
referenced by weak, phantom or finalizer references. Because soft references are not garbage
collected unless the heap is exhausted, they are included because otherwise you might not be
able to explain large heap usages. In the options dialog which is shown when you take a heap
snapshot, you can adjust this behavior.

Havingweakly referenced objects in the heapwalkermay be interesting for debugging purposes.
If you want to remove weakly referenced objects later on, you can use the "Remove objects
retained by weak references" inspection.

213

When searching for paths to GC roots, the reference types that were selected to retain objects
in the heap walker options dialog are taken into account. In that way, the path to GC root search
can always explain why an object was retained in the heap walker. In the options dialog for the
path to GC root search you can widen the acceptable reference types to all weak references.

Eliminating entire object sets

Until now we have only looked at single objects. Often you will have many objects of the same
type that are part of a memory leak. In many cases, the analysis of a single object will also be
valid for the other objects in the current object set. For the more general case where the objects
of interest are referenced in different ways, the "Merged dominating references" view will help
you to find out which references are responsible for holding the current object set on the heap.

214

Each node in the dominating reference tree tells you howmany objects in the current object set
will be eligible for garbage collection if you eliminate that reference. Objects that are referenced
by multiple garbage collector roots may not have any dominating incoming reference, so the
view may only help you with a fraction of the objects, or it may even be empty. In that case, you
have to use the merged incoming reference view and eliminate garbage collector roots one by
one.

215

E JDK Flight Recorder (JFR)

E.1 Support For JDK Flight Recorder (JFR)

JDK Flight Recorder (JFR) (1) is a structured logging tool that records a broad range of system-level
events. Similar to the black box of an aircraft that continuously records flight data for use in
incident investigations, JFR continuously records a stream of events in the JVM for use in
diagnosing problems. The advantage of this approach is that it captures chronologically detailed
information about the system leading up to an incident. JFR is designed to have aminimal impact
on performance, and to be safe to run in production environments over extended periods of
time.

Starting with Java 17, JFR is also one of JProfiler's data sources. In addition to the native agent
that uses the profiling interface of the JVM, there are high-level systems in the JVM that are of
interest in a profiling context. One is the MBean system that provides data for some telemetries
in JProfiler, and the other is JFR that is used for the garbage collector probe [p. 118]. For that
purpose, you do not interact with JFR, but JProfiler handles JFR event streaming transparently.

JFR integration in JProfiler

JProfiler fully integrates JFR recording [p. 218], so you can easily capture data from running JVMs
on the local machine or on remote machines where JFR recording was not configured.

When you open a JFR snapshot in the JProfiler UI, the available views and sections are different
from a regular profiling session. The centerpiece of the UI is the event browser [p. 222]. All other
views that are available for JFR views are explained in a separate chapter [p. 229].

As you work with event types, while setting filters and viewing analyses, JProfiler will occasionally
have to rescan the JFR snapshot file. JFR snapshot files are potentially huge, and it is not viable
to hold all data in memory or to calculate all analyses upfront. Because of this, it is not
recommended to open JFR snapshots from network drives.

When opening very large JFR snapshots, you can speed up snapshot processing and reduce
memory usage by clicking on the "Customize analysis" check box in the file chooser and excluding
the event categories that are not required for your analysis. The available event categories cover
single probes and view sections. Event types for CPU views, memory views and for the telemetry
views are not optional and have to be loaded.

For example, if you are only interested in CPU data, you can exclude all probes and the event
browser. JProfiler aims to be the fastest JFR viewer and opens typical JFR snapshots quickly, but
JFR recordings are potentially unbounded and you could be confronted with a snapshot that is
tens of gigabytes in size where the opening speed may become an issue.

Stack traces in JFR snapshots

One important feature of JFR is the ability to log the entire stack trace for a certain event type in
an efficient way. For such events types, you can toggle stack trace recording in the JFR settings.
Many JVM application event types, especially the ones that are concerned with threads, have
stack trace recording enabled by default.

JFR only collects stack traces up to a fixed depth, so long stack traces are truncated. Truncated
traces are not suitable for building an understandable call tree, so these traces are shown below
a specially marked node. With the

-XX:FlightRecorderOptions=stackdepth=<nnnn>

(1) https://en.wikipedia.org/wiki/JDK_Flight_Recorder

216

https://en.wikipedia.org/wiki/JDK_Flight_Recorder

VM parameter, you can increase the size of the collected traces in JFR and get rid of truncated
traces for your application.

217

E.2 Recording JFR Snapshots With JProfiler

Due to the benefits of running JFR in production JVMs with a minimal overhead and no
requirement to enable the profiling interface, JProfiler supports JFR recording directly in the UI.
While you can start JFR programmatically or by adding the -XX:StartFlightRecording VM
parameter on the command line, JProfiler helps you to start and stop recordings for JVMs that
are already running.

When you attach to a JVM with JProfiler, you can choose to start and stop JFR recordings instead
of loading the native profiling agent. With JProfiler's extensive remote connection capabilities,
you can, for example, start JFR recordings in JVMs that run in Docker or Kubernetes containers
without the need to modify a container.

Starting and stopping JFR recordings

On the "Quick attach" tab of the start center, select a JVM and click on the Start JFR button at the
bottom of the dialog. Locally running JVMs are shown in the screenshot, but the same button is
also available when you attach to a remote JVM.

In the JFR settings wizard, you can then select one of the event settings templates that are
transmitted from thelib/jfr directory of the JRE that is used by the selected process. By default,
there are two such templates, "default" and "profile", where "profile" records more data and
adds more overhead. If you create other files in that directory, you will be able to select the
corresponding templates in the wizard.

These template files contain the available events aswell as configuration directives for important
high-level settings. Each of the high-level settings can be coupled to a number of different
events. This UI is dynamically generated based on the contents of the template file. Switching
between the different profiles will show you the different default values. There are many more
event types that are not included in this UI and which are only configurable in the next step.

If you have already started a JFR recording for a JVM with the same set of event types, JProfiler
will offer you the option to use the last settings.

218

If you select that option, the high-level recording settingswill not be available and you can proceed
to the next step to see the entire configuration and make further changes.

Another important setting on this step of the wizard is themaximum snapshot size. Due to the
nature of JFR recordings, the size of a snapshot can increase very quickly and might fill up your
entire hard disk. To avoid that, themaximum snapshot size constraint prevents excessive storage
utilization. When the maximum size is reached, older events will be discarded while new events
will continue to be recorded. This process is an automatic mechanism of JFR.

In the next step of the wizard you can see a categorized tree of all event types with further
configuration for each event on the right side.

Events may have a setting for a period, a threshold and a flag whether to record a stack trace
for each event or not. Both periods and thresholds are settings with time units and you can press
the down key to get a completion popup for the available units. Periods also support the special
values "everyChunk", "beginChunk" and "endChunk" that are also available from the completion
popup. A "chunk" refers to a part of a JFR recording which holds a contiguous set of event data
and metadata and functions as the basic unit of storage and data transport in a recording.

The more events are selected in the tree, the more data is being recorded. Some event types
generate huge amounts of data while some generate only few events.

219

Unlike the full profiling mode or the "Heap dump only" mode where you immediately see some
data in the UI, starting a JFR snapshot only modifies the background color of the JVM in the table
when it is not selected so you can see that JProfiler has started a recording. When the JVM is
selected, the text of the JFR button at the bottom now shows you that recording will be stopped.

When you stop a JFR recording that was started by JProfiler, a JFR snapshot will be transferred
and opened in JProfiler. The snapshot is temporary and will be deleted when you close the
window. To save the snapshot to a permanent location, use the "Save snapshot" action in the
toolbar.

Terminated JVMs with JFR recordings

One mentioned use of JFR is to investigate the moments before a crash. In that case, the JVM
will not be available in the JVM table anymore to stop JFR recording and open the JFR snapshot.
If a JFR recording has been started in JProfiler and the JVM terminates before you stop the
recording, a special entry prefixed with "Terminated JFR:" will be added to the JVM table. By
double-clicking on that entry or using the "JFR" button, you can open the JFR snapshot.

220

Once you open such an entry, it will be removed from the list. Just like for recordings that are
stopped manually, the opened JFR snapshot will be temporary and you have to save it if you
want to keep it for later analysis.

Showing externally started JFR recordings

In the example above, the JFR recording has been started and stopped in JProfiler. JFR recordings
that are started outside JProfiler can also be shown. Continuous JFR recordings can easily be
started with a VM parameter like

"-XX:StartFlightRecording=maxsize=500m=filename=$TEMP/myapp.jfr,name=Continuous
recording"

The indication via the special background color in the JVM table that a JFR recording is running
only refers to JFR recordings that were started in JProfiler. If you connect to a JVM where a JFR
recording has been started by other means, another dialog will be shown.

You can now choose to start a new recording in JProfiler or to dump an existing recording and
show the resulting JFR snapshot in JProfiler. Externally started JFR recordings have a separate
life cycle and will not be stopped by JProfiler.

221

E.3 The JFR Event Browser

The event browser shows all data that has been recorded in a JFR snapshot.

JFR organizes event types into hierarchical categories that make up the tree on the left side of
the event browser. You can select a single event type to show the recorded events. By default,
JProfiler shows all registered event types, even if no eventswere recorded for them. Alternatively,
you can choose to hide empty event categories in the view settings dialog.

JFR events

Events are shown as rows in the main table with the columns depending on the selection in the
tree of event types.

The events in the table are sorted chronologically by default. To avoid overloading the UI, only
the first 10000 events are shown in the table. The analyses at the bottom are always calculated
from all events. If you set a filter, it will also check all events, not just the first 10000. This means
that when setting a filter, events may show up in the table that were previously not displayed.

222

You can also select multiple event types or entire categories. In that case, the union of all
selected events is shown in the table. Because each event type has its own set of columns, only
those columns that are common to all selected event types will be included.

The number of available analyses may also be reduced because analysis views are added based
on the available columns.

Column widths are adjusted automatically based on their actual content until you resize a
column. Then, the width of columns with the same content type will be fixed to your selection
andwill not change automatically anymore until you clear the columnwidths in the view settings
dialog. Scales in columns with units like time or memory are also calculated automatically for
each cell. If you prefer to fix the scale of a column for better comparability, the view settings
dialog offers an option for each such column. In this case, the setting is persisted separately for
each selected event type.

223

There are several ways to filter events. At the top of the table, there is a filter selector that allows
you to filter in all text columns or to select a single column and configure a filter that matches
the column type.

Another way to filter is to select a row of interest and use the context menu to select a specific
filter based on the values in the selected row. The filter selector at the top will be adjusted, so
that it displays your selection. You can now choose another value and add the filter again, it will
then replace the previous filter for the same column. In general, each filter type can only be
present once and setting the same filter again will replace the previous filter.

Stack traces

In JProfiler, the stack trace of a selected event is visible in the "Selection" tab of the split pane
below the event table.

224

If you select multiple events, the selection tab changes to a view that shows you either the hot
spots or the cumulated call tree calculated from the stack traces of the selected events.

By default, event counts determine the percentages on the nodes in the call tree and hot spots
views. Some event types include other measurements that are suitable for this purpose, such
as a duration or allocated memory. If such measurements are available, you can select them as
the hot spot type from the second drop down in the selection tab.

225

The "Hot spots" and the "Call tree" views in the lower split pane contain the same views, however,
they are calculated for all events in the snapshot. Similar to the selection tab, they also have
a "hot spot type" drop down. In addition to showing all events, you can also select a filter from
these views. In the call tree view, selecting a particular call stack and clicking on the Filter selected
button will only show events with that call stack in the table above. For the hot spots view, you
can either select the hot spot at the top level or any node in the back trace, so that only events
will be shown whose stack trace ends with the inverted call stack fragment to the selected node.

In the screenshot above, you can see that a node in the backtrace was selected as the filter node.
In addition to the regular call tree icon, it also includes a check mark. You can remove filters with
the tag label at the top or via the Remove filter button. The event count in the table is equal to
the number on the selected node. The hot spot tree still shows all events without the filter that
was set in the hot spot view.

This is a general feature of filters that are set from the analysis views: The analysis view itself is
calculated from all filtered events, but excluding the filter that was set in the analysis view.
This makes the analysis view more useful because you can see what part of the total event set
you have selected there.

226

Time line view

All JFR events have associated times, so every event type or set of event types has a time line
view that shows the chronological distribution of events.

To focus on a particular time range, you can drag along the time axis. In the above example,
we now have two filters: A filter from the backtrace of a hot spot and the filter from the timeline
view. Again, the time line view continues to show the entire time rangewhile other analysis views
will now only show events from the selected time range.

The default display mode is logarithmic, so that regions of low event counts are still visible
against regions of high event counts. You can switch to linearmode by deselecting the log button
below the time line. By default, the entire time range is shown in the available width, but you
can switch to a variable time range and zoom and scroll just like in the other telemetries in
JProfiler. Also available are bookmarks where you can add a vertical marker at selected time
ranges. In that way, you can compare moments in time across different event types.

Histogram views

All measurements that can be summed for multiple events, such as durations and allocation
sizes, are treated in a special way: First, the columns of these measurements in the event table
have a total value at the bottom. Second, the call tree and hot spot analysis views offer a "hot
spot type" drop-down to calculate their trees with thesemeasurements instead of event counts.
Finally, for each such measurement, a histogram analysis is added to the lower split panel.

227

Histograms show event counts on their vertical axis while the horizontal axis shows the selected
measurement and is divided into a number of bins, so that a distribution can be calculated. Bin
sizes and event counts are available from the tooltip.

The screenshot above shows how a filter has been set in the histogram. Just like for other analysis
views, the filter only applies to other analysis views, and the entire histogram is still shown. As
for the timeline view, the histogram has a logarithmic vertical axis by default. Here, the selected
events in the screenshot would not be visible with a linear axis.

228

E.4 Views In JFR Snapshots

Apart from the JFR event browser [p. 222], JProfiler uses some of the views that are available for
full profiling sessions and fills them with JFR data. This is possible because JFR collects data for
memory allocations and method executions. The main limitation is that the recording rates are
low, so getting enough data to see problematic hot spots can take a long time.

Telemetries

With the exception of the "Recorded objects telemetry", all telemetries in full profiling sessions
are also available in JFR snapshots with some limitations in the displayed data. The memory
telemetry does not show GC-specific pools, the threads telemetry does not show thread counts
by thread state and the recorded throughput telemetry shows sizes instead of object counts
and does not show the objects that being freed.

The table below shows the event types that are used by the various telemetries and whether
they are enabled in both the "default" and the "profile" template.

Enabled in profileEvent typesTelemetry

alljdk.GCHeapSummary, jdk.MetaspaceSummaryMemory

profile onlyjdk.ObjectAllocationSample,
jdk.ObjectAllocationInNewTLAB,
jdk.ObjectAllocationOutsideTLAB

Recorded throughput

alljdk.GarbageCollectionGC activity

alljdk.ClassLoadingStatisticsClasses

alljdk.JavaThreadStatisticsThreads

alljdk.CPULoadCPU load

Memory views

In the "Memory" section, two different event types are used to populate the views with data. The
"Live objects" view shows you a statistical representation of all classes and instance counts that
remain on the heap after a full garbage collection. This data is only available if the jdk.

229

ObjectCount event is enabled, which is not the case for either of the default JFR templates,
because it comes with a significant overhead. You can also toggle this setting in the high-level
JFR configuration with the "Garbage collector" drop-down. Prior to Java 17, this drop-down is
labeled as "Memory profiling".

If the jdk.ObjectCount eventwas recordedmore than once in the snapshot, the viewwill show
you the difference between the first and the last occurrences of the jdk.ObjectCount
event. In that way, you get a sense of how the numbers changed during the recording time and
may provide some indication of a memory leak. If these times do not coincide with the start and
end points of the snapshot recording, corresponding bookmarks are added in the telemetry
views. Only classes with a total object size above a fixed threshold (usually 1% of the heap) are
included.

For any serious investigation consider using a full profiling session [p. 70] or taking an HPROF
snapshot [p. 202].

The "Recorded objects" view as well as the allocation views show you data from the jdk.
ObjectAllocationSampleevent since Java 16 and the jdk.ObjectAllocationInNewTLAB
and jdk.ObjectAllocationOutsideTLAB events in earlier Java versions. The "Allocation
Profiling" drop-down in the high-level UI also provides a way to enable these event types.

Contrary to the "Live objects" view, they only show objects that were allocated while recording
was active. Allocations are sampled by JFR but the size is reported as an estimate for the total
allocated size. Because of this discrepancy, the sizes reported by these views do not correspond
to the sample count multiplied by the average instance size. Otherwise, these views have similar
functionality to the memory views in full profiling session [p. 70].

CPU views

The "CPU views" include the call tree, the hot spots view as well as the call graph. Data in the
"Runnable" thread state is based on the jdk.ExecutionSample events that are recorded by
default in both standard JFR templates. However, the sampling rate is set to 20 ms by default,
which corresponds to the "Normal" option of the "Method sampling" setting in the JFR high-level
UI. Considering that JFR only samples a very small number of random threads, getting sufficient
data so that hot spots stand out sufficiently can take a very long time. Consider lowering the
period for the jdk.ExecutionSample if necessary. Keep inmind that this can lead to very large
snapshot sizes because JFR does not cumulate data.

230

Due to the fact, that threads are sampled sporadically, it is not possible to estimate actual
execution times like in a full profiling session. Rather than times, the event counts are shown
in the call tree and the hot spots views. This is similar to async sampling [p. 65] which has the
same drawback. The other JFR thread states are "Waiting", "Blocking" and "Socket and file I/O"
and still measure times. Because of this discrepancy, the "All thread states"mode is not available
in the thread status selector.

Another consideration is that the non-runnable thread states are calculated from events which
have configurableminimumduration thresholds that are shown in the tool tip next to the thread
status selector. The actual total time of these thread states may be significantly larger. The table
with the event types used for assembling the thread states is shown below:

Event typesThread state

jdk.ExecutionSampleRunnable

jdk.JavaMonitorWait, jdk.ThreadSleep, jdk.ThreadParkWaiting

jdk.JavaMonitorEnterBlocking

jdk.SocketRead, jdk.SocketWrite, jdk.FileRead, jdk.FileWriteSocket and file I/O

The functionality of the views is explained in the help topic on the CPU views [p. 52]. Note that
many features of full profiling sessions are not available in a JFR context.

Thread and monitor views

From the chronologicalmethod sampling data, the thread history view can be calculated, including
the tool tips that show stack traces for waiting and blocking times.

231

Thread dumps are a feature in both JFR and JProfiler and are shown in the same view. In this
case, the event browser is not a substitute because it has no way of showing the structured
content of the thread dump column of the jdk.ThreadDump event. In the thread dumps view
you can also compare different thread dumps [p. 97].

From the jdk.JavaMonitorWait, jdk.ThreadSleep and jdk.ThreadPark events, JProfiler
calculates a monitor history similar to the one of a full profiling session [p. 97], only without the
information on blocking threads. If you require that information for solving your problem, please
switch to a full profiling session. This also means that the locking graphs from the full profiling
session are not available for JFR snapshots. The monitor usage statistics that shows aggregate
information on waiting events is present and shows waiting times only.

232

Probes

Some of the JVM probes in a full profiling session have equivalent data sources in JFR snapshots.
Their main advantage compared to the event browser is that they combine multiple related
event types. The table below shows the available probes with the event types that are used as
their data sources.

Enabled inprofileEvent typesProbe

alljdk.SocketRead, jdk.SocketWriteSockets

alljdk.FileRead, jdk.FileWriteFiles

nonejdk.ClassLoad, jdk.ClassUnload, jdk.ClassDefineClasses

errors in both,
exceptions in
none

jdk.JavaErrorThrow, jdk.JavaExceptionThrowExceptions

alljdk.GarbageCollection, jdk.GCPhasePause,
jdk.YoungGarbageCollection, jdk.OldGarbageCollection,

Garbage
Collector

jdk.GCReferenceStatistics, jdk.GCPhasePauseLevel<n>,
jdk.GCHeapSummary, jdk.MetaspaceSummary,
jdk.GCHeapConfiguration, jdk.GCConfiguration,
jdk.YoungGenerationConfiguration,
jdk.GCSurvivorConfiguration, jdk.GCTLABConfiguration

Class loading has a separate check box in the high-level JFR UI that switches on all three class
loading events.

Each probe shows a number of views. In contrast to the event browser, the focus is on the
aggregated data and not on the single events. This is also how probes in JProfiler differ
conceptually from JFR data collection.

Except for the Garbage collector probe, all probes have the following views: The call tree and
hot spot views allow you to choose a single thread or a thread group as well as an aggregation
level. By default, all threads are shown and the aggregation level is set to "Methods".

233

The telemetries view displays one or more telemetries from the recorded data with an overview
page that shows all of themat once. The full telemetry can be opened by clicking on the telemetry
name. By dragging along the time axis, you can select the corresponding events in the events
view.

The events view is similar to the one in the JFR browser. However, it shows multiple event types
corresponding to the underlying JFR events and offers a type selector. Filtering and stack trace
display for single andmultiple selection are handled just as in the event browser. Also, there are
histogram views for time and memory measurements where you can select ranges by dragging
along the horizontal axis.

234

The garbage collector view is special, because full profiling sessions can show the exact same
information in profiling sessions with Java 17 or higher. When the garbage collector probe in the
JVM probe category is recorded, JFR streaming is used to obtain the necessary data. See the
chapter on garbage collector analysis [p. 118] for more information.

235

F Configuration In Detail

F.1 Trouble Shooting Connection Problems

When a profiling session cannot be established, the first thing to do is to have a look at the
terminal output of the profiled application or application server. For application servers, the
stderr stream is often written to a log file. This may be a separate log file and not the main log
file of the application server. For example, the Websphere application server writes a
native_stderr.log file where only the stderr output is included. Depending on the content
of the stderr output, the search for the problem takes different directions:

Connection problems

If stderr contains"Waiting for connection ...", the configuration of the profiled application
is ok. The problem might then be related to the following questions:

• Did you forget to start the "Attach to remote JVM" session in the JProfiler GUI on your local
machine? Unless the profiling agent is configured to start up immediately with the "nowait"
option, it will wait until the JProfiler GUI connects before letting the VM continue to start up.

• Is the host name or the IP address configured correctly in the session settings?

• Did you configure a wrong communication port? The communication port has nothing to do
with HTTP or other standard port numbers and must not be the same as any port that is
already in use. For the profiled application, the communication port is defined as an option
for theprofiling VMparameter.With the VMparameter-agentpath:<path to jprofilerti
library>=port=25000, a port of 25000 would be used.

• Is there a firewall between the local machine and the remotemachine? Theremay be firewalls
for incoming as well as for outgoing connections or even firewalls on gateway machines in
the middle.

Port binding problems

If stderr contains an error message about not being able to bind a socket, the port is already in
use. In that case, check the following questions:

• Did you start the profiled applicationmultiple times? Each profiled application needs a separate
communication port.

• Are there any zombie java processes of previous profiling runs that are blocking the port?

• Is there a different application that is using the communication port?

If there are no lines in stderr that are prefixed with JProfiler> and your application or
application server starts up normally, the -agentpath:[path to jprofilerti library]
VM parameter has not been included in the Java call. You should find out which java call in your
startup script is actually executed and add the VM parameters there.

Attach problems

When attaching to a running JVM, you sometimes may not see the JVM of interest in the list of
all JVMs. To find the cause of this problem, it is important to understand how the attach
mechanism works. When a JVM is started, it writes a PID file into the the hsperfdata_$USER
directory in the temporary directory by which is it discovered. Only the same user or an admin
user can then attach to the JVM. JProfiler can help you to connect to a JVM as an admin user.

On Windows, use the Show Services button to show all JVM service processes. JProfiler installs a
helper service that will run with the system account that can connect to services running with

236

system accounts as well as with a configured user account. The name of that service is "JProfiler
helper" and is installed when you click on that button. You have to confirm the UAC prompt to
allow the installation of the service. When JProfiler exits, the service is uninstalled again.

On Linux, you can use the user switcher in the attach dialog to attach with the root account. This
user switcher is shown when profiling a local JVM as well as when attaching to a remote Linux
or macOSmachine. For the remote attach case, you can also switch to a different non-root user.
If you have the root password, always switch to root rather than to the actual user that runs the
service.

If a JVM is not visible on Linux even though you think it should be, the problem is usually connected
with the temporary directory. One possibility is that the access rights for the /tmp/
hsperfdata_$USER directory are wrong. In that case, delete the directory and restart the JVM.
The process to be attached tomust havewrite access to /tmp, otherwise attaching is not support.

If you use systemd, the process you are interested in may have PrivateTmp=yes set in its
systemd service file. Then the pid file is written into a different location. JProfiler will handle this
if you change to the root user with the user switcher in the attach dialog or if you use the CLI
tools as root.

237

F.2 Scripts In JProfiler

JProfiler's built-in script editor allows you to enter custom logic in various places in the JProfiler
GUI, including custom probe configuration, split methods, heap walker filters and many more.

The box above the edit area shows the available parameters of the script as well as its return
type. By invoking Help->Show Javadoc Overview from the menu you can get more information on
classes from the com.jprofiler.api.* packages.

A number of packages can be used without using fully-qualified class names. Those packages
are:

• java.util.*

• java.io.*

You can put a number of import statements as the first lines in the text area in order to avoid
using fully qualified class names.

All scripts are passed an instance of com.jprofiler.api.agent.ScriptContext that allows
you to save state between successive invocations of the script.

To get the maximum editor functionality, it is recommended to configure a JDK in the general
settings. By default, the JRE that JProfiler runs with is used. In that case, code completion does
not offer parameter names and Javadoc for classes in the JRE.

238

Script types

Scripts can be expressions. An expression doesn't have a trailing semicolon and evaluates to the
required return type. For example,

object.toString().contains("test")

would work as a filter script in the outgoing reference view of the heap walker.

Alternatively, a script consists of a series of Java statements with a return statement of the
required return type as the last statement:

import java.lang.management.ManagementFactory;
return ManagementFactory.getRuntimeMXBean().getUptime();

The above example would work for a script telemetry. JProfiler automatically detects whether
you have entered an expression or a script.

If you want to reuse a script that you have entered previously, you can select it from the script
history. If you click on the Show History tool bar button, all previously used scripts are shown.
Scripts are organized by script signature, and the current script signature is selected by default.

Code completion

Pressing CTRL-Space brings up a popup with code completion proposals. Also, typing a dot (".")
shows this popup after a delay if no other character is typed. The delay is configurable in the
editor settings.While the popup is being displayed, you can continue to type or delete characters
with Backspace and the popup will be updated accordingly. "Camel-hump" completion is
supported. For example, typing NPE and hitting CTRL-Space will propose java.lang.
NullPointerException among other classes. If you accept a class that is not automatically
imported, the fully qualified name will be inserted.

239

The completion popup can suggest:

• variables and script parameters. Script parameters are displayed in bold font.

• packages, when typing an import statement

• classes

• fields, when the context is a class

• methods, when the context is a class or the parameter list of a method

Parameters with classes that are neither contained in the configured session class path nor in
the configured JDK are marked as [unresolved] and are changed to the generic java.lang.
Object type. To be able to call methods on such parameters and get code completion for them,
add the missing JAR files to the class path in the application settings.

Problem analysis

The code that you enter is analyzed on the fly and checked for errors and warning conditions.
Errors are shown as red underlines in the editor and red stripes in the right gutter. Warnings
such as an unused variable declaration are shown as a yellow backgrounds in the editor and
yellow stripes in the gutter. Hovering the mouse over an error or warning in the editor as well
as hovering the mouse over a stripe in the gutter area displays the error or warning message.

The status indicator at the top of the right gutter is green if there are no warnings or errors in
the code, yellow if there are warnings and red if errors have been found. You can configure the
threshold for problem analysis in the editor settings.

240

If the gutter icon in the top right corner of the dialog is green, your script is going to compile
unless you have disabled error analysis in the editor settings. In some situations, youmight want
to try the actual compilation. Choosing Code->Test Compile from themenu will compile the script
and display any errors in a separate dialog. Saving your script with the OK button will not test
the syntactic correctness of the script unless the script is used right away.

Key bindings

Pressing SHIFT-F1 opens the browser at the Javadoc page that describes the element at the
cursor position. Javadoc for the Java runtime library can only be displayed if a JDK with a valid
Javadoc location is configured for the code editor in the general settings.

All key bindings in the Java code editor are configurable. Choose Settings->Key Map from the
window menu to display the key map editor. Key bindings are saved in the file $HOME/.
jprofiler14/editor_keymap.xml. This file only exists if the default keymap has been copied.
Whenmigrating a JProfiler installation to a different computer, you can copy this file to preserve
your key bindings.

241

F.3 Custom Help

If you have an internal website that provides additional guidance for users, you can add an extra
help button to the toolbar and the "Help" menu. To do that, add the following properties to the
.vmoptions file:

-Dcustom.help.url=https://www.internal.website.com
-Dcustom.help.toolBarText=Internal#help
-Dcustom.help.actionName=Show internal help

All three properties have to be defined to make the action visible in the UI. The custom.help.
toolBarText property is the text that is displayed in the toolbar. It should be concise and a
second line can be added with a # separator as in the example above.

The location of the .vmoptions file is under <JProfiler installation directory>/bin/
jprofiler.vmoptions on Windows and Linux and /Applications/JProfiler.app/
Contents/vmoptions.txt on macOS. In addition, there are user-writable locations under
%USERPROFILE%\.jprofiler14\jprofiler.vmoptionsonWindows,$HOME/.jprofiler14/
jprofiler.vmoptionsonLinux and$HOME/Library/Preferences/jprofiler.vmoptions
on macOS.

242

G Command Line Reference

G.1 Command Line Executables For Profiling

JProfiler includes a number of command line tools for setting up the profiling agent and controlling
profiling actions from the command line.

Loading the profiling agent into a running JVM

With the command line utility bin/jpenable, you can load the profiling agent into any running
JVM with a version of 6 or higher. With command line arguments, you can automate the process
so that it requires no user input. The supported arguments are:

Usage: jpenable [options]

jpenable starts the profiling agent in a selected local JVM, so you can connect
to it from a different computer. If the JProfiler GUI is running locally, you
can attach directly from the JProfiler GUI instead of running this executable.

* if no argument is given, jpenable attempts to discover local JVMs that
 are not being profiled yet and asks for all the required input on the command
 line.
* with the following arguments, you can partially or completely supply the
 entire user input on the command line:

 -d --pid=<PID> The PID of the JVM that should be profiled
 -n --noinput Do not ask for user input under any circumstances
 -h --help Show this help
 --options=<OPT> Debugging options passed to the agent

 GUI mode: (default)
 -g --gui The JProfiler GUI will be used to attach to the JVM
 -p --port=<nnnnn> The port on which the profiling agent should listen for
 a connection from the JProfiler GUI

 Offline mode:
 -o --offline The JVM will be profiled in offline mode
 -c --config=<PATH> Path to the config file with the profiling settings
 -i --id=<ID> ID of the session in the config file. Not required, if
 the config file holds only a single session.

Note that the JVM has to be running as the same user as jpenable, otherwise
JProfiler cannot connect to it.
An exception are Windows services running under the local system account if you
list them interactively with jpenable.

Saving HPROF snapshots

If you just need a heap snapshot, consider using the bin/jpdump command line tool that saves
an HPROF snapshot [p. 202] without loading the profiling agent into the VM:

243

Usage: jpdump [options]

jpdump dumps the heap from a locally running JVM to a file.
Hotspot VMs produce HPROF files, OpenJ9 VMs PHD files.
HPROF and PHD files can then be opened in the JProfiler GUI.

* if no argument is given, jpdump lists all locally running JVMs.
* with the following arguments, you can partially or completely supply the
 entire user input on the command line:

 -p --pid=<PID> The PID of the JVM whose heap should be dumped
 With a specified PID, no further questions will be asked.
 -a --all Save all objects. If not specified, only live objects are
 dumped
 -f --file=<PATH> Path to the dump file. If not specified, the dump file
 <VM name>.hprof is written in the current directory.
 If the file already exists, a number is appended.
 -h --help Show this help

Note that the JVM has to be running as the same user as jpdump, otherwise
JProfiler cannot connect to it.
An exception are Windows services running under the local system account if you
list them interactively with jpdump.

This has a lower overhead than loading the profiling agent and saving a JProfiler heap snapshot.
Also, because the profiling agent can never be unloaded, thismethod is suitable for JVMs running
in production.

Controlling the profiling agent

When you start the bin/jpcontroller executable without arguments, it attempts to connect
to a profiled JVM on the local machine. If multiple profiled JVMs were discovered, you can select
one from a list. Because the discovery mechanism uses the attach API of the Oracle JVM, this
only works for Oracle JVMs starting with Java 6.

jpcontroller can only connect to JVMs where the profiling settings have been set, so it does
not work if the JVM was started with the "nowait" option for the -agentpath VM parameter.
That option is set when choosing the Startup immediately, connect later with the JProfiler GUI radio
button on the "Startup mode" screen of an integration wizard and no JProfiler GUI has yet
connected to the agent. Using jpenable without the --offline argument also requires a
connection from the JProfiler GUI before jpcontroller can connect to the profiled process.

If you want to connect to a process on a remote computer, or if the JVM is not a HotSpot JVM
with a versionof 6 or higher, youhave to pass the VMparameter-Djprofiler.jmxServerPort=
[port] to the profiled JVM. AnMBean server will be published on that port, and you can specify
the chosen port as an argument to jpcontroller. With the additional VM parameter
-Djprofiler.jmxPasswordFile=[file] you can specify a properties file with key-value pairs
of the form user=password to set up authentication. Note that these VM parameters are
overridden by the com.sun.management.jmxremote.port VM parameter.

With the explicit setup of the JMX server, you can use the command line controller to connect
to a remote server by invoking jpcontroller host:port. If the remote computer is only
reachable via an IP address, you have to add -Djava.rmi.server.hostname=[IP address]
as a VM parameter to the remote VM.

By default, jpcontroller is an interactive command line utility, but you can also automate
profiling sessions with it without the need for manual input. An automated invocation would
pass [pid | host:port] to select a profiled JVMaswell as the --non-interactive argument.
In addition, a list of commands is read, either from stdin, or from a command file that is specified

244

with the --command-file argument. Each command starts on a new line, lines that are blank
or start with a "#" comment character are ignored.

Commands for this non-interactive mode are the same as the method names in the JProfiler

MBean (1). They require the same number of parameters, separated by spaces. String must be
surroundedby double quotes if they contain spaces. In addition, a sleep <seconds> command
is provided that pauses for a number of seconds. This allows you to start recording, wait for
some time and then save a snapshot to disk.

The supported arguments of jpcontroller are shown below:

Usage: jpcontroller [options] [host:port | pid]

* if no argument is given, jpcontroller attempts to discover local JVMs that
 are being profiled
* if a single number is specified, jpcontroller attempts to connect to the JVM
 with process ID [pid]. If that JVM is not profiled, jpcontroller cannot
 connect. In that case, use the jpenable utility first.
* otherwise, jpcontroller connects to "host:port", where port is the value
 that has been specified in the VM parameter -Djprofiler.jmxServerPort=[port]
 for the profiled JVM.

The following options are available:
 -n --non-interactive Run an automated session where a list of commands
 is read from stdin.
 -f --command-file=<PATH> Read commands from a file instead of stdin. Only
 applicable together with --non-interactive.

Syntax for non-interactive commands:
 See the javadoc for RemoteControllerMBean (https://bit.ly/2DimDN5) for a
 list of operations. Parameters are separated by spaces and must be quoted if
 they contain spaces. For example:

 addBookmark "Hello world"
 startCPURecording true
 startProbeRecording builtin.JdbcProbe true true
 sleep 10
 stopCPURecording
 stopProbeRecording builtin.JdbcProbe
 saveSnapshot /path/to/snapshot.jps

 The sleep <seconds> command pauses for the specified number of seconds.
 Empty lines and lines starting with # are ignored.

(1) https://www.ej-technologies.com/resources/jprofiler/help/api/javadoc/com/jprofiler/api/agent/mbean/
RemoteControllerMBean.html

245

https://www.ej-technologies.com/resources/jprofiler/help/api/javadoc/com/jprofiler/api/agent/mbean/RemoteControllerMBean.html
https://www.ej-technologies.com/resources/jprofiler/help/api/javadoc/com/jprofiler/api/agent/mbean/RemoteControllerMBean.html

G.2 Command Line Executables For Working With Snapshots

Whenusing offline profiling [p. 128] to save snapshots programmatically, it may also be necessary
to programmatically extract data or reports from those snapshots. JProfiler offers two separate
command line executables, one for exporting views from a snapshot and one for comparing
snapshots.

Exporting views from a snapshot

The executable bin/jpexport exports view data to various formats. If you execute it with the
-help option, youwill get information on the available view names and view options. For reasons
of conciseness, duplicate help texts in the output below have been omitted.

Usage: jpexport "snapshot file" [global options]
 "view name" [options] "output file"
 "view name" [options] "output file" ...

where "snapshot file" is a snapshot file with one of the extensions:
 .jps, .hprof, .hpz, .phd, .jfr
 "view name" is one of the view names listed below
 [options] is a list of options in the format -option=value
 "output file" is the output file for the export

Global options:
 -obfuscator=none|proguard|yguard
 Deobfuscate for the selected obfuscator. Defaults to "none", for other
 values the mappingFile option has to be specified.
 -mappingfile=<file>
 The mapping file for the selected obfuscator.
 -outputdir=<output directory>
 Base directory to be used when the output file for a view is a
 relative file.
 -ignoreerrors=true|false
 Ignore errors that occur when options for a view cannot be set and
 continue with the next view. The default value is "false", i.e., the
 export is terminated, when the first error occurs.
 -csvseparator=<separator character>
 The field separator character for the CSV exports. Defaults to ','.
 -bitmap=false|true
 Where appropriate, export a bitmap image instead of SVG for the main
 content. The default value is false.

Available view names and options:
* TelemetryHeap, TelemetryObjects, TelemetryThroughput, TelemetryGC,
 TelemetryClasses, TelemetryThreads, TelemetryCPU
 Options:
 -format=html|csv
 Determines the output format of the exported file. If not present, the
 export format will be determined from the extension of the output
 file.
 -minwidth=<number of pixels>
 Minimum width of the graph in pixels. The default value is 800.
 -minheight=<number of pixels>
 Minimum height of the graph in pixels. The default value is 600.

* Bookmarks, ThreadMonitor, CurrentMonitorUsage, MonitorUsageHistory
 Options:
 -format=html|csv

* AllObjects
 Options:
 -format=html|csv

246

 -viewfilters=<comma-separated list>
 Sets view filters for the export. If you set view filters, only the
 specified packages and their sub-packages will be displayed by the
 exported view.
 -viewfiltermode=startswith|endswith|contains|equals
 Sets the view filter mode. The default value is "contains".
 -viewfilteroptions=casesensitive
 Boolean options for the view filter. By default, no options are set.
 -aggregation=class|package|component
 Selects the aggregation level for the export. The default value is
 classes.
 -expandpackages=true|false
 Expand package nodes in the package aggregation level to show
 contained classes. The default value is "false". Has no effect for
 other aggregation levels and with csv output format.

* RecordedObjects
 like AllObjects, but with additional options:
 -liveness=live|gc|all
 Selects the liveness mode for the export, i.e., whether to display
 live objects, garbage collected objects or both. The default value is
 live objects.

* AllocationTree
 Options:
 -format=html|xml
 -viewfilters=<comma-separated list>
 -viewfiltermode=startswith|endswith|contains|equals
 -viewfilteroptions=casesensitive
 -aggregation=method|class|package|component
 Selects the aggregation level for the export. The default value is
 methods.
 -class=<fully qualified class name>
 Specifies the class for which the allocation data should be
 calculated. If empty, allocations of all classes will be shown. Cannot
 be used together with the package option.
 -package=<fully qualified package name>
 Specifies the package for which the allocation data should be
 calculated. If empty, allocations of all packages will be shown.
 Cannot be used together with the class option.
 -liveness=live|gc|all

* AllocationHotSpots
 Options:
 -format=html|csv|xml
 -viewfilters=<comma-separated list>
 -viewfiltermode=startswith|endswith|contains|equals
 -viewfilteroptions=casesensitive
 -aggregation=method|class|package|component
 -class=<fully qualified class name>
 -package=<fully qualified package name>
 -liveness=live|gc|all
 -unprofiledclasses=separately|addtocalling
 Selects if unprofiled classes should be shown separately or be added
 to the calling class. The default value is to show unprofiled classes
 separately.
 -valuesummation=self|total
 Determines how the times for hot spots are calculated. Defaults to
 "self".
 -expandbacktraces=true|false
 Expand backtraces in HTML or XML format. The default value is "false".

* ClassTracker
 like TelemetryHeap, but with additional options:

247

 -class
 The tracked class. If missing, the first tracked class is exported.

* CallTree
 Options:
 -format=html|xml
 -viewfilters=<comma-separated list>
 -viewfiltermode=startswith|endswith|contains|equals
 -viewfilteroptions=casesensitive
 -aggregation=method|class|package|component
 -threadgroup=<name of thread group>
 Selects the thread group for the export. If you specify "thread" as
 well, the thread will only be searched in this thread group, otherwise
 the entire thread group will be shown.
 -thread=<name of thread>
 Selects the thread for the export. By default, the call tree is merged
 for all threads.
 -threadstatus=all|running|waiting|blocking|netio
 Selects the thread status for the export. The default value is
 "running".

* HotSpots
 Options:
 -format=html|csv|xml
 -viewfilters=<comma-separated list>
 -viewfiltermode=startswith|endswith|contains|equals
 -viewfilteroptions=casesensitive
 -aggregation=method|class|package|component
 -threadgroup=<name of thread group>
 -thread=<name of thread>
 -threadstatus=all|running|waiting|blocking|netio
 -expandbacktraces=true|false
 -unprofiledclasses=separately|addtocalling
 -valuesummation=self|total

* OutlierDetection
 Options:
 -format=html|csv
 -threadstatus=all|running|waiting|blocking|netio
 -viewfilters=<comma-separated list>
 -viewfiltermode=startswith|endswith|contains|equals
 -viewfilteroptions=casesensitive

* Complexity
 Options:
 -format=html|csv|properties
 -fit=best|constant|linear|quadratic|cubic|exponential|logarithmic|n_log_n
 The fit that should be exported. The default value is "best". No curve
 fitting data is exported to CSV.
 -method=<method name>
 The method name for which the complexity graph should be exported. If
 not given, the first method will be exported. Otherwise, the first
 method name that starts with the given text will be exported.
 -width=<number of pixels>
 -height=<number of pixels>

* ThreadHistory
 like TelemetryHeap, but with changed options:
 -format=html

* MonitorUsageStatistics
 Options:
 -format=html|csv
 -type=monitors|threads|classes

248

 Selects the entity for which the monitor statistics should be
 calculated. The default value is "monitors".

* ProbeTimeLine
 like ThreadHistory, but with additional options:
 -probeid=<id>
 The internal ID of the probe that should be exported. Run "jpexport
 --listProbes" to list all available built-in probes and for an
 explanation of custom probe names.

* ProbeControlObjects
 Options:
 -probeid=<id>
 -format=html|csv

* ProbeCallTree
 Options:
 -probeid=<id>
 -format=html|xml
 -viewfilters=<comma-separated list>
 -viewfiltermode=startswith|endswith|contains|equals|wildcard|regex
 -viewfilteroptions=exclude,casesensitive
 -aggregation=method|class|package|component
 -threadgroup=<name of thread group>
 -thread=<name of thread>
 -threadstatus=all|running|waiting|blocking|netio
 Selects the thread status for the export. The default value is "all".

* ProbeHotSpots
 like ProbeCallTree, but with additional or changed options:
 -format=html|csv|xml
 -expandbacktraces=true|false

* ProbeTelemetry
 like TelemetryHeap, but with additional options:
 -probeid=<id>
 -telemetrygroup
 Sets the one-based index of the telemetry group that should be
 exported. This refers to the entries that you see in the drop-down
 list above the probe telemetry view. The default value is "1".

* ProbeEvents
 Options:
 -probeid=<id>
 -format=html|csv|xml

* ProbeTracker
 like TelemetryHeap, but with additional options:
 -probeid=<id>
 -index=<number>
 Sets the zero-based index of the drop-down list that contains the
 tracked elements. The default value is 0.

Some examples for using the export executable are:

jpexport test.jps TelemetryHeap heap.html

jpexport test.jps RecordedObjects -aggregation=package -expandpackages=true objects.html

jpexport test.jps -ignoreerrors=true -outputdir=/tmp/export
 RecordedObjects objects.csv
 AllocationTree -class=java.lang.String allocations.xml

249

Comparing snapshots

The executable bin/jpcompare compares different snapshots [p. 133] and exports them to
HTML or a machine-readable format. Its -help output is reproduced below, again without any
duplicate explanations.

Usage: jpcompare "snapshot file"[,"snapshot file",...] [global options]
 "comparison name" [options] "output file"
 "comparison name" [options] "output file" ...

where "snapshot file" is a snapshot file with one of the extensions:
 .jps, .hprof, .hpz, .phd, .jfr
 "comparison name" is one of the comparison names listed below
 [options] is a list of options in the format -option=value
 "output file" is the output file for the export

Global options:
 -outputdir=<output directory>
 Base directory to be used when the output file for a comparison is a
 relative file.
 -ignoreerrors=true|false
 Ignore errors that occur when options for a comparison cannot be set
 and continue with the next comparison. The default value is "false",
 i.e., the export is terminated, when the first error occurs.
 -csvseparator=<separator character>
 The field separator character for the CSV exports. Defaults to ','.
 -bitmap=false|true
 Where appropriate, export a bitmap image instead of SVG for the main
 content. The default value is false.
 -sortbytime=false|true
 Sort the specified snapshot files by modification time. The default
 value is false.
 -listfile=<filename>
 Read a file that contains the paths of the snapshot files, one
 snapshot file per line.

Available comparison names and options:
* Objects
 Options:
 -format=html|csv
 Determines the output format of the exported file. If not present, the
 export format will be determined from the extension of the output
 file.
 -viewfilters=<comma-separated list>
 Sets view filters for the export. If you set view filters, only the
 specified packages and their sub-packages will be displayed by the
 exported view.
 -viewfiltermode=startswith|endswith|contains|equals
 Sets the view filter mode. The default value is "contains".
 -viewfilteroptions=casesensitive
 Boolean options for the view filter. By default, no options are set.
 -aggregation=class|package|component
 Selects the aggregation level for the export. The default value is
 classes.
 -liveness=live|gc|all
 Selects the liveness mode for the export, i.e., whether to display
 live objects, garbage collected objects or both. The default value is
 live objects.
 -objects=all|recorded|heapwalker
 Compare all objects (JVMTI only) or recorded objects, or objects in
 the heap walker. The default is all objects for .jps files and
 heapwalker for HPROF/PHD files.

250

* AllocationHotSpots
 Options:
 -format=html|csv
 -viewfilters=<comma-separated list>
 -viewfiltermode=startswith|endswith|contains|equals
 -viewfilteroptions=casesensitive
 -aggregation=method|class|package|component
 Selects the aggregation level for the export. The default value is
 methods.
 -liveness=live|gc|all
 -unprofiledclasses=separately|addtocalling
 Selects if unprofiled classes should be shown separately or be added
 to the calling class. The default value is to show unprofiled classes
 separately.
 -valuesummation=self|total
 Determines how the times for hot spots are calculated. Defaults to
 "self".
 -classselection
 Calculate the comparison for a specific class or package. Specify a
 package with a wildcard, like 'java.awt.*'.

* AllocationTree
 Options:
 -format=html|xml
 -viewfilters=<comma-separated list>
 -viewfiltermode=startswith|endswith|contains|equals
 -viewfilteroptions=casesensitive
 -aggregation=method|class|package|component
 -liveness=live|gc|all
 -classselection

* HotSpots
 Options:
 -format=html|csv
 -viewfilters=<comma-separated list>
 -viewfiltermode=startswith|endswith|contains|equals
 -viewfilteroptions=casesensitive
 -firstthreadselection
 Calculate the comparison for a specific thread or thread group.
 Specify thread groups like 'group.*' and threads in specific thread
 groups like 'group.thread'. Escape dots in thread names with
 backslashes.
 -secondthreadselection
 Calculate the comparison for a specific thread or thread group. Only
 available if 'firstthreadselection' is set. If empty, the same value
 as for 'firstthreadselection' will be used. Specify thread groups like
 'group.*' and threads in specific thread groups like 'group.thread'.
 Escape dots in thread names with backslashes.
 -threadstatus=all|running|waiting|blocking|netio
 Selects the thread status for the export. The default value is
 "running".
 -aggregation=method|class|package|component
 -differencecalculation=total|average
 Selects the difference calculation method for call times. The default
 value is total times.
 -unprofiledclasses=separately|addtocalling
 -valuesummation=self|total

* CallTree
 Options:
 -format=html|xml
 -viewfilters=<comma-separated list>
 -viewfiltermode=startswith|endswith|contains|equals
 -viewfilteroptions=casesensitive

251

 -firstthreadselection
 -secondthreadselection
 -threadstatus=all|running|waiting|blocking|netio
 -aggregation=method|class|package|component
 -differencecalculation=total|average

* TelemetryHeap
 Options:
 -format=html|csv
 -minwidth=<number of pixels>
 Minimum width of the graph in pixels. The default value is 800.
 -minheight=<number of pixels>
 Minimum height of the graph in pixels. The default value is 600.
 -valuetype=current|maximum|bookmark
 Type of the value that is calculated for each snapshot. Default is the
 current value.
 -bookmarkname
 If valuetype is set to 'bookmark', the name of the bookmark for which
 the value should be calculated.
 -measurements=maximum,free,used
 Measurements that are shown in the comparison graph. Concatenate
 multiple values with commas. The default value is 'used'.
 -memorytype=heap|nonheap
 Type of the memory that should be analyzed. Default is 'heap'.
 -memorypool
 If a special memory pool should be analyzed, its name can be specified
 with this parameter. The default is empty, i.e. no special memory
 pool.

* TelemetryObjects
 Options:
 -format=html|csv
 -minwidth=<number of pixels>
 -minheight=<number of pixels>
 -valuetype=current|maximum|bookmark
 -bookmarkname
 -measurements=total,nonarrays,arrays
 Measurements that are shown in the comparison graph. Concatenate
 multiple values with commas. The default value is 'total'.

* TelemetryClasses
 like TelemetryObjects, but with changed options:
 -measurements=total,filtered,unfiltered

* TelemetryThreads
 like TelemetryObjects, but with changed options:
 -measurements=total,runnable,blocked,netio,waiting

* ProbeHotSpots
 Options:
 -format=html|csv
 -viewfilters=<comma-separated list>
 -viewfiltermode=startswith|endswith|contains|equals|wildcard|regex
 -viewfilteroptions=exclude,casesensitive
 -firstthreadselection
 -secondthreadselection
 -threadstatus=all|running|waiting|blocking|netio
 -aggregation=method|class|package|component
 -differencecalculation=total|average
 -probeid=<id>
 The internal ID of the probe that should be exported. Run "jpexport
 --listProbes" to list all available built-in probes and for an
 explanation of custom probe names.

252

* ProbeCallTree
 like ProbeHotSpots, but with changed options:
 -format=html|xml

* ProbeTelemetry
 like TelemetryObjects, but with additional or changed options:
 -measurements
 The one-based indices of the measurements in the telemetry group that
 are shown in the comparison graph. Concatenate multiple values with
 commas, like "1,2". The default value is to show all measurements.
 -probeid=<id>
 -telemetrygroup
 Sets the one-based index of the telemetry group that should be
 exported. This refers to the entries that you see in the drop-down
 list above the probe telemetry view. The default value is "1".

Automatic output formats

Most views and comparisons support multiple output formats. By default, the output format is
deduced from the extension of the output file:

• .html

The view or comparison is exported as an HTML file. A directory named jprofiler_images
will be created that contains images used in the HTML page.

• .csv

The data is exported as CSV data where the first line contains the column names.

When using Microsoft Excel, CSV is not a stable format. Microsoft Excel on Windows takes the
separator character from the regional settings. JProfiler uses a semicolon as the separator in
locales that use a comma as a decimal separator and a comma in locales that use a dot as a
decimal separator. If you need to override the CSV separator character you can do so by setting
the global csvseparator option.

• .xml

The data is exported as XML. The data format is self-descriptive.

If you would like to use different extensions, you can use the format option to override the
choice of the output format.

Analyzing snapshots

If the generated snapshots haveheapdumps in them, you canuse thebin/jpanalyze executable
to prepare the heap dump analysis in advance [p. 80]. Opening the snapshot in the JProfiler GUI
will then be very fast. The usage information of the tool is shown below:

Usage: jpanalyze [options] "snapshot file" ["snapshot file" ...]

where "snapshot file" is a snapshot file with one of the extensions:
 .jps, .hprof, .hpz, .phd, .jfr
 [options] is a list of options in the format -option=value

Options:
 -obfuscator=none|proguard|yguard
 Deobfuscate for the selected obfuscator. Defaults to "none", for other
 values the mappingFile option has to be specified.
 -mappingfile=<file>

253

 The mapping file for the selected obfuscator.
 -removeunreferenced=true|false
 If unreferenced or weakly referenced objects should be removed.
 -retained=true|false
 Calculate retained sizes (biggest objects). removeunreferenced will be
 set to true.
 -retainsoft=true|false
 If unreferenced objects are removed, specifies if soft references
 should be retained.
 -retainweak=true|false
 If unreferenced objects are removed, specifies if weak references
 should be retained.
 -retainphantom=true|false
 If unreferenced objects are removed, specifies if phantom references
 should be retained.
 -retainfinalizer=true|false
 If unreferenced objects are removed, specifies if finalizer references
 should be retained.

TheremoveUnreferenced, theretained andall theretain* command lineoptions correspond
to the options in the heap walker options dialog.

254

G.3 Gradle Tasks

JProfiler supports profiling from Gradle with special tasks. In addition. JProfiler offers a number
of command line executables for workingwith snapshots [p. 246] that have correspondingGradle
tasks.

Using Gradle tasks

Tomake the JProfiler Gradle tasks available in a Gradle build file, you can use the plugins block

plugins {
 id 'com.jprofiler' version 'X.Y.Z'
}

If you do not want to use the Gradle plugin repository for this purpose, the Gradle plugin is
distributed in the file bin/gradle.jar.

Next, you have to tell the JProfiler Gradle plugin where JProfiler is installed.

jprofiler {
 installDir = file('/path/to/jprofiler/home')
}

Profiling from Gradle

With tasks of type com.jprofiler.gradle.JavaProfile you can profile any Java process.
This class extendsGradle's built-in JavaExec, so you can use the same arguments for configuring
the process. For profiling tests, use tasks of type com.jprofiler.gradle.TestProfile that
extend the Gradle Test task.

Without any further configuration, both tasks start an interactive profiling session where the
profiling agent waits on the default port 8849 for a connection from the JProfiler GUI. For offline
profiling, you have to add a couple of attributes that are shown in the table below.

RequiredDescriptionAttribute

No,offlineand
nowait cannot
both be true.

Whether the profiling run should be in offline mode.offline

Whether profiling should start immediately or whether
the profiled JVM should wait for a connection from the
JProfiler GUI.

nowait

Required ifDefines the session ID fromwhich profiling settings should
be taken. Has no effect if neither nowait nor offline are

sessionId

• offline is setset because in that case the profiling session is selected
in the GUI. • nowait is set

for a 1.5 JVM

NoDefines the config file from which the profiling settings
should be read.

configFile

NoDefines the port number on which the profiling agent
should listen for a connection from the JProfiler GUI. This

port

must be the same as the port configured in the remote

255

RequiredDescriptionAttribute

session configuration. If not set or zero, the default port
(8849) will be used. Has no effect if offline is set because
in that case there is no connection from the GUI.

NoIf you want to pass any additional library parameters for
tuning or debugging purposes, you can do that with this
attribute.

debugOptions

An example for profiling a Java class with a main method that is compiled by the containing
project is given below:

task run(type: com.jprofiler.gradle.JavaProfile) {
 mainClass = 'com.mycorp.MyMainClass'
 classpath sourceSets.main.runtimeClasspath
 offline = true
 sessionId = 80
 configFile = file('path/to/jprofiler_config.xml')
}

You can see a runnable example of this task in the api/samples/offline sample project.
Unlike the standard JavaExec task, the JavaProfile task can also be started in the background
by calling createProcess() on it. See the api/samples/mbean sample project for a
demonstration of this feature.

If you need the VM parameter that is required for profiling, the com.jprofiler.gradle.
SetAgentpathProperty task will assign it to a property whose name is configured with the
propertyName attribute. Applying the JProfiler plugin automatically adds a task of this type
named setAgentPathProperty to your project. For getting the VM parameter that would be
used in the previous example, you can simply add

setAgentPathProperty {
 propertyName = 'profilingVmParameter'
 offline = true
 sessionId = 80
 configFile = file('path/to/jprofiler_config.xml')
}

to your project and add a dependency to setAgentPathProperty to some other task. Then
you can use the project property profilingVmParameter in the execution phase of that task.
When assigning the property to other task properties, surround its usage with a doFirst {..
.} code block in order to make sure that you are in the Gradle execution phase and not in the
configuration phase.

Exporting data from snapshots

The com.jprofiler.gradle.Export task can be used to export views from a saved snapshot
and replicates the arguments of the bin/jpexport command line tool [p. 246]. It supports the
following attributes:

256

RequiredDescriptionAttribute

YesThe path to the snapshot file. This must be a file with a .jps
extension.

snapshotFile

NoIgnore errors that occur when options for a view cannot be
set and continue with the next view. The default value is

ignoreErrors

false, meaning that the export is terminatedwhen the first
error occurs.

NoThe field separator character for the CSV exports. Defaults
to ",".

csvSeparator

NoDeobfuscate class and method names for the selected
obfuscator. Defaults to "none", for other values the

obfuscator

mappingFile option has to be specified. One of none,
proguard or yguard.

Only if
obfuscator is

specified

The mapping file for the selected obfuscator. May only be
set if the obfuscator attribute is specified.

mappingFile

On the export task, you call the views method and pass a closure to it in which you call
view(name, file[, options]) one ormultiple times. Each call to view produces one output
file. The name argument is the view name. For a list of available view names, please see the help
page on the jpexport command line executable [p. 246]. The argument file is the output file,
either an absolute file or a file relative to the project. Finally, the optional options argument is
a map with the export options for the selected view.

An example for using the export task is:

task export(type: com.jprofiler.gradle.Export) {
 snapshotFile = file('snapshot.jps')
 views {
 view('CallTree', 'callTree.html')
 view('HotSpots', 'hotSpots.html',
 [threadStatus: 'all', expandBacktraces: 'true'])
 }
}

Comparing snapshots

Like the bin/jpcompare command line tool [p. 246], the com.jprofiler.gradle.Compare
task can compare two or more snapshots. It attributes are:

RequiredDescriptionAttribute

YesThe snapshot files that should be compared. You can pass any
Iterable containing objects that gradle resolves to file collections.

snapshotFiles

NoIf set to true all supplied snapshots files are sorted by their file
modification time, otherwise they are compared in the order they
were specified in the snapshotFiles attribute.

sortByTime

257

RequiredDescriptionAttribute

NoIgnore errors that occur when options for a comparison cannot
be set and continue with the next comparison. The default value

ignoreErrors

is false, meaning the export is terminated when the first error
occurs.

Just like exported views are defined for the Export task, the Compare task has a comparisons
methodwhere nested calls to comparison(name, file[, options])define the comparisons
that should be performed. The list of available comparison names is available on the help page
of the jpcompare command line executable [p. 246].

An example for using the compare task is:

task compare(type: com.jprofiler.gradle.Compare) {
 snapshotFiles = files('snapshot1.jps', 'snapshot2.jps')
 comparisons {
 comparison('CallTree', 'callTree.html')
 comparison('HotSpots', 'hotSpots.csv',
 [valueSummation: 'total', format: 'csv'])
 }
}

or, if you want to create a telemetry comparison for multiple snapshots:

task compare(type: com.jprofiler.gradle.Compare) {
 snapshotFiles = fileTree(dir: 'snapshots', include: '*.jps')
 sortByTime = true
 comparisons {
 comparison('TelemetryHeap', 'heap.html', [valueType: 'maximum'])
 comparison('ProbeTelemetry', 'jdbc.html', [probeId: 'JdbcProbe'])
 }
}

Analyzing heap snapshots

The gradle task com.jprofiler.gradle.Analyze has the same functionality as the bin/
jpanalyze command line tool [p. 246].

The task has asnapshotFiles attribute like theCompare task to specify the processed snapshots
and obfuscator and mappingfile attributes like the Export task for deobfuscation. The
attributes removeUnreferenced, retainSoft, retainWeak, retainPhantom,
retainFinalizer and retained correspond the arguments of the command line tool.

An example for using the Analyze task is given below:

task analyze(type: com.jprofiler.gradle.Analyze) {
 snapshotFiles = fileTree(dir: 'snapshots', include: '*.jps')
 retainWeak = true
 obfuscator = 'proguard'
 mappingFile = file('obfuscation.txt')
}

258

G.4 Ant Tasks

The Ant (1) tasks provided by JProfiler are very similar to the Gradle tasks. This chapter highlights
the differences to the Gradle tasks and shows examples for each Ant task.

All Ant tasks are contained in the archive bin/ant.jar. In order to make a task available to Ant,
you must first insert a taskdef element that tells Ant where to find the task definition. All
examples below include that taskdef. It must occur only once per build file and can appear
anywhere on the level below the project element.

It is not possible to copy the ant.jar archive to thelib folder of your Ant distribution, you have
to reference a full installation of JProfiler in the task definition.

Profiling from Ant

The com.jprofiler.ant.ProfileTask is derived from the built-in Java task and supports
all its attributes and nested elements. The additional attributes are the same as for the
ProfileJavaGradle task [p. 255]. Ant attributes are case-insensitive and usually written in lower
case.

<taskdef name="profile"
 classname="com.jprofiler.ant.ProfileTask"
 classpath="<path to JProfiler installation>/bin/ant.jar"/>

<target name="profile">
 <profile classname="MyMainClass" offline="true" sessionid="80">
 <classpath>
 <fileset dir="lib" includes="*.jar" />
 </classpath>
 </profile>
</target>

Exporting data from snapshots

With the com.jprofiler.ant.ExportTask you can export view from snapshots, just like with
the Export Gradle task [p. 255]. Views are specified differently than in the Gradle task: they are
nested directly below the task element and options are specified with nested option elements.

<taskdef name="export"
 classname="com.jprofiler.ant.ExportTask"
 classpath="<path to JProfiler installation>/bin/ant.jar"/>

<target name="export">
 <export snapshotfile="snapshots/test.jps">
 <view name="CallTree" file="calltree.html"/>
 <view name="HotSpots" file="hotspots.html">
 <option name="expandbacktraces" value="true"/>
 <option name="aggregation" value="class"/>
 </view>
 </export>
</target>

Comparing snapshots

Thecom.jprofiler.ant.CompareTask corresponds to theCompareGradle task andperforms
comparisons between two oremore snapshots. Like for the com.jprofiler.ant.ExportTask,
comparisons are directly nested below the element and options are nested for each comparison
element. The snapshot files are specified with a nested file set.
(1) http://ant.apache.org

259

http://ant.apache.org

<taskdef name="compare"
 classname="com.jprofiler.ant.CompareTask"
 classpath="<path to JProfiler installation>/bin/ant.jar"/>

<target name="compare">
 <compare sortbytime="true">
 <fileset dir="snapshots">
 <include name="*.jps" />
 </fileset>
 <comparison name="TelemetryHeap" file="heap.html"/>
 <comparison name="TelemetryThreads" file="threads.html">
 <option name="measurements" value="inactive,active"/>
 <option name="valuetype" value="bookmark"/>
 <option name="bookmarkname" value="test"/>
 </comparison>
 </compare>
</target>

Analyzing heap snapshots

Like the Analyze Gradle task, the equivalent com.jprofiler.ant.AnalyzeTask for Ant
prepares the heap snapshot analysis in snapshots that have been saved with offline profiling
for faster access in the GUI. The snapshots that should be processed are specified with a nested
file set.

<taskdef name="analyze"
 classname="com.jprofiler.ant.AnalyzeTask"
 classpath="<path to JProfiler installation>/bin/ant.jar"/>

<target name="analyze">
 <analyze>
 <fileset dir="snapshots" includes="*.jps" />
 </analyze>
</target>

260

	Introduction
	Architecture
	Installing
	Profiling a JVM
	Recording data
	Snapshots
	Telemetries
	CPU profiling
	Method call recording
	Memory profiling
	The heap walker
	Thread profiling
	Probes
	GC analysis
	MBean browser
	Offline profiling
	Comparing snapshots
	IDE integrations
	Custom probes
	Probe concepts
	Script probes
	Injected probes
	Embedded probes

	Call tree features in detail
	Auto-tuning for instrumentation
	Async and remote request tracking
	Viewing parts of the call tree
	Splitting the call tree
	Call tree analyses

	Advanced CPU analysis views
	Outlier detection
	Complexity analysis
	Call tracer
	Javascript XHR

	Heap walker features in detail
	HPROF snapshots
	Minimizing overhead
	Filters and live interactions
	Finding memory leaks

	JDK Flight Recorder (JFR)
	JFR overview
	Recording JFR snapshots
	JFR event browser
	JFR views

	Configuration in detail
	Trouble shooting connection problems
	Scripts
	Custom help

	Command line reference
	Executables for profiling
	Executables for snapshots
	Gradle tasks
	Ant tasks

