EJ Technologies

The definitive guide to JProfiler

All you need to know as a performance professional

© 2022 ej-technologies GmbH. All rights reserved.

Index

INEFOAUCTION ettt ettt sttt sttt b st st b e st et e b et et et e st e st e st eseeae s st sbesbesbesbesbesbesbesbansansens 4
ATCIITECEUIE ettt b bbbt bt et e b et et et e st e a e st e bt e bt e bt e bt e b e sbesbesbesbesbesbenbeneen 5
INISEAIIINE 1evveiteieietetee ettt ettt ettt e e e e s e e s e e be s s e sb e st e sbesb e st et e e b et et et e s sentenneneeraeneeneeraereerens 7
PrOTIING @ JVIML ettt bbbttt et et e st st s bt s atebesbesaesbesbesbesbes 10
RECOIAING LA .ttt bbbttt et ettt e bt et aeebesbesbesbesbeebes 26
SNAPSNOLS ettt ettt e e b e e b bt s bbb et e b et et e st et e e enteneeseeseereeres 39
TEIEIMELIIES vttt ettt sttt b e s bbb b et et et et et et e st e st eaeebeebesbesbesbesbesbe st antenee 46
CPU PrOfIlING ettt sttt ettt et et e st e bt e bt ebesbesbesbesbesbesbens 51
MEthOd Call FECOITING .viveieiiieieieieereees ettt a et e e e s e esassaesassessessesbessesbessessesses 64
MEMONY PrOTHING wooueeeieeieiieieeee ettt sttt st st b e st ettt et et et et et e st esesnesaeas 69
THE NEAP WAIKET .ttt sttt ettt ettt et et b e s b s b et e sbesbesbeseneen 79
THrEad PrOfiliNG cooeiiiiicicrere ettt e e e e e e e e esessessessesbesbesbesbesantan 96
PPODES .ttt b e bbb bbb et et et et et et et et e aeeaeebesaeeas 102
IMBEAIN DIOWSET ..ttt ettt sttt ettt et et et e st e bt sbeebesbesbesbesbesbenbeneens 115
OFfliNG PrOfIlING wvevveveieeiiieererre et s e st st st s b b e st s b e s et essessessessesessessenns 119
COMPAriNG SNAPSNOTSeiiiiiiiteieree ettt ettt st sbe st b b sbesbe s b sbeneeneens 124
IDE INTEEIATIONS .eoutirreeiiiieeie ettt ettt s b e e s b et s b b e s b e b sre et e smeenbesmeesbesmeenee 131
A CUSTOM PIrODES .ottt sttt sttt st sttt s et e s e e e e ssaesesbessessessessesbestesessessensensan 139
AT PrODE CONCEPLS coviiiiiieieieietetet ettt sttt sttt b et et e st s e e et esaesassessessessesbesbessenes 139
A2 SCHIPE PIODES .ottt sttt st s b e st b e st ettt et et et et e e et esesaeeneene 145
A3 INJECLEA PrODES ..ottt ettt ettt 149
A4 EMDEAdEd PrODES ..ottt 154
B Call tree features in deLail ..ottt st 158
B.1 Auto-tuning for iNSTrUMENTAtIONc.ccciiiiiririnirrreese et s 158
B.2 Async and remote reqUeSt traCkingocevevireneninienienerieseeteiee ettt s 161
B.3 Viewing parts of the Call Tre@ ...ttt 167
B.4 SPHLtING the Call TrE@ ...ttt st ee 172
B.5 Call tre@ @NalYSES ..ueeiiiiiiiriieieseeiest ettt ettt sttt et sbe et sbe st e s beebesbeenaenbaen 176
C Advanced CPU aNalYSIS VIEWSccuecuerieieieieinentsesiesesiestessestessessessessessessensensensessesssssssessessessens 181
C.1 OULIIET AETECLION ..ttt ettt ettt ettt b s bbb b sbesbe b e s e naenee 181

C.2 COMPIEXILY @NAIYSIS ettt sttt ettt ettt be s sbe bbb 185

GRS T @ I =Tl T PR RTR 187

C.4 JAVASCEIPT XHR oottt sttt ettt st sb et sbe st e s b st sbeebesbe e s b e sbaesbesueensesanensesasensessenn 189
D Heap walker features in detailoceeirirenirenereeseeeeete ettt s s 192
D.1T HPROF SNAPSNOLS ..ttt ettt ettt st sbe b e b 192
D.2 MiNiMIZiNG OVEIrNEAM ...ccuviiiriiiiiieeitcteece sttt s be e ettt saa e aesenesbesanenbessnenes 194
D.3 Filters and live INtEractionsc.cceevivirreininiiiiininiciecee e 196
D.4 FINAINE MEMOIY 1€AKS ..ooviviiriiriiniiriinieienieietete ettt se sttt sre st st s et e s e s esnesnsnasnnenas 199
E Configuration iN deLailccueiiieeeiee ettt ettt 206
E.1 Trouble shooting connection ProbIEmMS ... 206
B2 SCEIPES ettt ettt ettt ettt s bt st s b e e sat e st e e baesabesabeesaeesateebeesabesateenbeesateebeesanena 207
F Command liNe reference ... 211
F.1 Executables fOr Profiling ...ttt 211
F.2 Executables for SNAPSNOLS ...ttt 214
F.3 Gradle taSKS ..ottt ettt et b e e bbb b bt e 223

Y o) o = T OSSR 227

Introduction To JProfiler

What is JProfiler?

JProfiler is a professional tool for analyzing what is going on inside a running JVM. You can use
it in development, for quality assurance and for firefighting missions when your production
system experiences problems.

There are four main topics that JProfiler deals with:

* Method calls

This is commonly called "CPU profiling". Method calls can be measured and visualized in
different ways. The analysis of method calls helps you to understand what your application
is doing and find ways to improve its performance.

» Allocations

Analyzing objects on the heap with respect to their allocations, reference chains and garbage
collection falls into the category of "memory profiling". This functionality enables you to fix
memory leaks, use less memory in general and allocate fewer temporary objects.

* Threads and locks

Threads can hold locks, for example by synchronizing on an object. When multiple threads
cooperate, deadlocks can occur and JProfiler can visualize them for you. Also, locks can be
contended, meaning that threads have to wait before they can acquire them. JProfiler provides
insight into threads and their various locking situations.

+ Higher level subsystems

Many performance problems occur on a higher semantic level. For example, with JDBC calls,
you probably want to find out which SQL statement is the slowest. For subsystems like that,
JProfiler offers "probes" that attach specific payloads to the call tree.

JProfiler's Ul is delivered as a desktop application. You can interactively profile a live JVM or profile
automatically without using the Ul. Profiling data is persisted in snapshots that can be opened
with the JProfiler Ul. In addition, command line tools and build tool integrations help you with
automating profiling sessions.

How do | continue?

This documentation is intended to be read in sequence, with later help topics building on the
content of previous ones.

First, a technical overview over the architecture [p. 5] will help you to understand how profiling
works.

The help topics on installing JProfiler [p. 7] and profiling JVMs [p. 10] will get you up and running.

Following that, the discussion of data recording [p. 26] and snapshots [p. 39] take you to a level
of understanding where you can explore JProfiler on your own.

Subsequent chapters build your expertise with respect to different functionality in JProfiler. The
sections at the end are optional readings that should be consulted if you need certain features.

We appreciate your feedback. If you feel that there's a lack of documentation in a certain area
or if you find inaccuracies in the documentation, please don't hesitate to contact us at
support@ej-technologies.com.

mailto:support@ej-technologies.com

JProfiler Architecture

The big picture of all important interactions involving the profiled application, the JProfiler Ul
and all command line utilities is given below.

jpexport
jpcompare

jpanalyze JProfiler UI

[jpcontroller }

> Snapshots

Lremoteorlocal e
local transmits | connects via connects
data socket via JMX
e N
P N loadsvia
jpenable attach JProfiler publishes | |JProfiler
agent MBean
A
p ., takes HPROF
. heap dump
— ———
jpdump Profiled JVM
|\ J
loads with controls with
-agentpath offline profiling
Command line arguments
|\ J
—» loads the profiling agent (D command line tool
——3 controls recording D process component
——» profiling data [] data

The profiling agent

The "JVM tool interface" (JVMTI) is a native interface that a profiler uses to gain access to
information and add hooks for inserting its own instrumentation. This means that at least part

of the profiling agent must be implemented as native code and so a JVM profiler is not
platform-independent. JProfiler supports a range of platforms that are listed on the web site .

A JVM profiler is implemented as a native library that is loaded either at startup or at some point
later on. To load it at startup, a VM parameter - agent pat h: <path to native library>is
added to the command line. You rarely have to add this parameter manually, because JProfiler
will add it for you, for example in an IDE integration, an integration wizard or if it launches the
JVM directly. However, it's important to know that this is what enables profiling.

If the JVM succeeds in loading the native library, it calls a special function in the library to give
the profiling agent a chance to initialize itself. JProfiler will then print a couple of diagnostic
messages prefixed with JPr of i | er > so you know that profiling is active. The bottom line is that
if you pass the - agent pat h VM parameter, the profiling agent is either loaded successfully or
the JVM does not start.

Once loaded, the profiling agent asks the JVMTI to be notified of all kinds of events, such as thread
creation or class loading. Some of these events directly deliver profiling data. Using the class
loading event, the profiling agent instruments classes as they are loaded and inserts its own
bytecode to perform its measurements.

JProfiler can load the agent into an already running JVM, either by using the JProfiler Ul, or with
the bi n/j penabl e command line tool. In that case, a substantial number of already loaded
classes may have to be retransformed in order to apply the required instrumentation.

Recording data

The JProfiler agent only collects the profiling data. The JProfiler Ul is started separately and
connects to the profiling agent through a socket. This means that it is actually irrelevant if the
profiled JVM is running on the local machine or on a remote machine - the communication
mechanism between the profiling agent and the JProfiler Ul is always the same.

From the JProfiler Ul, you can instruct the agent to record data, display the profiling data in the
Ul and save snapshots to disk. As an alternative to the Ul, the profiling agent can be controlled

through its MBean “. A command line tool that uses this MBean is bi n/ j pcontrol | er.

Yet another way to control the profiling agent is with a predefined set of triggers and actions. In
that way the profiling agent can operate in unattended mode. This is called "offline profiling" in
JProfiler and is useful for automating profiling sessions.

Snapshots

While the JProfiler Ul can show live profiling data, it is often necessary to save snapshots of all
recorded profiling data. Snapshots are either saved manually in the JProfiler Ul or automatically
by trigger actions.

Snapshots can be opened and compared in the JProfiler Ul. For automated processing, the
command line tools bi n/ j pexport andbi n/ j pconpar e can be used to extract data and create
HTML reports from previously saved snapshots.

A low-overhead way of obtaining a heap snapshot from a running JVM is to use the bi n/ j pdunp
command line tool. It uses the built-in functionality of the JVM to save an HPROF snapshot that
can be opened by JProfiler and does not require the profiling agent to be loaded.

M https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html
) https://en.wikipedia.org/wiki/Java_Management_Extensions

6

https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html
https://en.wikipedia.org/wiki/Java_Management_Extensions

Installing JProfiler

Executable installers are provided for Windows and Linux/Unix that lead you step-by step through
the installation. If a previous installation is detected, the installation is streamlined.

© Setup - JProfiler - m} X

Welcome to the JProfiler Setup Wizard

This will install JProfiler on your computer,

A previous installation has been detected, Do you wish to update that
installation?

@ fes, update the existing instaliatiord @

(O No, install into a different directory

Click Next to continue, or Cancel to exit Setup.

On macOSs, JProfiler uses the standard installation procedure for Ul applications: a DMG archive
is provided that you can mount in the Finder by double-clicking on it, then you can drag the
JProfiler application bundle to the / Appl i cati ons folder. That folder is visible as a symbolic
link in the DMG itself.

[NN] — JPrafiler

JProfiler

On Linux/Unix, installers are not executable after download, so you have to prepend sh when
executing them. The installer performs a command line installation if you pass the parameter
- ¢. Completely unattended installations for Windows and Linux/Unix are performed with the
parameter - g. In that case, you can pass the additional argument-di r <di rect ory>inorder
to choose the installation directory.

@ S @ ingo@ubuntu: ~/Downloads

ingo@ubuntu:~/DownloadsS sh jprofiler_linux_18 _©_2.sh -c
Starting Installer ...

This will install JProfiler on your computer.

0K [o, Enter], Cancel [c]

A previous installation has been detected. Do you wish to update that installati

s, update the existing installation [1, Enter]
, install into a different directory [2]

After you run an installer, it will save a file . i nstal | 4j / response. varfi | e that contains all
user input. You can take that file and use it to automate unattended installations by passing the
argument-varfile <path to response.varfil e>onthecommand line.

To set licensing information for unattended installations, pass - Vj profiler.|icenseKey=
<license key> -Vjprofiler.licenseName=<user nane> and optionally -Vj profiler.
| i censeConpany=<conpany nane>ascommand line arguments. If you have a floating license,
use FLOAT: <server name or | P address>instead of the license key.

Archives are also provided as ZIP files for Windows and as .tar.gz files for Linux. The command

tar xzvf filename.tar.gz

will extract a .tar.gz archive into a separate top-level directory. To start JProfiler, execute bi n/
j profiler inthe extracted directory. On Linux/Unix, the filej profi | er. deskt op can be used
to integrate the JProfiler executable into your window manager. For example, on Ubuntu you
can drag the desktop file into the launcher side bar in order to create a permanent launcher
item.

Distributing the profiling agent to remote machines

JProfiler has two parts: The desktop Ul together with the command line utilities that operate on
snapshots on the one hand, and the profiling agent together with the command line utilities that
control the profiled JVM on the other hand. The installers and archives that you download from
the website contain both parts.

For remote profiling, however, you only need the profiling agent to be installed on the remote
side. While you can simply extract an archive with the JProfiler distribution on the remote machine,
you may want to limit the amount of required files, especially when automating a deployment.
Also, the profiling agent is freely redistributable, so you can ship it with your application or install
it on customer machines for trouble-shooting.

To get a minimal package with the profiling agent, the remote integration wizards shows you
the download link for the appropriate agent archive as well as the download page with the agent
archives for all supported platforms. In the JProfiler GUI, invoke Session->Integration Wizards->New
Server/Remote Integration, select the "Remote" option and then proceed to the Remote installation
directory step.

@ Integration Wizard - [Generic application] on Remote Linux X86/AMD64 X

1. Choose wizard Specify the remote installation directory
2. Local or remote
3, Profiled JVM The profiling agent must be available on the remote Linux X86/AMDE&4

4, Startup mode machine.

5. Remote address

6. Remote installation directory
7. Choose profiling port

8. Perform modifications

9. Finished

Please specify the JProfiler installation directory on the remote machine, for
example "/opt/jprofileri3”.

Remote installation directory: | /opt/jprofiler13

If JProfiler is not installed, you can download the profiling agent and extract it
on the remote machine in the above directory.

Direct Download Copy URL To Clipboard

A web page with agent downloads for all suppoerted platforms is also available.

Download Overview Copy URL To Clipboard

4 Back Mext B Finish Cancel

The URL for the HTML overview page for a particular JProfiler version is
https://ww. ej -t echnol ogi es. conl downl oad/ j profil er/agent ?versi on=13. 0. 4
The format of the download URLs for the single agent archives is

htt ps: // downl oad. ej -t echnol ogi es. conijprofiler/jprofiler_agent <platforn>_13 0 4. <extensi on>

where pl at f or mcorresponds to the agent directory name in the bi n directory and ext ensi on
is zi p on Windows, . t gz on macOS and . t ar. gz for Linux/Unix. For Linux, x86 and x64 are
grouped together, so for Linux x64 the URL is

htt ps: // downl oad. ej -t echnol ogi es. confj profiler/jprofiler_agent_|inux-x86_13 0 4.tar.gz

The agent archive contains the required native agent libraries together with the j penabl e,
j pdunp andj pcont r ol | er executables. The executables in the archive only require Java 6 as a
minimum version, while the profiling agent works with Java 5 or higher.

The sub-directories that you see after extracting the agent archive on the remote machine are
described below. They are a subset of a full JProfiler installation on the respective target platform.

top-level directory after extraction

Jinstall4j -----meemmeemmeeneeee > runtime for launchers
— bin --reremeeemeee s > agent JAR file and helper executables
': <platform-64> ------- > native libraries for 64-bit JVMs
<platform-32> -------1 > native libraries for 32-bit JVMs
el |0 ity > support libraries for attach functionality

Profiling A JVM

To profile a JVM, JProfiler's profiling agent has to be loaded into the JVM. This can happen in two
different ways: By specifying an - agent pat h VM parameter in the start script or by using the
attach API to load the agent into an already running JVM.

JProfiler supports both modes. Adding the VM parameter is the preferred way to profile and is
used by the integration wizards, the IDE plugins and session configurations that launch a JVM
from within JProfiler. Attaching works both locally as well as remotely over SSH.

-agentpath VM parameter

It is useful to understand how the VM parameter that loads the profiling agent is composed.
- agent pat his a generic VM parameter provided by the JVM for loading any kind of native library
that uses the JVMTI interface. Because the profiling interface JVMTI is a native interface, the
profiling agent must be a native library. This means that you can only profile on the explicitly

supported platforms . 32-bit and 64-bit JVMs also need different native libraries. Java agents,
on the other hand, are loaded with the - j avaagent VM parameter and only have access to a
limited set of capabilities.

After - agent pat h: , the full path name to the native library is appended. There is an equivalent
parameter - agent | i b: where you only specify the platform-specific library name, but then you
have to make sure that the library is contained in the library path. After the path to the library,
you can add an equals sign and pass options to the agent, separated by commas. For example,
on Linux, the whole parameter could look like this:

-agentpath:/opt/jprofilerl10/bin/linux-x64/1ibjprofilerti.so=port=8849, nowai t

The first equals sign separates the path name from the parameters, the second equals sign is
part of the parameter port =8849. This common parameter defines the port on which the
profiling agent s listening to connections from the JProfiler GUI. 8849 is actually the default port,
so you can also omit that parameter. If you want to profile multiple JVMs on the same machine,
you have to assign different ports, though. The IDE plugins and the locally launched sessions
assign this port automatically, for integration wizards you have to choose the port explicitly.

The second parameter nowai t tells the profiling agent not to block the JVM at startup and wait
for a JProfiler GUI to connect. Blocking at startup is the default, because the profiling agent does
not receive its profiling settings as command line parameters but from the JProfiler GUI or
alternatively from a config file. The command line parameters are only for bootstrapping the
profiling agent, telling it how to get started and for passing debug flags.

By default, the JProfiler agent binds the communication socket to all available network interfaces.
If this is not desirable for security reasons, you can add the option addr ess=[| P addr ess] in
order to select a specific interface or | oopback to only listen for request from the local machine.
The latter is added automatically for JVMs that are launched by the JProfiler Ul or by IDE
integrations.

Locally launched sessions

Like "Run configurations" in an IDE, you can configure locally launched sessions directly in JProfiler.
You specify the class path, the main class, working directory, VM parameters and arguments and
JProfiler launches the session for you. All the demo sessions that ship with JProfiler are locally
launched sessions.

M https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html

10

https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html
https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html

@ Session Settings X

Application Settings Session name: | Animated Bezier Curve Demo Id: 101 @
Session Type
Profiled JVM ‘ Attach to an already running HotSpot/OpenJ8 JVM and profile it
Code Editer Attach Attach type Select from all local JWMs Attach to remote JVM Kubernetes

Launch a new WM and profile it
Call Tree Recording £ L

Launch Launch type: Application Web Start
v Call Tree Filters
Application Settings

Trigger Settings Java VM: 11 [C\Usershingo'jdks\jbrsdk-11_0_13-b1.. Configure JREs
Working directory: [startup directory]
Database Settings VM options: (7]
Main class or executable JAR: | bezier.BezierAnim
Probe Settings
Program arguments: block (7]
lﬁ".’-’ Advanced Settings Open browser with URL

Java File Path

] demo'\bezier\classes]

O Class path
Source path 0

Library path @

General Settings Copy Settings From “ Cancel

A special launch mode is "Web Start" where you select the URL of the JNLP file and JProfiler will

launch a JVM to profile it. This feature supports OpenWebStart'”, legacy WebStart from pre-Java
9 Oracle JREs is not supported.

@ Session Settings X
Application Settings Session name: | Web Start Session 1d: 162 @
Session Type
sheE L ‘ Attach to an already running HotSpot/Openl% JVM and profile it
Code Editor Attach Select from all local JWMs Attach to remote JYM Kubernetes

Launch a new JWM and profile it
Call Tree Recording £ L

Launch Launch type: Application

Call Tree Filters

I Web Start Settings
| Trigger Settings URL of the JNLP file: | http://www.jgoodies.com/download/jdiskreport2/jdiskreport.jnlp
‘WebStart sessions require that OpenWebStart is installed.
; Database Settings Java File Path
Mote: the classpath is used for the bytecode viewer only.
° Probe Settings Y
Advanced Settings © Class path

Source path 0

General Settings Copy Settings From “ Cancel

) https://openwebstart.com/

11

https://openwebstart.com/

Locally launched sessions can be converted to standalone sessions with the conversion wizards
by invoking Session->Conversion Wizards from the main menu. Convert Application Session to Remote
simply creates a start script and inserts the - agent pat h VM parameter into the Java call. Convert
Application Session to Offline creates a start script for offline profiling [p. 119] which means that
the config is loaded on startup and the JProfiler GUI is not required. Convert Application Session
to Redistributed Session does the same thing, but creates a directory j profil er _redi st next
to it that contains the profiling agent as well as the config file so you can ship it to a different
machine where JProfiler is not installed.

m\hew Profiling Window Help IProfiler - m} X

B -,. Start Center Ctrl+0 0
starf 1 New Window Ctrl+Alt+0 Start o dd)
Centt I Compare Snapshots in New Window ~ Foranes Tracking ~ Bookmar ST Settings

1 77 New Session Ctrl+M
& Quick Attach Ctrl+Alt+A
Integration Wizards »

Conversion Wizards Convert Application Session to Remote

l Open Session Convert Application Session to Offline

Export Session Settings Convert Application Session to Redistributed Session

Import Session Settings

Open Snapshot Q, Please start a profiling session or epen a snapshot to view data
Recent Snapshots 4

r ‘

1 Session Settings Ctrl+

General Settings Ctrl+F12

= IDE Integrations

‘ 7 Close Window Ctrl+W
Exit JProfiler Ctrl+Alt+X

s
A
Smes MBeans
o

@ Detached

If you develop the profiled application yourself, consider using an IDE integration [p. 131] instead
of a launched session. It will be more convenient and give you better source code navigation. If
you do not develop the application yourself, but already have a start script, consider using the
remote integration wizard. It will tell you the exact VM parameter that you have to add to the
Java invocation.

Integration wizards

JProfiler's integration wizards handle many well-known third party containers with start scripts
or config files that can be modified programmatically to include additional VM parameters. For
some products, start scripts can be generated where VM parameters are passed as arguments
or via environment variables.

12

@ Integration Wizard

1. Choose wizard

Choose integration wizard
2. Local or remote

3. Profiled JVM This wizard integrates your application server or remote application with
4, Startup mode JProfiler. Choose the appropriate wizard from the list below.

If your application server is not listed, choose "[Generic application server]” to
get step by step instructions for manual integration

B [Generic application server]
Eg [Generic application]

] installdj/exedj project
(ﬂ}jsvc service

E ColdFusion

H Glassfish

E JBoss

H ety

E lonas

E Metbeans RCP application

MNext p Finish Cancel

In all cases, you have to locate some specific file from the third-party product, so JProfiler has
the necessary context to perform its modifications. Some generic wizards only give you
instructions on what you have to do in order to enable profiling.

@ Integration Wizard - Tomeat X

1. Choose wizard Locate start script

2. Local or remote

3. Profiled JVM Please locate the start script for Tomcat below.

4, Startup mode

5. Locate start script c\Users\Bob\appserversitomcatibin\startup.bat
6. Choose profiling port

7. Check modifications Mote: the usual name of the start script is:

8. Finished startup.bat

The chosen startup script will not be medified. A new startup script for profiling
will be generated in the same directory.

4 Back Next b Finish Cancel

The first step in each integration wizard is the choice whether to profile on the local machine or
on a remote machine. In the case of the local machine you have to provide less information,

because JProfiler already knows the platform, where JProfiler is installed and where its config
file is located.

13

@ Integration Wizard X

1. Choose wizard Where is the profiled application located?

2. Local or remote

3, Profiled JVM The profiled application can either run on this computer or on a remote

4, Startup mode computer. If the "remote computer” option is selected, JProfiler must be
installed on that computer.

The profiled application is located:

On this computer
P

On a remote computer

4 Back Mext B Finish Cancel

An important decision is the "startup mode" that was discussed above. By default, the profiling
settings are transmitted from the JProfiler Ul at startup, but you can also tell the profiling agent

to let the JVM start immediately. In the latter case, the profiling settings can be applied once the
JProfiler GUI connects.

@ Integration Wizard X
1. Choose wizard Choose whether to wait for the JProfiler GUI

2. Local or remote

3. Profiled JVM Please choose whether you would like your profiled WM to wait for a

1. Startup mode connection from the JProfiler GUI frentend before starting up:

Wait for a connection from the JProfiler GUI

[Easy] Profiling settings are transmitted directly by the JProfiler GUI at
startup. With this option you can profile the startup phase of your
application.

Io Startup immediately, connect later with the IProfiler GUII

[Easy] Profiling settings are transmitted directly by the JProfiler GUI once
you connect.

Profile offline, JProfiler GUI cannot connect

[Advanced] You have to configure triggers that record data and save
snapshots that can be opened with the JProfiler GUI later on.

4 Back Next P Finish Cancel

However, you can also specify a config file with the profiling settings which is much more efficient.
This is done on the Config synchronization step. The main problem in this case is that you have
to synchronize the config file with the remote side each time you edit the profiling settings locally.
The most elegant way is to connect to the remote machine via SSH on the Remote address step,
then the config file can be transferred automatically via SSH.

14

@ Integration Wizard - [Generic application server] on Remote Linux X86/AMDB4 X

1. Choose wizard Choose how to synchronize profiling settings
2. Local or remote
3. Profiled VM The profiling agent can receive its profiling settings when the connection is made from

4, Startup mode the JProfiler GUI

5. Remote address
However, class retransfermations can take a lot of time. For fast connectiens, you can

6. Remote installation directary specify the configuration at startup.

7. Config synchronization

8. Choose profiling port Apply configuration when connecting with the JProfiler GUI
9. Perform modifications

10, Finihed © Apply configuration at startup

Directory for config file on remote computer: | /home/build/cenfig

Manual synchronization 0
Io Copy with 55H to remote dire(tnryl (7]

Copy config file to directory: (7]

Execute command: (7]

4 Back Next P Finish Cancel

At the end of the integration wizard, a session will be created that starts profiling and - in the
non-generic cases - also starts the third party product, such as an application server.

© Integration Wizard - [Generic application server] on Remote Linux X86/AMD64 X
1. Choose wizard Integration is completed

2. Local or remote

3. Profiled JVM The integration of your profiled VM has been completed successfully.

4 Stertup mode To profile, you h I filed JVM fi
5. Remuote address o profile, you have to manually start your profile irst.
6. Remote installation directory

When you click on Finish, the remote session can be started immediately.
7. Config synchronization

8. Choose profiling port Io Yes, start the session and wait for the profiled JVM.I
9. Perform modifications Mo, | will start the session later
10. Finished

Edit Sessicn And Synchrenize Config

The created session has been named

Application server on demo

4 Bac lext P Finish Cance

External start scripts are handled by the Execute start script and Execute stop script options on the
Application settings tab of the session configuration dialog and URLs can be shown by selecting
the Open browser with URL check box. This is also the place where you can change the address
of the remote machine and the config synchronization options.

15

@ Session Settings X

i Application Settings Session name: | Application server on demo Id: 162 @
Session Type
Profiled VM q Attach to an already running HotSpot/OpenJ9 JVM and profile it
Code Editor Attach Attach type: Select from all local JWMs (©) Attach to remote JVUM Kubernetes
. F Launch a new JVM and profile it
| T
E‘ Call Tree Recording o
Launch i
“ Call Tree Filters
Profiled JVM Settings
I you have not yet prepared a WM for profiling, it is recommended to run an integration wizard. It will create
Trigger Settings the remote session for you.
. S5H tunnel ¥ | Direct 55H to demo:8849 Edit (7]
Database Settings
Use SOCKS proxy
@ Probe Settings 7 Execute start command c\Users\bob\appserveristartServer.bat - @
ecute stop comman ch\Users\bobh\appserveristopServer.bat
M & d| | ciUsers\bobh, \stopServer.h (7]
@ Advanced Settings
‘I.‘,J} g [7 Open browser with URL| | http://localhost: 3080 (7]
Connection timeout: 60 ¥ seconds Config Synchronization Options

Java File Path

Maote: the classpath is used for the bytecode viewer only.

O Class path
Source path @

General Settings Copy Settings From “ Cancel

The integration wizards all handle cases where the profiled JVM is running on a remote machine.
However, when a config file or start script has to be modified, you have to copy it to your local
machine and transfer modified versions back to the remote machine. It may be more convenient
to directly run the command line tool j pi nt egr at e on the remote machine and let it perform
its modifications in place. j pi nt egr at e requires a full installation of JProfiler and has the same
JRE requirements as the JProfiler GUI.

=

ingo@ubuntu: ~

ingo@ubuntu:~$ jprofileri1e/bin/jpintegrate
Welcome to the JProfiler console integration wizard!

How do you want to find your integration wizard?

search by keyword [1, Enter], List all wizards [2]

al

Please enter a number of keywords separated by spaces (for example: Tomcat 5)

one of the following integration wizards:
Websphere 9.x Application Server [1]
Websphere 8.x Application Server [2]
Websphere 7.0 Application Server [3]
Websphere 6.1 Application Server [4]
WebSphere Community Edition 2.x [5]

When an error occurs while starting a remote profiling session, see the trouble-shooting
guide [p. 206] for a checklist of steps that you can take to fix the problem.

16

IDE integrations

The most convenient way to profile an application is through an IDE integration. If you usually
start your application from your IDE during development, the IDE already has all the required
information and the JProfiler plugin can simply add the VM parameter for profiling, start JProfiler
if necessary and connect the profiled JVM to a JProfiler main window.

All IDE integrations are contained in the i nt egr at i ons directory in the JProfiler installation. In
principle, the archives in that directory can be installed manually with the plugin installation
mechanisms in the respective IDEs. However, the preferred way to install IDE integrations is to
invoke Session->IDE integrations from the main menu.

@ General Settings X
Ul Session Defaults Snapshots IDE Integrations Updates External Programs

IDE Integration

To integrate JProfiler with an IDE, choose the target IDE and click on "Integrate” below.

Intellil IDEA v

Integrate O

Profiling sessions from the IDE do not get their own session entry in JProfiler, because such a
session could not be started from the JProfiler GUI. Profiling settings are persisted on a per-project
or a per-run-configuration basis, depending on the settings in the IDE.

When connected to an IDE, JProfiler shows a window switcher in the tool bar that makes it easy
to jump back to the associated window in the IDE. All the Show Source actions now show the
source directly in the IDE instead of the built-in source viewer in JProfiler.

IDE integrations are discussed in detail in a later chapter [p. 131].

Attach mode

You do not necessarily have to decide beforehand that you intend to profile a JVM. With the
attach functionality in JProfiler, you can select a running JVM and load the profiling agent on the
fly. While attach mode is convenient, it has a couple of drawbacks that you should be aware of;

* You have to identify the JVM that you want to profile from a list of running JVMs. This can
sometimes be tricky if a lot of JVMs are running on the same machine.

+ There is additional overhead because potentially many classes have to be redefined to add
instrumentation.

+ Some features in JProfiler are not available in attach mode. This is mostly because some
capabilities of the [VMTI can only be switched on when the JVM is being initialized and are not
available in later phases of the JVM's lifecycle.

« Some features require instrumentation in a large fraction of all classes. Instrumenting while
a class is being loaded is cheap, adding instrumentation later on when the class has already
been loaded is not. Such features are disabled by default when you use attach mode.

17

« Attach functionality is only supported for Oracle JVMs with version 6 or higher. The VM
parameters - XX: +Per f Di sabl eShar edMemand - XX: +Di sabl eAtt achMechani sm must
not be specified for the JVM.

The Quick Attach tab in JProfiler's start center lists all JVMs that can be profiled. The background
color of the list entries indicates whether a profiling agent has already been loaded, whether a
JProfiler GUI is currently connected or if offline profiling has been configured.

When you start a profiling session, you can configure profiling settings in the session settings
dialog. When you repeatedly profile the same process, you do not want to re-enter the same
configuration again and again, so a persistent session can be saved when you close a session
that has been created with the quick attach feature. The next time you want to profile this process,
start the saved session from the Open Session tab instead of the Quick Attach tab. You will still
have to select a running JVM, but the profiling settings are the same ones that you have already
configured before.

€ Session Settings e
i Application Settings Session name: | Local Attach Session Id: 162 @
Session Type
Profiled VM P Attach to an already running HotSpot/Openl9 JWM and profile it
Code Editor Attach | Attach type: | ©) Select from all local JVMs Attach to remote JVM Kubernetes
" Ji Launch a new J¥M and profile it
d ZCH
E‘ Call Tree Recording ‘:’3
Launch
T Call Tree Filters
Local Attach
Trigger Settings ‘When you start this session, a list of locally started VMs is shown.

Mote that it is more efficient to run an integratien wizard. It will modify the start script so that the
; Database Settings profiling agent is loaded at startup.

Java File Path
o Probe Settings

Mote: the classpath is used for the bytecode viewer only.

o
;';J} Advanced Settings
© Class path
Source path @)
General Settings Copy Settings From “ Cancel

Attaching to local services

The attach APl in the JVM requires that the invoking process runs as the same user as the process
that you want to attach to, so the list of JVMs that are displayed by JProfiler is limited to the
current user. Processes launched by different users are mostly services. The way to attach to
services differs for Windows, Linux and Unix-based platforms.

On Windows, the attach dialog has a Show Services button that lists all locally running services.
JProfiler launches bridge executables to be able to attach to those processes no matter what
user they are running with.

18

| 2

Open
Session

Quick
Attach

O_u

MNew
Session

Open
Snapshots

@ JProfiler Start Center

Start Center

© On this computer

Container:
Status:

FID
10076
13843
23104
26688
25184
33524
33012

Legend:

On another computer On a Kubernetes cluster

[l Nene, showing top level processes Select Container

Show Services
Process Mame

org.jetbrains.kotlin.daemon.KotlinCompileDaemon --daemon-runFilesPath C:\Users\in...

All detected HotSpot/Open)9 WMs ¥

org.jetbrains.kotlin.daemon KotlinCompileDaemon --daemon-runFilesPath C:\Users\in...
org.gradle.launcher.daemon.bootstrap.GradleDaemon 7.3
org.jetbrains,jps.cmdline.Launcher Ci/Users/ingo/AppData/Local/etBrains/ Toolbox/ap...
org.gradlewrapper.GradleWrapperMain --daemen screenshotsLightEn

Profiling agent loaded JProfiler GUI connected Offline mode

Start Heap Dump Only Close

On Linux, JProfiler supports switching the user directly in the Ul through PolicyKit that is part of
most Linux distributions. By clicking Switch user in the attach dialog, you can enter a different
user name and authenticate with the system password dialog.

Start Center

|

Open
Session

Quick
Attach

O_-u

New
Session

On this computer
P

On another computer On a Kubernetes cluster

IJsEr:

s Current user Switch User

Container:

Status:

FID
10076
13848
23104
26633
20134

[l Mone, showing top level processes Select Container
All detected HotSpot/Openld IWMs ~

Process Mame

org.jetbrains.kotlin.daemon KetlinCompileDaemon --daemon-runFilesPath C:\Users\in...

org.jetbrains.kotlin.daemon KetlinCompileDaemon --daemon-runFilesPath C:hUserslin...
org.gradlelauncher.daemon.bootstrap.GradleDaemon 7.3

On Unix-based platforms including macOS, you can execute the command line tool j penabl e
as a different user with su or sudo, depending on your Unix variant or Linux distribution. On
macOS and Debian-based Linux distributions like Ubuntu, sudo is used.

With sudo, call

sudo -u userNane j penabl e

with su, the required command line is

su user Nane -c jpenabl e

j penabl e will let you select JVMs and tell you the port on which the profiling agent is listening.
On the Quick Attach tab of the start center, you can then select the On another computer option
and configure a direct connection to localhost and the given profiling port.

19

@ JProfiler Start Center X

Start Center

On this computer () On another computer On a Kubernetes cluster
'
Open | Direct connectionto ¥ | 192.68.2.117 Profiling port: | 31773 Default
Session
Use SOCKS proxy
‘ If the profiling agent is not yet loaded in the target JVM, download the JProfiler archive, extract it on the
Quick remote machine and execute
Attach
bin/jpenable
O =1
to prepare the JVM for profiling.
Sgs?:n Take note of the assigned profiling port printed by jpenable and enter it here.
If the connectien times out, check local, intermediate and remote firewalls. Te circumvent firewalls, you
can set up an 55H tunnel.
Open

Snapshots

Attaching to JVMs on remote machines

The most demanding setup for profiling is remote profiling - the JProfiler GUI runs on your local
machine and the profiled JVM on another machine. For a setup where you pass the -agentpath
VM parameter to the profiled JVM, you have to install JProfiler on the remote machine and set
up a remote session on your local machine. With the remote attach functionality in JProfiler, no
such modifications are required, you just need SSH credentials to log into the remote machine.

The SSH connection enables JProfiler to upload the agent package that was discussed in the
"Installing JProfiler" [p. 7] help topic and execute the contained command line tools on the
remote machine. You don't need SSH to be set up on your local machine, JProfiler ships with its
own implementation. In the most straightforward setup you just define host, user name and
authentication.

With an SSH connection, JProfiler can perform an automatic discovery of runningJVMs or connect
to a specific port where a profiling agent is already listening. For the latter case, you can use
j penabl e or j pi nt egr at e on the remote machine as described above and prepare a special
JVM for profiling. Then, the SSH remote attach can be configured to directly connect to the
configured profiling port.

20

@ Edit 55H Tunnel X

1. Tunnel mode Configure the SSH host
2. Configure S5H host
3. 55H options IProfiler will tunnel its connection to the profiling agent through the 55H connection

configured below.

User name: build

Host: demo

S5H port: 22 Default
Authentication: Password

© Private Key | C:\Users\ingoh.sshhid_rsa

Discover running JWMs and attach to selected process (7]
Io Manually specify profiling port Iﬂ
Profiling port: | 31775 Default

4 Back Next P Finish Cancel

Automatic discovery will list all JVMs on the remote machine that have been started as the SSH
login user. In most cases this will not be the user that has started the service that you would like
to profile. Because users that start services usually are not allowed for SSH connections, JProfiler
adds a Switch User hyperlink that lets you use sudo or su to switch to that user.

@ Attach To Running JVM X
Remote user: e root (via sudo)

Remote container: [l Mone, showing top level processes Select Container
Status: Not profiled -

PID Process Name

736 install4).com.perfino.server.ServerMain_perfino_service start

1106 install4j.com.gjt.demo.server.PerfinoDemoServerStarter_demo_service start

1147 installdj.com.perfino.server.ServerMain_perfino_service start

1400 standalone_demo_service
Legend: Profiling agent loaded IProfiler GUI connected Offline mode

Heap Dump Only Open Cancel

In complex network topologies, you sometimes cannot connect directly to the remote machine.
In that case, you can tell JProfiler to connect with a multi-hop SSH tunnel in the GUI. At the end
of the SSH tunnel you can make one direct network connection, usually to "127.0.0.1".

21

@ Edit 55H Tunnel X

1. Tunnel mode Configure the SSH tunnel
2. Configure S5H tunnel

3. 55H options S5H tunnel steps:
SS5H to gateway.mycorp.com:22 [private key C:\Users\ingo\.ssh\id_rsa] &
S5H to demo:22 [private key C\Users\ingo\.ssh\id_rsa| x
User name: build
Host: dermno
S5H port: 22 Default
Authentication: Password

O Private Key C:\Users\ingo'.ssh\id_rsa

After exiting from the 5SH tunnel, connect to: | 127.0.0.1
1O Discover running JVMs and attach to selected process €

Manually specify profiling port (7]

4 Back Next P Finish Cancel

HPROF snapshots can only be taken for JVMs that were started with the SSH login user. This is
because HPROF snapshots require an intermediate file that is written with the access rights of
the user that has started the JVM. For security reasons, it is not possible to transfer file rights to
the SSH login user for download. No such restriction exists for full profiling sessions.

Attaching to JVMs running in Docker containers

Docker containers usually do not have SSH servers installed and while you can use jpenable in
a Docker container, the profiling port will not be accessible from the outside unless you have
specified it in your Docker file.

In JProfiler, you can attach to a JVM running in a local Docker Desktop installation in Windows or
macOS by selecting the Docker container in the quick attach dialog. By default, JProfiler detects
the path to the docker executable automatically. Alternatively, you can configure it on the
"External tools" tab of the general settings dialog.

@ JProfiler Start Center x
Start Center
On this computer On another computer On a Kubernetes cluster
|
Open Iiontamer: E]II MNone, showing top level processes Select Container
Session
Status: All detected HotSpot/Open)9 WMs Show Services
‘ PID Process Mame
Quick 10076 org.jetbrains.kotlin.daemon KetlinCompileDaemon --daemon-runFilesPath ChUsersin...
Attach 13848
23104
O 26688 org.jetbrains.kotlin.daemon.KotlinCompileDaemon --daemon-runFilesPath C:\Users\in...
20184 org.gradlelauncher.daemon.bootstrap.GradleDaemon 7.3
New 33524 org.jetbrains.jps.cmdline.Launcher C:/Users/ingo/AppData/Local/JetBrains/Toolbox/ap...
Session 33812 org.gradle.wrapper.GradleWrapperMain --daemon screenshotsLightEn
Open
Snapshots Legend: Profiling agent loaded JProfiler GUI connected Offline mode
Start Heap Dump Only Close

22

After you select the container, all JVMs that run inside the Docker container will be shown. When
you select a JVM, JProfiler will use Docker commands to automatically install the profiling agent

in the selected container, prepare the JVM for profiling and tunnel the profiling protocol to the
outside.

For remote Docker installations, you can use the SSH remote attach functionality and then select
a Docker container on the remote machine. If the login user is not in the docker group, you can
first switch the user as described above.

@ Attach To Running JVM X
Remote user: e root (via sudo) 5 T
Remote container: [l Mone, showing top level processes
Status: Not profiled -
PID Process Name

736 install4).com.perfino.server.ServerMain_perfino_service start

1106 install4j.com.gjt.demo.server.PerfinoDemoServerStarter_demo_service start

1147 installdj.com.perfino.server.ServerMain_perfino_service start

1400 standalone_demo_service
Legend: Profiling agent loaded IProfiler GUI connected Offline mode

Heap Dump Only Open Cancel

With the Select container hyperlink in the remote attach dialog you can choose a running Docker
container and show all JVMs that are running in it.

Attaching to JVMs running on Kubernetes clusters

To profile a JVM that is running on a Kubernetes cluster, JProfiler uses the kubect| command
line tool, both for discovering pods and containers, as well as to connect to a container, list its
JVMs and finally to connect to a selected JVM.

The kubect| command line tool may be available on your local computer or alternatively on a
remote machine to which you have SSH access. Both scenarios are directly supported by JProfiler.
For local installations, JProfiler will try to detect the path to kubect | automatically, but you can
configure an explicit path on the "External tools" tab of the general settings dialog.

23

@ JProfiler Start Center X

Start Center

On this computer On another computer (0} On a Kubernetes cluster

'

Open Where is kubectl located?
Session © kubectl is on this computer

‘ kubectl is on another computer

Quick
Attach Use SOCK

O =1

MNew

Session

Open
Snapshots

JProfiler lists all detected containers in a tree with 3 levels. At the top are namespace nodes that
contain child nodes with the detected pods. The leaf nodes are the containers themselves and
one of them has to be chosen to proceed to the selection of a running JVM .

@ Select Remote Container >
Options for kubectl: [MNone Change

Remember across restarts @)

default [namespace]
openjdk-app [pod]
[openjdic-app

Filter:

OK Cancel

kubect| may require additional command line options for authentication in order to be able
to connect to the Kubernetes cluster. These options can be entered at the top of the container
selection dialog. Because these options may be sensitive information they are only saved to disk
if you explicitly select the checkbox to remember them across restarts. Deselecting this checkbox
will clear any previously saved information immediately.

Setting the display name of running JVMs

In the JVM selection table, the displayed process name is the main class of the profiled JVM
together with its arguments. For launchers generated by exe4j or install4j, the executable name
is displayed.

If you wish to set the displayed name yourself, for example because you have several processes
with the same main class that would otherwise be undistinguishable, you can set the VM
parameter- Oj profil er. di spl ayName=[nare] . If the name contains spaces, use single quotes:
-Dj profiler.displayName=' My nane w th spaces' and quote the entire VM parameter

24

with double quotes if necessary. In addition to - Oj profil er. di spl ayNanme JProfiler also
recognizes - Dvi sual vm di spl ay. nane.

25

Recording Data

The main purpose of a profiler is to record runtime data from various sources that is useful for
solving common problems. The principal problem with this task is that a running JVM generates
such data at an enormous rate. If the profiler would always record all types of data, it would
create an unacceptable overhead or quickly use up all available memory. Also, you often want
to record data around a particular use case and not see any unrelated activity.

This is why JProfiler offers fine-grained mechanisms for controlling the recording of information
that you are actually interested in.

Scalar values and telemetries

From a profiler's viewpoint, the least problematic form of data is scalar values, for example the
number of active threads or the number of open JDBC connections. JProfiler can sample such
values with a fixed macroscopic frequency - usually once per second - and show you the evolution
over time. In JProfiler, views that show such data are called telemetries [p. 46]. Most telemetries
are always recorded because the overhead of the measurement and the memory consumption
are small. If data is recorded for a long time, older data points are consolidated so that memory
consumption does not grow linearly with time.

’ Telemetries 010 0:20 0:30 0:40 0:50
A
Overview 50 | | |
i | | |
Memarny i I I I
Recorded Objects 40] | | Ll
Recorded Throughput 1
GC Activity 0]
Classes E
1 0:17.0 [Jul 21, 2017 3:23:37 PM]
Threads 1
20 == Runnable threads: 1
CPU Load] mm Blocked threads: 7
12 1 3 Threads in Net [/0: 2
10 = Waiting threads: 4
i b & O Total number of threads: 14
‘l:l- Live Memory 1
i ‘.§ -

.
'ﬁ Heap Walker

== Runnablethreads: 0 ™ Blocked threads: 0 T3 Threadsin Net|/0: § =3 W p }3)_‘ _|

There are also parametrized telemetries, such as the number of instances for each class. The
extra dimension makes a permanent chronological recording unsustainable. You can tell JProfiler
to record telemetries of the instance counts of a number of selected classes, but not of each
and every class.

26

” Telernetries Objects: All objects

Show: @ java.awt.geom GeneralPath v
":' Live Memary I B o I B B B B I I B B A S O A
’ 1:00 1:10 1:20 1:30 1:40
A
All Objects
5,000
Recorded Objects]
Allocation Call Tree 4000 o
Allocation Hot Spots]
Class Tracker 3,000]
.]
'ﬁ Heap Walker 1 [
2,000 1:08.1 [Jul 21, 2017 5:22:74 PM] 117
1 ./ﬁ B Class java.awt.geom.GeneralPath: 1,475
CPU Views 1
I 1.000 /\\/
Threads]
B Class java.awt. .G IPath: 4,439
O Monitors & Locks astjmvm-ant.gRom Benerae p p }"l

To continue the previous example, JProfiler is able to show you the instance counts of all classes,
but without the chronological information. This is the "All objects" view and it shows each class
as a row in a table. The frequency for updating the view is lower than once per second and may
be adjusted automatically depending on how much overhead the measurement causes.
Determining the instance counts of all classes is relatively expensive and takes longer the more
objects are on the heap. JProfiler limits the update frequency of the "All objects" view so that the
overhead of the measurement never exceeds 10% over time in extreme cases. You can freeze
the views to temporarily stop recording. Also, if the view is not active, data will not be recorded
and there is no associated overhead.

' Telernetries Agagregation level: @ Classes -
Name Instance Count Size

i java.awt.Rectangle I 50,265 1,608 kB
-’:’. Lo java.util HashMapSNode I - 540 1,201 kB
java.security. AccessControlContext I - 470 1,339 kB
All Objects sun.javald.pipe Region I 012 936 kB
java.awt.geom.AffineTransform I 20,030 1,506 kB
Recorded Objects char[] I 17,528 1,062 kB
. float[] I G145 1,225 kB
AliocationiEallies sun java2d.d3d.03DSurfaceDatasD3... I 15,522 312 kB
! int[] I 13243 30,237 kB
Allocation Hot Spots Jjava.lang.String | REREH 315 kB
Class Tracker sun,javadd.S5unGraphics2D I 10537 2,794 kB
javalang.Integer I 2,570 201 kB
’ java.lang.ref WeakReference I 12,153 388 kB
ﬁ LleapilValkey sun.javald. StateTrackableDelegateS1 N 11,745 187 kB
java.lang.Object]] I G 003 412 kB
X sun.awt.EventQueueltern . : 777 210 kB
I Etliens java.awt.EventQueues3 . 215 197 kB
java.util. ArrayList . 7954 191 kB
T e e e
Total: 479,597 50,151 kB

0 Monitors & Locks @

Some measurements capture enum-like values, such as the execution status a thread is currently
in. This kind of measurement can be displayed as a colored time line and consumes a lot less
memory than numerical telemetries. In the cases of thread statuses, the "Thread history" view
shows the time lines for all threads in the JVM. Just like for the telemetries with numeric values,
older values are consolidated and made more coarse-grained to reduce memory consumption.

27

. Show usages: | Both alive and dead hd
Telemetries

Threads 010 0:20 0:30
Il

’!:!' Live Memaory Timer-0 [main] |

AWT-EventQueue-0 [main]
1 Image Fetcher 0 [main] ‘ ‘ ‘ ‘
"ﬁ Heap Walker . . -

jprofiler_ius [main] |

SwingWorker-pool-3-thread-1[main]

I CPU Views main [main] *

Image Fetcher 0 [main]
- Tt Timer-1[main]
reads Thread-9 [main] 1 |-
Compiler Processing Task [main] I
Thread History . . P
Compiler Processing Task [main] |
Thread Menitor Image Fetcher 0 [main]
Thread Dumps
1 Menitors & Locks
; Databases == Runnable ™= Waiting ™= Blocked ™ Netl/O p p [

Allocation recording

If you are interested in instance counts that have been allocated during a certain time interval,
JProfiler has to track all allocations. Contrary to the "All objects" view where JProfiler can iterate
over all objects in the heap to get information on demand, tracking single allocations requires
that additional code has to be executed for each object allocation. That makes it a very expensive
measurement that can significantly change the runtime characteristics of the profiled application,
such as the performance hot spots, especially if you allocate many objects. This is why allocation
recording has to be started and stopped explicitly.

Views that have an associated recording initially show an empty page with a recording button.
The same recording button is also found in the toolbar.

' Telemetries press| g% |to record 1710 allocations [Change rate

‘!:I. Live Memory

All Objects
Recorded Objects
Allocation Call Tree
Allocation Hot Spots

Class Tracker
’
ﬁ Heap Walker

I CPU Views

Threads

(|

& Menitors & Locks

Allocation recording not only records the number of allocated instances, it also records the
allocation stack traces. Keeping stack traces for each allocated recording in memory would create
excessive overhead, so JProfiler cumulates recorded stack traces into a tree. This also has the
advantage that you can interpret the data much more easily. However, the chronological aspect
is lost and there is no way to extract certain time ranges from the data.

28

’ Telemetries Recorded allocations: | Live objects at 00:09, 1/10 allocations, java.lang.String Change

Aggregation level: @ Methods A
,':', Live Memaory _ 71.6% - 20,856 bytes - 860 alloc. java.util.concurrent. ThreadPoolExecutor§Worker.run
7 W 14.8% - 4,320 bytes - 180 alloc. called from call site #4 (remote VIV #1)
All Objects "‘A”l]4‘8% - 4,320 bytes - 180 alloc, com.ejt.demo.server.handlers.RmiHandlerlmpl.remoteQpera
VAYE 14.8% - 4,320 bytes - 180 alloc. com.ejt.demo.server.handlers.RmiHandlerd mpl.performW
Recorded Objects "“,l““:M.S% - 4,320 bytes - 180 alloc. com.ejt.demo.server.handlers.RmiHandlerlmpl.maket
() ® 14,8% - 4,320 bytes - 180 alloc. com.gjt.demo.server.handlers.HandlerHelper.make
Allocation Call Tree () m 14.8% - 4,320 bytes - 180 alloc. com.gjt.demo.server.handlers.HandlerHelper.g:
e 110%-3.480 bytes - 145 alloc. java.net.HttpURLConnection.getRespenseCi
Allocation Hot Spots 0‘ 2.5% - 720 bytes - 30 alloc. java.net.URL.<init>
© 04%-120 bytes - 5 alloc. java.net.URL.openConnection
Class Tracker 7 W 12.8% - 3,720 bytes - 133 alloc, called from call site #2 (remote VM #1)
G5Pm 12,83 - 3,720 bytes - 155 alloc. com.ejt.demo.server handlers.RmiHandlerlmpl.remoteOperat
U40m12.8% - 3,720 bytes - 155 alloc. com.ejt.demo.server.handlers.RmiHandlerlmpl.performW
b Heap Walker Uxim12.8%- 3,720 bytes - 135 alloc. com.gjt.demo.server.handlers.RmiHandlerimpl.maket

(1) ®12.8% - 3,720 bytes - 155 alloc. com.ejt.demo.server.handlers.HandlerHelper.make
(D) ™ 12.8% - 3,720 bytes - 155 alloc. com.ejt.demo.server.handlers.HandlerHelper.ge
I CPU Views W na%-2952 bytes - 123 alloc. java.net.HttpURLConnection.getRespenseCi
m 1.6% - 480 bytes - 20 alloc. java.net. URL.<init>
— m 0.5% - 144 bytes - 6 alloc. java.net.URL.openConnection
Threads W 03%-9% bytes - 4 alloc, java.io.BufferedReader.readLine

VT P ST S SN Y O S

o Menitors & Locks ol v @

Memory analysis

Allocation recording can only measure where objects are allocated and has no information on
the references between objects. Any memory analysis that requires references, such as solving
a memory leak, is done in the heap walker. The heap walker takes a snapshot of the entire heap
and analyzes it. This is an invasive operation that pauses the JVM - potentially for a long time -
and requires a large amount of memory.

A more lightweight operation is marking all object on the heap before you start a use case, so
that you can find all newly allocated objects when you take a heap snapshot later on.

The JVM has a special trigger for dumping the entire heap to a file that is named after the old
HPROF profiling agent. This is not related to the profiling interface and does not operate under
its constraints. For this reason, the HPROF heap dump is faster and uses less resources. The
downside is that you will not have a live connection to the JVM when viewing the heap snapshot
in the heap walker and that some features are not available.

@ No snapshot has been taken.

Telemetries
For a maximum of features:
Live Memory
Press to take a JProfiler heap snapshot
Heap Walker X - . X
» The snapshot is displayed in this frame and saved together with profiling information
from other views
CPU Views « For live profiling sessions, special features are available
= Integrations with other views require this snapshot type
Threads

Press * to indicate the starting point of a use case

Monitors & Locks
= All objects that are currently on the heap will be marked as old

= When you take the next heap snapshot, new and old objects will be listed separately in
Databases

Qo umpg i@

the header
» You can select new or old cbjects only, making it easy to track down memery leaks
JEE & Probes
For a minimum of overhead:
o
@ MBeans

.
Press| g | totake an HPROF heap snapshot

= The snapshot is saved separately and displayed in ancther frame
= Mot all features are available

= Memaory and CPU overhead in the profiled VM are lower than for the IProfiler snapshot

29

Method call recording

Measuring how long method calls take is an optional recording, just like allocation recording.
Method calls are cumulated into a tree and there are various views that show the recorded data
from different perspectives, such as a call graph. The recording for this type of data is called
"CPU recording" in JProfiler.

” Telemetries Thread status: Thread selection: Aggregation level:
B Runnable | @8 All thread groups @ Methods

’!:!' Live Memaory

F 4
] 1
"ﬁ Heap Walker /
/
A
I CPU Views / —>{"
,r" 26|
B /
Call Tree /
/D uestHandler c.e.d.s.handlers.RequestHandler j-per
7= = |
SlcESpots all f > executeJpatuery gl
,9 i self, 4 inv. 2,341 ms, 1,177 s self, 4 inv. 2,230n
Call Graph \
Y
Outlier Detection /@ \\
] Y = bers
Complexity Analysis \ + 2840 |
- \

Call Tracer

Y
; A
JavaScript XHR * ,'i‘
yel 5991

Under particular circumstances it may be useful to see the chronological sequence of method
calls, especially if multiple threads are involved. For these special cases, JProfiler offers the "Call
tracer" view. That view has a separate recording type that is not tied to the more general CPU
recording. Note that the call tracer produces too much data to be useful for solving performance
problems, it is only intended for a specialized form of debugging.

1,225 traces, 0 hidden element
” Telemetries —

0 RMITCP Connection(3)-172.30.32.1 (6 traces) +0ps
java.util.concurrent (1trace) +0ps
l‘:‘l Live Memory G Jjava.util.concurrent. ThreadPoolExecuterSWorker (1trace) +0ps
@ runi) +0ps
. com.ejt.demo.server.handlers (5 traces) +0ps
WG Heep Walker © com.ejt.demo.server.handlers.RmiHandlerlmpl (3 traces) +0ps
(R remoteCperation() +0ps
(R performWork() +0ps
I CRUM: 2w (2 makeHttpCalls() +0ps
G com.gjt.demo.server.handlers.HandlerHelper (2 traces) +0ps
Call Tree : pool-1-thread-1 (19 traces) + 1 ms 609 ps
: RMI TCP Connection(3)-172.30.32.1 (2 traces) + 72 ms 425 ps
SRESpok : pool-1-thread-1 (15 traces) + 73 ms 682 ps
Call Graph ; Servlet request simulator 3 (6 traces) + 83 ms 991 ps
RMAILTED Connar tinn(21.172 2037 1 (A tracas A 2 080 me A4 e

Outlier Detection com.eft.demo.server.handlers.RmiHandlerlmpl.performWork()

z : P com.gjt.deme server.handlers.RmiHandlerlmpl.remoteOperation()
omplexity Analysis java.util.concurrent. ThreadPoolExecutorSWaerker.run()
Call Tracer

JavaScript XHR

The call tracer depends on CPU recording and automatically switches it on if necessary.

Another specialized view that has its own recording is the "Complexity analysis". It only measures
the execution times of selected methods and does not require CPU recording to be enabled. Its
additional data axis is a numeric value for the algorithmic complexity of a method call that you
can calculate with a script. In this way, you can measure how the execution time of a method
depends on its parameters.

30

” Telernetries Complexity recording: (@) sort.Comparison.executeBubbleSort(int[], int) v

Curve fits: Quadratic (R'=0.205) [best fit] b

’!:!' Live Memaory
]
"ﬁ Heap Walker

I CPU Views 15 v

Call Tree

Hot Spots

Time in ms

Call Graph
Outlier Detection
Complexity Analysis

Call Tracer ot

JavaScript XHR 0 1,000 2,000 3,000 4,000 5,000

Complexity

Monitor recording

To analyze why threads are waiting or blocking, the corresponding events have to be recorded.
The rate of such events varies greatly. For a multi-threaded program where threads frequently
coordinate tasks or share common resources, there can be an enormous amount of such events.
This is why such chronological data is not recorded by default.

When you switch on monitor recording, the "Locking history graph" and the "Monitor history"
view will start to show data.

” Telemetries Curentevent: || | ¥ | 3l 27140 [to11.177.027)

Event of interest: no nodes of interest have been marked Recording thresholds: 1.4

‘!:I. Live Memory

o
'ﬁ Heap Walker
Thread-2 [main] --------- | Class bezier BezierAnim§Dema

Monitor Id: &
I CPU Views
= Threads | AWT-EventQueue-0 [main] CIass‘jav_a lang.Object
. Monitor [d: §
r? Monitors & Locks

Current Locking Graph 010 0:20 0:30 0:40 0:50)

Current Monitors
Locking History Graph

Moniter History
mm Event = Eventinvelving nodes of interest ™ Currently displayed event +
To eliminate noise and reduce memory consumption, very short events are not recorded. The
view settings give you the possibility to adjust these thresholds.

[PR TS

31

@ Monitor History Graph View Settings X

Recording Timeline

Recording Threshelds

Monitor blocking threshold: 1,000 | % Hs

Monitor waiting threshold: 100,000 | % ps

All events with a duration that is lower than the configured
threshold will be discarded.

‘Warning: If you lower the thresholds, more data will be
recorded. Please note that the associated memory overhead
grows linearly in time.

Cancel

Probe recording

Probes show higher-level subsystems in the JVM, such as JDBC calls or file operations. By default,
no probes are recorded and you can toggle recording separately for each probe. Some probes
will add very little or no overhead and some will create a considerable amount of data, depending
on what your application is doing and how the probes are configured.

@ Session View Profiling Window Help Demo server - JProfiler - m} X
% Y -3 -~ 3 —_—
@ H 2 2 8 v S 4 2 0 @
Start Save Session Start Stop Change Add View Stop Probe
Comer ™ Snapshot Seings | Recordings Recordings Tracking | "U"°C Bookmark | P Semings = JDBC
l CPU Views G}{Tlme Line E Connections &')) JDBC
JDBC connecticns and execution of statements
= Threads Show Physical connections: | Both open and closed d
EEEEEE RSN RN
n Connections 0:10 0:20 0:30
Menitors & Locks | 1
1 jobc:demo://remote_hast/test(ID 1] I I " i
jdbodemo/fremote_host/test[ID 2] 1 | (N
; Databases jdbodemo:/fremote_host/test[ID 2] mu + H IEEEE .| EEE
jdbodemo:/fremote_host/test[ID 4] [L] o
IDBC jdbo:demo:/fremote_host/test (|0 5] LR 4.- HEE +. L ua
dbc:demo:/remote_host/test (/D & LR LR L
JPA/Hibernate J B i _] | |
jdbo:demo:/fremote_host/test[ID 7] 1 | 11 |]
MengeDB jdbc:demo://remote_host/test[I0 7] II Il
jdbc:dema://remote_host/test[ID 9] HE EEE *. u LR
Tl jdbcdemo//remote_host/test[ID 10] | 1 I
HBase
o JEE & Probes
Friy
{:&" MBeans = |dle ™= Statement execution W Prepared statement execution ™ Batch execi » o kY
T 9 @ 3active recordings &5 Auto-update2 s VM #1 00:28 4 Profiling

Just like allocation recording and method call recording, probe data is cumulated and chronological
information is discarded except for time lines and telemetries. However, most probes also have
an "Events" view that allows you to inspect the single events. This adds a potentially large overhead
and has a separate recording action. The status of that the recording action is persistent, so that
when you toggle probe recording, the associated event recording is toggled as well if you have
switched it on previously.

32

@ Session View Profiling Window Help Demao server - IProfiler - m} X
g +
@ H =2 £ 8P C % 0 @ |5
Start Saye Session Start Stop Change Add Stop Probe Stop | Freezd
Center ™ Snapshot Setfings Recordings Recodings Tracking | " - Bookmark | DFT semn Help JDBC Events | View|
l CPU Views 1 Leaks - Telemetries i Events ¢ _ _ JDBC E
JDBC connections and execution of statements
= Threads Show events: | All types | [Qr -
n Start Time Event Type Duration Connection D Description Thread
1 Menitors & Locks 04,111 [De... C2 Connectic... Qus1 jdbcidemo://rem.. Servlet requ..
0:04,170 SELECT * FROM O...[Servlet regu...
0:04.484 [De.. T3 Connectio... Ops2 Jjdbcdemno://rem... Serviet requ..
; Databases 0:04.502 [D=... =M Prepared st... 193 ms 2 SELECT * FROM O... Servlet requ...
:04.766 [De... .2 Connectio... Ops3 Jjdbc:dema://rem... RMITCP Co...
JDBC 0:04.766 [De... B Ststement ... 917 ms 3 SELECT i.id, i.avail... RMI TCP Co...
0:04.924 [De... ™® Prepared st... 45348 ps 1 INSERT INTO CUS... Servlet requ...
JPA/Hibernate 0:05.017 [De... ™=@ Prepared st... 74209 us 1 INSERT INTO ORD... Servlet requ...
0:03.155 [De... = Prepared st... 58433 us1 INSERT INTO ORD... Servlet requ...
MongoDB 0:05.242 [De... .2 Connectio... Ops4 jdbcdeman//rem... JDBC Job Si...
NS 247 M= mEE Statement Ad? e d SELFCTSUMIA mri INRE Ink Si
Cassandra Total: 9,249 ms
HBase Stack trace:
javax.persistence. TypedQuery.getResultList()

o JEE & Probes com.gjt.demo.server.handlers.RequestHandler.executelpaQuery(javax persistence. EntityManager)
com.ejt.demo server.handlers.RequestHandler.makelpaCall()
com.ejt.demo.server.handlers.RequestHandler.performWork()

Frry

wer MEBeans com.ejt.demo.server.handlers.RequestHandler.run()

*+ 3 @ 3 active recordings @) Auto-update2 s VM #1 00:11 @ Profiling

The JDBC probe has a third recording action for recording JDBC connection leaks. The associated
overhead with looking for connection leaks is only incurred if you are actually trying to investigate
such a problem. Just like the event recording action, the selection state of the leak recording
action is persistent.

@ Session View Profiing Window Help JDBC demao - JProfiler - m} X
b P 1t 2
@ H 2 £ 8 T C % 0 @ |2
Start Saye Session Start Stop Start Add : Stop Probe Stop | Freezd
Center ™ Snapshot Setfings | Recordings Recodings Tracking | " - Bookmark | P semn Help JDBC Leaks | View
Telemetries 1 1., Hot Spots -I‘ Connection Leaks * JDBC E

JDBC connections and execution of statements

. This view shows all virtual connections that have been open for more than 10 seconds. Virtual connections
Live Memory are what you get from connection pooels and block a physical connection until they are closed.

Connections of type "Unclosed collected” are definite leaks while "Unclosed" connections are strong

Heap Walker candidates,
Show virtual connections: | All types | Q- b
CPU Views
Opened At Open Since Type Description Thread Class Mame
|____13.749 ms|___Unclo.. [dbchsgldbihsal//lo..
Threads 0:15.955 [Dec ... 6,211 msm® Unclo... jdbchsgldbthsgl/flo.. peol-1-threa.. com.sun.proxy.S.

Monitors & Locks

Databases Stack trace:

Moo wmmg

javax.sgl.DataSource.getConnection()
JDBC jdbecJdbeTestWorker.call()
jdbcJdbeTestWorker.call()

JPA/fHibernate java.util.concurrent. ThreadPoolExecutorSWerker.run()

MongeDE

L @ 3 active recordings P Auto-update 2 s VM #1 00:23 @ Profiling

Recording profiles

In many situations, you want to start or stop various recordings together with a single click. It
would be impractical to visit all the corresponding views and toggle the recording buttons one

33

by one. This is why JProfiler has recording profiles. Recording profiles can be created by clicking
on the Start Recordings button in the tool bar.

@ Session View Profiling Window Help Demao server - IProfiler - m} X
) - -~ 3 —_— —_—
P @ H 2| 8|8 T C % YT 090 B
Start Saye Session Start Stop Change Add View Shaw Stop
Center " Snapshot Setfings | Recordings |Recordings Tracking | U" - Bookmark | P Setings HEP | egend cpu
1 JDBC and JNDI
' 1] Allocations Aggregation level:
Telemetries - * D Methods h
I " Configure Recording Profiles I
. [l Save Current Recordings As Profile L.demo.server.DemoServerS3.run
-’:’. Live Memory g — e s oes s = o s Javasuul.concurrent. ThreadPoolExecutorSWorker.run
W142%- 438 ms- 1 inv. java.awt.EventDispatchThread.run
W 13%- 137 ms - Tinw. com.gjt.dema.server.gui.GuiDemoServerS151.run
ﬁ Heap Walker
I CPU Views
Call Tree
Hot Spots
Call Graph
Outlier Detection
Complexity Analysis
Call Tracer
JavaScript XHR
— X ~ @
*+ 3 @ 3 active recordings @) Auto-update 5 s VM #1 00:10 @ Profiling

Recording profiles define one particular combination of recordings that can be activated
atomically. JProfiler tries to give you a rough impression on the overhead that you create by the
selected recordings and tries to discourage problematic combinations. In particular, allocation
recording and CPU recording do not go well together because the timings of CPU data will be
distorted significantly by allocation recording.

€ Configure Recording Profiles X

Configured recording profiles:

rﬁ JDBC and JNDI +
g Allocations " x
CPU data Call tracer Complexity data
[Allocation call stacks Monitor recording Custamn probes
Record database probes: [none] -
Record built-in probes: [none] g

Recording overhead:

@ Help “ Cancel

You can activate recording profiles at any time while a session is running. Recording profiles are
not additive, they stop all recordings that are not included in the recording profile. With the Stop
Recordings button you stop all recordings no matter how they have been activated. To check

34

what recordings are currently active, hover the mouse over the recordings label in the status
bar.

m
Call Tree

Hot Spots

Call Graph

The following data is being recorded:
Outlier Det

B crudata
Complexity a JDBC

Call Tracer | wmr JNDI

JavaScript X| You can start and stop recording with view-specific
tool bar buttons or recording profiles.
— @
— k. \/
T W) 3 active recordings {a0] Auto-update 55 VM #1 00:11 4 Profiling

A recording profile can also be activated directly when you start profiling. The "Session startup"
dialog has an Initial recording profile drop-down. By default, no recording profile is selected, but

if you need data from the startup phase of the JVM, this is the place to configure the required
recordings.

€ Session Startup X
Settings

Call tree recording: | Instrumentation, 1 exceptional methed Edit

O For low-overhead CPU profiling, switch to sampling.

Call tree filters: 1 filter rule for method call recording Edit

@ Profiled packages have been defined. If the overhead is too high, make your filters more
specific or switch to sampling.

Trigger settings: Ne active triggers Edit
Database settings: | 5 enabled databases Edit
Probe settings: 11 enabled probes Edit

Startup And Exit

Initial recording profile: | JDBC and JNDI v Configure

JVM exit action: Let the JVM exit and disconnect v | More ~
Performance

Overhead:

The overhead is composed of the selected profiling settings and the selected recording profile,

Recording with triggers

Sometimes you want to start a recording when a particular condition occurs. JProfiler has a

system for defining triggers [p. 119] that execute a list of actions. The available trigger actions
also include changes to the active recordings.

For example, you could want to start a recording only when a particular method is executed. In
that case, you would go to the session settings dialog, activate the Trigger Settings tab and define

a method trigger for that method. For the action configuration, you have a number of different
recording actions available.

35

@ Choose an Action X

Available actions:

Record profiling data

|8} Start recording

@ Step recording

!: Start call tracer

!g Stop call tracer

T& Start monitor recording
’:A' Stop monitor recording
B8 Trigger heap dump

* Mark heap

I Trigger thread dump
Record probe data

f,!, Start probe recording
e Step probe recording
E Start probe tracking

B2 Stop probe tracking
Save snapshots to disk

|k Save snapshot

Description

OK Cancel

The "Start recording" action controls those recordings without any parameters. Usually, when
you stop and re-start a recording, all previously recorded data is cleared. For the "CPU data" and
"Allocation data" recordings, you also have the option to keep the previous data and continue
cumulating across multiple intervals.

@ Trigger Wizard - Method invocation x
1. Trigger type Configure actions for this trigger
2. Specify methods
3. Actions Configured actions:
4, Description =1 "
5. Group ID L.‘ Start recording +
6. Finished Cpu data Reset data x
Allocation data Reset data
Thread data
VM telemetry data

Complexity analysis

4 Back Next P Finish Cancel

Method triggers can be added conveniently in the call tree by using the "Add method trigger"
action in the context menu. If you already have a method trigger in the same session, you can
choose to add a method interception to an existing trigger.

36

Thread status: o Thread selection: Aggregation level:
B Runnable v | @8 All thread groups * (D Methods -

0_ 58.4% - 18,700 ms - 8 inv. java.util.concurrent. ThreadPoclExecutorSWorker.run
Q- 38.7% - 12,181 ms - 7 inv, com.ejt.demo.server.DemaoServerS3.run

@® 12.0% - 3,787 ms - 4 inv. HTTP: /demo/view2

@1 7.3%- 2,295 ms - 2 inv. HTTP: /demoy/view5

Gl 7.3% - 2,287 ms - 3 inv. HTTP: /demo/viewd

@15.0%- 1,577 ms - 2 inv. HTTP: /demo/view3

@ 5.0% - 1,565 ms - 2 inv. HTTP: /demo/view1

=G Show Call Graph ers.JmsHandler.handleMessage
T Show Threads ndlers JmsHandler.performWork
- ndlers. JmsHandler.makeRmiCall
é Add Method Trigger da;dJIErhs}._JImsleandIEr.makthtpCaH
. d 1ol andler.run
[n] @ Add As Exceptional Method msHandler$JmsType. < clinit>
@ =< split Method with a Script nsHandlerSlmsTypevalues
@ Intercept Method With Script Probe questHandler. < clinit> .
[n]) - _ pHandlerS)msType.getDestination
@G : Al sHandlerSimsType.getDuration
1
@ 0 SE Remove Selected Sub-Tree Delete sServerS18].run
W Add Filter From Selection [
@& Show Tree | enend - @

By default, triggers are active when the JVM is started for profiling. There are two ways to disable
triggers at startup: You can disable them individually in the trigger configuration or deselect the
Enable triggers on startup check box in the session startup dialog. During a live session, you can
enable or disable all triggers by choosing Profiling->(Enable | Disable) Triggers from the menu or

clicking on the I trigger recording state icon in the status bar.

wan nacer N MU T RS R e R] N At A L e T 1 e

JavaScript XHR

T @ D @ 3 active recordings (4] Auto-update 5 s

Sometimes, you need to toggle trigger activation for groups of triggers at the same time. This is
possible by assigning the same group ID to the triggers of interest and invoking Profiling->Enable
Triggers Groups from the menu.

Recording with jpcontroller

JProfiler has a command line executable for controlling the recordings in any JVM that is already
being profiled. jpcontroller requires that the JProfiler MBean is published, otherwise it will not
be able to connect to the profiled JVM. This is only the case if the profiling agent has already
received profiling settings. Without profiling settings, the agent would not know what to record
exactly.

One of the following conditions has to apply:

* You have already connected to the JVM with a JProfiler GUI

« The profiled JVM was started with an - agent pat h VM parameter that included both the
nowai t andthe conf i g parameters. In the integration wizards, this corresponds to the Startup
immediately mode and the Apply configuration at startup option in the Config synchronization
step.

+ TheJVM was prepared for profiling with the j penabl e executable and the - of f | i ne parameter
was specified. See the output of j penabl e - hel p for more information.

Specifically, j pcont r ol | er will not work if the profiled JVM was started only with the nowai t
flag. In the integration wizards, the Apply configuration when connecting with the JProfiler GUI option
on the Config synchronization step would configure such a parameter.

37

jpcontroller presents you with a looping multi-level menu for all recordings and their parameters.
You can also save snapshots with it.

=

ingo@ubuntu: ~
ingo@ubuntu:~$ sudo -u tomcats8 jprofilerie/bin/jpcontroller

Connecting to org.apache.catalina.startup.Bootstrap start [6125] ...
Starting JMX management agent ...
Connection established successfully.

Please select an operation:

start recording [1]
Stop recording [2]
Enable triggers [3]
Disable triggers [4]
Heap dump [5]

Thread dump [6]

Add bookmark [7]
Save snapshot [8]
Quit [9]

Programmatic way to start recordings

Yet another way to start recording is through the API. In the profiled VM, you can call the com
jprofiler.api.controller.Controll er classtostartand stop recordings programmatically.
See the chapter on offline profiling [p. 119] for more information and for how to get the artifact
that includes the controller class.

If you want to control recordings in a different JVM, you can access the same MBean in the profiled
JVM that is also used by j pcontrol | er. Setting up programmatic usage of the MBean is
somewhat involved and requires quite a bit of ceremony, so JProfiler ships with an example that
you can reuse. Check the file api / sanpl es/ nbean/ sr c/ MBeanPr ogr anmat i cAccessExanpl e.
j ava. It records CPU data for 5 seconds in another profiled JVM and saves a snapshot to disk.

38

Snapshots

Until now, we have only looked at live sessions where the JProfiler GUI obtains the data from the
profiling agent that is running inside the profiled JVM. JProfiler also supports snapshots where

all profiling data is written to a file. This can be of advantage in several scenarios:

* You record profiling data automatically, for example as part of a test so that connecting with

a JProfiler GUI is not possible.

+ You want to compare profiling data from different profiling sessions or look at older recordings.

* You want to share profiling data with somebody else.

Snapshots include data from all recordings, including heap snapshots. To save disk space,
snapshots are compressed, except for heap walker data which has to remain uncompressed to

allow for direct memory mapping.

Saving and opening snapshots in the JProfiler GUI

When you are profiling a live session, you can create snapshots with the Save Snapshot tool bar
button. JProfiler pulls all profiling data from the remote agent and saves it to a local file with a
".jps" extension. You can save multiple such snapshots during the course of a live session. They

are not opened automatically and you can continue to profile.

@ Session View Profiling Window Help Animated Bezier Curve Demo - JProfiler

 @H(Z2 £ 8 & C % 2 E 00

Start Save | Session Start Stop Start Add View Show
St Run GC Expornt Helj
P | snapshat |Settings | Recordings Recordings Tracking | P cettings =P Legend

Bookmark
” Telemetries
‘!:I- Live Memory

- Hot Snat

Center

1, Hot Spots ! Telemetries Events E Tracker
Thread status: 0

0 All states v

Thread selection:
88 Al thread groups

Saved snapshots are added automatically to the File->Recent Snapshots menu, so you can
conveniently open a snapshot that you have just saved. When opening a snapshot while the live
session is still running, you have a choice of terminating the live session or opening another

JProfiler window.

@

Stop Probe
HTTP Server

Time

The Current Window Is In Use

How do you wish to proceed?
% Open a new window

% Use this window
If you select this option, the currently active profiling session
will be stopped.

Cancel

@ JProfiler X

When you use the snapshot comparison feature in JProfiler, the list of snapshots is populated
with all the the snapshots that you have saved for the current live session. This makes it easy to

compare different use cases.

39

- O x
HTTP Server ?
Incoming HTTP Requests
Aggregation level:
v | (@ Methods

Averane Time

Fvents

I File View Window Help Snapshot Comparison - IProfiler - m} X

Y w Y x
i d | @ B (7]
Memory CPU Telemetry Probe Start - g e
arist arist 2115 Center B Settings =7
Available Snapshots | 2
testl.jps
2021-12-17 10:18:38
test2.jps
2021-12-17 10:18:40
test3.jps @ Please select snapshots on the left and create a comparison

2021-12-17 10:18:42

In general, you can open snapshots by invoking Session->Open Snapshot from the main menu or
by double-clicking the snapshot file in the file manager. JProfiler's IDE integrations also support
opening JProfiler snapshots through the generic Open File actions in the IDEs themselves. In that
case, you get source code navigation into the IDE instead of the built-in source code viewer.

When you open a snapshot, all the recording actions are disabled and only views with recorded
data are available. To discover what kind of data has been recorded, hover the mouse over the
recording label in the status bar.

Call Graph
QOutlier Detection
Complexity Analysis

Call Tracer

JavaScript XHR
Threads
N .
1 Monitors & Locks The following data has been recorded:
B crudata
; Databases a JDBC
9 HTTP Server
o JEE & Probes . . .
Only views related to these recordings are available.
> @
- A4
& 3 recordings Dec 17, 2021, 10:18:37 AM VM #1 00:10 H Snapshot

Profiling short-lived programs

For a live session, all profiling data resides in the process of the profiled JVM. So when the profiled
JVM is terminated, the profiling session in JProfiler is closed as well. To continue profiling when
a JVM exits, you have two options, both of which can be activated in the session startup dialog.

40

@ Session Startup X

Settings

Call tree recording: | Instrumentaticn Edit
O For low-overhead CPU profiling, switch to sampling.

Call tree filters: 1 filter rule for method call recording Edit
@ Profiled packages have been defined. If the overhead is too high, make your filters more

specific or switch to sampling.

Trigger settings: Mo active triggers Edit

Database settings: | 5 enabled databases Edit

Probe settings: 11 enabled probes Edit

Startup And Exit

Initial recording profile: | [no recordings] - Configure
JVM exit action: Let the JVM exit and disconnect Maore ~
Let the JVM exit and disconnect
Performance Keep the VM alive for profiling

Overhead; ==——— Save and immediately open a snapshot

The overhead is composed of the selected profiling settings and the selected recording profile.

* You can prevent the JVM from actually exiting and keep it artificially alive as long as the JProfiler
GUl is connected. This may be undesirable when you are profiling a test case from the IDE
and want to see the status and total time in the test console of the IDE.

* You can askJProfiler to save a snapshot when the JVM terminates and switch to itimmediately.
The snapshot is temporary and will be discarded when you close the session unless you use
the Save Snapshot action first.

Saving snapshots with triggers

The final result of an automated profiling session is always a snapshot or a series of snapshots.
In triggers, you can add a "Save a snapshot" action that saves the snapshot on the machine
where the profiled JVM is running. When the trigger runs during a live session, the snapshot is
also saved on the remote machine and may not include parts of the data that have already been
transmitted to the JProfiler GUI.

There are two basic strategies for saving snapshots with triggers:

+ For test cases, start recording in the "JVM startup" trigger and add a "JVM exit" trigger to save
the snapshot when the JVM is terminated.

+ For exceptional conditions like the "CPU load threshold" trigger or for periodic profiling with
a"Timer trigger", save the snapshot after recording some data with a "Sleep" action in between.

41

@ Trigger Wizard - CPU load threshold X

1. Trigger type Configure actions for this trigger

2. Threshold

3. Actions Configured actions:

4, Description

5. Group ID E Start recording +
6. Finished —: Stecp x

@ Stop recording
H Save snapshot

Snapshot file: test

Add a unique number to the snapshot name

Note: If the JProfiler GUI is connected, the saved snapshot will only have
partial content.

4 Back Next P Finish Cancel

HPROF heap snapshots

In situations where taking a heap snapshot produces too much overhead or consumes too much
memory, you can use the HPROF heap snapshots that the JVM offers as a built-in feature. Because
the profiling agent is not required for this operation, this is interesting for analyzing memory
problems in JVMs that are running in production.

With JProfiler, there are three ways to obtain such snapshots:

+ For live sessions, the JProfiler GUI offers an action in the main menu to trigger an HPROF heap
dump.

© Session View JEIEANEN Window Help Animated Bezier Curve Demo - JProfiler

> @ H £8 Start Recordings » 4+ 9 o %
Stant = save 45 Stop Recordings F8 Epor V" bap oW S Probe
= Snapsl 5 Start Async And Remote Request Tracking ~ Ctrl+F8 5% s Fena R e
m Disable Triggers And Customn Probes F&
' Telermetries Enable Trigger Groups Shift+F6 yents B Tracker o HE::“":: ?
ncaming equests
| = Save HPROF Snapshot Ctrl+Shift5 |
Agagregation level:
‘i:l‘ Live Memary, * Mark Heap v | @ Methods -
{3 Run Garbage Collector Shift+F4
Time Average Time Events

Ly
h Heap Walker| "+ Add Bockmark F3

Edit Bookmarks Shift+F3
I CPU Views Show Global Filters for Method Call Recording

+ JProfiler has a special "Out of memory exception" trigger to save an HPROF snapshot when
an Qut OF Menor yEr r or is thrown. This corresponds to the VM parameter "

- XX: +HeapDunmpOnQut O Menor yEr r or

that is supported by HotSpot JVMs.

M http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

42

http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

@ Trigger Wizard - Out of memory exception X

1. Trigger type Configure actions for this trigger
2. Actions

3. Descriptien Configured actions:

4, Group 1D

. ! create an HPROF/PHD heap dump &
.« FInIshes

4 Back Next P Finish Cancel

The jmap executable in the JDK can be used to extract an HPROF heap dump from a running
JVM.

JProfiler includes the command line tool j pdunp that is more versatile than jmap. It lets you
select a process, can connect to processes running as a service on Windows, has no problems
with mixed 32-bit/64-bit JVMs and auto-numbers HPROF snapshot files. Execute it with the
- hel p option for more information.

JDK Flight Recorder snapshots

The JDK includes the JDK Flight Recorder (JFR) mechanism to capture events regarding method
execution, object allocations, and other important subsystems of the JVM and save them to
snapshots. Production environments may opt for a continuous use of this technology to minimize
overhead and provide data for troubleshooting. JFR snapshots can be recorded and saved with

the jcmd executable in the JDK ® using the commands that start with "JFR.".

With JProfiler, you can open JDK Flight Recorder snapshots to analyze the recorded data. When
opening JFR snapshots, only a fraction of JProfiler's views will be shown in the view selector
corresponding to the types of data that are available from JFR recording.

First, the telemetry section is populated with a subset of JProfiler's telemetries, other telemetries
are shown in the corresponding probe views. The "Memory" telemetry is only populated if heap
statistics are recorded. There are some differences to the default JProfiler telemetries, for example,
"Recorded throughput" shows sizes and not object counts.

Call tree and hot spot views are available, with the limitation that the "Runnable" thread state
does not measure times in JFR, but shows sample counts. The other thread states like "Waiting"
or "Blocking" still measure times. Because of this discrepancy, the "All thread states" mode is
not available in the thread status selector. Also, the non-Runnable thread states are calculated
from events which have a configurable minimum duration threshold that is shown in the thread
status selector. The actual total time of these thread states may be significantly larger.

@ https://docs.oracle.com/en/java/javase/11/tools/jmap.html#GUID-D2340719-82BA-4077-BOF3-2803269B7F41
®) https://docs.oracle.com/en/java/javase/11/tools/jcmd. htmI#GUID-59153599-875E-447D-8D98-0078A5778F05

43

https://docs.oracle.com/en/java/javase/11/tools/jmap.html#GUID-D2340719-82BA-4077-B0F3-2803269B7F41
https://docs.oracle.com/en/java/javase/11/tools/jcmd.html#GUID-59153599-875E-447D-8D98-0078A5778F05

’ Thread status: O Thread selection: Aggregation level:
Telemetries == Runnable v | @8 Allthread groups v | @ Methods -
() 42 6% - 23 evt. java.lang Thread.run
|':'| Memory @mm278%- 15 evt, java.awt.EventDispatchThread.run
B 32,2% - 12 evt. Truncated traces @

. (@1 5.6% - 3 evt. com.jprofiler.core.comm.intemal. BaseAgentCommunication.run
I CPU Views @ 19%-1 evt. java.lang.invoke. DirectMethodHandleSHolder.invokeStatic

Call Tree
Hot Spots

Call Graph

Threads

Menitors & Locks

@ Probes

o

Because JFR works with fixed buffers, long call stacks are truncated. Truncated traces are not
suitable for building an understandable call tree, so these traces are shown below a specially
marked node. With the

- XX: Fl i ght Recor der Opt i ons=st ackdept h=>nnnn<

VM parameter, you can increase the size of the corresponding buffer in JFR and get rid of truncated
traces for your application.

For memory recording, the recorded objects, allocation call tree and allocation hot spots views
show the JFR allocation profiling data. The most important difference is that the recording uses
allocation sampling, but the reported sizes are estimated total sizes. Only recorded objects are
shown, statistics for all objects are not available. If heap statistics are recorded, the "Live objects"
view will show class statistics for objects that are still on the heap after a full garbage collection.
The "Difference" column shows how the numbers have changed between the first and the last
heap statistics. If these times do not coincide with the start and end points of the snapshot
recording, corresponding bookmarks are added in the telemetry views. Only classes with a total
object size above a fixed threshold (usually 1% of the heap) are recorded. By default, this feature
is disabled in JFR because it introduces a substantial overhead.

In the "Monitors & locks" section, only the monitor history and the monitor usage statistics views
are present. In particular, the locking history graph is unavailable, so that the monitor tool tips
in the thread history view link to the monitor usage history view.

Probes are shown for classes, sockets, files and exceptions. Data in these probes is only shown
if the corresponding data recording has been configured for JFR. There is no thread status selector
in the probe call tree and hot spots views and the probe tracker is unavailable.

44

' Telemetries o, Call Tree 1, Hot Spots M Telemetries Events Sockets @
p

1/O cperations for sockets

'.:.' Memory Show events: | Alltypes ¥ Ci- M
Start Time Event Type Duration Throughput Description Thread
— 0:00.110 [Au... 1 bytes|192.168.2.132:50203 [RMI TCP Co...
e 0:00.398 [Read 701 ms 1 bytes 192.168.2.132:50203 RMI TCP Co...
0:01.108 [Read 290 ms 1 bytes 192.166.2.132:50203 RMI TCP Co...
= Threads 0:01.405 [Read 702 ms 1 bytes 192.168.2.132:50203 RMI TCP Co...
—— 0:02.109 [£ Read 292 ms 1 bytes 192.168.2.132:50203 RMI TCP Co...
0:02.403 [£ Read 71 ms 1 bytes 192,168.2,132:50203 RMI TCP Co...
ﬁ Manitors & Lacks 0:03.116 [£ Read 282 ms 1 bytes 192,168.2,132:50203 RMI TCP Co...
1 0:03.400 [£ Read 726 ms 1 bytes 192.168.2.132:30203 RMITCP Co...
0:04.128 [/ Read 266 ms 1 bytes 192.168.2.132:30203 RMITCP Co...
° Frals 0:04.396 [B Read 735 ms 1 bytes 192.168.2.132:50203 RMI TCP Co...
MNS 13374, mm Read RS me 1 hutes 107 1R2 2 132:50203 BRMITOP Cn
Total: 59,130 ms 84 bytes
s Stack trace:
Files Jjava.net.SocketinputStream.read(byte[], int, int, int)
java.net.SocketinputStream read(byte[], int, int)
Sockets L .
java.io BufferedinputStream. fill()
Exceptions Jjavaio BufferedinputStream.read()

iava.io FilterlnoutStream.read(l

When opening very large JFR snapshots, you can speed up snapshot processing and reduce
memory usage by clicking on the "Customize analysis" check box in the file chooser and excluding
the event types that are not required for your analysis. For example, if you are only interested
in CPU data, you can exclude monitor events.

45

Telemetries

One aspect of profiling is monitoring scalar measurements over time, for example the used heap
size. In JProfiler, such graphs are called telemetries. Observing telemetries gives you a better
understanding of the profiled software, allows you to correlate important events over different
measurements and may prompt you to perform a deeper analysis with other views in JProfiler
if you notice unexpected behavior.

Standard telemetries

In the "VM Telemetries" section of the JProfiler Ul, a number of telemetries are recorded by
default. For interactive sessions they are always enabled and you do not have to start or stop
their recording.

To compare multiple telemetries on the same time axis, the overview shows multiple small-scale
telemetries on top of each other with a configurable row height. Clicking on the telemetry title
activates the full telemetry view.

i Q- Filte v
Telemetries

Overview

Memarny Mernory

Recorded Objects

05%
Recorded Throughput
GC Activity
GC Activity

Classes 4,000

0:09.1 [Dec 17, 2021 10:20:22 AM]
B Runnable threads: 0
mm Blocked threads: 0
3 Threads in Net [/0: 6
3 Waiting threads: 8

[Total number of threads: 14

Threads Classes

CPU Load

Custom Telemetries

\

‘ Live Memory o~ I
ﬁ Heap Walker PRI nard ‘A ‘

Row heightt —@ p). .|

Threads

The full view shows a legend with current values and may have more options than what is visible
in the overview. For example, the "Memory" telemetry allows you to select single memory pools.

’ Telernetries Memory pool: | Heap
Heap
Qverview N — G1Eden Space
— G10ld Gen
Ly 2GB 91— L G1 Survivor Space
Non-Heap

Recorded Objects
— CodeHeap 'non-nmethods’
Recorded Throughput 1 — CedeHeap 'nen-profiled nmethods

GC Activity — CodeHeap 'profiled nmethods'
— Compressed Class Space

Classes 1 — Metaspace (non-class)

Threads 1GB
CPU Load

Custom Telemetries

‘ Live Memary
h Heap Walker

B Freesize: 0.93GE W Used size: 0.07 GE ®® Committed size: 1.05GB == ;v p)_ _|

46

Probes also publish telemetries. These telemetries are not included in the "Telemetries" view
section, but are part of the "Telemetries" tab of the corresponding probe. Recording of those
telemetries is coupled to the recording of their parent probe.

Finally, there are "tracking" telemetries that monitor a scalar value that is selected in another
view. For example, the class tracker view allows you to select a class and monitor its instance
count over time. Also, each probe has a "Tracker" view where selected hot spots or control objects
are monitored.

CPU Views . JDBC
l e Bvents B Tracker IDBC connections and execution of statements g
—
= Threads Show: | [Event durations] jdbchsqldb:hsgl//localhost:9012/test 1« |4 (K
A . T EEREERRNE REREERREE REEEERREE prrrrrrra |
3 Monitors & Lacks 10 020 030 040 0:50
A
25
; Databases
JDBC
JPA/Hibernate
MongoDE 0:13.1 [Dec 17, 2021 10:20:26 AM]
s B Statement execution: Os T
Cassandra M Prepared statement execution: 0265
HBase mm Batch execution: 0525
E Total: 0.78s
o JEE & Probes
{‘% MBeans B Statement execution: 0.53s W Prepared statement execution: 0.01s = Batcl» p }_ _|

Bookmarks

JProfiler maintains a list of bookmarks that are shown in all telemetries. In an interactive session,
you can add a bookmark at the current time by clicking on the Add Bookmark tool bar button, or
by using the Add Bookmark Here feature in the context menu.

@ H 2 £ 8 % C|%|t @ O + F

S Save Session Start Stop sae | e boor | VEV e Add Configure
Center P cpzpshor Semings Recordings Recordings Tracking Bookmark PO camings P Tolemewy Telemewizs
......... R R R R
- Telernetries 010 0:20 0:30 0:40 0:50
A
Memery

1
Overview 20
Recorded Objects

Recorded Throughput
GC Activi
ity Im Add Bookmark Here I
Classes Delete Bookmark
10 4+ . ——
Threads Edit Bookmark
[3
CPU Load Graph Type
Zoom 4

Custom Telemetries

1 LS Export View Ctrl+R
-l:l Live Memory
. 4 . WView Seﬁlngs Ctrl+T
ﬁ Heap Walker A

BN Runnablethreads: 0 B Blocked threads: 1 3 Threadsin Netl/0: &8 3 W+ /@)_‘ '|

@ 2 active recordings @D Auto-update2s VM 21 00:39 @ Profiling

47

Bookmarks can not only be created manually, they are added automatically by the recording
actions to indicate the beginning and the end of a particular recording. With trigger actions or
with the controller API, you can add bookmarks programmatically.

Bookmarks have color, a line style and also a name that shows up in the tool tip. You can edit
existing bookmarks and change these properties.

Color:

@ Edit Bookmark

Bockmark Properties

et s o pped IDBC recording
© Default

Custom
Il o000

Draw dashed line

If right-clicking several bookmark in a telemetry is too inconvenient, you can use the Profiling->Edit
Bookmarks action from the menu to get a list of bookmarks. This is also the place where you can

export bookmarks to HTML or CSV.

@ Edit Bookmarks

Avazilable bookmarks:

Time

0:35.593 [Dec 17, 202

0 Help

0:12.993 [Dec 17, 2021 1:41:20 PM]
43 PM]
0:41,363 [Dec 17, 2021 1:41:49 PM)

Bookmark
mm Unnamed bookmark
nn Stopped JDBC recording
mm Unnamed bookmark

Custom telemetries

There are two ways to add your own telemetries: Either you write a script in the JProfiler Ul to
supply a numeric value or you select a numeric MBean attribute.

To add a custom telemetry, click on the Configure Telemetries tool bar button that is visible in the
"Telemetries" section. In a script telemetry, you have access to all classes that are configured in
the classpath of the current JProfiler session. If a value is not available directly, add a static
method to your application that you can call in this script.

48

@ Settings Edit Search Code Help Edit X

N I? = \
= 7
. Show
Undo Redo Copy Cut Paste Find Replace

Test Helg
History Compile P

Line caption: | System Load Average

—= Please enteran expression (no trailing semicelon) or a script (ends with a return statement) that consists
= of regular Java code. The following parameters are available:
JAVA

- com.jprofiler.api.agent.ScriptContext seriptContesct

The expected return type is long

Telemetry script:

1 {long)ManagementFactory.getOperatingSystemMiBean () .getSystemLoadAverage ()

The above example shows a call to a platform MBean. Graphing scalar values of MBeans is more
conveniently done with an MBean telemetry. Here, an MBean browser allows you to select a
suitable attribute. The attribute value must be numeric.

@ Select Numeric MBean Attribute X
v - v
com.jprofiler.api.agent.mbean Mame Value
com.sun.management HeapMemorylsage [java.lang.management.Memorylsage]
javalang committed 1073741824
GarbageCollector [type] init 1073741824
MemoryManager [type] max 17142120448
MemonyPool [type] used 62914560
@ ClassLoading [type] MonHeapMemoryUsage [javalang.management.Memorylsage]
ObjectMame Jjavalang:type=Memaory

@ Compilation [type]

@ Memory [type]

@ OperatingSystem [type]
(] Runtime [type]

& Threading [type]
java.nio

ObjectPendingFinalizatio... 0
Verbose false

Jjava.utillogging

Jjdk.management.jfr

0 Hel Cancel
P

You can bundle several telemetry lines into a single telemetry. That's why the configuration is
splitinto two parts: the telemetry itself and the telemetry line. In the telemetry line, you just edit
the data source and the line caption, in the telemetry you can configure unit, scale and stacking
which apply to all contained lines.

In a stacked telemetry, the single telemetry lines are additive and an area graph can be shown.
The scale factor is useful to convert a value to a supported unit. For example, if the data source
reports kB, the problem is that there is no matching "kB" unit in JProfiler. If you set the scale
factor to -3, the values will be converted to bytes and by choosing "bytes" as the unit for the
telemetry, JProfiler will automatically display the appropriate aggregate unit in the telemetry.

49

@ Conf gure Customn Telemetries X

Heap Memory Usage [bytes] ||
committed [MEBean line java.lang:type=Memory#HeapMemoryUsage/committed]

it LhAD L L o IV ERRPN Y} 1l Lot

@ Edit Telemetry X b 4

Name: Heap Memory Usage
Unit: bytes -

Scale (10%-n): 0T @

Stack all lines in the telemetry and show an area graph

@ Help “ Cancel

@ Help “ Cancel

Custom telemetries are shown at the end of the "Telemetries" section in the order in which they
are configured.

. Telernetries 0:10 0:20 0:30 0:40 0:5(

Overview 2GB
Memary E
Recorded Objects
Recorded Throughput
GC Activity

Classes

168 I

Threads
CPU Load

Heap Memory Usage
’!:!' Live Memary
b Heap Walker

= committed: 0.04 GE wmm init 1.07 GB /@)_ _|

Overhead considerations

At first sight, it would seem that telemetries consume memory linearly with time. However,
JProfiler consolidates older values and makes them progressively more coarse-grained in order
to limit the total amount of memory consumed per telemetry.

The CPU overhead of telemetries is limited by the fact that their values are only polled once per
second. For the standard telemetries, there is no additional overhead for this data collection.
For custom telemetries, the overhead is governed by the underlying script or MBean.

50

CPU Profiling

When JProfiler measures the execution times of method calls together with their call stacks, we
call it "CPU profiling". This data is presented in a variety of ways. Depending on the problem you
are trying to solve, one or the other presentation will be most helpful. CPU data is not recorded
by default, you have to switch on CPU recording [p. 26] to capture interesting use cases.

Call tree

Keeping track of all method calls and their call stacks would consume a considerable amount of
memory and could only be kept up for a short time until all memory is exhausted. Also, it is not
easy to intuitively grasp the number of method calls in a busy JVM. Usually, that number is so
great that locating and following traces is impossible.

Another aspect is that many performance problems only become clear if the collected data is
aggregated. In that way, you can tell how important method calls are with respect to the entire
activity in a certain time period. With single traces, you have no notion of the relative importance
of the data that you are looking at.

This is why JProfiler builds a cumulated tree of all observed call stacks, annotated with the
observed timings and invocation counts. The chronological aspect is eliminated and only the
total numbers are kept. Each node in the tree represents one call stack that was observed at
least once. Nodes have children that represent all the outgoing calls that were seen at that call
stack.

A A:7 ms

A
é i é é i: C:1ms
¢ B:6ms
C D
C:3ms
2ms 1Tms 3ms Tms
D:1ms
method invocations with call stacks call tree

The call tree is the first view in the "CPU views" section, and it's a good starting point when you
start CPU profiling, because the top-down view that follows method calls from the starting points
to the most granular end points is most easily understood. JProfiler sorts children by their total
time, so you can open the tree depth-first to analyze the part of the tree that has the greatest
performance impact.

51

” Thread status: o Thread selection: Aggregation level:
Telemetri
lemetries B Runnzble 88 2l thread groups v | (@ Methods -

() 50,3% - 739 ms - 5 inv. org.hsqldb.server.ServerConnection.run
":’. Live Memaory () w— 60,25 - 787 ms - 149 inv. org.hsqldb.server.ServerConnection.receiveResult
(D) m 46,5% - 609 ms - 149 inv. org.hsqldb.Session.execute
] (D) . 38.3% - 370 ms - 30 inv. org.hsgldb. Session.executeDirectStatement
'ﬁ Heap Walker @®12.5%- 163 ms - 60 inv. org.hsqldb.Session.executeCompiledStaternent
(@1 3.7% - 48,393 ps - 45 inv. org.hsgldb.StatementManager.compile
@ 1.6% - 21,092 ps - 14 inv. org.hsgldb.Session.executeCompiledBatchStaternent
I CPU Views @ 0.2% - 2,491 ps - 144 inv. org.hsqldb Session.performPostExecute
@ 0.1% - 835 ps - 45 inv. org.hsgldb.result.Result.newPrepareResponse
Call Tree @ 0.0% - 237 ps - 144 inv. org.hsqldb.lib.java JavaSystemn.gc
@ 0.0% - 207 us - 15 inv. org.hsgldb.SessionData.setResultSetProperties
Hot Spots @ 0.0% - 77 ps - 75 inv. org.hsqldb Statement.getType
@ 0.0% - 25 ps - 60 inv. org.hsqldb.result.Result.getUpdateCount

Call Graph u 12.:7_% - 139 ms - 144 inv, erg.hsgldb.result.Resultwrite

]
@ 1.0%- 13,432 ps - 144 inv. org.hsqldb.result.Result.newResult
Outlier Detection @ 0.1% - 1,124 ps - 14 inv. org.hsqldb.rowio.RowlnputBinary.resetRow
@ 0.1% - 1,074 ps - 144 inv. org.hsqldb.result.Result.readLobResults
Complexity Analysis @ 0.0% - 5396 ps - 144 inv. org.hsqldb.rowic.RowOutputBinary.reset
(@ 0.0% - 348 ps - 144 inv. org.hsqldb.server.Server.printRequest
Call Tracer @ 0.0% -85 ps - 144 inv. org.hsgldb.result Result.getType
@ 0.1% - 906 ps - 144 inv. java.io.DatalnputStream.readByte
JavaScript XHR m- 38.7% - 519 ms - 5 inv. java.util.concurrent. ThreadPoolExecutorSWorker.run
— >~ @

While all measurements are performed for methods, JProfiler allows you to take a broader
perspective by aggregating the call tree on the class or package level. The aggregation level
selector also contains a "JEE/Spring components" mode. If your application uses JEE or Spring,
you can use this mode to see only JEE and Spring components on a class level. Splitting nodes
like URLs are retained in all aggregation levels.

Thread status: 0 Thread selection: Aggregation level:
I CPU Views mm Runnable | 88 All thread groups hd Packages
Call Tree I 70.6% - 2,865 ms - 6 inv. org.hsqldb.server @ Methods
) w5733 - 2,324 ms - 658 inv. org.hsgldb © Classes
Hot Spots] &4%-}339 ms - 374,573 in.v‘ org.hsqldhb.lib Packages
|r2.9°fo 7011? ms - 51,516 inv. o.rg.h.sqldb.map } Java EE/Spring
Call Graph 0.4% - 17,971 ps - 16,970 inv. java.lang
D 0.0%- 1,296 ps - 4,725 inv. org.hsqldb

Qutlier Detection T 0.9 - 4859 ps - 9,004 inv. java.util

D 02%- 10,085 ps - 10,838 inv. java.lang
Complexity Analysis L 0.0% - 716 ps - 2,799 inv. org.hsqldb

0 0.0%- 1,637 ps - 1,076 inv. java.lang.reflect
Call Tracer) 0.0%- 651 ps- 526 inv. java.util.concurrent.locks

14,8% - 196 ms - 16,348 inv. org.hsqldb.persist
JavaScript XHR 12,8% - 113 ms - 54,706 inv. org.hsqldb.lib

D o0.8%- 31,821 ps - 54,704 inv. java.util.concurrent.locks
— 0.2% - 9.528 us - 27.352 inv. ora.hsaldb.map

Call tree filters

If methods from all classes are shown in the call tree, the tree is usually too deep to be
manageable. If your application is called by a framework, the top of the call tree will consist of
framework classes that you don't care about and your own classes will be deeply buried. Calls
into libraries will show their internal structure, possibly with hundreds of levels of method calls
that you are not familiar with and not in a position to influence.

The solution to this problem is to apply filters to the call tree, so that only some classes are
recorded. As a positive side-effect, less data has to be collected and less classes have to be
instrumented, so the overhead is reduced.

By default, profiling sessions are configured with a list of excluded packages from commonly
used frameworks and libraries.

52

@ Session Settings X

X Filters define which classes are recorded for CPU profiling. (2]
Application Settings

o All metheds of profiled packages are shown in the call tree. Start the filter list with this type to
profile selected packages only.

E= Call Tree Recording The first call from a profiled class into a compact class is shown in the call tree, but further calls
inte compact classes are not measured separately.

Y Call Tree Filters ® Ignored packages or classes are not profiled at all.

Type Class or Package

o
Define Filters ™= Default excludes] x

Compact $Proxy
Compact §java. 0
Compact Sjavax.

Ignored metheds

| Trigger Settings
Compact AOPContainerProxy$

Compact COM.cloudscape.
Database Settings

Compact COM.chjectspace.

Compact COM.rsa.

o Probe Settings Compact EDU.oswego. [
Compact GregerSamsa
@-“ Advanced Settings Compact _

Compact allairejrun

Note: It is recommended to select the profiled packages instead of profiling everything except a list of
packages.

Show Filter Tree

General Settings Copy Settings From “ Cancel

Of course this list is incomplete so it's much better that you delete it and define the packages of
interest yourself. In fact, the combination of instrumentation [p. 64] and the default filters is so
undesirable, that JProfiler suggests to change it in the session startup dialog.

@ Session Startup X

Settings
Call tree recording: | Instrumentation, 1 exceptional method Edit

o For low-overhead CPU profiling, switch to sampling.

Call tree filters: 1 filter rule for method call recording Edit
1. Fhe configured exclusive filters may be too broad. In that case, the overhead of
nstrumentation may be very high, and CPU times will be distorted. Please define profiled
ackages or switch to sampling.
Trigger settings: No active triggers Edit
Database settings: | 4 enabled databases Edit
Probe settings: 11 enabled probes Edit

Startup And Exit

Initial recording profile: | JDBC and JNDI v Configure

JVM exit action: Let the JVM exit and disconnect ¥ | More ~
Performance

Overhead:

The overhead is composed of the selected profiling settings and the selected recording profile,

The filter expressions are compared against the fully qualified class name, so com nycor p.
matches classes in all nested packages, like com nycor p. nyapp. Appl i cati on. There are three
types of filters, called "profiled", "compact" and "ignored". All methods in "profiled" classes are
measured. This is what you need for your own code.

In a class that is contained by a "compact” filter, only the first call into that class is measured,
but no further internal calls are shown. "Compact" is what you want for libraries, including the

53

JRE. For example, when calling hashMap. put (a, b) you probably want to see HashMap. put ()
in the call tree, but not more than that - its inner workings should be treated as opaque unless
you are the developer of the map implementation.

Finally, "ignored" methods are not profiled at all. They may be undesirable to instrument due to
overhead considerations or they may simply be distracting in the call tree, such as internal Groovy
methods that are inserted between dynamic calls.

Entering packages manually is error prone, so you can use the package browser. Before you
start the session, the package browser can only show you packages in the configured class path
which often does not cover all the classes that are actually loaded. At runtime, the package
browser will show you all loaded classes.

@ Select Filters >

Packages of loaded classes that can be instrumented:

com (126 classes)
javax (223 classes)
jdbe (17 classes)
org (721 classes)
apache (23 classes)
Jjuli {4 classes)
tomcat (19 classes)
jdbc (19 classes)
hsqldhb (698 classes)
sun (672 classes)

Filter type: o Profiled Compact Ignored

You have selected a total of 19 classes

The configured list of filters is evaluated from top to bottom for each class. At each stage, the
current filter type may change if there is a match. It's important what kind of filter starts off the
list of filters. If you start with a "profiled" filter, the initial filter type of a class is "compact", meaning
that only explicit matches are profiled.

a.A ab.B ab.cC d.D

(@ abcr | ‘ . @ profiled

; : l compact

"""""""""""""""""""" \4 \4 —> match
Result: @

If you start it with a "compact" filter, the initial filter type of a class is "profiled". In this case, all
classes are profiled except for explicitly excluded classes.

54

a.A a.b.B ab.cC d.D
------ » Default: @ V) V) V)

@ ' a.* —> >

@D\ @ abx —9—9

Qv abcr } > @ profiled

: : compact

''''''''''''''''''''''''''''''' Y v y v tch
Result & & ~7 matc

Call tree times

To interpret the call tree correctly, it's important to understand the numbers that are displayed
on the call tree nodes. There are two times that are interesting for any node, the total time and
the self time. The self time is the total time of the node minus the total time in the nested nodes.

Usually, the self time is small, except for compact-filtered classes. Most often, a compact-filtered
class is a leaf node and the total time is equal to the self time because there are no child nodes.
Sometimes, a compact-filtered class will invoke a profiled class, for example via a callback or
because it's the entry point of the call tree, like the r un method of the current thread. In that
case, some unprofiled methods have consumed time, but are not shown in the call tree. That
time bubbles up to the first available ancestor node in the call tree and contributes to the self
time of the compact-filtered class.

actual call sequence filtered call sequence

—

[Q A: self time 1 ms

[B: self time 2 ms J

_________________ S v
' X:selftime3ms | [B: self time 6 ms J
R A .
: Y:selftime1ms |
. > elme o & profiled
compact

[Q C: self time 3 ms J:

The percentage bar in the call tree shows the total time, but the self time portion is shown with
a different color. Methods are shown without their signatures unless two methods on the same
level are overloaded. There are various ways to customize the display of the call tree nodes in

55

the view settings dialog. For example, you may want to show self times or average times as text,
always show method signatures or change the used time scale. Also, the percentage calculation
can be based on the parent time instead of the time for the entire call tree.

© Call Tree View Settings

MNode Description
Show percentage bar (7]
Show time
Show self tirne
Show invecation count
Show average times in brackets (7]
Always show fully qualified names (7]
Always show signature (7]
Shorten packages (7]

Time Scale

OAutomatlc 0 Mixed units 5 ms us
Display Threshold
Hide calls with less than 0.01 % o

Percentage Calculation

Relative ﬂ QAbso\ute 0

Thread status

At the top of the call tree there are several view parameters that change the type and scope of
the displayed profiling data. By default, all threads are cumulated. JProfiler maintains CPU data
on a per-thread basis and you can show single threads or thread groups.

I CPU Views

Thread selection:
88 Al thread groups

(D) m—60.0% - | B8 Al thread groups

Thread status: o

== Runnzble

Aggregation level:
(@ Methods -

Call Tree

m- 30.9% - 994 HSQLDE Connections @23f7d05d -
Hot Spots (@ 309%- ¢ HSCOLDE Connection @224f1463
" (O mm 3093 HSCQLDE Connection @33ac4d2c
Call Graph Dm7. HSCOLDB Connection @3ad15442 1
(mLE HSOLDE Connection @4ab770fe ment
Outlier Detection g HSQLDB Connection @538b4ff4
atement.execute
[PR m . man nant

At all times, each thread has an associated thread status. If the thread is ready to process bytecode
instructions or is currently executing them on a CPU core, the thread status is called "Runnable”.
That thread state is of interest when looking for performance bottlenecks, so it is selected by
default.

Alternatively, a thread may be waiting on a monitor, for example by calling Obj ect . wai t () or
Thr ead. sl eep() in which case the thread state is called "Waiting". A thread that is blocked
while trying to acquire a monitor, such as at the boundary of a synchr oni zed code block is in
the "Blocking" state.

Finally, JProfiler adds a synthetic "Net I/0O" state that keeps track of the times when a thread is
waiting for network data. This is important for analyzing servers and database drivers, because
that time can be relevant for performance analysis, such as for investigating slow SQL queries.

56

Thread status: o Thread selection: Aggregation level:
I CPU Views == Runnable 88 Al thread groups v | (D Methods v

Call Tree 0 Al states 2,377 ms - 5 inv. org.hsqldb.server.ServerConnection.run
mﬁ ms - 5 inv. java.util.concurrent. ThreadPoolExecutorSWorker.run

Hot Spots =3 Waiting 1,035 ms - 5 inv. jdbcJdbcTestWerker.call

= Blocked % - 1,035 ms - 3 inv. jdbc JdbcTestWorker.call
Call Graph eke 7.3% - 599 ms - 30 inv. jdbcJdbcTestWorker.testStatementsPath1

3 Net /O 9.4% - 321 ms - 30 inv. jdbc.JdbcTestWorker.testPreparedStatement
Outlier Detection W152%- 177 ms - 30 inv. java.sql.PreparedStatement.execute

@15.2%- 176 ms - 30inv. org.hsqldb,jdbc.JDBCPreparedStatement.execute

[PR 12290 078 245 e - 0N ime i3 ol Cannartion nranarsSratemant

If you are interested in wall-clock times, you have to select the thread status "All states" and also
select a single thread. Only then can you compare times with durations that you have calculated
with calls to System current Ti meM | | i s() in your code.

If you want to shift selected methods to a different thread status, you can do so with a method
trigger and an "Override thread status" trigger action, or by using the Thr eadSt at us class in
the embedded [p. 154] or injected [p. 149] probe APIs.

Finding nodes in the call tree

There are two ways to search for text in the call tree. First, there is the quicksearch option that
is activated by invoking View->Find from the menu or by directly starting to type into the call tree.
Matches will be highlighted and search options are available after pressing PageDown. With the
Ar r owp and Ar r owDown keys you can cycle through the different matches.

hread status: & Thread selartinn: Aggregation level:
' Telemetries

Search for: JTW ~
Method
Match case UseCame\Humps (7] ML = -

O B B el e
-':' Live Memory @ 00%-11us- 25.» inv. org.hsqldb.result.Result.getGeneratedResultType
’ @ 0.0% - 6 ps - 25 inv. org.hsqldb.result.Result.getGeneratedResultMetaData

@m12.5% - 163 ms - 60 inv. org.hsqldb.Session.executeCompiledStatement

J Heap Walk @13.7% - 48,393 s - 45 inv. org.hsgldb StatementManager.compile

WG Hep Walker @ 1.6%- 21,092 ps - 14 inv. org-hsgldb.Session executeCompiledBatchStatement
@ 0.2% - 2,491 ps - 144 inv, org.hsqldb.Session.performPostExecute
@ 0.1% - 885 s - 45 inv. org.hsqldb result.Result.newPrepareResponse

CRUM e @ 0.0% - 237 us - 144 inv. org.hsgldb.lib java.JavaSystem.gc
@ 0.0%- 207 us- 15inv. org.hsqldb SessionData.setResultSetProperties
Call Tree @ 00%- 77 ps - T3 inv. org.hsqldb.Statement.getType

@ 0.0% - 25 ps - 60 inv. org.hsgldb.result.Result.getUpdateCount

Hot Spots B 12.2% - 159 ms - 144 inv. org.hsqldb.result.Result.write
0% - 13,432 ps - 144 inv. org.hsqldb.result.Result.newResult
Call Graph 1% - 1,124 ps - 144 inv. org.hsgldb.rowio.RowlnputBinary.resetRow

1.0
0.1
0.1% - 1,074 ps - 144 inv, org.hsqldb.result.Result.readLobResults
Outlier Detection 0.0% - 596 ps - 144 inv. org.hsgldb.rowio.RowOutputBinary.reset
0.0% - 348 ps - 144 inv. org.hsqldb.server.Server. printRequest
0.0

Complexity Analysis .0% - 85 s - 144 inv. org.hsqldb result.Result.getType

@ 0.1% - 906 ps - 144 inv. java.io.DatalnputStream.readByte
Call Tracer M 35.7% - 519 ms - 5 inw. java.util.concurrent. ThreadP oolExecutorSWorker.run
JavaScript XHR
f— > @

Another way to search for methods, classes or packages is to use the view filter at the bottom
of the call tree. Here you can enter a comma-separated list of filter expressions. Filter expressions
that start with a "-" are like ignored filters. Expression that start with a "!" are like compact filters.
All other expressions are like profiled filters. Just like for the filter settings, the initial filter type
determines if classes are included or excluded by default.

Clicking on the icon to the left of the view settings text field shows the view filter options. By
default, the matching mode is "Contains", but "Starts with" may be more appropriate when
searching for particular packages.

57

. Thread status: o Thread selection: Aggregation level:
Telemetri
lemetries B Runnzble 88 2l thread groups v | (@ Methods -

m— 100.0% - 859 ms - 5 inv. java.util.concurrent. ThreadPoelExecuterSWorker.run
,’:’, ErE Mehony () m—100.0% - 859 ms - 5 inv. jdbeJdbcTestWorker.call
0— 100.0% - 859 ms - 5 inv. jdbc.)JdbcTestWorker.call
() m— 5347 - 502 ms - 24 inv. jdbe.JdbeTestWorker.testStatementsPath1
b Heap Walker (@) == 35,0% - 300 ms - 21 inv, jdbcJdbcTestWorker.testPreparedStatement
M 20.4% - 173 ms - 21 inv, java.sql.PreparedStatement.execute
M IDEC calls Show in probe call tree
I CPU Views 0 2.2% - 70,611 ps - 63 inv. java.sql.Connection.prepareStatement
1 4.0% - 34,324 ps - 42 inv. java.sgl.PreparedStatement.executeQuery

Call Tree @ JDEC calls Show in probe call tree
U 1.0% - 8,993 ps - 20 inv. java.sql.PreparedStatement.executeBatch
Hot Spots @ IDEC calls Show in probe call tree
© 1.0%-8561 s - 20 inv. java.sql.PreparedStatement.executelpdate
Call Graph ﬁJDBC calls Show in probe call tree
U 0.1% - 1,280 ps - 20 inv. java.sql.PreparedStatement.addBatch
Outlier Detection D 0.1%-1,199 ps - 124 imv. java.sql.PreparedStatement.setString
0- 23.4% - 200 ms - 24 inv., jdbe)dbcTestWorker.testStatement
Complexity Analysis @ W 17.4% - 148 ms - 35 inv. java.sql.Statement.executeQuery
@ JDBC calls Show in probe call tree
Call Tracer n 0.1% - 563 us - 19 inv. java.sgl.Connection.createStatement
@ 0.0% - 136 ps - 21 inv. java.sql.Statement.close
JavaScript XHR () m 40,7% - 349 ms - 20 inv. jdbc.JdbcTestWorker.testStatementsPath2
— L~ -org.hsgldb h Io
Flame graphs

Another way to view the call tree is as a flame graph. You can show the entire call tree or a portion
of it as a flame graph by invoking the associated call tree analysis [p. 176].

£ £ T % L &% 0 B O < B8

Start Stop Start dd View Show Stop | she
Recordings Recordings Trscking " OC Bookmark PO Semtings B cpend cpu Back Fomward | oopn [AnabEE
| Show Flame Graph Crl+-Alt+F |

Thread status: 0 Thread selection:

Chrl+Alt+ rel:
B Runnable = 88 Allthread groups

Crl+ Ak+G -
0_ 70.8% - 3,074 ms - 5 inv. org.hsqldb.server.ServerConnectiol - o e S
) == 29,0% - 1,234 ms - 5 inv. java.util.concurrent. ThreadPoolExcecute Inline Async Executions Ctrl+Alt+E
@ 0.1%- 5,523 ps - 1inv. org.hsqldb.lib.HsqTimerSTaskRunner.run
0 0.0% - 1,708 ps - 1 inv. org.hsqldb.server.ServerSServerThread.run
L7

A flame graph shows the entire content of a call tree in one image. Calls originate at the bottom
of the flame graph and propagate towards the top. The children of each node are arranged in
the row directly above it. Child nodes are sorted alphabetically and are centered on their parent
node. Due to the self-time that is spent in each node, the "flames" get progressively more narrow
toward the top. More information about nodes is displayed in the tool tip where you can mark
text to copy it to the clipboard.

58

” Telernetries Showing 8,020 nodes in 44 rows at 00:30 @ D Reload analysis x & &

Thread status: Thread selection: Aggregation level:
’!:!' Live Memaory == Runnable 88 Allthread groups @ Methods
s mi I
"ﬁ Heap Walker | [l
1 i n
_ || 1B | o] |
CPU Views 1110 |EX | o.hsqldb.ExpressionLogid] |
110 B2 | o.hsqldb.Expression.testC |
4 Call Tree I 0. |
1IN (I 1 |
Flame Graph | [
Hot Spots org.hsqldb,jdbc.
JDBECPreparedStatement
Call Graph fetchResult()
Outlier Detection This Invocation Sub-Tree & All Invocations)
Complexity Analysis Total 49,566 ps 48,566 ps 295 ms
Self 892 ps %92 ps 3,388 ps
Call Tracer Calls 20 20 200
JavaScript XHR p

Flame graphs have a very high information density, so it may be necessary to narrow the displayed
content by focusing on selected nodes and their hierarchy of descendant nodes. While you can
zoom in on areas of interest, you can also set a new root node by double-clicking on it or by
using the context menu. When changing roots multiple times in a row, you can move back again
in the history of roots.

Another way to analyze flame graphs is to add colorizations based on class names, package
names or arbitrary search terms. Colorizations can be added from the context menu and can
be managed in the colorizations dialog. The first matching colorization is used for each node. In
addition to colorizations, you can use the quick search functionality to find nodes of interest.
With the cursor keys you can cycle through match results while the tooltip is being displayed for
the currently highlighted match.

@ Manage Colorizations x

W org.hsgldb.server. [match mode "Starts with”, case sensitive] +
== org.hsgldb.Expression [match mode "Starts with", case sensitive]

Colorization actions based on the text of the selected node are available in the context

menu of the flame graph.

Hot spots

If your application is running too slowly, you want to find the methods that take most of the
time. With the call tree, it is sometimes possible to find these methods directly, but often that
does not work because the call tree can be broad with a huge number of leaf nodes.

In that case, you need the inverse of the call tree: A list of all methods sorted by their total self
time, cumulated from all different call stacks and with back traces that show how the methods
were called. In a hot spot tree, the leafs are the entry points, like the mai n method of the
application or the r un method of a thread. From the deepest nodes in the hot spot tree, the call
propagates upward to the top-level node.

59

Thread status: o Thread selection: Aggregation level: Hot spot options:

” Telemetries

== Runnable v | @8 Allthread groups ¥ || (@ Methods v Self times v
"j Ty Hot Spot Self Time Average Time Invocations
i’l fve Memory & java.sql.Statement.execute... [N 32,201 us (25 %) 720 s 53

GD- 25.8% - 38,201 ps - 53 hot spot inv. jdbcJdbcTestWorker.testStatement
8% - 21, ps - ot spot inv. c.JdbcTestWorker.testStatementsPatl
@™ 14.8% - 21,920 28 hot spot inv. jdbecJdbcTestWork: 5 Path1
8% - 21, Hs - ot spot inv, JdbcJdbcTestWorker.ca
@m14.8% - 21,920 28h dbc.JdbcTestWork Il
(@™ 14,3% - 21,920 ps - 28 hot spot inv, jdbecJdbcTestWorker.call
@ W 14.8% - 21,920 ps - 28 hot spot inv. java.util.concurrent. ThreadPoolExecutorSWork
0% - 16, Ms - ot spot inv. jdbc. cTestWorker testStatementsP atl
@n11.0% - 16,281 25h dbc.JdbcTestWork S Path2
0% - 16, Hs - ot spot inv. jdbc.)dbcTestWorker.cal
@m11.0% - 16,281 25h jdbc)dbcTestWork Il
@8 11.0%- 16,281 ps - 25 hot spot inv. jdbcJdbc TestWorker. call

b
"ﬁ Heap Walker

I CPU Views

Call Tree
@ B 11.0% - 16,281 ps - 25 hot spot inv. java.util.concurrent. ThreadPoolExecutorSWork
Hot Spots &, java.sql.Connection.prepar... [N 22,288 s (19 %) 377 ps 75
L. java.sql.PreparedStaternen... I 22,374 ps (15 %) M7 s 50
Call Graph i, java.sgl.PreparedStatemen... Il 11,805 ps (7 %) 472 us 25
&, javax.sql.DataSource.getC... [l 10,763 ps (7 %) 768 ps 14
Outlier Detection i java.sql.PreparedStatemen... Il 10,056 ps (6 %) 402 s 25
i java.cql PreparedStatemen... Il 9,455 ps (6 %) 378 s 25
Complexity Analysis &, jdbcJdbcTestWorker testP... W 4,993 ps (3 %) 189 us 25
% java.sql.Connection.create... [4,504 ps (3 %) 187 ps 24
Call Tracer i java.sgl.Connection.close | 2,205 ps (1 %) 157 ps 14
% jdbc)dbcTestWorker.testSt... | 1,755 ps {1 %) 117 ps 15
JavaScript XHR
— @

The invocation counts and execution times in the backtraces do not refer to the method nodes,
but rather to the number of times that the top-level hot spot node was called along this path.
This is important to understand: At a cursory glance, you would expect the information on a
node to quantify calls to that node. However, in a hot spot tree, that information shows the
contribution of the node to the top-level node. So you have to read the numbers like this: Along
this inverted call stack, the top-level hot spot was called n times with a total duration of t seconds.

Call Tree Hot spots
Method A Method C
Count5 Count 4
_--X
,—""'—(’,\00,'1
S/ f
Method C & Method A
Count 3 ," Count 3
> backtraces
Method B }” | Method B
Count 2 " hot spot »Z____..|.count1
+ invocation
) counts
Method C
Count 1

By default, the hot spots are calculated from self time. You can also calculate them from total
time. This is not very useful for analyzing performance bottlenecks, but can be interesting if you
would like to see a list of all methods. The hot spot view only shows a maximum number of
methods to reduce overhead, so a method you are looking for may not by displayed at all. In
that case, use the view filters at the bottom to filter the package or the class. Contrary to the call
tree, the hot spot view filters only filter the top-level nodes. The cutoff in the hot spot view is not

60

applied globally, but with respect to the displayed classes, so new nodes may appear after
applying a filter.

Thread status: o Thread selection: Agagregation level: Hot spot options:
” Telemetries
== Runnable v | @8 Allthread groups ¥ || (@ Methods v Self times

Hot Spot Self Tirne Time calculation:
i’:’l ety & java.sql.Statement.execute... [N 32,201 us (25 %) o Self times
(@)™ 25.8% - 38,201 ps - 53 hot spot inv, jdbc.)dbecTestWorker.t)
. (@™ 14.8% - 21,920 ps - 28 hot spot inv. jdbc JdbcTestWorks
W Hep Walker (@)m 14.8% - 21,920 ps - 28 hot spet inv. jdbcJdbeTestwy Unprofiled classes:
(@™ 14,3% - 21,920 ps - 28 hot spot inv, jdbecJdbcTes) o Show separately
X) m 14.8% - 21,920 ps - 28 hot spot inv. java.util.c
I CPU Views @ " 11.0% - 16,281 ps - 25 hot spot inv. jdbe.JdbeTestWorke| | Add to calling profiled class
(@ " 11.0%- 16,281 ps - 25 hot spot inv. jdbec.JdbcTestWorker.can

Call Tree @ " 11.0% - 16,281 ps - 25 hot spot inv. jdbc.JdbcTestWorker. call

@ B 11.0% - 16,281 ps - 25 hot spot inv. java.util.concurrent. ThreadPoolExecutorSWork

_ B e el e e . BN N0 AR .. 0 05 - =

Total times

Q0 ©9

Hot spots and filters

The notion of a hot spot is not absolute but depends on the call tree filters. If you have no call
tree filters at all, the biggest hot spots will most likely always be methods in the core classes of
the JRE, like string manipulation, I/0 routines or collection operations. Such hot spots would not
be very useful, because you often don't directly control the invocations of these methods and
also have no way of speeding them up.

In order to be useful to you, a hot spot must either be a method in your own classes or a method
in a library class that you call directly. In terms of the call tree filters, your own classes are in
"profiled" filters and the library classes are in "compact" filters.

When solving performance problems, you may want to eliminate the library layer and only look
at your own classes. You can quickly switch to that perspective in the call tree by selecting the
Add to calling profiled class radio button in the hot spot options popup.

Thread status: 0 Thread selection: Agagregation level: Hot spot options:
' Telemetries
B Runnable - @ All thread groups ~ @ Methods A Self times

Hot Spot Self Time Time calculation:
‘i:! Live Memaory . . .
] i java.cgl.Statement.execute.., | NN 32,201 s (25 %) o Self times ﬂ
(@)™ 258% - 33,201 ps - 53 hot spot inv. jdbc JdbcTestWorker.t 7}
2 H Walk @l 14.8% - 21,920 ps - 28 hot spot inv, jdbcJdbcTestWorke
ﬁ eap Walker (@)= 14,8% - 21,920 ps - 28 hot spot inv. jdbcJdbcTestWyq Unprofiled classes:
(7]
e

Total times

(@® 14.3% - 21,920 ps - 28 hot spot inv. jdbc JdbcTes| o Show separately
X @ W 14.8% - 21,920 s - 28 hot spot inv. java.util.
I CPU Views @ " 11.0% - 16,281 ps - 25 hot spot inv. jdbe.JdbeTestWorke| | Add to calling profiled class
@8 11.0%- 16,281 ps - 25 hot spot inv. jdbcJdbcTestWorker.can
Call Tree @® 11.0% - 16,281 ps - 25 hot spot inv. jdbc)dbcTestWorker.call
@ B 11.0% - 16,281 ps - 25 hot spot inv. java.util.concurrent. ThreadPoolExecutorSWork

_ FIE S P ST — R R LT T -

Call graph

Both in the call tree as well in the hot spots view each node can occur multiple times, especially
when calls are made recursively. In some situations you are interested in a method-centric
statistics where each method only occurs once and all incoming and outgoing calls are visible.
Such a view is best displayed as a graph and in JProfiler, it is called the call graph.

61

” Telemetries Thread status: Thread selection: Aggregation level:

B Runnable | @8 All thread groups @ Methods
’!:!' Live Memaory
]
'ﬁ Heap Walker
I CPU Views
& = jdbe.d
Call Tree e tes
A Testworksr dbe JdbeTestWorker / AT Iy
Hot Spots [A o 1
all nentsPath2
A 1 us self, & inv 108 ms, 1,802 us self, 25 inv. -
Call Graph ~4 5
yol
Outlier Detection
Complexity Analysis
Call Tracer 2
JavaScript XHR

One drawback of graphs is that their visual density is lower than that of trees. This is why JProfiler
abbreviates package names by default and hides outgoing calls with less than 1% of the total
time by default. As long as the node has an outgoing expansion icon, you can click on it again to

show all calls. In the view settings, you can configure this threshold and turn off package
abbreviation.

€ Call Graph View Settings X

Display Options

Show signature tooltips
Shorten packages (7]

Show average times in brackets 0

Color Information (7]

° Self time Total time

Color Scale Base (7]

© Displayed methods only All methods

Tirme Scale

u Automatic) Mixed units s ms Hs

Display Thresheld

Initially hide cutgoing calls with less than 1.0 % @

When expanding the call graph, it can get messy very quickly, especially if you backtrack multiple
times. Use the undo functionality to restore previous states of the graph. Just like the call tree,
the call graph offers quick search. By typing into the graph, you can start the search.

The graph and the tree views each have their advantages and disadvantages, so you may
sometimes wish to switch from one view type to another. In interactive sessions the call tree
and hot spots views show live data and are updated periodically. The call graph however, is
calculated on request and does not change when you expand nodes. The Show in Call Graph
action in the call tree calculates a new call graph and shows the selected method.

62

Thread status: o Thread selection: Aggregation level:

I CPU Views mm Runnable - 88 2l thread groups v | (@ Methods -

Call Tree m— 100.0% - 225 ms - 5 inv. java.util.concurrent. ThreadPoolExecutorSWorker.run
Hot Spots =2 Show Call Graph orker.call

B Show Threads arker.testStatementsPath2
Call Graph - orker.testStatementsPath1

Add Method Trigger igetCoﬂne(tioﬂ

Rutheshs:Sciion @) Add As Exceptional Method ;;‘:d
Complexity Analysis =< Split Method with a Script

@ Intercept Method With Script Probe
Call Tracer . . R

Switching from the graph to the call tree is not possible because the data is usually not comparable
anymore at a later time. However, the call graph offers call tree analyses with its View->Analyze
actions that can show you trees of cumulated outgoing calls and backtraces for each selected
node.

Beyond the basics

The ensemble of call tree, hot spots view and call graph has many advanced features that are
explained in detail in a different chapter [p. 158]. Also, there are other advanced CPU views that
are presented separately [p. 181].

63

Method Call Recording

Recording method calls is is one of the most difficult tasks for a profiler, because it operates
under conflicting constraints: Results should to be accurate, complete and produce such a small
overhead that the conclusions you draw from the measured data do not become incorrect.
Unfortunately, there is no single type of measurement that fulfills all these requirements for all
types of applications. This is why JProfiler requires you to make a decision on which method to
use.

Sampling versus instrumentation

Measuring method calls can be done with two fundamentally different techniques called
"sampling" and "instrumentation", each of which has advantages and drawbacks: With sampling,
the current call stacks of threads are inspected periodically. With instrumentation, the bytecode
of selected classes is modified to trace method entry and exit. Instrumentation measures all
invocations and can produce invocation counts for all methods.

When processing sampling data, the full sampling period (typically 5 ms) is attributed to the
sampled call stack. With a large number of samples, a statistically correct picture emerges. The
advantage of sampling is that it has a very low overhead because it happens infrequently. No
bytecode has to be modified and the sampling period is much larger than the typical duration
of a method call. The downside is that you cannot determine any method invocation counts.
Additionally, short running methods that are called only a few times might not show up at all.
This does not matter if you are looking for performance bottlenecks, but can be inconvenient if
you are trying to understand the detailed runtime characteristics of your code.

[Method A: +5 ms] [Method A: +5 ms

! |

[Method B: +5 ms } [Method B: +5 ms

| |

[Method X: +5 ms] [Method Y: +5 ms

T
T+5ms time

9 o

—

Instrumentation, on the other hand, can introduce a large overhead if many short-running
methods are instrumented. This instrumentation distorts the relative importance of performance
hot spots because of the inherent overhead of the time measurement but also because many
methods that would otherwise be inlined by the hot spot compiler must now remain separate
method calls. For method calls that take a longer amount of time, the overhead is insignificant.
If you can find a good set of classes that mainly perform high-level operations, instrumentation
will add a very low overhead and can be preferable to sampling. JProfiler's overhead hotspot
detection can also improve the situation after some runs. Additionally, the invocation count is
often important information that makes it much easier to see what is going on.

64

[Profiling agent]

r A 1 i
fatiFal e ol ot
55 35 53
X:3.5ms Y:4.5ms
calls calls

Method B: 11 ms

A
calls
Method A

T T T T T T =

T T T T T T T T T
12 3 45 6 7 8 9101112131415 timeinms

Full sampling versus async sampling

JProfiler offers two different technical solutions for sampling: "Full sampling" is done with a
separate thread that pauses all threads in the JVM periodically and inspects their stack traces.
However, the JVM only pauses threads at certain "safe points" thereby introducing a bias. If you
have highly multi-threaded CPU bound code, the profiled distribution of hotspots may be skewed
significantly. On the other hand, if code also performs significant I/0, this bias will generally not
be a problem.

To help with getting accurate numbers for highly CPU bound code, JProfiler also offers async
sampling. With async sampling, a profiling signal handler is called on the running threads
themselves. The profiling agent then inspects the native stack and extracts the Java stack frames.
The main benefit is that there is no safe-point bias with this sampling method and the overhead
for highly multi-threaded CPU bound applications is lower. However, only the "Running" thread
state can be observed for the CPU views while "Waiting", "Blocking" or "Net I/0" thread states
cannot be measured in this way. Probe data is always collected with bytecode instrumentation,
so you will still get all thread states for JDBC and similar data.

Async sampling is only supported on Linux and macOS. Windows is not supported, because the
operating system does not offer POSIX-style signal handlers.

Full sampling: safe point bias
Thread 1 3
Thread 2 -
Sampling thread
pling » —» >
Async sampling:
Thread 1 3
o—@ >
Thread 2 ‘ :
>—@® g
T T+5ms time

65

Choosing a method call recording type

Which method call recording type to use for profiling is an important decision and there no right
choice for all circumstances, so you need to make an informed decision. When you create a new
session, the session startup dialog will ask you which method call recording type you want to
use. At any later point in time you can change the method call recording type in the session
settings dialog.

@ Session Settings X

— Application Settings Method Call Recording Type

There are important trade-offs to be considered. Check out the in-depth explanation in the
documentation.

© Instrumentation €

All features Invocation counts Ideal for [/0 bound code Careful with CPU bound code

E‘ Call Tree Recording
-

Method Call Recording

Exceptional Methods Adjust call tree filters

Split Methods Full sampling @
T Call Tree Filters Low overhead Ideal for finding CPU hot spots Better accuracy for CPU times
Not all features
Trigger Settings Asyne sampling @
Low overhead Best accuracy for CPU times Mative sampling Only CPU times
; Database Settings i
Mot all features Experimental HotSpot-API

o Probe Settings

@’; Advanced Settings

Common Optiens For Sampling (7]

General Settings Copy Settings From “ Cancel

As a simple guide, consider the following questions that test whether your application falls into
one of two clear categories on opposite sides of the spectrum:

+ Is the profiled application 1/0 bound?

This is the case for many web applications that wait on REST service and JDBC database calls
most of the time. In that case, instrumentation will be the best option under the condition
that you carefully select your call tree filters to only include your own code.

+ Is the profiled application heavily multi-threaded and CPU bound?

For example, this could be the case for a compiler, image processing application or a web
server that is running a load test. If you are profiling on Linux or macOS, you should choose
async sampling to get the most accurate CPU times in this case.

Otherwise, "Full sampling" is generally the most suitable option and is suggested as the default
for new sessions.

Native sampling

Because async sampling has access to the native stack, it can also perform native sampling. By
default, native sampling is not enabled, because it introduces a lot of nodes into call trees and
shifts the focus of hot spot calculation to native code. If you do have a performance problem in
native code, you can choose async sampling and enable native sampling in the session settings.

66

@ Session Settings

Application Settings

E= Call Tree Recording

Method Call Recording
Exceptional Methods

Split Methods

v Call Tree Filters

| Trigger Settings

; Database Settings
o Probe Settings

@": Advanced Settings

General Settings

Copy Settings From

Method Call Recording Type

There are important trade-offs to be considered. Check out the in-depth explanation in the

* documentation,

Instrumentation @

All features Invocation counts Ideal for [/0 bound code Careful with CPU bound code

Adjust call tree filters
Full sampling @

Low overhead Ideal for finding CPU hot spots Better accuracy for CPU times

Mot all features
0 Async sampling @
Low overhead Best accuracy for CPU times Mative sampling Only CPU times

Mot all features Experimental HotSpot-API

I Enable sampling of nativelibrar\e;lﬂ

Async buffer size: W 5 % ﬂ

Common Optiens For Sampling

Disable all filters for sampling

Sampling frequency: 5% ms

Cancel

JProfiler resolves the path of the library that belongs to each native stack frame. On native method
nodes in the call tree, JProfiler shows the file name of the native library in square brackets at the

beginning.

Thread status: o

E= Running -

Thread selection:

88 Allthread groups A

1) o 03,15 - 3,220 ms java.awt.EventDispatchThread.run
0— 79.9% - 2,765 ms bezier.BezierAnimSDemo.paint
O 53,55 - 1,860 me sunjava2d.SunGraphics2D.drawlmage
(D)™ 23.3% - 825 ms bezier.BezierAnimSDemo.drawDemo

5.3% - 330 ms sun.java2d.5unGraphics2D fill

A15.5%- 190 ms [libdcpr.dylib] Java_sun_dc_pr_PathFiller_writeAlphad
#415.2% - 180 ms [libdcpr.dylib] writeAlpha8
ﬁl 3.3% - 120 ms [libdcpr.dylib] writeAlpha8
& 1.7% - 60,000 ps [libdcpr.dylib] processlumpBuffer

Aggregation level:
(@ Methods -

ﬁ 0.9% - 30,000 ps [libdcpr.dylib] sendTileToLLFiller
6% - 20, Hs [libdcpr.dylib] reset
#~ 0.6% - 20,000 ps [libdepr.dylib]
5 -5, ps [libdepr.dyli cLLFiller5_get
#~ 0.1% - 5,000 us [libdcpr.dylib] deLLFillerS_g
ﬁ 0.1% - 5,000 ps [libd cpr.dylib] deeMutex_unlock
#~ 0.3% - 10,000 ps [libjwm.dylib] jni_GetByteArrayElements
}l 3.2% - 110 ms [libawt.dylib] Java_sun_javaZd_loops_MaskBlit_MaskBlit
X - 20, us [libdcpr.dyli ava_sun_dc_pr_PathFiller_setOutputArea
4% 0.6% - 20,000 ps [libdcpr.dylib] J d PathpFill] A
X -5 s [libawt.dylib] Java_sun_javadd_loops_Blit_Blit
A~ 0.1% - 5,000 ps [libawt.dylib] J java2d_| Elit_Bli
} 0.1% - 5,000 ps [libdcpr.dylib] Java_sun_dc_pr_PathFiller_getAlphaBox
f 0.1% - 5,000 ps [libdcpr.dylib] Java_sun_dc_pr_PathFiller_reset
X -5 ps [libdepr.dylib] Java_sun_dc_pr_PathFiller_setFillMode
#~ 0.1% - 5,000 ps [libdcpr.dylib] J dc_pr_PathFill FillMed
} 0.1% - 3,000 ps [libjpym.dylib] Runtimel:counter_overflow(JavaThread®, int, Method™)
e 84%- 200 me sun.javald.SunGraphics2D.draw
m 0.1% - 5,000 ps java.awt.geom.GeneralPath. <init>
0'23%-30,000 s bezier.BezierAnimSDemo.createGraphics2D
f’ll‘S%-SS,OOO s [libjvm.dylib] IWM_MenitorWait
. - B0, ps [libawt_lwawt.dylib] Java_sun_lwawt_macosx_CCursorManager_nativeGetCursorPosition
4 1.7% - 60,000 ps [lib I dylib] J I cC Manag velGetC Positi
f’ 1:4% - 30,000 ps [libjvm.dylib] Unsafe_Park
#~ 0.9% - 30,000 ps [libjwm.dylib] InterpreterRuntimenfrequency_counter_overflow({lavaThread®, unsigned char®)
#~ 0.6% - 20,000 ps [libjvrm.dylib] WM _Clone
f’ 0.4% - 13,000 ps [libjvm.dylib] JVM_GetStackAccessControlContext
@
0.1% - 5,000 ps bezier,BezierAnimiDemo&1.run

A 0.1%- 5,000 ps [libawt_lwawt.dylib] Java_sun_lwawt_macosx_CPlatformComponent_nativeSetBounds
K 015 50000 ik chelibl ConctantDaak:klace_at_ieanlfzanctantBanlblandla_int Thraad®)

@

With respect to the aggregation level, native libraries act like classes, so in the "classes" aggregation
level all subsequent calls within the same native library will be aggregated into a single node.
The "packages" aggregation level aggregates all subsequent native method calls into a single
node regardless of the native library.

67

Thread status: 0 Thread selection: Aggregation level:
B Running @8 Allthread groups v | O Classes -

1D o 0313 - 3,220 ms java.awt.EventDispatchThread
o— 79.9% - 2,765 ms bezier.BezierAnimSDemo
°_ 79.3% - 2,745 ms sun,java2d.SunGraphics2D
52.3% - 1,810 ms libjum.dylib

A 0.9% - 30,000 ps libjwrm.dylib
A~ 0.1% - 5,000 ps libsystern_m.dylib
f 0.1% - 5,000 ps libsystern_malloc.dylib
#~16.8% - 235 ms libawt.dylib
A~ 0.1%- 5,000 us [generated stubs]
° 0.4% - 15,000 ps java.awt.Compenent
° 0.1% - 5,000 ps java.awt.geom.GeneralPath
~16.4% - 220 ms libjvm.dylib
f 1.9% - 63,000 ps libawt_lwawt.dylib
@ 0.1% - 5,000 ps bezier Bezieranim$Demos1

oo onan o

To eliminate selected native libraries, you can remove a node [p. 167] from that native library and
choose to remove the entire class.

68

Memory Profiling

There are two ways of getting information about objects on the heap. On the one hand, a profiling
agent can track the allocation and the garbage collection of each object. In JProfiler, this is called
"allocation recording". It tells you where objects have been allocated and can also be used to
Create statistics about temporary objects. On the other hand, the profiling interface of the JVM
allows the profiling agent to take a "heap snapshot" in order to inspect all live objects together
with their references. This information is required to understand why objects cannot be garbage
collected.

Both allocation recording and heap snapshots are expensive operations. Allocation recording
has a large impact on the runtime characteristics, because the j ava. | ang. Cbj ect constructor
has to be instrumented and the garbage collector continuously has to report to the profiling
interface. This is why allocations are not recorded by default and you have to start and stop
recording [p. 26] explicitly. Taking a heap snapshot is a one-time operation. However, it can
pause the JVM for several seconds and the analysis of the acquired data may take a relatively
long time, scaling with the size of the heap.

JProfiler splits its memory analysis into two view sections: The "Live memory" section presents
data that can be updated periodically whereas the "Heap walker" section shows a static heap
snapshot. Allocation recording is controlled in the "Live memory" section but the recorded data
is also displayed by the heap walker.

€ Session View Profiling Window Help Animated Bezier Curve Demo - JProfiler - m} X
= i = 0
] = T N
2 @ H 2 8 E S & O G #
Star Save Session Start Stop Start Agd o e Take Mark
G B o S| s eaeos Termm || VS mromem | B o Help' | Gnapshot Hesp
’ Telemetries O Mo snapshot has been taken.

For a maximum of features:

‘!'J' Live Memaory

Press to take a JProfiler heap snapshot

L
'ﬁ Heap Walker i o o i

= The snapshot is displayed in this frame and saved together with profiling information
from other views

I CPU Views = For live profiling sessions, special features are available

= Integrations with other views require this snapshot type

Threads

Press x to indicate the starting point of a use case

The three most common problems that can be solved with memory profiling are: Finding a
memory leak [p. 199], reducing memory consumption and reducing the creation of temporary
objects. For the first two problems, you will mainly use the heap walker, mostly by looking at
who is holding on to the biggest objects in the JVM and where they were created. For the last
problem you can only rely on the live views that show recorded allocations, because it involves
objects that have already been garbage collected.

Tracking instance counts

To get an overview of what objects are on the heap, the "All objects" view shows you a histogram
of all classes and their instance counts. The data that is shown in this view is not collected with
allocation recording but by performing a mini heap snapshot that only calculates the instance
counts. The larger the heap, the longer it takes to perform this operation, so the update frequency
of the view is automatically lowered according to the measured overhead. When the view is not
active, no data is collected and the view does not generate any overhead. As with most views
that are updated dynamically, a Freeze tool bar button is available to stop updating the displayed
data.

69

@ Session

Start
Center

” Telemetries
‘!:I. Live Memory

All Objects

wop 5

Recorded Objects
Allocation Call Tree
Allocation Hot Spots

Class Tracker

b Heap Walker
I CPU Views

Threads

N

& Menitors & Locks

Snapshot Setiings

View Profiling Window Help

@ H 2 8

Animated Berier Curve Demo - IProfiler -

T 0% 2 5 O
B > &
Start 5 Start Add View Freeze
Recordings Fecordings Tracking " OC Bockmark DO Settings Help View
Aggregation level: © Classes

Name
bytel]
javalang.String
java.util. HashMapSNode
javalang.Object[]

java.security. AccessControlContext

java.awt.geom.AffineTransform

int[|
java.awt.Rectangle
sun.javaZd.pipe.Region
javalang.Class

Jjavalang.invoke lambdaFormSMa...
java.util.concurrent.ConcurrentHas...

javalang.Integer

java.lang.ref WeakReference

java.util. HashMap
sun.javald.SunGraphics2D
java.lang.Class[]

java.util. Arraylist

Jjavalang.invoke.MemberMName
air

Total:

@ 0active recordings

@) Auto-update2 s

Instance Count
I 12,975
I 12,113
I 758
I 5,715
M
I 722
I 553
I
I A7
I 139
I 123
. 2747
I ;2%

1524
1477
I 1426
17
| EREYS
| RRES]
W
117,229

VM #1 00:06

m} X

[

Mark
er Cumen

Size

690 kB

290 kB

238 kB

333 kB

208 kB

341 kB
20,942 kB
120 kB

129 kB

383 kB
99,936 bytes
87,904 bytes
35,936 bytes
48,768 bytes
70,396 bytes
296 kB
36,864 bytes
27,696 bytes
54,528 bytes

26,168 kB
@

@ Profiling

The "Recorded objects" view, on the other hand, only shows the instance counts for objects that
have been allocated after you have started allocation recording. When you stop allocation
recording, no new allocations are added, but garbage collection continues to be tracked. In this
way you can see what objects remain on the heap for a certain use case. Note that objects may
not be garbage collected for a long time. With the Run GC tool bar button you can speed up this

process.

When looking for a memory leak, you often want to compare instance counts over time. To do
that for all classes, you can use the differencing functionality of the view. With the Mark Current
toolbar button, a Difference column is inserted and the histogram of the instance counts shows
the baseline values at the time of the marking in green color.

70

@ Session View Profiling Window Help Animated Berier Curve Demo - IProfiler - m} X
L) =__ £) LS
@ H 3 8 E S & o
Start st Save Session Start 5 Start Run 6C Add B Hel Freeze Mark
Center P Snapshot Semings Recordings Recordings Tracking | Bookmark PO cetiings “p View Heap Walker] Curen
' Telernetries Agagregation level: @ Classes -
Name Instance Count Size
-‘l Y, byte[] I 12,562 +575 (+5 %) 684 kB
gy LiveMemory java.lang.String I 1,969 +80 (+1 %) 287 kB
java.utilHashMapSNode NN o, 163 +3,375 (+70 %) 261 kB
All Objects javalang.Object]] I 775 +966 (+17 %) 324 kB
) java.security. AccessContro... [N 6,221 +5,313 (+585 %) 248 kB
Recorded Objects java.awt.geom. AffineTrans... [N 5634 +4,832 (+602 %) 405 kB
. java.awt.Rectangle I 502 +3,866 (+608 %) 144 kB
dllcczticnCalliize sunjava2d.pipeRegion I 3,927 +3,381 (+619 %) 157 kB
: - o
Allocation Hot Spots int[] I 575 *+2432 (+196 %) 3,539 kB
javalang.invoke.LambdaF... . ;2 0(x0%) 99936 bytes
Class Tracker javalang.Class I G053 0 (0 %) 374 kB
java.lang.Integer I ;545 +1,449 (+132%) 40,720 bytes
java.util.concurrent.Concu... . 2452 0(x0%) 78464 bytes
b LleapilValkey java.lang.ref WeakReference I 1,810 +1,449 (+401 %) 57,820 bytes
sun.javazd.SunGraphics2D [1,693 +1,449 (+619 %) 350 kB
X java.util. HashMap Il 1579 +067 (+136 %) 80,592 bytes
CPU Views " . o
java.util. ArrayList I 1352 +066 (+250 %) 32,448 bytes
double] | W 1180 +967 (+454 %) 211 kB
T s oty e B 114 2050 Tt
Total: 120,763 +45,761 (+61 %) 8,996 kB
0 Menitors & Locks 7 0
@ Oactive recordings C'Q Auto-update 2 5 VM #1 00:16 L} Profiling

For selected classes, you can also show a time-resolved graph with the Add Selection to Class
Tracker action from the context menu.

Objects: All objects

. Telemetries
’!:I' Live Memaory

All Objects

Show: @ java.awt.Rectangle v| &

0:10 0:20 0:30 0:40]

20,000
Recorded Objects

Allocation Call Tree
Allocation Hot Spots i

Class Tracker b

10,000

b Heap Walker
I CPU Views |

mm Class java.awt.Rectangle: 10,926 p l

Threads

o Menitors & Locks

Allocation spots

When allocation recording is active, JProfiler takes note of the call stack each time an object is
allocated. It does not use the exact call stack, for example from the stack-walking API, because
that would be prohibitively expensive. Instead, the same mechanism is used that is configured
for CPU profiling. This means that the call stack is filtered according to the call tree filters [p. 51]
and that the actual allocation spot can be in a method that is not present in the call stack, because
it is from an ignored or compact-filtered class. However, these changes are intuitively easy to
understand: A compact-filtered method is responsible for all allocations that are made in further
calls to compact-filtered classes.

71

If you use sampling, the allocation spots become approximate and may be confusing. Unlike for
time measurements, you often have a clear idea of where certain classes can be allocated and
where not. Because sampling paints a statistical rather than an exact picture, you may see
allocation spots that are seemingly impossible, such as j ava. uti | . HashMap. get allocating
one of your own classes. For any kind of analysis where exact numbers and call stacks are
important, it is recommended to use allocation recording together with instrumentation.

Just like for CPU profiling, the allocation call stacks are presented as a call tree, only with allocation
counts and allocated memory rather than invocation counts and time. Unlike for the CPU call
tree, the allocation call tree is not displayed and updated automatically, because the calculation
of the tree is more expensive. JProfiler can show you the allocation tree not only for all objects,
but also for a selected class or package. Together with other options, this is configured in the
options dialog that is shown after you ask JProfiler to calculate an allocation tree from the current
data.

@ Allocation Options X

Type of Allocations to be Shown
Allecations cumulated for all classes
o Allocations for a selected class or package

java.awt.Rectangle
Liveness mode: | Live objects - @

Update Options

Auto-update the allocation views periodically (7]

A useful property of the CPU call tree is that you can follow the cumulated time from top to
bottom because each node contains the time that is spent in the child nodes. By default the
allocation tree behaves in the same way, meaning that each node contains the allocations that
are made by the child nodes. Even if allocations are only performed by leaf nodes deep down
in the call tree, the numbers propagate up to the top. In this way, you can always see which path
is worth investigating when opening branches of the allocation call tree. "Self-allocations" are
those that are actually performed by a node and not by its descendants. Like in the CPU call tree,
the percentage bar shows them with a different color.

’ Telemetries Recorded allocations: | Live objects at 00:08, 1/10 allocations, All classes Change

Aggregation level: @ Methods hd

‘!:l- Live Memory

All Objects
Recorded Objects
Allocation Call Tree
Allocation Hot Spots

Class Tracker
.
ﬁ Heap Walker

I CPU Views

Threads

n

& Menitors & Locks

Q— 04.4% - 215 kB - 3,491 alloc. java.awt.EventDispatchThread.run
() 13.1% - 109 kB - 1,422 alloc. bezier.BezierAnim3Demo.paint
(L) W 30.0%, - 89,272 bytes - 1,090 alloc. bezier.BezierAnimS$Demo.drawDemo
mm 34.1% - 77624 bytes - 921 alloc, java.awt.Graphics2D.fill
% - 10,272 bytes - 126 alloc. java.awt.geom.GeneralPath. <init>
- 1,376 bytes - 43 alloc. java.awt.Graphics2D.draw
7.3% - 16,320 bytes - 231 alloc., bezier.BezierAnimSDemo.createGraphics2D
@' 6.7% - 15,224 bytes - 170 alloc. java.awt.image.Bufferedimage.createGraphics
D 12%-2816 bytes - 44 alloc, java.awt.Graphics.drawlmage
(1 5.6% - 12,776 bytes - 381 alloc, bezier.BezierAnimSDema.run

72

In the allocation call tree, there are often a lot of nodes where no allocations are performed at
all, especially if you show allocations for a selected class. These nodes are only there to show
you the call stack leading to the node where the actual allocation has taken place. Such nodes
are called "bridge" nodes in JProfiler and are shown with a gray icon as you can see in the above
screen shot. In some cases, the cumulation of allocations can get in the way and you only want
to see the actual allocation spots. The view settings of the allocation tree offers an option to
show uncumulated numbers for that purpose. If activated, bridge nodes will always show zero
allocations and have no percentage bar.

Recorded allocations: | Live objects at 00:08, 1/10 allocations, All classes Change
Aggregation level: @ Methods hd

” Telemetries
,':', Live Memaory) w4535 - 105 kB - 2,063 alloc. java.awt.EventDispatchThread.run
@ 0.5% - 1,052 bytes - 43 alloc, bezier.BezierAnimSDemao.paint
All Objects) 0.0% - 0 bytes - D alloc, bezwer‘BezierAn?mSDemo‘drawDemo
Dy 3415 - 77,624 bytes - 921 alloc. java.awt.Graphics2D.fill
Wias%- 10272 bytes - 126 alloc, java.awt.geom.GeneralPath. <init>
W 0.6%-1376 bytes - 43 alloc. java.awt.Graphics2D.draw
(@ 0.6% - 1,296 bytes - 81 alloc. bezier.BezierAnimSDemo.createGraphics2D
Wi67%- 15224 bytes - 170 allec. java.awtimage.Bufferedimage . createGraphics
W 12%-2816 bytes - 44 alloc. java.awt.Graphics.drawlmage
W 0.0% - 0 bytes - 0 alloc. bezier.Bezier&nim3$Demo.run

Recorded Objects
Allocation Call Tree
Allocation Hot Spots

Class Tracker
o
'ﬁ Heap Walker

I CPU Views

Threads

O Menitors & Locks v @

The allocation hot spots view is populated together with the allocation call tree and allows you
to directly focus on the methods that are responsible for creating the selected classes. Like the
recorded objects view, the allocation hot spots view supports marking the current state and
observing the differences over time. A difference column is added to the view that shows how
much the hot spots have changed since the time when the Mark Current Values action was invoked.
Because the allocation views are not updated periodically by default, you have to click on the
Calculate tool bar button to get a new data set that is then compared to the baseline values.
Auto-update is available in the options dialog but not recommended for large heap sizes.

s 2371/
” Telemetries Recorded allocations: | Live objects at 00:37, 1/10 allocations, All classes Change
Aggregation level: @ Methods ¥ | Hot spot options: | Self allocated memaory A
“:'. Live Memory Hot Spot Self Allocated Memory Allocations Difference
java.awt.EventDispatchThread.run [N 150 kB (46 %) 3,710 +1,647 (+80...

All Objects java.awt.Graphics2D.fill I 140 kB (34 %) 1,671 +750 (+81 %)

Recorded Objects
4 Allocation Call Tree
Allecation Classes
Allocation Hot Spots

Class Tracker
]
"ﬁ Heap Walker

I CPU Views

Threads

java.awt.image.Bufferedimage.cre.
java.awt.geom.GeneralPath.<init>

java.awt.EventQueueinvokelater
java.awt.Graphics.drawlmage

java.awt.Graphics2D.draw
bezier.BezierAnim$Demo.paint
bezier.BezierAnimSDemos1. <init>

73

bezier.BezierAnimSDemo.schedule..,

bezier.BezierAnimSDemo.createGr...

. Il 26,296 bytes (6 %)

W 12,224 bytes (4 %)

0 11,056 bytes (2 %)

1 10,776 bytes (2 %)

| 4,736 bytes (1 %)

| 2,464 bytes (0 %)

| 2,368 bytes (0 %)
1,776 bytes (0 %)
1,232 bytes (0 %)

302 +132 (+78 %)
227 +101 (=80 %)
308 +134 (<77 %)
207 +135 (83 %)
74 +30(~63 %)
154 +73 (=90 %)
74 +31(+T2%)
74 31 (+T2%)
7T +3RGT1%

Allocation recording rate

Recording each and every allocation adds a significant overhead. In many cases, the total numbers
for allocations are not important and relative numbers are sufficient to solve problems. That is
why JProfiler only records every 10th allocation by default. This reduces the overhead to roughly
1/10 compared to recording all allocations. If you would like to record all allocations, or if even
less allocations are sufficient for your purpose, you can change the recording rate in the recorded
objects view as well as the parameter dialog of the allocation call tree and hot spot views.

’ Telernetries Recorded allocations: | Live objects, 1/10 allocations Change
Aggregation level: @ Classes hd
":" Live Memory Name Instance Count Size
java.awt.geom.AffineTransform I, 120 12,960 bytes
All Objects java.awt.Rectangle I 2 4,576 bytes
sun.javaZd.pipe.Region I, 12 5,120 bytes
Recorded Objects java.util. HashMapShode I 126 4,032 bytes
java.security. AccessControlContext NN 109 4,360 bytes
Allocation Call Tree int] a1 EYRET AN
Allocation Hot § java.lang.ref WeakReference @ Allocation Options *
SEIDIRES sun,javadd.S5unGraphics2D
Class Tracker iavalang.Integer Liveness Mode
java.awt.EventQueuesd -le
B java.awt.event.nvecationEvent Live objects
ﬁ Heap Walker java.lang.Object]]
java.security.ProtectionDomain[] | Recording Rate
double]] .
. Record all objects
I CPU Views java.utilHashMap L 0
Jjava.util.ldentityHashMapSKeylter o Record one sample every 0 % allocations
— Tt java.awt.geom.Point2DS0ouble
MEATS iaa aud nanm DathINAFlaztC an
O Menitors & Locks v @

The setting can also be found on the "Advanced Settings->Memory profiling" step of the session
settings dialog where it can be adjusted for offline profiling sessions.

The allocation recording rate influences the VM telemetries for "Recorded objects" and "Recorded
throughput" whose values will be measured at the configured fraction. When comparing
snapshots [p. 124], the allocation rate of the first snapshot will be reported and other snapshots
will be scaled accordingly, if necessary.

Analyzing allocated classes

When calculating the allocation tree and allocation hot spot views, you have to specify the class
or package whose allocations you want to see up-front. This works well if you already focused
on particular classes, but is inconvenient when trying to find allocation hot spots without any
pre-conceptions. One way is to start to look at the "Recorded objects" view and use the actions
in the context menu for switching to the allocation tree or allocation hot spot views for the
selected class or package.

74

’ Telemetries Recorded allocations: | Live objects, 1/10 zllocations Change

Aggregation level: @ Classes hd
‘ Live Memory Name Instance Count Size
java.awt.geom Affi--T- T o0 68,256 bytes
All Objects java.awt.Rectangle_ B Show Selection In Heap Walker I 70 24,288 bytes
sun.java2d.pipe R Show Allocation Tree for Selection 667 26,680 bytes
Recorded Objects J.ava‘utl\.H.ashMap Show Allocation Hot Spots for Selection 664 21,248 bytes
java.security. Acc 22,720 bytes
4 Allocation Call Tree int[] Add Selection To Class Tracker 134 kB
X javalang.nteger | _ 4,592 bytes
Allocation Classes javalang.ref.Weakl = Show Source F4 9,152 bytes
Allocation Hot Spots sun.javad.SunGra Show Bytecode 59,438 bytes
java.awt.EventQue| | 4,608 bytes
Class Tracker sun.awt. EventQuel - Mark Current Values 4,608 bytes
java.awt.event./nvg Remove Mark 12,224 bytes
java.util. HashMap 9,168 bytes
ﬁ peanivalkey javautilidentityHa Change Liveness Mode ’ 7,640 bytes
java.awt.geom.Pat 6,080 bytes
: Jjava.awt.geom.Poi Sart Classes ’ 6,080 bytes
I HRLR java.lang.Object{ 1| /' Find Ctrl+F 6,240 bytes
Aruthlel 1 17 NOR hutec
— Total: T Export View Ctrl+R 515 kB
- Threads r
= ew Filt| T View Settings Ctrl+T v @

Another way is to start with the allocation tree or allocation hot spots for all classes and use the
Show classes action to show the classes for a selected allocation spot or allocation hot spot.

Window Help Animated Bezier Curve Demo - JProfiler - m} X
- P +* — — 3 @
L B S & @ @ & o ;
St Stop Start Add View Shew Sop Calculate . Show In
TrrmoEy Femmams Tearrm | SUCS promen | EEE g Help | gend | Memory Calree Back Famward | walker [
el | Show Classes Cirl+2l-C |
lecorded allocations: | Live objects at 00:08, 1/10 allocations, All classes Show Flame Graph Ctrl-Alt+F Change
Collapse Recursions Ctrl+Alt+L
kY tion level: Method A
ggregstion leve ° ocs Calculate Cumulated Outgeing Calls Ctrl+ Alt+G
0— 94.4% - 215 kB - 3,491 alloc. java.awt.EventDispatchThread.run Calculate Backtraces To Selected Method Ctrl+Alt+B

0_ 43.1% - 109 kB - 1,428 alloc., bezier.BezierAnimSDemo.paint
2% - 88,272 bytes - 1,080 alloc, bezier.BezierAnim$Demo.drawDemr

Inline Async Executions Ctrl+Alt+E

77,624 by java.awt.Graphics2Dfill
W1 4,5% - 10,272 bytes - 126 alloc, java.awt.geom. GeneralPath. <init>
0 0.6% - 1,376 bytes - 43 alloc. java.awt.Graphics2D.draw
(@1 7.3% - 16,520 bytes - 251 alloc. bezier.BezierAnimSDemo.createGraphics2D
Wi67%- 15224 bytes - 170 allec. java.awt.image.Bufferedimage.createGraphics
@ 1.2% - 2,816 bytes - 44 alloc. java.awt.Graphics.drawlmage
@15.6%-12776 bytes - 381 alloc. bezier BezierAnimSDemo.run

Tree View Filters v @

\/ @ 1 active recording VM #1 00:20 @ Profiling

The histogram of the allocated classes is shown as a call tree analysis [p. 176]. This action also
works from other call tree analyses.

75

’ Telemetries
’!:l' Live Memaory

921 instances in 15 classes have been allocated at the

selected call stack

Recorded allocations:

Aggregation level: @ Methods

D Reload analysis

Live objects at 00:08, 1/10 allocations, All classes

X ¢ @

All Objects Allocation spot: java.awt.Graphics2D fill — bezier.BezierAnimSDemo.drawDemo — be* Show more
Recorded Objects Mame Instance Count Size

Jjava.util. HashMapShode &5 8,160 bytes

4 Allocation Call Tree java.awt.geom.AffineTransform . 6,120 bytes

X java.awt.geom.Point2D$0ouble . :: 2,656 bytes

HlyeEnm s e java.awt.geom.Rectangle2D5Float 2 1,408 bytes

. int[] B 45,064 bytes

Allocation Hot Spots java.awt.GradientPaintContext I 2 2,752 bytes

Fes= T java.awt.RenderingHints | 688 bytes

java.util. HashMapSNode] | 3 2,064 bytes

i sun.java2d.loops.GraphicsPrimitiveMgréPrimitiveSpec Tl 42 672 bytes

ﬁ Heap Walker sun.javadd.pipeAlphaPaintPipeSTileContext I 42 2,016 bytes

java.awt.geom.Point2DSFloat 4 984 bytes

X java.util. HashMap 0 1,920 bytes

I btz java.awt.geom.Path2D3Floats Copylterator | 1,248 bytes

iava lann Intener U] A24 butes

— Total: 921 77,624 bytes

Threads
@

The classes analysis view is static and is not updated when the allocation tree and hot spot views
are recalculated. The Reload Analysis action will first update the allocation tree and then recalculate
the current analysis view from the new data.

Analyzing garbage collected objects

Allocation recording cannot only show the live objects, but also keeps information on garbage
collected objects. This is useful when investigating temporary allocations. Allocating a lot of
temporary objects can produce significant overhead, so reducing the allocation rate often
improves performance considerably.

To show garbage collected objects in the recorded objects view, change the liveness selector to
either Garbage collected objects or Live and garbage collected objects. The options dialog of the
allocation call tree and allocation hot spot views has an equivalent drop-down.

Window Help Animated Bezier Curve Demo - JProfiler - m} X
1 . — T P —_— L T Y
£ £ T S &K 2 0 & @
Start Stop Start . Add View Stop Freeze Sho Live Mark
Recodings Recordings Tracking " U Bockmak P Settings HEP pemory | View Hesp Walker| Objects | Cument
. Live Objects
lecorded allocations: | Live objects, 1/10 allocations '__' Garbage Collected Objects Change
.-? Live And Garbage Collected Objects
Aggregation level: O Classes hd
MName Instance Count Size
Jjava.awt.geom.AffineTransform I 100 12,960 bytes
java.awt.Rectangle I 12 4,576 bytes
sun,javaZd.pipe.Region I, 125 5,120 bytes
java.util.HashMapSNode I 126 4,032 bytes
java.security.AccessControlContext I 109 4,360 bytes

However, JProfiler does not collect allocation tree information for garbage collected objects by
default, because the data for live objects only can be maintained with far less overhead. When
switching the liveness selector in the "Allocation Call Tree" or "Allocation Hotspots" view to a
mode that includes garbage collected objects, JProfiler suggests to change the recording type.
This is a change in the profiling settings, so all previously recorded data will be cleared if you
choose to apply the change immediately. If you would like to change this setting in advance, you
can do so in "Advanced Settings" -> "Memory Profiling" in the session settings dialog.

76

@ Session Settings
Application Settings
%g Call Tree Recording

| Trigger Settings

Call Tree Filters

Database Settings
Probe Settings

{g‘t‘.‘ Advanced Settings
CPU Profiling

Probes & JEE

Memaory Profiling
Thread Profiling

Miscellaneous

General Settings

Allocation Tree Recording Type

Recerd allocations of: |) Live objects

Live and GCed objects

Live and GCed objects without class resolution

QOQ

Recording options
Recording rate: Record all objects @
o Record one sample every

Record object allocation times 0

Copy Settings From

0| %

allocations

Cancel

Next stop: heap walker

Any more advanced type of question will involve references between objects. For example, the
sizes that are displayed in the recorded objects, allocation tree and allocation hot spot views are
shallow sizes. They just include the memory layout of the class, but not any referenced classes.
To see how heavy objects of a class really are, you often want to know the retained size, meaning
the amount of memory that would be freed if those objects were removed from the heap.

This kind of information is not available in the live memory views, because it requires enumerating
all objects on the heap and performing expensive calculations. That job is handled by the heap
walker. To jump from a point of interest in the live memory views into the heap walker, the Show
in Heap Walker tool bar button can be used. It will take you to the equivalent view in the heap

walker.
Window Help Animated Bezier Curve Demo - JProfiler - m} X
2 & & O A t 3 A
£ B T S 4 0 & & @
Star Stop Start runce | Aad T View T Stop Unfreeze| Show In Live Mark
Recordings Recordings Tracking | o Bookmark PO Cettings =P Memory View | HespWalker | Objects Curent
tecorded allocations: | Live objects, 1/10 allocations Change
Aggregation level: © Classes b
Name Instance Count Size

jzva:awt.geom.AffineTransform 58,968 bytes
java.awt.Rectangle I 65 21,280 bytes
java.util HashMapSNode e k 18,336 bytes
sun javald.pipe.Region ki 22,920 bytes
java.security. AccessControlContext i 19,760 bytes

If no heap snapshot is available, a new heap snapshot is created, otherwise JProfiler will ask you
whether to use the existing heap snapshot.

77

@ JProfiler X

A Heap Dump Has Already Been Taken

‘Where do you want to show the selected objects?

% Show in current heap dump

Selected objects were created after the heap dump was
taken will not be found in the current heap dump.

% Show in new heap dump
If you select this option, the current heap dump will be
discarded.

Selected objects that have already been garbage collected
will not be found in the new heap dump.

Cancel

In any case, it is important to understand that the numbers in the live memory views and in the
heap walker will often be very different. Apart from the fact that the heap walker shows a snapshot
at a different pointin time than the live memory views, it also eliminates all unreferenced objects.
Depending on the state of the garbage collector, unreferenced objects can occupy a significant
portion of the heap.

78

The Heap Walker

Heap snapshots

Any heap analysis that involves references between objects requires a heap snapshot, because
it is not possible to ask the JVM what the incoming references to an object are - you have to
iterate over the entire heap to answer that question. From that heap snapshot, JProfiler creates
an internal database that is optimized for producing the data required for serving the views in
the heap walker.

There are two sources of heap snapshots: JProfiler heap snapshots and HPROF/PHD heap
snapshots. JProfiler heap snapshots support all available features in the heap walker. The profiling
agent uses the profiling interface JVMTI to iterate over all references. If the profiled JVM is running
on a different machine, all information is transferred to the local machine and further calculations
are performed there. HPROF/PHD snapshots are created with a built-in mechanism in the JVM
and are written to disk in a standard format that Profiler can read. HPROF snapshots are provided
by HotSpot JVMs and PHD snapshots are produced by Eclipse OpenJ9 JVMs.

On the overview page of the heap walker, you can choose if a JProfiler heap snapshot or an
HPROF/PHD heap snapshot should be created. By default, the JProfiler heap snapshot is
recommended. The HPROF/PHD heap snapshot is useful in special situations that are discussed
in another chapter [p. 192].

’ Telemetries O No snapshot has been taken.

For a maximum of features:

‘i:l Live Memory
] =
Press to take a JProfiler heap snapshot
o’
ﬁ Heap Walker i o o i
» The snapshot is displayed in this frame and saved together with profiling information
from other views
I CPU Views + For live profiling sessions, special features are available
= Integrations with other views require this snapshot type
Threads
Press * to indicate the starting point of a use case
r? Monitors & Locks
= All objects that are currently on the heap will be marked as old
= When you take the next heap snapshot, new and old objects will be listed separately in
Databases the header
» You can select new or old objects only, making it easy to track down memory leaks
@ JEE & Probes
For a minimum of overhead:
o,
Smms MBeans
b

.
Press = @ | totake an HPROF heap snapshot

= The snapshot is saved separately and displayed in ancther frame
= Mot all features are available

= Memaory and CPU overhead in the profiled VM are lower than for the IProfiler snapshot

Selection steps

The heap walker consists of several views that show different aspects of a selected set of objects.
Right after you take the heap snapshot, you are looking at all objects on the heap. Each view has
navigation actions for turning some selected objects into the current object set. The header
area of the heap walker shows information on how many objects are contained in the current
object set.

79

© Classes Ml Allocations Eﬂ Biggest Objects 3 References O Time @ Inspections +

Current object set: 70,460 objects in 1,280 classes.
1 selection step, 6,144 kB shallow size

© Classes A Use.. ™ (& Group By Class Loaders Calculate estimated retained sizes
Mame Instance Count Size

byte[] I 10,017 688 kB

Jjava.lang.String I 11,361 272 kB

Initially, you are looking at the "Classes" view which is similar to the "All objects" view in the live
memory section [p. 69]. By selecting a class and invoking Use->Selected Instances, you create a
new object set that only contains instances of that class. In the heap walker, "using" always means
creating a new object set.

For the new object set, showing the classes view of the heap walker would not be interesting,
because it would effectively just filter the table to the previously selected class. Instead, JProfiler
suggests another view with the "New object set" dialog. You can cancel this dialog to discard the
new object set and return to the previous view. The outgoing references view is suggested, but
you could also choose another view. This is just for the initially displayed view, you can switch
views in the view selector of the heap walker afterwards.

@ New Object Set X
A new object set has been created. It consists of 5,574 instances of java.util.HashMap$Node.

Please choose the initial view for the object set:

Classes (<] This view mede of the references view shows trees
of cutgeing references from the single instances in

Rllucabo [| the current object set. You can navigate to other
instances in the reference tree.
Biggest objects EE
o References :ﬁ:
Outgoing references v
Time

&0

Inspections

Do not show this dialog again

The header area now tells you that there are two selection steps and includes links for calculating
the retained and deep sizes or for using all objects that are retained by the current object set.
The latter would add another selection step and suggest the classes view because there would
likely be multiple classes in that object set.

80

£ B T S % L@ 0 A |0 @ |9
Start Stop Start Add View Take Mark o GoTo | Show

Run GC Export Hel, Back Forward
Recordings Recordings Tracking un Bookmark PO cettings = Snzpshot Heap Start | Selection

© Classes Wl Allocations uﬂ Biggest Objects # References O Time @ Inspections 3

Current object set: 5,574 instances of java.util. HashMap$Node

2 selection steps, 178 kB shallow size, ICa\(uIate retained and deeE sizes II LUse retained cb'ectsl

Outgoing references hd Use.. ™ Apply filter ... ¥ Show In Graph L I
Object Retained Size Shallow Size Allocation Time (h:m:s)
@ jova.util.HashMapSNode c 1,339 kB 32 bytes nfa
\:-l'java.utiI‘HashMapSNode 1,438 kB 32 bytes nfa
[] Jjava.util HashMapSMode 1,488 kB 32 bytes na
@ java.util HashMapShade 1,487 kB 32 bytes n/a
@ jeva.util HashMapSNode 94,968 bytes 32 bytes nfa
@ jeva.util HashMapSNode 5,344 bytes 32 bytes n/a
@ jeva.util HashMapSNode 1,528 bytes 32 bytes n/a
W java.util HashMapSNode (0x2d 1,432 bytes 32 bytes nfa

Selection step 2: Class
java.util.HashMapSMode

5,574 instances of java.util. HashMapSNode

Selection step 1: All objects, after full GC, retaining soft references

In the lower part of the heap walker, the selection steps up to this point are listed. Clicking on
the hyperlinks will take you back to any selection step. The first data set can also be reached
with the Go To Start button in the tool bar. The back and forward buttons in the tool bar are
useful if you need to backtrack in your analysis.

Classes view

The view selector at the top of the heap walker contains five views that show different information
for the current object set. The first one of those is the "Classes" view.

The classes view is similar to the "All objects" view in the live memory section and has an
aggregation level chooser that can group classes into packages. In addition, it can show estimated
retained sizes for classes. This is the amount of memory that would be freed if all instances of
a class were removed from the heap. If you click on the Calculate estimated retained sizes hyperlink,
a new Retained Size column is added. The displayed retained sizes are estimated lower bounds,
calculating the exact numbers would be too slow. If you really need an exact number, select the
class or package of interest and use the Calculate retained and deep sizes hyperlink in the header
of the new object set.

© Classes Ml Allocations EIZ Biggest Objects K References o Time @ Inspections +

Current object set: 70,460 objects in 1,280 classes.
1 selection step, 6,144 kB shallow size

© Classes A Use.. ™ (& Group By Class Loaders ICa\cuIate estimated retained slzesl
MName Instance Count Size
byte] I 12,917 688 kB
Jjava.lang.String I 11,361 272 kB
java.util.HashMapSNode I ;.57 178 kB
javalang.Object]] I .25 272 kB
javalang.invokelambdaFormSName | [EREE 99,936 bytes

Based on your selection of one or more classes or packages, you can select the instances
themselves, the associated j ava. | ang. Cl ass objects, or all retained objects. Double-clicking
is the quickest selection mode and uses the selected instances. If multiple selection modes are
available, as in this case, a Use drop-down menu is shown above the view.

81

When solving class loader-related problems, you often have to group instances by their class
loader. The Inspections tab offers a "Group by class loaders" inspection that is made available
on the classes view, because it is especially important in that context. If you execute that analysis,
a grouping table at the top shows all class loaders. Selecting a class loader filters the data
accordingly in the view below. The grouping table remains in place when you switch to the other
views of the heap walker until you perform another selection step. Then, the class loader selection
becomes part of that selection step.

0 Classes Wl Allocations .. Biggest Objects 1 References O Time @ Inspections 3
Object groups:
Priority Class Loader Instance Count Shallow Size
1 Default class loader 70,437 6,141 kB
2 jdk.internal loader.ClassLoadersSAppClassLoader (0xf48) 23 3,608 bytes

Current object set: 70,437 objects in 1,274 classes.
3 selection steps, 6,141 kB shallow size, Calculate retained and deep sizes Use retained objects

© Classes v Use.. v Group By Class Loaders Calculate estimated retained sizes
Name Instance Count Size

bytel] I 12,917 638 kB
java.lang.String I, 1,367 272 kB
java.util HashMapSNode I 557 178 kB
Jjavalang.Object|] I - 22 272 kB
Jjavalang.inveke LambdaFormSName - 2 99,936 bytes
javalana.Class . 3.007 962 kB
Total: 70,437 6,141 kB

@

Allocation recording views

The information where objects have been allocated can be important when narrowing down
suspects for a memory leak or when trying to reduce memory consumption. For JProfiler heap
snapshots, the "Allocations" view shows the allocation call tree and the allocation hot spots for
those objects where allocations have been recorded. Other objects are grouped in the "unrecorded
objects" node in the allocation call tree. For HPROF/PHD snapshots, this view is not available.

© Classes ‘Ml Allocations .- Biggest Objects 1 References O Time @ Inspections »

Current object set: 70,460 objects in 1,280 classes.

1 selection step, 6,144 kB shallow size

Cumulated allocation tree ¥ | of @Mathods ~||@ Use Selected

b_— 99.8% - 170 kB - 2,804 alloc. java.awt.EventDispatchThread.run
@_— 89.7% - 170 kB - 2,801 alloc. bezier.BezierAnim3Demo.paint
() e— g, 7 0 kB - 2,801 alloc. bezier.BezierfnimSDemo.drawDemo

13,440 bytes - 560 alloc. java.lang.Long.valueOf
W 00%-32 bytes - 1 alloc, java.awt.Graphics2D fill

(@ 0.2% - 352 bytes - 2 alloc. bezier.BezierAnim$Deme.run

@ 0.0% - 3,974 kB - 67,649 alloc. unrecorded objects

@ 0.0% - 208 bytes - 5 alloc. direct calls to methods of unprofiled classes

Recorded allocations: All allocations 0

Like in the classes view, you can select multiple nodes and use the Use Selected button at the top
to create a new selection step. In the "Allocation hot spots" view mode, you can also select nodes
in the back traces. This will only select objects in the associated top-level hot spot that have been
allocated on a call stack that ends with the selected back trace.

82

Another piece of information that JProfiler can save when recording allocations is the time when
an object was allocated. The "Time" view in the heap walker shows a histogram of the allocation
times for all recorded instances in the current object set. You can click and drag to select one or
multiple intervals and then create a new object set with the Use Selected button.

© Classes Ml Allocations EIZ Biggest Objects K References o Time @ Inspections +

Current object set: 8,341 instances of java.awt.geom.GeneralPath

2 selection steps, 266 kB shallow size, Calculate retained and deep sizes Use retained objects
7,002 new instances (83.9%) since the last heap dump Use new Use old

Use Selected ,Q ,@ [’f

Unrecorded objects: 779
Click and drag to select ohjects

L | | | | | |

0:55.0 [Dec 17, 2021 8:58:08 AM] = 1.0s

100
Instances: 189

For a more precise selection of a time interval, you can specify a range of bookmarks [p. 46]. All
objects between the first and last selected bookmark will then be marked.

In addition to the time view, allocation times are displayed as a separate column in the reference
views. However, allocation time recording is not enabled by default. You can switch it on directly
in the time view or edit the setting in Advanced Settings -> Memory Profiling in the session settings
dialog.

Biggest objects view

The biggest objects view shows a list of the most important objects in in the current object set.
"Biggest" in this context means the objects that would free most memory if they were removed
from the heap. That size is called the retained size. In contrast, the deep size is the total size
of all objects that are reachable through strong references.

Each object can be expanded to show outgoing references to other objects that are retained by
this object. In this way, you can recursively expand the tree of retained objects that would be
garbage collected if one of the ancestors were to be removed. This kind of tree is called a
"dominator tree". The information displayed for each object in this tree is similar to the outgoing
reference view except that only dominating references are displayed.

83

© Classes Ml Allocations .. Biggest Objects 7 References O Time {0} Inspections 3

Current object set: 67,199 objects in 1,280 classes.
1 selection step, 5,946 kB shallow size

No grouping v | = Tree hd Use.. ¥ Show In Graph = @
Object Retained Size
@ sun.awtAppContext (0:7320 I 1,545 kE (25 %)

9 bezier.BezierinimsDemo ((xd2be) I :cC kB (6 %)
351 kB (99.7%) bimg (=] sun.awt.image.OffScreenlmage
N 361 kB (99.7%) raster (declared by java.awt.image.Bufferedimage) [=+] sun.awt.image.IntegerinterleavedRaster
361 kB (99.6%) data (declared by sun.awtimage.IntegerComponentRaster) o int[]
a{, Another 3 instances with a total retained size of 264 bytes and a maximum single retained size of 144 bytes
a{, Another 2 instances with a total retained size of 152 bytes and a maximum single retained size of 128 bytes
a‘, Another 12 instances with a total retained size of 504 bytes and a maximum single retained size of 80 bytes
) java.awt.EventDispatchThread (0:x72%h I 337 kB (5 %)

@ java.lang.invoke.MethodTypeForm (D:5c75) I 257 B (4 %)
9 berier.Bezierhnim (0x7aab) I 224 kE (3 %)
@ java.util.zip.ZipFileSSource (0x1c21) Il 103 kB (1%)

@ sun.swing.CachedPainter (0x20) I 97,424 bytes (1 %)

@ comjprofileragent.d.a (0xb73) W 53,248 bytes (0 %)
¢] Javalang.invokeMethodType (0x210 W 45,600 bytes (0 %)
0 Jjdkinternal.loader.BuiltinClassLoader ((x623) W 44,240 bytes (0%)
€] sun.javald.loops.GraphicsPrimitiveMgr (0l cd 1 38,536 bytes (0 %)

W 37,824 bytes (0 %)
3 sun.awt.ExtendedKeyCodes (0 1 33,184 bytes (0 %)
] Jjava.nio.charset.Charset ((xb3b) 1 30,028 bytes (0 %)
@ com,jprofiler.agent triggers. TriggerLog (0x359) 1 25,216 bytes (0 %)

9 sun.security.provider.Sun (0:1902)

@ java.io.PrintStream (0x20f2) 1 25,104 bytes (0 %)
@ java.io.PrintStream (0xad4a) 1 25,104 bytes (0 %)

[] sun.awt.Win32FontManager (0x3343) 1 25,036 bytes (0 %)
[] Jjavalang.Module (0x42f5) 1 23,544 bytes (0 %)
M iava.lano.Obiectl 1 (0 122,680 bytes (0 %)

Not all dominated objects are directly referenced by their dominators. For example, consider
the references in the following figure:

[GC root]

y

[Object A]

dominates directly dominates directly

[ObjectBi ObjectB2 |

—

—
dominates indirectly

le

[objeccc)

Object A dominates objects B1 and B2 and it does not have a direct reference to object C. Both
B1 and B2 reference C. Neither B1 nor B2 dominates C, but A does. In this case, B1, B2 and C are
listed as direct children of A in the dominator tree, and C will not be listed a child of B1 and B2.
For B1 and B2, the field names in A by which they are held are displayed. For C, "[transitive
reference]" is displayed on the reference node.

At the left side of each reference node in the dominator tree, a size bar shows what percentage
of the retained size of the top-level object is still retained by the target object. The numbers will
decrease as you drill down further into the tree. In the view settings, you can change the
percentage base to the total heap size.

84

The dominator tree has a built-in cutoff that eliminates all objects that have a retained size that
is lower than 0.5% of the retained size of the parent object. This is to avoid excessively long lists
of small dominated objects that distract from the important objects. If such a cutoff occurs, a
special "cutoff" child node will be shown that notifies you about the number of objects that are
not shown on this level, their total retained size and the maximum retained size of the single
objects.

Instead of showing single objects, the dominator tree can also group biggest objects into classes.
The grouping drop-down at the top of the view contains a checkbox that activates this display
mode. In addition, you can add a class loader grouping at the top level. The class loader grouping
is applied after the biggest objects are calculated and shows who loaded the classes of the biggest
objects. If you want to analyze the biggest objects for one particular class loader instead, you
can use the "Group by class loader" inspection first.

© Classes Wl Allocations EE Biggest Objects 7 References O Time @ Inspecticns 3

Current object set: 67,199 objects in 1,280 classes.
1 selection step, 5,946 kB shallow size

No grouping = Tree hd Use .. Show In Graph W |@
Group by class loader € |Object Retained Size
Group by class P I 1,55 L (25 %)
he I :o: kB (6 %)
J java.awt.EventDispatchThread (0:72090 I ::C kB (5 %)
¥ javalang.invoke.MethodTypeForm (Dx3c73 I 257 kE (4 %)
B herier ResierBnim (M Task I 504 LR 20

The view mode selector above the biggest objects view allows you to switch to a sunburst diagram.
The diagram is composed of a series of concentric segmented rings and shows the entire content
of the dominator tree up to a maximum depth in one single image. References originate in the
innermost ring and propagate towards the outer rim of the circle. This visualization gives you a
flattened perspective with high information density that allows you to discover reference patterns
and see large primitive and object arrays at a glance through their special color coding.

If the current object set is the entire heap, the total circumference of the circle corresponds to
the used heap size. Because the biggest object view only shows objects that retain more than
0.1% of the total heap, this means that a substantial sector will be empty, corresponding to all
objects that are not retained by those biggest objects.

85

© Classes Ml Allocations .. Biggest Objects

Current object set: 67,199 objects in 1,280 classes.
1 selection step, 5,946 kB shallow size

No grouping b Sunburst Diagram

O Time @ Inspections 3

o All objects

Biggest objects:

1,543 kB (26.0%) sun.awt.AppContext

362 kB (6.1%) bezier.BezierAnimSDemo

332 kB (5.6%) java.awt.EventDispatchThread

257 kB (4.3%) java.lang.invoke.MethodTypeForm

224 kB (3.8%) bezier.BezierAnim

103 kB (1.7%) java.util.zip.ZipFileSSource

97,424 bytes (1.6%) class sun.swing.CachedPainter
53,248 bytes (0.9%) class com jprofileragent.d.a

43,600 bytes (0.8%) class java.lang.invoke.MethodType
44,240 bytes (0.7%) class jdkinternal.loader.BuiltinClassL
38,336 bytes (0.6%) class sun,javald.loops.GraphicsPrimi

L
—_——
za8

37,824 bytes (0.6%) sun.security.provider.5un
33,184 bytes (0.6%) class sun.awt.ExtendedieyCodes
30,088 bytes (0.5%) class java.nio.charset.Charset
25,216 bytes (0.4%) class com.jprofiler.agent.triggers. Trig
25,104 bytes (0.4%) java.io.PrintStream
25,104 bytes (0.4%) java.io.PrintStream
25,056 bytes (0.4%) sun.awt.Win32FontManager
23,544 bytes (0.4%) java.lang.Module
W 22,680 bytes (0.4%) java.lang.Object]]

Instances W Object arrays ™ Primitive arrays Smaller objects

Clicking on any ring segment sets a new root for the circle, thereby expanding the maximum
depth that you can see in the diagram. Clicking on the hollow center of the diagram restores the
previous root. If a new root has been set, the total circumference of the circle corresponds to
the retained size of the root object. An empty sector represents the self-size of the root object
and additional objects that are not present in the list of biggest retained objects. If the current
object set is not the entire heap, the total circumference of the circle corresponds to the sum of
all displayed biggest objects and no empty sector is shown.

86

© Classes Ml Allocations .. Biggest Objects 7 References O Time @ Inspections

Current object set: 67,199 objects in 1,280 classes.
1 selection step, 5,946 kB shallow size
No grouping b Sunburst Diagram Q.

o class java.nio.charset.Charset
30,088 bytes (0% of parent node, 0% of total heap)

Biggest chjects:

25,704 bytes (98.7%) static standardProvider o sun.nio
Another 3 instances with a total retained size of 64 bytes

TR
(I

)
i

Instances W Object arrays ™ Primitive arrays Smaller objects

More information about instances and their immediately retained objects is displayed on the
right side of the diagram when you hover over them with the mouse. When the mouse is outside
any ring segment, the list on the right side shows the biggest objects in the innermost ring.
Hovering over that list highlights the corresponding ring segments and clicking on a list item sets

a new root for the diagram. To create a new object set, you can choose from the actions in the
context menu, both on the ring segments as well on the list items.

Reference views

Unlike the previous views, the reference views are only available if you have performed at least
one selection step. For the initial object set these views are not useful, because the incoming

and outgoing reference views show all individual objects and the merged reference views can
only be interpreted for a focused set of objects.

The outgoing references view is similar to the view that a debugger would show in an IDE. When
opening an object, you can see the primitive data and references to other objects. Any reference
type can be selected as a new object set and you can select multiple objects at once. Like in the
classes view, you can select retained objects or associated j ava. | ang. O ass objects. If the
selected object is a standard collection, you can also select all contained elements with a single
action. For class loader objects, there is an option to select all loaded instances.

87

© Classes Ml Allocations .. Biggest Objects K References O Time @ Inspections +

Current object set: 5,574 instances of java.util.HashMap$Node
2 selection steps, 178 kB shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references A Use.. Apply filter ... =3 Show In Graph @ | @
Object Selected Objects : Shallow Size Allocation Time (him:s)
@ jeva.util HashMapShode (0:27 Selected javalang.Class Objects |,538 kB 32 bytes n/a

hash = 124406272

v _key # java.lang.StringBuffer (R |
coder (declared by java.lang.AbstractStringBuilder) = 0
count (declared

=17

javalang.Ab tringB

value (declared by java.lang.A ringBuilder) =] byte[] (0x1027¢)

next 'ojava.utll.HashMapSNDde (0
value ':)javax‘swing.UIManagerSLAFStatE (0x97ch)

Selection step 2: Class
java.util.HashMapSNode

5,574 instances of java.util. HashMapSNode

Selection step 1: All objects, after full GC, retaining soft references

Fields with null references are not shown by default because that information may be distracting
for a memory analysis. If you want to see all fields for debugging purposes, you can change this
behavior in the view settings.

© Heap Walker View Settings X
General Classes Allocations Biggest Objects References Time Graph

Size Scale For Cumulated Views

O Automatic 0 Mixed units MEB kB bytes

Instance Views
Show object IDs
Show declaring class if different frem actual class (7]

I Show fields with null values in outgoing references wewl (7]

Instance block size: w +| @

Common Options

Compact representation of incoming references to collections)

Beside the simple selection of displayed instances, the outgoing references view has powerful
filtering capabilities [p. 196]. For live sessions, both outgoing and incoming reference views have
advanced manipulation and display functionality that is discussed in the same chapter.

The incoming references view is the main tool for solving memory leaks. To find out why an
object is not garbage collected, the Show Paths To GC Root button will find reference chains to
garbage collector roots. The chapter on memory leaks [p. 199] has detailed information on this
important topic.

88

© Classes Ml Allocations EIZ Biggest Objects i References O Time @ Inspections 3

Current object set: 723 instances of java.awt.geom.GeneralPath
2 selection steps, 23 kB shallow size, Calculate retained and deep sizes Use retained objects

Incoming references b Use.. v =3 Show In Graph 7:9:} w @ i Show Paths Te GC Root

Object Retained Size Shallow Size Allocation Time (himis)
[]
@ value of java.util HashMapShode (0x2516
@ element of java.util. HashMapSMode[| (0ud2b3
@ table of java.utilHashMap (0:2615
0 leakMap of bezier.BezierAnim (0xTaah

O this$0 of bezier.BezierAnimSDeme ([xd2be
oijava stack of Thread-0 in bezier.BezierAnimSDemeo.run()
@ java.awt.geom.GenerslPath (0061 248 bytes 32 bytes n/a
@ java.awt.geom.GeneralPath 248 bytes 32 bytes n/a
@ java.awt.geom.GenerzlPath 248 bytes 32 bytes n/a
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
[] Jjava.awt.geom.GeneralPath 248 bytes 32 bytes nfa
[] Jjava.awt.geom.GeneralPath 248 bytes 32 bytes n/a
@ java.awt.geom.GenerslPath 248 bytes 32 bytes n/a
@ java.awt.geom.GeneralPath 248 bytes 32 bytes n/a
@ java.awt.geom.GeneralPath 248 bytes 32 bytes n/a
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
[] Jjava.awt.geom.GeneralPath 248 bytes 32 bytes nfa
[] Jjava.awt.geom.GeneralPath 248 bytes 32 bytes n/a
0 iava.awt.aeom.GeneralPath (0 248 bvtes 32 bvtes nfa

Merged references

Checking references for a lot of different objects can be tedious, so JProfiler can show you the
merged outgoing and incoming references of all objects in the current object set. By default, the
references are aggregated by classes. If instances of a class are referenced by other instances

of the same class, a @ special node is inserted that shows the original instances plus the instances
from these class-recursive references. This mechanism automatically collapses internal reference
chains in common data structures, such as in a linked list.

You can also choose to show the merged references grouped by field. In that case, each node
is a reference type, such as a particular field of a class or the content of an array. For standard
collections, internal reference chains that would break cumulation are compacted, so you see
reference types like "map value of java.lang.HashMap". Unlike for class aggregation, this
mechanism only works for explicitly supported collections from the standard library of the JRE.

In the "Merged outgoing references" view, the instance counts refer to the referenced objects.
In the "Merged incoming references" view, you see two instance counts on each row. The first
instance count shows how many instances in the current object set are referenced along this
path. The bar icon at the left side of the node visualizes this fraction. The second instance count
after the arrow icon refers to the objects that hold the references to the parent node. When
performing a selection step, you can choose whether you want to select objects from the current
object set that are referenced in the selected way or if you are interested in the objects with the
selected reference - the reference holders.

89

© Classes Ml Allocations .. Biggest Objects K References o Time @ Inspections +

Current object set: 5,574 instances of java.util.HashMap$Node
2 selection steps, 178 kB shallow size, Calculate retained and deep sizes Use retained objects

Merged incoming references ¥ || Aggregatebyclass ¥ Use.. (i]

B 79% - 4,419 instances) 494 instances of java.util.K Referenced Objects
B 757 - 4,246 instances Y 492 instances of java.ul Unreferenced Objects

W 18% - 1,019 instances &Y 279 instances of java.util.
2 Reference Holder: |

3 instances ® 1 instance of bezier.Bezie
- 999 instances (3 1instance of javax.swing.JRootPane
W 7% - 999 instances &Y 1instance of bezier.BezierAnim$Demo
W 17% - 980 instances (Y 1instance of sun.awt.image.OffScreenlmage
W 7% - 998 instances 3 1instance of sun.awt.windows.WPanelPeer
W 7% - 999 instances &Y 1instance of java.awt.BorderLayout
W 7% - 980 instances Y 2 instances of java.lang.Object] |
W 7% - 999 instances Y 3 instances of java.util. Hashtable$Entry
W 7% - 999 instances Y 1instance of bezier.BezierAnim$1
W 17% - 980 instances (3 1instance of java.awt.LightweightDispatcher
B 14% - 804 instances &Y 60 instances of java.lang.Module
1 5% - 313 instances (9 22 instances of java.util.HashMap$KeySet
1 3% - 170 instances L3 7 instances of java.util.Collections$UnmodifiableMap
| 2% - 146 instances Y 33 instances of java.util. HashMap$EntrySet
1 2% - 125 instances Y 1 instance of sun.awt.resources.awt
L

LIS L - I S (B e e Font TeoTamolont

With the "Merged dominating references" view you can find out which references must be
removed so that some or all of the objects in the current object set can be garbage collected.
The dominating reference tree can be interpreted as the merged inverse of the dominator tree
in the biggest objects view, aggregated for classes. The reference arrows may not express a
direct reference between the two classes, but there may be other classes in between that hold
non-dominating references. In the case of multiple garbage collector roots, no dominating
references may exist for some or all objects in the current object set.

© Classes Wl Allecations .- Biggest Objects 1 References O Time @ Inspections »

Current object set: 5,574 instances of java.util.HashMap$Node
2 selection steps, 178 kB shallow size, Calculate retained and deep sizes Use retained objects

Merged doeminating references ¥ || Objects to GC roots Use.. w @

mm— 79% - 4,419 instances @| Ol ta GCroots 4o ohmapgNadel]
BN 6% - 4,246 instances | GC roots to ohjects il.HashMap
W 18% - 1,019 instances Y 279 instances of java.util.HashSet
W 7% - 999 instances O 1instance of bezier.BezierAnim
B 14% - 804 instances Y 60 instances of java.lang.Module
I 3% - 170 instances O 7 instances of java.util.Collections$UnmodifiableMap
! Q
I 2% - 125 instances @& GC root
% - 123 instances O class sun.font.TrueTypeFont
= - 121 instances 0 class sun.awt.ExtendedKeyCodes
% - 102 instances (¥ 1 instance of sun.awt.windows. WToolkit
%6 - 100 instances O 1 instance of sun.awt.windows.WDesktopProperties
% - 89 instances O 1 instance of com.sun.swing.internal.plaf.basic.resources.basic
0% - 53 instances (3 1 instance of java.lang.ModuleLayer
0% - 49 instances 0 class java.security.Provider
0% - 45 instances Y 31 instances of javasecurity.Provider§Service
0% - 3instances C4 class sun fawa?d lnons SurfaceTune

)

o

o

12
12
B
I
B

All references may be transitive 0

By default, the "Merged dominating references" view shows incoming dominating references
and by opening the tree, you can reach the objects that are held by the GC roots. Sometimes,
the reference tree may lead to the same root objects along many different paths. By choosing
the "GC roots to objects" view mode in the drop-down at the top of the view, you can see the
reverse perspective where the roots are at the top level and the objects in the current object set
are in the leaf nodes. In that case, the references go from the top level towards the leaf nodes.
Which perspective is better depends on whether the references you want to eliminate are close
to the current object set or close to the GC roots.

90

Inspections

The "Inspections" view does not show data by itself. It presents a number of heap analyses that
create new object sets according to rules that are not available in the other views. For example,
you may want to see all objects that are retained by a thread local. This would be impossible to
do in the reference views. Inspections are grouped into several categories and explained in their
descriptions.

© Classes Wl Allocations EE Biggest Objects 7 References O Time @ Inspections 3

Current object set: 67,199 objects in 1,280 classes.
1 selection step, 5,946 kB shallow size

Available Inspections:

= Duplicate objects Description

Find duplicate java.lang.String ehjects in the current object set.
Duplicate strings
After the inspection is calculated, you will see a statistics table at the top of all
heap walker view where you can select each duplicate string value and analyze
the corresponding string objects separately,

Duplicate primitive wrappers

Duplicate arrays

MNote: If no java. lang. String objects are contained in the current object set,

[Collections & Arrays the inspection will return the empty object set.

94 Reference & field analysis Configuration

& Weak references Minimum length: 20 =

I Stack references Status

T Thread locals 9 Mot calculated @ Calculate inspection and create a new chject set

© Classes & Class loaders

es Custom inspections

An inspection can partition the calculated object set into groups. Groups are shown in a table
at the top of the heap walker. For example, the "Duplicate strings" inspection shows the duplicate
string values as groups. If you are in the reference view, you can then see thej ava. | ang. Stri ng
instances with the selected string value below. Initially, the first row in the group table is selected.
By changing the selection, you change the current object set. The Instance Count and Size columns
of the group table tell you how large the current object set will be when you select a row.

91

© Classes Ml Allocations EIZ Biggest Objects i References O Time @ Inspections 3

Object groups:
Prigrity Duplicate String Instance Count String Length Total Size
1 makeConcatWithConstants 34 23 782 bytes
2 C:\Usershingo'jdks'jbrsdk-11_0_13-b1731.16\bin 5 46 230 bytes
3 C:\Users\ingo'\projects'jprofiler\distibin 5 4 205 bytes
4 C:\Users\ingo'jdks\jbrsdk-11_0_13-b1751.16 4 42 168 bytes
5 ChUsers\ingohprojects\jprofiler\dist\bin\agent.jar 3 51 153 bytes
i} file:/#/ Ce/Users/ingo/projects/jprofiler/dist/demo/bezier/ classes/ 2 66 132 bytes
7 CiUsershingo\jdks\jbrsdk-11_0_13-b1731.16\bin\management_ext.dll 2 65 130 bytes
3 C\Usershingotjdks\jbredk-11_0_13-b1731.168\bin\fontmanager.d|l 2 62 124 bytes
Current object set: 34 instances of java.lang.5tring
3 selection steps, 816 bytes shallow size, Calculate retained and deep sizes Use retained objects
Qutgoing references hd Use.. ¥ Apply filter ... ¥ Show In Grap L] @

Object Retained Size Shallow Size Allocation Time (h:m:s)
["makeConcatWithConsta... 64 bytes 24 bytes r
["makeConcatWithConsta... 64 bytes 24 bytes
["makeConcatWithConsta... 64 bytes 24 bytes
["makeConcatWithConsta... 64 bytes 24 bytes
["makeConcatWithConsta... 64 bytes 24 bytes
["makeConcatWithConsta... 64 bytes 24 bytes
["makeCencatWithConsta... 64 bytes 24 bytes
["makeConcatWithConsta... 64 bytes 24 bytes
["makeConcatWithConsta... 64 bytes 24 bytes
["makeConcatWithConsta... 64 bytes 24 bytes
["makeConcatWithConsta... 64 bytes 24 bytes
J javalang.String ["makeConcatWithConsta... 64 bytes 24 bytes
J java.lang.String ["makeConcatWithConsta... 64 bytes 24 bytes
¥ java.lang.String (0xbate) ["makeConcatWithConsta... 64 bytes 24 bytes

S SN ST ST S T T IS, EAl o LY R

¥ java.lang.5tring (0x
» javalang.String
¥ javalang.String
J java.lang.String
¥ java.lang.String
¥ java.lang.String
¥ javalang.String
¥ java.lang.5tring
 java.lang.String
» javalang.String
» javalang.String

oo oo o oo oo oo oo o o o o o o

The group selection is not a separate selection step in the heap walker, but it becomes part of
the selection step made by the inspection. You can see the group selection in the selection step
pane at the bottom. When you change the group selection, the selection step pane is updated
immediately.

Each inspection that creates groups decides which groups are most important in the context of
the inspection. Because this does not always correspond to the natural sort order of one of the
other columns, the Priority column in the group table contains a numeric value that enforces the
sort order for the inspection.

Inspections can be expensive to calculate for large heaps, so the results are cached. In this way,
you can go back in the history and look at the results of previously calculated inspections without
waiting.

Heap walker graph

The most realistic representation of instances together with their references is a graph. While
the graph has a low visual density and is impractical for some types of analyses, it still is the best
way to visualize relationships between objects. For example, circular references are difficult to
interpretin a tree, but immediately evident in a graph. Also, it may be beneficial to see incoming
and outgoing references together, which is impossible in a tree structure where you can see
either one or the other.

The heap walker graph does not automatically show any objects from the current object set, nor
is it cleared when you change the current object set. You manually add selected objects to the
graph from the outgoing references view, the incoming references view or the biggest objects
view by selecting one or more instances and using the Show In Graph action.

92

O Classes il Allocations .. Biggest Objects i References o Time @ Inspections 3

Current object set: 723 instances of java.awt.geom.GeneralPath

2 selection steps, 23 kB shallow size, Calculate retained and deep sizes Use retained objects

Incoming references b Use.. v =3 Show In Graph @ w @ i Show Paths Te GC Root

Object Retained Size Shallow Size Allocation Time (himis)

» I java.awt.geom.GeneralPath (0x8618) 248 bytes 32 bytes n/a
@ java.awt.geom.GeneralPath (0x261e 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath) 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
[] Jjava.awt.geom.GeneralPath 248 bytes 32 bytes nfa
[] Jjava.awt.geom.GeneralPath (0 248 bytes 32 bytes n/a

Package names in the graph are shortened by default. Like in the CPU call graph, you can enable
the full display in the view settings. References are painted as arrows. If you move the mouse
over the reference, a tooltip window will be displayed that shows details for the particular
reference. Instances that were manually added from the reference views have a blue background.
The more recently an instance has been added, the darker the background color. Garbage
collector roots have a red background and classes have a yellow background.

1 Wl Allocations .- Biggest Objects i References o Time @ Inspections = Graph

Heap Walker Object Graph

The object graph is not cleared when the current object set is changed. You can add objects from different object sets and explore their relationships
and connections.

Use.. Show Paths To GC Root Find Path Between Two Selected

- B
12 is s.awtAWTAutoShutdown \’ /)
java stackin

L awtAWTAutoShutdown > jlang.Object

s.awt AWTAutoShutdown
n
e il Object
reference of AWT-EventQueue-0 M

[
Jjlang Thread j

7
Jutil.IdzntiyHashMap

J.utilHashSet

=1

b

J H||% v e

o
&

L]

By default, the reference graph only shows the direct incoming and outgoing references of the
current instance. You can expand the graph by double-clicking on any object. This will expand
either the direct incoming or the direct outgoing references for that object, depending on the
direction you're moving in. With the expansion controls on the left and right sides of an instance
you can selectively open incoming and outgoing references. If you need to backtrack, use the
undo functionality to restore previous states of the graph, so you don't get distracted by too

many nodes. To trim the graph, there are actions for removing all unconnected nodes or even
for removing all objects.

Like in the incoming references view, the graph has a Show Path To GC Root button that will
expand one or more reference chains to a garbage collector root [p. 199] if available. In addition,

93

there is a Find Path Between Two Selected Nodes action that is active if two instances are selected.
It can search for directed and undirected paths and optionally also along weak references. If a
suitable path is found, it is shown in red.

@ Path Search Options b4

Search Directions
14 Search for directed path from first to second object
Search for directed path from second to first object
Search for undirected path @

Options

This search follows soft references, as per the initial retention setting
for the heap dump.

Alse follow weak, phantom and finalizer references for this search (7]

Stop search at classes O

Initial object set

When you take a heap snapshot, you can specify options that control the initial object set. If you
have recorded allocations, the Select recorded objects check box restricts the initially displayed
objects to those that have been recorded. The numbers will usually differ from those in the live
memory views, because unreferenced objects are removed by the heap walker. Unrecorded
objects are still present in the heap snapshot, they are just not displayed in the initial object set.
With further selection steps you can reach unrecorded objects.

In addition, the heap walker performs a garbage collection and removes weakly referenced
objects, except for soft references. This is usually desirable because weakly referenced objects
are distracting when looking for memory leaks where only strongly referenced objects are
relevant. However, in those cases where you are interested in weakly referenced objects you
can tell the heap walker to retain them. The four weak reference types in the JVM are "soft",
"weak", "phantom" and "finalizer" and you can choose which of them should be sufficient for
retaining an object in the heap snapshot.

@ Heap Snapshot Options X

Select recorded objects

Initially, the heap walker will show only those objects that have been
recorded in the dynamic memory view section,

Perform full GC in heap snapshot @
Retain ohjects held by soft references -

soft

Show Overhead O
weak

finalizer

If present, weakly referenced objects can be selected or removed from the current object set by
using the "Weak reference" inspections in the heap walker.

Marking the heap

Often you want to look at the objects that have been allocated for a particular use case. While
you could do this by starting and stopping allocation recording around that use case, there is a
much better way that has a lot less overhead and preserves the allocation recording feature for
other purposes: The Mark Heap action that is advertised on the heap walker overview and that
is also available in the Profiling menu or as a trigger action marks all objects on the heap as "old".
When you take the next heap snapshot, it is now clear what the "new" objects should be.

94

@ Mo snapshot has been taken.

Telemetries
For a maximum of features:
Live Memaory
Press ﬂ to take a JProfiler heap snapshot
Heap Walker
= The snapshot is displayed in this frame and saved together with profiling information
from other views
CPU Views = For live profiling sessions, special features are available
= Integrations with other views require this snapshot type
Threads

Press * to indicate the starting point of a use case

Menitors & Locks
= All objects that are currently on the heap will be marked as old

= When you take the next heap snapshot, new and eld chjects will be listed separately in
Databases the header

= You can select new or old objects only, making it easy to track down memaory leaks
JEE & Probes

QO o umpg @

For a minimum of overhead:

Y
L4

MBeans

§

Press i to take an HPROF heap snapshot

= The snapshot is saved separately and displayed in another frame
= Mot all features are available

= Memory and CPU overhead in the profiled VM are lower than for the JProfiler snapshot

If there was a previous heap snapshot or a mark heap invocation, the title area of the heap
walker shows the new instance count and two links titled Use new and Use old that allow you to
select either the instances that have been allocated since that point in time, or the surviving
instances that were allocated before. This information is available for each object set, so you can
drill down first and select new or old instances later on.

© Classes Wl Allecations .- Biggest Objects 1 References O Time @ Inspections »

Current object set: 122,311 objects in 1,295 classes.

1 selection step, 8,976 kB shallow size

52,008 new instances (42.5%) since the last heap dump Use old

© Classes A Use.. ™ & Group By Class Loaders Calculate estimated retained sizes
Mame Instance Count Size
byte[] PR 1,065 kB
javalang.String I ;730 330 kB
java.util.HashMapSNode | [REVES 420 kB
float[] | [k 1,470 kB

95

Thread Profiling

Using threads incorrectly can create many different kinds of problems. Too many active threads
can result in thread starvation, threads can block each other and impact the liveness of your
application or acquiring locks in the wrong order can lead to deadlocks. In addition, information
about threads is important for debugging purposes.

In JProfiler, thread profiling is split into two view sections, the "Threads" section deals with the
life-cycle of threads and with capturing thread dumps. The "Monitors & locks" section offers
functionality for analyzing the interaction of multiple threads.

Telemetries
Live Memory
Heap Walker

CPU Views

Threads

Menitors & Locks

Databases

JEE 8 Probes

© WS wimpg &

Inspecting threads

The thread history view shows each thread as a colored row in a time-line where the color
indicates the recorded thread status. Threads are sorted by their creation time and can be filtered
by name. When monitor events have been recorded, you can hover over parts of a thread where
it was in the "Waiting" or "Blocked" state and see the associated stack trace with a link into the
monitor history view.

’ Show usages: | Both alive and dead d
Telemetries
I RERRRRREIINN ERERRERRRRRRRREERRRR R R
Threads al 0:20 0:30
-‘:‘. Live Memory main [main] 1
HSQLDB Server @E0704c [main] L] | |
b HSQLDEB Timer @748za5a4 [main]
-ﬁ LaplWas AWT-EventQueue-0 [main] 1 : :
pool-1-thread-1[main] [| |
I CPU Views Tomcat JDBC Pool Cleaner[8150338... | |
pool-1-thread-2 [main] u | |
— . pool-1-thread-5[main] milil | |
pool-1-thread-4 [main] miol | |
E— pool-1-thread-3 [main] n | |
i HSOLDE Connection @70da7176 ... 1 | i |
Thread Menitor HSQLDE Connection @455d5¢5 [H.. (I} | i | |
HSQLDE Connection @3d729bd [H... 1 i
iz rys HSOLDE Connection @5f03cf8 [HS... 1 : 1 :
m) HSQOLDE Connection @2602acf1 [H... Iman
1 Monitors & Locks ‘ ‘
; Databases == Runnable = Waiting ™= Blocked ™ Netl/O /@ ko

A tabular view of all threads is available in the thread monitor view. If CPU recording is active
while a thread is being created, JProfiler saves the name of the creating thread and displays it
in the table. At the bottom, the stack trace of the creating thread is shown. For performance

96

reasons, no actual stack trace is requested from the JVM, but the current information from CPU
recording is used. This means that the stack traces will only show those classes that satisfy the
filter settings for call tree collection.

. Telernetries Name Group Start Time Creating Thread Status

HSOLDE Server @E07.. main (:00.328 main [main] I Netl/O
H50LDE Tirmer @748a... main 0:00.613 H50LDEB Server @G0704¢ [... =3 Waiting
AWT- EventQueue 0 main 0:00.845 main [mem] = Wa\tmg

e emor
pnn\ 1-thread-2 main DD'I D44 AWT EVEntQueue D[mem] | NetIrO
b Heap Walker pool-1-thread-3 main (:01.044 AWT-EventQueue-0[main] 3 Net /0
pool-1-thread-4 main (:01.044 AWT-EventQueue-0 [main] =3 Net /0
pool-1-thread-5 main 0:01.044 AWT-EventQueue-0[main] 03 Net /0
I CPU Views Tomcat JDBC Pool Cle.. main 0:01.053 pool-1-thread-1 [main] =3 Waiting
HS0OLDE Connection ... HSOLDE Connections... 0:01.080 H50LDEB Server @G0704¢ [... =3 Waiting
— HSOLDE Connection ... HSOLDB Connections... 0:01.199 HSCOLDE Server @60704c [... B3 Waiting
Threads HSQLDE Connection ... HSOLDB Connections... 0:01.303 HSCQLDB Server @60704c [... £ Waiting
HSQLDB Connection ... HSOLDB Connections... 0:01.408 HSCQLDB Server @60704c [... E3 Waiting
HSQLDE Connection ... HSQLDB Connections... 0:01.513 HSCQLDB Server @E0704¢ [.. B3 Waiting

Thread History

Thread Menitor
Filtered stack trace for thread creation: ﬂ

Thread Dumps java.util.concurrent.ExecutorService.submit(java.util.concurrent.Callable)
jdbecJdbeDeme startActivity(boolean)
{? Monitors & Locks jdbec.ServerControllerFrame updateActivity()
jdbec.ServerControllerFrameS2 windowOpened(java.awt.event. WindowEvent)
java.awt.EventDispatchThread.run()
; Databases

If you enable the recording of estimated CPU times in the profiling settings, a CPU Time column
is added to the table. CPU time is only measured when you record CPU data.

€ Session Settings X
g

L4 Enable CPU profil
Application Settings [Enable profiling

Auto-Tuning For Instrumentation

Enable auto-tuning 0

A method is an overhead hot spot and will be suggested for inclusion into the list of ignored
methods, if both of the following conditions are true:

Call Tree Recording

' Call Tree Filters

1. The total time of the methed is more than 10 % permille of the entire total time
| Trigger Settings 2. The average time of the method is less than 100 | %) ps

Auto-tuning is only performed if the method call recording type is set to "Instrumentation” on
; Database Settings the methed call recording tab.

Call Tree Recording Options

o Probe Settings CPU times for instrumentation: () Elapsed times € Estimated CPU times| @

Instrument native methods 0
@" Advanced Settings Thread resolution for async sampling @
CPU Profiling Exceptional Method Run Recerding
Probes & JEE Maximum number of separately recorded method runs: 508 @
Memory Profiling Time type for determining exceptional method runs: 0 All states v

Thread Profiling Call Tree Splitting

Miscellaneous Maximum number of splits: 128 % @

General Settings Copy Settings From “ Cancel

Like most debuggers, JProfiler can also take thread dumps. The stack traces of thread dumps
are the full stack traces provided by the JVM and do not depend on CPU recording. Different
thread dumps can be compared in a diff viewer when you select two thread dumps and click the
Show Difference button. It is also possible to compare two threads from a single thread dump by
selecting them and choosing Show Difference from the context menu.

97

— = HSQOLDBE Connection @2602acfl
’ Telemetries Thread dumps: [D) ¥ 12| @ == HSQLDB Connection @455d5¢5
H= HSQLDE Connection @5d729bd
=t0:12.747.244 = HSOLDB Connection @5f03cf2
,’:’. Live Memory at 0:11.114.915 le= HSOLDE Connection @70da7176
at 0:09.507.661 main
,'ﬁ Hesp Walker = AWT-EventQueue-0
= HSQLDB Server @&0T04c
= HSOLDE Timer @748aa5a4
I CPU Views = Tomcat JDBC Pool Cleaner[815033865:1639732867237]
= pool-1-thread-1
— l— —raa_an
Threads = Copy Selected Threads To Clipbeard Ctrl+C |
java.) R or, byt
@ Show Difference Ctrl+Alt+D
java. . - T, byte
U=l =y java.net.SocketinputStream.read(byte[], int, int, int) (line: 168)
Thread Monitor java.net.SocketinputStream.read(byte[1, int, int) (line: 140)
Javaio BufferedinputStream fill]) (line: 252)

Thread Dumps java.io BufferedinputStream.read() (line: 271)
java.io.DatalnputStream.readByte() (line: 270)

1 Monitors & Locks org.hsgldb.result.Result.newResult(java.io.Datalnput, org.hsgldb.r
org.hsqldb.ClientConnection.read()
org.hsqldb.ClientConnection.execute{org.hsqgldb.result.Result)

; Databases ara healdb idke INRCShatammant fatrhParn#iiaea lama Chrina ind i

Thread dumps can also be taken with the "Trigger thread dump" trigger action or via the API.

Analyzing locking situations

Every Java object has an associated monitor that can be used for two synchronization operations:
A thread can wait on a monitor until another thread issues a notification on it, or it can acquire
a lock on a monitor, possibly blocking until another thread has given up the ownership of the
lock. In addition, Java offers classes in the java.util.concurrent.| ocks package for
implementing more advanced locking strategies. Locks in that package do not use monitors of
objects but a different native implementation.

JProfiler can record locking situations for both of the above mechanisms. In a locking situation,
there are one or multiple threads, a monitor or an instance ofj ava. uti | . concurrent. | ocks.
Lock as well as a waiting or blocking operation that takes a certain amount of time. These locking

situations are presented in a tabular fashion in the monitor history view, and visually in the
locking history graph.

‘ Telemetries curentevent: || € P | Pl 2728 [at0:04055.785]

Event of interest: no nodes of interest have been marked Recording thresholds: 1.4

‘i:l- Live Memory

.
ﬁ Heap Walker
Thread-0 [main] ~F-------- | Class bezier BezierAnim§Dema

Monitor [d: 3
I CPU Views
= Threads | AWT-EventQueue-0 [main] c|ass.;.j_a_vf;\?ng_fgbjed
- Waiting for monitor since 0:04.044.852 in: (2
r? Monitors & Locks Jjavalang.Object.wait(long)
10 0:20 bezier.BezierAnimSDemo.step(int, int)

Current Locking Graph
bezier.BezierAnimSDemo.paint(java.awt.Grapl

Current Menitors Java.awt.EventDispatchThread.run()

VAPt r v n | bezierBezierAnimSDeme block{boolean) T
Locking History Graph ‘

il

mm Event mm Event involving nodes of interest A . .
Show in moniter history 1

Monitor History

[PR TS

The locking history graph focuses on the entire set of relationships of all involved monitors and
threads rather than the duration of isolated monitor events. Threads and monitors participating
in a locking situation are painted as blue and gray rectangles, if they are part of a deadlock, they

98

are painted in red. Black arrows indicate ownership of a monitor, yellow arrows extend from
waiting threads to the associated monitors, while a dashed red arrow indicates that a thread
wants to acquire a monitor and is currently blocking. Stack traces are available when hovering
over blocking or waiting arrows if CPU data has been recorded. Those tool tips contain hyperlinks
that take you to the corresponding row in the monitor history view.

The tabular monitor history view shows monitor events. They have a duration that is displayed
as a column so you can find the most important events by sorting the table. For any selected
row in the tabular view, you can jump to the graph with the Show in Graph action.

s % -, -~ m + — N
£ 8B T S & @ @ || =g
Start Stop Start Runge | Aad o View e Stop Freeze show in | Show In

Recordings Recordings Tracking Bookmark PO cettings 7 Monitars View Heap Walker| Graph

Show monitors: | All types ¥ | Threshold in ms: 0 ¥ A A
Time Duration Type Menitor ID Monitor Class Waiting Thread Owning Thread

(0:04.044 [De 199 ms = Waiting 2 java.lang.Object AWT-EventQueue-0 [mai...

0:04.055 [De: Blocked b 2ezierAnimSDe... Thread-0 [main] AWT-EventQueue-0 [mai...
0:05.282 [De 200 ms = Waiting 2 javalang.Object AWT-EventQueue-0 [mai...

0:05.292 [De 190 msz = Blocked 3 bezier.BezierAnimSDe... Thread-0[main] AWT-EventQueue-0 [ma...
0:06.520 [De 200 ms =3 Waiting 2 java.lang.Object AWT-EventQueue-0 [mai...

0:06.530 [D'e 190 ms Bl Blocked 3 bezier.BezierAnimSDe... Thread-0 [main] AWT-EventQueue-0 [mai...
0:07.747 [De 198 ms = Waiting 2 java.lang.Object AWT-EventQueue-0 [mai...

0:07.757 [De 189 ms Ml Blocked 3 bezier.BezierAnimSDe... Thread-0 [main] AWT-EventQueue-0 [mal...
0:08.975 [De 200 ms =2 Waiting 2 javalang.Object AWT-EventQueue-0 [mai...

0:08.986 [Dec 17,... 189 ms =@ Blocked 3 bezier.BezierAnimSDe... Thread-0 [main] AWT-EventQueue-0 [mai...
Total: 1,951 ms

Recording thresholds: 1,000 ps blocking / 100,000 ps waiting [Change:

Filtered stack trace for waiting thread: (7] Filtered stack trace for owning thread:

bezier.BezierAnimSDema.run() java.lang.Object.wait{long)

bezier.BezierAnim&Demo.block(boolean)
bezier.BezierAnimSDemo.step(int, int)
bezier.BezierAnimSDemo.paint(java.awt.Graphics)
Jjava.awt.EventDispatchThread.run()

Each monitor event has an associated monitor. The Monitor Class column shows the class name
of the instance whose monitor is used, or "[raw monitor]" if no Java object is associated with the
monitor. In any case, monitors have a unique ID that is displayed in a separate column, so you
can correlate the usage of the same monitor over multiple events. Each monitor event has a
waiting thread that is performing the operation and optionally an owning thread that is blocking
the operation. If available, their stack traces are shown in the lower part of the view.

If you have further questions about a monitor instance, the Show in Heap Walker action in both
monitor history view and locking history graph provides a link into the heap walker and selects
the monitor instance as a new object set.

e r_:t_‘ - -~ M 4+ — N
B 8B T S &% 0 2 | =g
Stant Stop Start Add View Swp Freeze Show in | Shew In

Frrmim omsms Teiem | NS promen | EETE aeo 2D min W Hezp Walker | Grzph

Show monitors: | All types ¥ | Threshold in ms: 0+ X A
Time Duration Type Menitor ID Monitor Class Waiting Thread Owning Thread

0:04.044 [Dec 17,... 199 ms == Waiting 2 java.lang.Object AWT-EventQueue-0 [mai...
0:04.055 [Dec 1 Blocked bezier.BezierAnimSDe...| Thread-0 [main] AWT-EventQueue-0 [mai...
0:05.282 [Dec 17,... 200 ms =2 Waiting 2 java.lang.Object AWT-EventQueue-0 [mai...

Limiting the events of interest

One fundamental problem with analyzing monitor events is that applications may generate
monitor events at an extraordinary rate. That is why JProfiler has default thresholds for waiting
and blocking events below which events are immediately discarded. These thresholds are defined
in the view settings and can be increased in order to focus on longer events.

99

Current event: ILYNRY &£ | 21 2748 [at(:04.055.783]

Event of interest: FARP . I F Recording thresholds: 1,000 ps blocking / 100,000 ps waiting I Chanae

Thread-0 [main] |-------- 4 © Monitor History Graph View Settings X

Recording Time line

| AWT-EventQueue-0 [main] EEm W rAlss

Monitor blocking threshold: 1,000 | % Hs

Monitor waiting thresheld: 100,000 | 5| ps

that the accaristed meman: meerkhead arnoe linea

[TR T R R R R A R O R A A RO B R AR I '
‘ 0:10 0:20 All events with a duration that is lower than the configured threshold will be

discarded.
[H ‘ ‘ ‘ H H ‘ | “ Warning: If you lower the thresholds, more data will be recerded. Please note

Cancel

mm Event mm Event involving nodes of interest == Currently displayed event Click and drag to curnulate events ﬁ)]

To the recorded events, you can further apply filters. The monitor history view offers a threshold,
an event type and a text filter at the top of the view. The locking history graph allows you to
select a thread or a monitor of interest and only show locking situations that involve the marked
entities. Events of interest are shown with a different color in the time line and there is a secondary
navigation bar to step through those events. If the current event is not an event of interest, you
can see how many events are between the current event and the next event of interest in either
direction.

In addition to locking situations where the selected thread or monitor are present, the locking
situations where it is removed from the graph are shown as well. This is because each monitor
event is defined by two such locking situations, one where an operation is started and one where
it has ended. This also means that a completely empty graph is a valid locking situation that
indicates that there are no more locks in the JVM.

Current event: K< & | 21 2734 [at0:04.055.785]

kvent of interest: FARP. IRV 1.7| Recording thresholds: 1,000 ps blocking / 100,000 ps waiting [Change

Class: bezier Basiadiainalloms
UEHH * | Mark Nodes of Interest I

Thread-0 [main] F-------- =

Remove Mark

ﬁ Show Selection In Heap Walker

| AWT-EventQueue-0 [main] Class: javi
Moni;
t Export View Ctrl+R
View Settings Ctrl+T
[N TR ORI I B R B A B T BB T A B B T T T T B B I B R A AN N I A AN I BN I AT RO
‘ 0:10 0:20 0:30 x40 0:50 1:00 1:10
mm Event ® Event involving nodes of interest ™ Currently displayed event Click and drag to cumulate events /@ ko

Another strategy to reduce the number of events that need your attention is to cumulate locking
situations. In the locking history graph, there is a time line at the bottom that shows all recorded
events. Clicking and dragging in it selects a time range and data from all contained events is
shown in the locking graph above. In a cumulated graph, each arrow can contain multiple events
of the same type. In that case, the tool tip window shows the number of events as well as the
total time of all contained events. A drop-down list in the tool tip window shows the time stamps
and lets you switch between the different events.

100

Deadlock detection

Data in the current locking graph and current monitors views is always shown, regardless of
whether monitor events are recorded. These views show the current locking situations and the
monitor events that are in progress. Blocking operations are usually short-lived, but in the event
of a deadlock, both views will display a permanent view of the issue. In addition, the current
locking graph shows the threads and monitors that produce a deadlock in red, so you can spot
such a problem immediately.

” Telemetries

’!:!' Live Memaory
’
'ﬁ Heap Walker

I CPU Views

Threads
r? Menitors & Locks
Current Locking Graph
Current Monitors
Lecking History Graph
Maonitor History

[PR T

Monitor usage statistics

To investigate blocking and waiting operations from a more elevated perspective, the monitor
statistics view calculates reports from the monitor recording data. You can group monitor events
by monitors, thread names, or classes of monitors and analyze cumulated counts and durations

for each row.

@ H =
Start
(Center

e J
A

Save Session

5
P cpzpshor Semings

Telemetries

Live Memory

Heap Walker

CPU Views

Threads

= il mm g

Menitors & Locks

Current Locking Graph
Current Monitors
Locking History Graph
Menitor History

Meniter Usage Statistics

Thread-1 [main]

\

\
Thread-3 main] -
S

Thread-4 [main] |———-—

Monitor Id: 2

Class: java.lang.Object

Thread-2 [main]

Thread-0 [main]

Class: java.lang.Ohject
_____ »| Monitor Id: 1

Blocked on monitor since 0:08.077.043 in: @

java.lang.Object.wait{long)
misc.DeadlockTests1.run()

L o — 0 — F:
A 1 N S + .
£ B & C &% @
Start Stop. Start Add View Calculate
Recordings Recordings Tracking " OC Bookmark DO Semings Help Searistics
Monitor Usage Statistics Grouped by Monitors
Menitors Block Count Block Duration Wait Count
bezier.BezierAnimSDemo (... 15 2,849 ms 0
Jjava.util.concurrent.locks.... 1 48 ps 0
javalang.Object (id: 2) 0 Ous 15
java.util.concurrent.locks.... 0 0 ps 1,459
@ Monitor Usage Statistics Options X
Select the desired menitor usage statistics:
© Group by Menitors
Group by Threads
Group by Classes of monitors
@ 2 active recordings VM #1 00:24

101

(]
@

Stop
Maonitors. Histo

Wait Duration
Ous
Ous
3,001 ms.
10,793 ms.

& Profiling

Probes

CPU and memory profiling are primarily concerned with objects and method calls, the basic
building blocks of an application on the JVM. For some technologies, a more high-level approach
is required that extracts semantic data from the running application and displays it in the profiler.

The most prominent example for this is profiling calls to a database with JDBC. The call tree
shows when you use the JDBC API and how long those calls take. However, different SQL
statements may be executed for each call and you have no idea which of those calls are
responsible for a performance bottleneck. Also, JDBC calls often originate from many different
places in your application and it is important to have a single view that shows all database calls
instead of having to search for them in the generic call tree.

To solve this problem, JProfiler offers a number of probes for important subsystems in the JRE.
Probes add instrumentation into specific classes to collect their data and display them in dedicated
views in the "Databases" and "JEE & Probes" view sections. In addition, probes can annotate data
into the call tree so you can see both generic CPU profiling as well as high-level data at the same
time.

’ Telemetries

Live Memory
Heap Walker
CPU Views
Threads

Menitors & Locks

Databases

JEE 8 Probes

o
tees MBeans
L4

If you are interested in getting more information about a technology that is not directly supported
by JProfiler, you can write your own probe [p. 149] for it. Some libraries, containers or database
drivers may ship with their own embedded probe [p. 154] that becomes visible in JProfiler when
they are used by your application.

Probe events

Because probes add overhead, they are not recorded by default, but you have to start
recording [p. 26] separately for each probe, either manually or automatically.

Depending on the capabilities of the probe, probe data is displayed in a number of views. At the
lowest level are probe events. Other views show data that cumulates probe events. By default,
probe events are not retained even when a probe is being recorded. When single events become
important, you can record them in the probe events view. For some probes, like the file probe,
this is generally not advisable because they usually generate events at a high rate. Other probes,
like the "HTTP server" probe or the JDBC probe may generate events at a much lower rate and
so recording single events may be appropriate.

102

™, s‘e -3 . i
]
£ B v S & 2 O @ |5 - |
Start Stop Change Add e Stop Probe stop | Freeze Control
Run GC Ex| Hely
Recordings Recordings Tracking an Bookmark POt tings =7 JDBC Events | View Object

. . JDBC
+ /1, Hot Spots T Connection Leaks B Telemetries Events 4 3
JDBC connections nd execution of statements
Show events: | All types b v
Start Time Event Type Duration Connection ID Description Thread
1 Connection op... D |.|s1 jdbcdemo://remote_host/test Servlet request simu...

0:01.233 [Dec 17, ..
17

1 Connection op... jdbo: demu //remote_host/test SErvlet requast simu..

_

- Prepared state... 128 ms 1 SELECT * FROM ORDER O WHERE O Servlet request simu...

W Prepared state.. 75,402 ps 2 INSERT INTO CUSTOMER. (1D, NAME, w Servlet request simu..,

®m Prepared state.. 58,592 us 1 INSERT INTQ CUSTOMER (ID, NAME, ... Servlet request simu...

®m Prepared state.. 61,854 us 2 INSERT INTO QRDER (1D, NAME, OPTI... Servlet request simu...

®m Prepared state.. 60,880 ps 1 INSERT INTO QRDER (1D, NAME, OPTI... Servlet request simu...

B Prepared state... 72,189 ps 1 INSERT INTO ORDER_CUSTOMER (OR... Servlet request simu...

c B Prepared state... 64,024 ps 2 INSERT INTO ORDER_CUSTOMER (OF... Servlet request simu...

N2 S7AR Nec 17 M1 Cannertinn nn Nned idhrdemne ffremnte hnet/tect RMI TP Cannectin
Total: 42 166 ms

Stack trace:

Jjavax.persistence. TypedQuery.getResultlist{)
com.gjt.demo.server.handlers.RequestHandler.executelpaQuery(javax persistence EntityManager)
com.gjt.demo.server.handlers.RequestHandler.makelpaCall()
com.gjt.demo.server.handlers.RequestHandler.performWork{)

com.gjt.demo.server.handlers.RequestHandler.run()

Probe events capture a probe string from a variety of sources, including method parameters,
return values, the instrumented object and thrown exceptions. Probes may collect data from
multiple method calls, for example like the JDBC probe that has to intercept all setter calls for
prepared statements in order to construct the actual SQL string. The probe string is the basic
information about the higher-level subsystem that is measured by the probe. In addition, an
event contains a start time, an optional duration, the associated thread and a stack trace.

At the bottom the of the table, there is a special total row that sums all numeric columns in the
table. For the default columns, this only includes the Duration column, Together with the filter
selector above the table, you can analyze the collected data for selected subsets of events. By
default, the text filter works on all available columns. In order to be more specific, you can select
a particular column from the filter options popup menu.

Probes can record different kinds of activities and associate an event type with their probe events.

For example, the JDBC probe shows statements, prepared statements and batch executions as
event types with different colors.

4 /1, Hot Spots ? Connection Leaks ! Telemetries Events 3 JDBC 3

IDBE connections and execution of statements

Show events: | All types

Start Tiry Gl pe uration

Connection 1D Description Thread
0:01.233 [Connection opened Opsi Jjdbcidemo://remote_host/test Servlet request simu..,
0:01.247 [Cennection closed Dps2 Jjdbcidemo://remote_host/test Servlet request simu..,
0:01.267 [C Statement execution 148 ms 2 SELECT * FROM ORDER O WHERE Q... Servlet request simu...
0:01.261 [prepared statement execution 128ms1 SELECT * FROM ORDER O WHERE Q... Servlet request simu..,
D:01.934 [0 b 4 vecution 73,402 ps 2 INSERT INTO CUSTOMER (ID, NAME, ... Servlet request simu..,
0:01.958 [Cec v, == repareu staten: 58,502 ps 1 INSERT INTO CUSTOMER (ID, NAME, ... Servlet request simu...
0:02.085 [De B Prepared state... 61,834 ps 2 INSERT INTCQ ORDER (1D, MAME, OPTL... Servlet request simu...
0:02.086 [Cec 17, ... WM Prepared state... 60,880 ps 1 INSERT INTC ORDER (ID, MAME, OPTL... Servlet request simu...

A I e

—eeend cbaie 711001 INCEDT IKTA ADAED CHCTARALD fAD Comdok cmmesomed civmss

To prevent excessive memory usage when single events are recorded, JProfiler consolidates
events. The event cap is configured in the profiling settings and applies to all probes. Only the

most recent events are retained, older events are discarded. This consolidation does not affect
the higher-level views.

103

Probe call tree and hot spots

Probe recording works closely together with CPU recording. Probe events are aggregated into
a probe call tree where the probe strings are the leaf nodes, called "payloads". Only call stacks
where a probe event has been created are included in that tree. The information on the method
nodes refers to the recorded payload names. For example, if an SQL statement was executed
42 times at a particular call stack with a total time of 9000 ms, this adds an event count of 42
and a time of 9000 ms to all ancestor call tree nodes. The cumulation of all recorded payloads
forms the call tree that shows you which call paths consume most of the probe-specific time.
The focus of the probe tree is the payloads, so the view filter searches for payloads by default,
although its context menu also offers a mode to filter classes.

‘ & Call Tree 1., Hot Spots ? Connection Leaks ! Telemetrii»)) JDBC

JDEC connections and execution of statements

Thread status: 0 Thread selection: Aggregation level:
OO0 All states = & All thread groups - @ Methods hd

0— T7.9% - 36,719 ms - 50 evt. java.util.concurrent, ThreadP oolExecutorSWorker.run
| W38 .4% - 13,385 ms - 17 evt. called from call site #3 (remote VM £1)
VAV 28 4% - 13,383 ms - 17 evt. com.gjt.demo.server.handlers.RmiHandlerlmpl.remoteOperation
Ve 28.4% - 13,383 ms - 17 evt. com.gjt.demo.server.handlers.RmiHandlerlmpl.perfformWork
VAV 28.4% - 13,385 ms - 17 evt. com.gjt.demo.server.handlers.RmiHandlerlmpl executeldbcStatements
D= 224%-13,385 ms - 17 evt. java.sgl.Statement.executeCQuery
W 28,4% - 13,385 ms - 17 evt, SELECT i.id, i.availability, i.name FROM inventory | WHERE i.delayed = 1
| ™ 13.8% - 8283 ms - 12 evt. called from call site #1 (remote VM #1)
| ®13.6% - 6,435 ms - 9 evt. called from call site #10 (remote VM £1)
i B 13.0% - 6,146 ms - 9 evt. called from call site #2 (remote VM #1)
114.0% - 1,869 ms - 3 evt. called from call site 12 (remote VM £1)
o- 22.1% - 10,432 ms - 68 evt. com.ejt.demo.server.DemoServerSd.run
@l 12.0% - 5,660 ms - 12 evt. com.ejt.demo.server.handlers.JdbclobHandler.run
@1 4.4% - 2,084 ms - 24 evt. HTTP: /demo/view3
(@1 4.4% - 2,064 ms - 24 evt. com.ejt.demo.server handlers.RequestHandler.run
@1 4.4% - 2,064 ms - 24 evt, com.ejt.dema.server. handlers.RequestHandler.performWork
(@14.4% - 2,064 ms - 24 evt. com.gjt.demo.server.handlers.RequestHandler.makelpaCall
ml 2.4% - 1,141 ms - 18 evt. javax.persistence.EntityManager.flush
0.9%, - 409 ms - £ evt. INSFRT INTO QORDER (ID_NAME _OPTIOMS) WAILIFS (7 7 71

If CPU recording is switched off, the back traces will only contain a "No CPU data was recorded"
node. If CPU data was only partially recorded, there may be a mixture of these nodes with actual
back traces. Even if sampling is enabled, JProfiler records the exact call traces for probe payloads
by default. If you want to avoid this overhead, you can switch it off in the profiling settings. There
are several other tuning options for probe recording that can be adjusted to increase data
collection or reduce overhead.

104

@ Session Settings X

Application Settings RevcetoEtior

Payloads are consolidated if there are too many different strings. When annotating payloads into the
call tree, payleads are consclidated into an [Earlier calls] node.

-
E:‘ Call Tree Recording
- Maximum number of distinct payloads for probe hot spots: 16384 * @

Y Call Tree Filters Maximum number of annotated payloads per call stack: 50 % @
Cutoff payload strings after: 8192 % | characters @
Trigger Settings
% 9 I Record payload call stacks in sampling mUdEI (7]
Retain call stacks when conselidating hot spots @
; Database Settings
Event Options
o Probe Settings Maximum number of recorded events: 5000 |+ ﬂ

@,: Advanced Settings Java EE/Spring Opticns

Detect Java EE/Spring components @)

CPU Profiling Show request URLs without a recorded call stack (7]
Probes & JEE
Memery Profiling Note: Probes are individually configured on the "Datzabase settings” and "Probe settings” tabs, The

settings on this tab apply to all probes.
Thread Profiling

Miscellaneous

General Settings Copy Settings From “ Cancel

Hot spots can be calculated from the probe call tree. The hot spot nodes are now payloads and
not method calls like in the CPU view section [p. 51]. This is often the most immediately useful
view of a probe. If CPU recording is active, you can open the top-level hot spots and analyze the
method backtraces, just like in the regular CPU hot spots view. The numbers on the back trace
nodes indicate how many probe events with what total duration were measured along the call
stack extending from the deepest node to the node just below the hot spot.

4 & Call Tree 1., Hot Spots -.‘ Connection Leaks ! Telemetrin ¥)) JDBC 3
JDBC connections and execution of statements
Thread status: o Thread selection: Aggregation level:
o Allstates v | @8 All thread groups v | (D Methods v
Hot Spot Time Average Time Events
1. SELECT i.id, i.availability, i.name FROM inventory i WHERE i.delaye... NN 22 205 ms (78 %) 736 ms 52
i, SELECT SUM({o.price * o.quantity) FROM customers ¢ LEFTJOIN or... [l 5,528 ms (11 %) 21 ms 6
%, SELECT* FROM ORDER O WHERE O.DATE>= 7 0 2,098 ms {4 %) 149 ms 14

143%- 2,098 ms - 14 hat spot evt. javax.persistence TypedQuery.getResultlist
(@1 4.33% - 2,088 ms - 14 hot spot evt. com.gjt.demo.serverhandlers.RequestHandler.executelpaQuery
(@1 4.3% - 2,098 ms - 14 hot spot evt. com.gjt.demo.server.handlers.RequestHandler.makelpaCall
@14.3% - 2,008 ms - 14 hot spot evt. com.ejt.deme.server.handlers.RequestHandler.performWerk
(@14.3% - 2,098 ms - 14 hot spot evt. com.ejt.demo.server.handlers.RequestHandler.run
@ 1.9% - 922 ms - 6 hot spot evt. HTTP: /demo/viewd
a 1.1% - 541 ms - 4 hot spot evt, HTTP: /demoy/view]
@ 1.0% - 467 ms - 3 hot spot evt. HTTP: /demo/view2
@ 0.3%- 166 ms - 1 hot spot evt. HTTP: /demo/viewd

i INSERT INTO CUSTOMER (ID, NAME, OPTIONS) VALUES (7, 2,7 | 892 ms (1 %) 63,770 us 14
%, INSERT INTO ORDER_CUSTOMER (ORDER_ID, CUSTOMER_ID} VAL... | 891 ms (1%) 63,675 us 14
% INSERT INTO ORDER (1D, NAME, OPTIONS) VALUES (2, 7, 7) | 889 ms (1 %) 63,538 ps 1
i, INSERT INTO order_report VALUES (7, 7, 7) 131 ms (0%) 21978 us 6

Both probe call tree as well as probe hot spots view allow you to select a thread or thread group,
the thread status and an aggregation level for method nodes, just like in the corresponding CPU
views. When you come from the CPU views to compare data, it is important to keep in mind that
the default thread status in the probe views is "All states" and not "Runnable" like in the CPU
views. This is because a probe event often involves external systems like database calls, socket

105

operations or process executions where it is important to look at the total time and not only on
the time that the current JVM has spent working on it.

Control objects

Many libraries that provide access to external resources give you a connection object that you
can use for interacting with the resource. For example, when starting a process, thej ava. | ang.
Pr ocess object lets you read from the output streams and write to the input stream. When
working with JDBC, you need a j ava. sql . Connecti on object to perform SQL queries. The
generic term that is used in JProfiler for this kind of object is "control object".

Grouping the probe events with their control objects and showing their life cycle can help you
to better understand where a problem comes from. Also, creating control objects is often
expensive, so you want to make sure that your application does not create too many and closes
them properly. For this purpose, probes that support control objects have a "Time line" and a
"Control objects" view, where the latter may be named more specifically, for example
"Connections" for the IDBC probe. When a control object is opened or closed, the probe creates
special probe events that are shown in the events view, so you can inspect the associated stack
traces.

In the time line view, each control object is shown as a bar whose coloring shows when the
control object was active. Probes can record different event types and the time line is colored
accordingly. This status information is not taken from the list of events, which may be consolidated
or not even available, but is sampled every 100 ms from the last status. Control objects have a
name that allows you to identify them. For example, the file probe creates control objects with
the file name while the JDBC probe shows the connection string as the name of the control object.

Q,‘ Time Line ; Connections .& Call Tree 1. Hot Spots » JDEBC 3
IDBC connections and execution of statements

Show Physical connections: | Both open and closed v
Connections o;lm O:IZD O:IED O:LD 0:‘50
jdbc:demo://remote_host/test[ID 1] I I i 11 i i
Jdbademo://remote_host/test[ID 2] I] | | Il | 11 |
jdbcidemo://remote_host/test[ID 4] LR .|. LB | Imn Illl EERE |
Jjdbcdemo://remote_host/test[ID 3] I | I n | |
jdbcdemo://remote_host/test[ID 6] | u u + | m = |
Jjdbe:demo://remote_host/test[ID 5] L] | LB] | EEEEE E | .-|
jdbcdemo:/fremote_host/test[ID 7] ! | | 1 | |
Jjdbcdemo://remote_host/test[ID 2] L L) HEE | EEEEE B | |
jdbcdemo:/fremote_host/test[ID 9] EEEEE HIN | | |
jdbc:demo://remote_host/test[ID 10] I 1

= |dle ™= Statement execution S Prepared statement execution ™ Batch execution o] % _|

The control objects view shows all control objects in tabular form. Both open and closed control
objects are present by default. You can use the controls at the top to restrict the display to open
or closed control objects only or to filter the contents of a particular column. In addition to the
basic life cycle data for control objects, the table shows data for the cumulated activity of each
control object, for example the event count and the average event duration.

Different probes show different columns here, the process probe for example shows separate
sets of columns for read and write events. This information is also available if single event
recording is disabled. Just like for the events view, the total row at the bottom can be used
together with filtering to get cumulated data on partial sets of control objects.

106

G‘;‘;'ﬁme Line ﬂ Connections & Call Tree 1. Hot Spots » JDBC 3

JDEC connections and execution of statements

Show Physical connections: | Both open and closed i
[0} Connection String Start Time End Time Event Count Event Duration
1 Jjdbcdemo://remote_host/test 0:01.225 [Dec 17, 16 1,382 ms
2 Jjdbcdemo://remote_host/test 0:01.245 [Dec 16 1,325 ms
3 Jjdbcdemo://remote_host/test 0:02.645 [Dec 13 1,123 ms.
4 jdbcdemo:y//remote_host/test 0:02.575 [Dec 20 14,370 ms
5 jdbcidemo:y//remote_host/test 0:03.025 [Dec 16 11,572 ms.
6 jdbcidemo:y//remote_host/test 0:02.665 [Dec 14 6,491 ms
7 jdbcdemo://remote_host/test 0:03.645 [Dec 12 963 ms.
g Jjdbcdemo://remote_host/test 0:04.785 [Dec 12 8,385 ms
9 Jjdbcdemo://remote_host/test 0:05.355 [Dec 9 6,979 ms
10 Jjdbc:derno://remote_host/test 0:13.865 [Dec 17, 8 742 ms

Total: 136 54,334 ms.

A probe can publish certain properties in a nested table. This is done to reduce the information
overload in the main table and give more space to table columns. If a nested table is present,
such as for the file and process probes, each row has an expansion handle at the left side that
opens a property-value table in place.

The time line, control objects view and the events view are connected with navigation actions.
For example, in the time line view, you can right-click a row and jump to each of the other views
so that only the data from the selected control object is displayed. This is achieved by filtering
the control object ID to the selected value.

Q;"ﬁme Line ; Connections & Call Tree I\ Hot Spots + IDBC 3

JDBC connections and execution of statements

Show Physical connections: | Both open and closed hd

Connections 0:10 0:20 0:30 0:40 0:50
| | |
jdbcderno://remote host/test[ID 1] 1l UL 1 ! t

a Show Selected Connection

1 1 1
HE HIm IN I NEN E NN
Jdbg Show Events For Selected Connection | | |
b - | 1 n | |
jdbcdemo://remate_host/test[ID 6] | u L] + I = m I
Jjdbaidemo://remote_host/test[ID 5] u | LB] | EEEEE N | .-|
T T T 1

jdbe:demo://remote_host/test[ID 7] ! -

Telemetries and tracker

From the cumulated data that is collected by a probe, several telemetries are recorded. For any
probe, the number of probe events per second and some average measure for probe events
like the average duration or the throughput of an I/0 operation are available. For probes with
control objects, the number of open control objects is also a canonical telemetry. Each probe
can add additional telemetries, for example the JPA probe shows separate telemetries for query
counts and entity operation counts.

107

‘ i Call Tree

Awailable probe telemetries:

Executed Statements

Average Statement Execution Time

Row heightt ——@

. JDBC
1., Hot Spots ? Connection Leaks M Telemetries » _ _
JDEC connections and execution of statements
Overview v
Overview

Executed Statements
Average Statement Execution Time

Recorded Open Connections

NV
A

AT

GAND

kA

The hot spots view and the control objects view show cumulated data that can be interesting to
track over time. These special telemetries are recorded with the probe tracker. The easiest way
to set up tracking is to add new telemetries with the Add Selection to Tracker action from the hot
spots or control object views. In both cases, you have to choose if you want to track times or
counts. When tracking control objects, the telemetry is a stacked area graph for all different
probe event types. For tracked hot spots, the tracked times are split into the different thread

states.

& Call Tree

Show:

Iy

1., Hot Spots

[Hot spot times] Query: select o from Order o where o.date > = :date

JPA/Hibernate

’ Telemetries - N o
1PA/Hibernate operstions and sttistics

B Tracker

Events

1,000 ms o

900 ms 3
EDDmsi

?OOmsE
BDOmsi

S'DDmsi
4001115;

300 ms 3

200 ms 3

100ms§

B Runnable: Oms B8 Waiting: 0 ms 8 Blocked: Oms B3 Netl/O: Oms 08 Total time: Oms

JDBC and JPA

The JDBC and JPA probes work hand in hand. In the events view of the JPA probe, you can expand
single events to see the associated JDBC events if the JDBC probe was recorded along with the

JPA probe.

108

. JPA/Hibernate
& Call Tree 1, Hot Spots ¥ Telemetries Events B Tracker 1P#/Hiberste apsrstions and st=tistcs l‘l
Show events: | All types A i
Start Time Event Type Duration Description Thread
0:01.247 [Dec 1 . 220 Query 710 ms select o from Order o where o.date > = :date Servlet request simulator...

JDBC [Pr atement execution] 128 ms SELECT * FROM ORDER O WHERE O.DATE == 7 Servlet request simulator...
¥ 0:01.258 [Dec 17, 2 select o from Order o where o.date >= :date Servlet request simulator...

atement execution] 148 ms SELECT* FROM ORDER O WHERE O.DATE == 7 Servlet request simulator...

0:01.934 [De . ok Insert 151 ms com.ejt.demo.server.entities, Customer Servlet request simulator...
0:01.957 [De . o4k Insert 128 ms com.ejt.demo . server.entities, Customer Servlet request simulator...
0:02.085 [De . " Insert 192 ms com.gjt.demo.server.entities. Order Servlet request simulator...

0:02.086 [De 187 ms com.gjt.demo.server.entities.Order Servlet request simulator...

0:02.683 [[e 892 ms select o from Order o where o.date »= :date Servlet request simulator...

0:03.576 [De 115 ms com.ejt.demo.server.entities. Custormer Servlet request simulator...

N2 A7 Mer) AN s selert n fram Order nowhere o date > — date Servlet rennest simnlatar
Total: 20,120 ms

Stack trace:

i_ Direct operation
javax.persistence. TypedQuery.getResultList{)
com.gjt.demo.server.handlers.RequestHandler.executelpaQuery(javax. persistence. EntityManager)
com.gjt.demo.server.handlers.RequestHandler.makelpaCall(

com.gjt.demo.server.handlers.RequestHandler.performWork()

Similarly, the hot spots view adds a special "JDBC calls" node to all hot spots that contains the
JDBC calls that were triggered by the JPA operation. Some JPA operations are asynchronous and
are not executed immediately, but at some arbitrary later point in time when the session is
flushed. When looking for performance problems, the stack trace of that flush is not helpful, so
JProfiler remembers the stack traces of where existing entities have been acquired or where
new entities have been persisted and ties them to the probe events. In that case, the back traces
of the hot spot are contained inside a node that is labelled "Deferred operations", otherwise a
"Direct operations" node is inserted.

. JPA/Hibernate
B Call Tree 1, Hot Spots B Telemetries Events B Tracker 1PA/Hiberste aperations and statistics -‘l
Thread status: 0 Thread selection: Aggregation level:
EX All states v 88 Al thread groups * (D Methods hd
Hot Spot Time Average Time Events
2 Query: select o from Order o where o.date » = :date I 14,137 ms (70 %) T4 ms 19
/¥ IDBC calls

B 2,732 ms - 19 evt. SELECT * FROM ORDER O WHERE O.DATE »= 7
[m— 70.3% - 14,137 ms - 19 hot spot evt. Direct operations
L) w703 - 14,137 ms - 19 hot spot evt. javax.persistence. TypedQuery.getResultList
() 70,33 - 14,137 ms - 19 hot spot evt. com.ejt.demo.server.handlers.RequestHandler.execute) paQuery
(D) m— 70,3% - 14,137 ms - 19 hot spot evt, com.eft.dema.server.handlers.RequestHandler.makelpaCall
() w7033 - 14,137 ms - 19 hot spot evt. com.ejt.demo.server.handlers.RequestHandler perfformWork
() m—70.3% - 14,137 ms - 19 hot spot evt. com.ejt.demo.server.handlers.RequestHandler.run
O- 26.3% - 5,285 ms - 7 hot spot evt. HTTP: /demo/view3
G- 17.0% - 3,423 ms - 5 hot spet evt, HTTP: /demo/view1
@™ 15.2%- 3,050 ms - 4 hot spot evt. HTTP: /demo/view2
ol 11.8% - 2,377 ms - 3 hot spot evt, HTTP: /demo/viewd
=k Insert: com.ejt.demo.server.entities.Order I 3590 ms (17 %) 188 ms 19
¥ JDBC calls
11,223 ms - 19 evt. INSERT INTO ORDER_CUSTOMER (ORDER_ID, CUSTOMER_ID) VALUES (7, 7)
11,204 ms - 19 evt. INSERT INTO ORDER (ID NAME, OPTIONS) VALUES (7, 7. 1)

S P e

Other probes like the MongoDB probe support both direct and asynchronous operations.
Asynchronous operations are not executed on the current thread but somewhere else, either
on one or multiple other threads in the same JVM or in another process. For such probes, the
back traces in the hot spots are sorted into "Direct operations" and "Async operation" container
nodes.

A special problem in the IDBC probe is that you can only get good hot spots if literal data like IDs
is notincluded in the SQL strings. This is automatically the case if prepared statements are used,
but not if regular statements are executed. In the latter case, you will likely get a list of hot spots,
where most queries are executed just once. As a remedy, JProfiler offers a non-default option
in the JDBC probe configuration for replacing literals in unprepared statements. For debugging

109

purposes, you may still want to see the literals in the events view. Deactivating that option reduces
memory overhead, because JProfiler will not have to cache so many different strings.

@ Session Settings X

X Database probes for RDBMS, Big Data and NoSOL databases:
Application Settings

a JDBC [record events, annotate into call tree view]

Tg Call Tree Recording Enabled @
Record single events
F Call Tree Filters [Annotate JDBC calls in call tree

Record open virtual connections for connection leak analysis 0

Resolve parameters of prepared statements for single events)

| Trigger Settings
I Replace literals in unprepared ;tatemant;l (7]

Keep literals for its view
; Database Settings eep literals for events vie

"' JPA/Hibernate [record events, annotate into call tree view]

o Probe Settings E MongoDE

2 C d
@' Advanced Settings g assandra
E HBaze

General Settings Copy Settings From “ Cancel

On the other hand, JProfiler collects the parameters for prepared statements and shows a
complete SQL string without placeholders in the events view. Again, this is useful when debugging,
but if you do not need it, you can switch it off in the probe settings in order to conserve memory.

JDBC connection leaks

The JDBC probe has a "Connection leaks" view that shows open virtual database connections
that have not been returned to their database pool. This only affects virtual connections that
are created by a pooled database source. Virtual connections block a physical connection until
they are closed.

4] Connections &Call'ﬁee 1. Hot Spots -.‘ Connection Leaks * JDBC B

JDBC connections and execution of statements

This view shows all virtual cennections that have been open for more than 10 secends. Virtual connections are what you get frem connection pocls
and block a physical connection until they are closed.

Connections of type "Unclosed collected” are definite leaks while "Unclosed” connections are strong candidates.
Show virtual connections: | All types A L i

Opened At Open Since Type Description Thread Class Name

..| 204%8ms| Unclosed c...[jdbc:hsgldb:hsgl//localhost9012/test [pool-1-thread-2 [ma...

0:09.393 [Dec 17, 2... 12,786 ms B8 Unclosed c... jdbchsgldbhsql//localhost9012/test pool-1-thread-2 [ma... com.sun.proxy.SPr...

Stack trace:

Jjavax.sql.DataSource.getConnection(]
jdbcJdbecTestWorker.call()

JjdbcJdbcTestWarker.call()

java.util.concurrent. ThreadPoolExecuter$Worker.run()

There are two types of leak candidates, "unclosed" connections and "unclosed collected"
connections. Both types are virtual connections where the connection objects that have been
handed out by the database pool are still on the heap, butcl ose() has notbeen called on them.
"Unclosed collected" connections have been garbage collected and are definite connection leaks.

110

"Unclosed" connection objects are still on the heap. The greater the Open Since duration, the
more likely such a virtual connection is a leak candidate. A virtual connection is considered as a
potential leak when it has been open for more than 10 seconds. However, cl ose() may still be
called on it, and then the entry in the "Connection leaks" view would be removed.

The connection leaks table includes a Class Name column that shows the name of the connection
class. This will tell you which type of pool has created the connection. JProfiler explicitly supports
a large number of database drivers and connection pools and knows which classes are virtual
and physical connections. For unknown pools or database drivers, JProfiler may mistake a physical
connection for a virtual one. Since physical connections are often long-lived, it would then show
up in the "Connection leaks" view. In this case, the class name of the connection object will help
you to identify it as a false positive.

By default, when you start probe recording, the connection leak analysis is not enabled. There
is a separate recording button in the connection leaks view whose state corresponds to the
Record open virtual connections for connection leak analysis check box in the JDBC probe settings.
Just like for event recording, the state of the button is persistent, so if you start the analysis once,
it will automatically be started for the next probe recording session.

L) % -3 3
N EBICEIEEICI NE
$ B T S % @
Start Stop Start - Add = Stop Probe Sstop | Freeze
Recordings Recordings Tracking " U Bookmak | PP Semings Help JDBC Lezks | Wiew
. JDBC
‘4 ! Connections o Call Tree I\, Hot Spots T Connection Leaks + 3

JDBC connections and execution of statements

This view shows all wirtual connections that have been open for more than 10 seconds, Virtual connections are what you get from connection pools
and block a physical connection until they are closed.

[tinmr afbne e clnrad callacbed! aen Aefiniba lnale wbile laclared! cnnmectinne aen cbenm o sandidases

Payload data in the call tree

When looking at the CPU call tree, it is interesting to see where probes have recorded payload
data. That data may help you to interpret the measured CPU times. That is why many probes
add cross-links into the CPU call tree. For example, the class loader probe can show you where
class loading has been triggered. This is otherwise not visible in the call tree and can add
unexpected overhead. A database call that is otherwise opaque in the call tree view can be further
analyzed in the corresponding probe with a single click. This even works for call tree analyses
where the analysis is automatically repeated in the context of the probe call tree view when you
click on the probe link.

Thread status: ﬂ Thread selection: Aggregation level:
B Runnable - 88 Al thread groups * (D Methods hd

W_ 34,9% - 645 ms - 5 inv. java.util.concurrent. ThreadPoolExecutor§Worker.run
() 54.9% - 645 ms - 5 inv. jdbcJdbcTestWorker.call
@ . 54,95 - 643 ms - 5 inv, jdbcJdbcTestWorker.call
() 24.2% - 402 ms - 14 inv. jdbe)dbeTestWorker testStaterentsPath 1
(D) ™ 26.3% - 309 ms - 14 inv. jdbc.JdbcTestWorker testPreparedStatement
@l 7.9% - 92,998 us - 14 inv. jdbc.)dbcTestWorker testStatement
¥ M 4.7% - 55,235 ps - 28 inv. java.sql.Statement.executeQuel
M |DBC calls Show in probe call tree
@l 2.1% - 24,353 ps - 14 inv. java.sgl.Connection.createStatement
@ 0.5% - 5,961 ps - 14 inv. java.sql.5tatement.close
ml 14.5% - 170 ms - 14 inv. javax.sql.DataSource.getConnection
@‘ 3.3% - 38,621 ps - 10 inv. jdbcJdbcTestWorker testStatementsPath2
@‘ 2.8% - 32,634 ps - 1 inv. java.lang.System.gc
0.1% - 1,024 ps - 8 inv. java.sgl.Connection.close
W 0.0%- 47 ps - 14w, javalang. Thread.interrupted
(). 39.1% - 450 ms - 1 inv. jdbeJdbcDemo.main
@l 6.0% - 71,168 ps - 1inv. java.awt.EventDispatchThread.run

111

Another possibility is to show the payload information inline directly in the CPU call tree. All
relevant probes have an Annotate in call tree option in their configuration for that purpose. In
that case, no links into the probe call tree are available. Each probe has its own payload container
node. Events with the same payload names are aggregated and the number of invocations and
total times are displayed. Payload names are consolidated on a per-call stack basis, with the
oldest entries being aggregated into an "[earlier calls]" node. The maximum number of recorded
payload names per call stack is configurable in the profiling settings.

Thread status: o Thread selection: Aggregation level:
== Runnable v | 88 All thread groups v | (D Methods v

U_ 63.4% - 40,495 ms - 8 inv. java.util.concurrent. ThreadPoolExecutorSWorker.run
0- 33.7% - 22,809 ms - 7 inv. com.gjt.demo.server.DemaoServerS3.run
@ 10.6% - 6,795 ms - 8 inv. HTTP: /demo/view3
(@ W 10.6% - 6,795 ms - 8 inv. com.gjt.demo.server.handlers.RequestHandler.run
@®10.5% - 6,711 ms - 8 inv. com.gjt.demo.server.handlers.RequestHandler.performWork
@ 0.1% - 83,854 ps - 8 inv. com.egjt.demo.server.handlers.RequestHandler.workWithGlobalResource
@17.2%- 4619 ms - 5 inv. HTTP: /demo/viewd
0' 7.2% - 4,619 ms - 3 inv. com.gjt.demo.server.handlers.RequestHandler.run
@1 7.1% - 4,559 ms - 5 inv. com.ejt.deme.serverhandlers.RequestHandler.performWaork
@15.6% - 3,603 ms - 5 inv. com.gjt.demo.server.handlers.RequestHandler.makelpaCall
(@1 4.6% - 2,909 ms - 5 inv. com.gjt.demo.server.handlers.RequestHandler.executelpaQuery
ml 4.4% - 2,810 ms - 5 inv. javax.persistence. TypedQuery.getResultList

,Ol 2,809 ms - 5 evt, Query: select o from Order o where o.date >= :date

9 IDBC calls
5,822 ps - 5 evt. SELECT * FROM ORDER O WHERE O.DATE »= 7

@ 0.2% - 98,815 ps - Sinv. com.ejt.mock.MockHelper.runnable
m 0.0% - 82 ps - 5 inv. javax.persistence EntityManager.createCQuery
m 0.0% - 19 ps - 10 inv. java.util. Random.nextint
@ 0.0% - 15 s - 5 inv, java.util.List.size
m 1.1% - 691 ms - 5 inv. javax.persistence.EntityManager.flush
m 0.0% - 1,281 ps - 5 inv. com.ejt.mock.jpa.MockEntityManager.<init>

Call tree splitting

Some probes do not use their probe strings to annotate payload data into the call tree. Rather,
they split the call tree for each different probe string. This is especially useful for server-type
probes, where you want to see the call tree separately for each different type of incoming request.
The "HTTP server" probe intercepts URLs and gives you fine grained control over what parts of
the URL should be used for splitting the call tree. By default, it only uses the request URI without
any parameters.

€ Session Settings X
g

— X Built-in probes for JEE and JSE:
Application Settings

? HTTP Server [record events]

E= Call Tree Recording Enabled
Record single events
T Call Tree Filters Show full URLs in events
URL splitting in the call tree:) Request URI only
| Trigger Settings Resolve with servlet scripts: (7]
Resolve with generic scripts: (7]

Database Settings
; 9 HTTP Client

o Probe Settings ‘? Web Services [record events]

JNDI [record events, annotate into call tree view]
Built-In Probes - :

W . .
. =" IMS [record events, annotate into call tree view
Script Probes - [’ 1

({g)) RMI [record events]

Custom Probes

General Settings Copy Settings From “ Cancel

112

For more flexibility, you can define a script that determines the split string. In the script, you get

the current j avax. servlet. http. Ht pServl et Request as a parameter and return the
desired string.

@ Settings Edit Search Code Help Edit X
9% [? = [’
¥ BE & PR & O
o Show Test
Undo Redo Copy Cut C s Find Replce | o Help
;_:' Please enter an expression (ne trailing semicolon) or a script (ends with a return statement) that consists of regular Java
?'m code. The following parameters are available:
- com.jprofiler.api.agent.ScriptContext scriptContext
- javax servlet.http. HttpSenvletRequest servietRequest
The expected return type is java.lang.String
Script:
Y [|
limport javax.servlet.http.HttpSession;

S HttpSeasion session = servletRequest.getSession(false):

g1if (session '= null) |
7 Object user = session.getAttribute ("user™);
g8 if (user !'= mull) {
] return user.toString():
10 1 else [
11 return "Unauthenticated":
12 1
13} else {
142 return null; Do not split

15}

What's more, you are not limited to a single splitting level, but can define multiple nested splittings.
For example, you can split by the request URI first and then by the user name that is extracted

from the HTTP session object. Or, you can group requests by their request method before splitting
by the request URI.

@ Edit Serviet Scripts X

You can split requests on multiple nested levels. For example, you can split by the request method first
and then split by the request path.

The grouping expression for each level is defined by the return value of a script. When adding new
scripts, some example entries help you to get started,

Script

&

servletRequest.getRequestURI] Edit Script
servletRequest.getMethod() Edit Script

Edit Script

import javax.servlet. hitp. HttpSession; [...]

@ Help “ Cancel

By using nested splittings, you can see separate data for each level in the call tree. When looking
at the call tree, a level might get in the way and you would find yourself in need of eliminating it
from the "HTTP server" probe configuration. More conveniently and without loss of recorded

data, you can temporarily merge and unmerge splitting levels in the call tree on the fly by using
the context menu on the corresponding splitting nodes.

113

Thread status: 0
E= Runnable -

Thread selection:
88 Al thread groups hd

Aggregation level:
(@ Methods -

0_ 63.4% - 40,495 ms - 8 inv. java.util.concurrent. ThreadPoolExecutorSWorker.run
D- 33.7% - 22,809 ms - 7 inv. com.gjt.demo.server.DemaoServerS3.run
@ " 10.6% - 6,795 ms - 8 inv. HTTP: /demo/view3
(@ W 10.6% - 6,795 ms - 8 inv. com.gjt.demo.server.handlers.RequestHandler.run
@®10.5% - 6,711 ms - 8 inv. com.gjt.demo.server.handlers.RequestHandler.performWaork

@ 0.1% - 83,854 pc - Sinv. com.Ejt‘demo.seNer.handlErs.Reiue;tHandlEr.warkWithGIobaIREsour(E

Show Call Graph

U Show Threads

Add Method Trigger

As Exceptional Method
Split Method with a Script

Intercept Method With Script Probe

dlers.RequestHandler.run
handlers.RequestHandler.performWork
nandlers.RequestHandler.workWithGlobalResource

sJdbecJobHandler.run
sJmsHandler.onMessage

tand

nsHandlerSJmsType.< clinit>
ImsHandlerSimsTypevalues

2= Merge splitting level Ctrl+Alt+M
g
[5= Remove Selected Sub-Tree Delete
q Restore Removed Sub-Trees Chrl+Alt+5
g g Add Filter From Selection

@ Show Tree Legend

squestHandler.< clinit>
sHandlerSImsType.getDestination
sHandlerS)msType.getDuration

25erver$151.run

@

Splitting the call tree can cause considerable memory overhead, so it should be used carefully.
To avoid memory overload, JProfiler caps the maximum number of splits. If the splitting cap for
a particular split level has been reached, a special "[capped nodes]" splitting node is added with
a hyperlink to reset the cap counter. If the default cap is too low for your purposes, you can

increase it in the profiling settings.

114

MBean Browser

Many application servers and frameworks such as Apache Camel'” use JMX to expose a number
of MBeans for configuration and monitoring purposes. The JVM itself also publishes a number
of platform MxBeans “’ that present interesting information around the low-level operations in
the JVM.

JProfiler includes an MBean browser that shows all registered MBeans in the profiled VM. The
remote management level of JMX for accessing MBean servers is not required, because the
JProfiler agent is already running in-process and has access to all registered MBean servers.

JProfiler supports the type system of Open MBeans. Besides defining a number of simple types,
Open MBeans can define complex data types that do not involve custom classes. Also, arrays
and tables are available as data structures. With MXBeans, JMX offers an easy way to create
Open MBeans automatically from Java classes. For example, the MBeans provided by the JVM
are MXBeans.

While MBeans have no hierarchy, JProfiler organizes them into a tree by taking the object domain
name up to the first colon as the first tree level and using all properties as recursively nested
levels. The property value is shown first with the property key in brackets at the end. The t ype
property is prioritized to appear right below the top-level node.

Attributes
At the top level of the tree table showing the MBean content, you see the MBean attributes.

' Telemetries M [Attributes @ Operations
com.gjt.demo
":, Live Memory com,jprofiler.api.agent.m -
. com.sun.management
. javalang Name Value
. SosoeCatacor
MemoryManager [t/ committed 1073741824
P init 1073741824
I CRUM e - MemoryPool type] max 17142120448
-dj C\asst:lac.Img-_l_ ‘ZE-_ used 50331643
= Threads J_d) Compilation [type] NonHeapMemory... [java.lang.management.MemoryUsage]
_— l') REmon]vpel ObjectMame Jjavalang:type=Memory
H) OperatingSystem [typ ObjectPendingFina... 0
r? Menitors & Locks H) Runtime [type] Verbose false 7
&9 Threading [type]
Jjava.nio
; Databases Jjava.util.logging
Jjdk.management.jfr
o JEE & Probes
ién

MBeans

@

The following data structures are shown as nested rows:

* Arrays

Elements of primitive arrays and object arrays are shown in nested rows with the index as
the key name.

+ Composite data

All items in a composite data type are shown as nested rows. Each item can be an arbitrary
type, so nesting can continue to an arbitrary depth.

M https://camel.apache.org/camel-jmx.html
) https://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

115

https://camel.apache.org/camel-jmx.html
https://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

* Tabular data

Most frequently you will encounter tabular data in MXBeans where instances of j ava. uti | .

Map are mapped to a tabular data type with one key column and one value column. If the type
of the key is a simple type, the map is shown "inline", and each key-value pair is shown as a
nested row. If the key has a complex type, a level of "map entry" elements with nested key
and value entries is inserted. This is also the case for the general tabular type with composite
keys and multiple values.

Optionally, MBean attributes can be editable in which case an - edit icon will be displayed next
to their value and the Edit Value action becomes active. Composite and tabular types cannot be
edited in the MBean browser, but arrays or simple types are editable.

If a value is nullable, such as an array, the editor has a checkbox to choose the null state.

@ Edit Attribute Value X

EditableObjectMame null

Array elements are separated by semicolons. One trailing semicolon can be ignored, so 1 and
1; are equivalent. A missing value before a semicolon will be treated as a null value for object
arrays. For string arrays, you can create empty elements with double quotes ("") and elements
that contain semicolons by quoting the entire element. Double quotes in string elements must
be doubled. For example, entering a string array value of

“Test";"";;"enbedded "" quote";"A B';;
creates the string array
new String[] {"Test", "", null, "enbedded \" quote", "A; B", null}

JProfiler can create custom telemetries from numeric MBean attribute values. When you define
an MBean telemetry line [p. 46] for a custom telemetry, an MBean attribute browser will be
shown that lets you choose an attribute that provides the telemetry data. When you are already
working in the MBean Browser, the Add Telemetry For Value action in the context menu provides
a convenient way to create a new custom telemetry.

116

M [Attributes @ Operations

com.gjt.demeo

com jprofiler.api.agent.mbean v
com.sun.management
javalang Name Value
GarbageCollector [type] HeapMemoryUsage [java.lang.management.Memorylsage]
committed 1073741824
MemoryManager [type]
init 1073741824
MemoryPool [type] 47447190440
= max
&9 ClassLoading [type] ueed Edit Attribute Value
’d} Compilation [type] NoﬂHeapME Add Telemetry For Value I_].—:mcr_ Usage]
@ Memory itype] ObjectMNormi
H} OperatingSystem [type] ObjectPend }? Find Ctrl+F
&9 Runtime [type] Verbose o Show Row Details Ctrl+Alt+I 2
@9 Threading [type]
gl L Export View Ctrl+R
java.nio

java.util.logging View Settings Ctrl+

Jdk.management.jfr

A telemetry can also track nested values in composite data or tabular data with simple keys and
single values. When you chose the nested row, a value path is built where path components are
separated by forward slashes.

Operations

In addition to inspecting and modifying MBean attributes, you can invoke MBean operations
and check their return values. MBean operations are methods on the MBean interface that are
not setters or getters.

M [T Attributes @ Operations

com.ejt.demo
.ﬂ} StandardTest [type] -
@ Test [type]
com jprofiler.api.agent.mbean Operation
com.sun.management dumpHeapijava.lang.5tring p0, boolean p1) — void
@ DisgnosticCommand [type] getVMOption(java.lang.String pl) — [Composite]

: setVMOption(java.lang.String pl, java.lang.String |] Invoke Operation I

&8 HetSpotDiagnostic [type]

java.lang }3 Find Ctrl+F
GarbageCollector [type] 1 Export View Ctri<R

MemoryManager [type]

MemoryPool [type] View Settings Ctrl+T

® ClassLoading [type]

d} Compilation [type]

® Memory [type]

@ OperatingSystem [type]

.ﬂ} Runtime [type]

@ Threading [type]

java.nio

java.utillogging

Jdk.management,jfr

The return value of an operation may have a composite, tabular or array type, so a new window
with a content similar to the MBean attribute tree table is shown. For a simple return type, there
is only one row named "Return value". For other types, the "Return value" is the root element
into which the result is added.

117

@ Operation Result X

Q- Filte 7
Name Value
Return value [com.sun.management.VMOption]
name HeapDumpOnOutOffMemoryError
origin DEFAULT
value false
writeable true

MBean operations can have one or more arguments. When you enter them, the same rules and
restrictions apply as when editing an MBean attribute.

© Enter Operation Parameters X
javalang.String p0 | HeapDumpOnCutOfMemoryError null
java.lang.String p1 | true null

118

Offline Profiling

There are two fundamentally different ways to profile an application with JProfiler: By default,
you profile with the JProfiler GUI attached. The JProfiler GUI provides you with buttons to start
and stop recording and shows you all recorded profiling data.

There are situations where you would like to profile without the JProfiler GUI and analyze the
results later on. For this scenario, JProfiler offers offline profiling. Offline profiling allows you to
start the profiled application with the profiling agent but without the need to connect with a
JProfiler GUL.

However, offline profiling still requires some actions to be performed. At least one snapshot has
to be saved, otherwise no profiling data will be available for analysis later on. Also, to see CPU
or allocation data, you have to start recording at some point. Similarly, if you wish to be able to
use the heap walker in the saved snapshot, you have to trigger a heap dump.

Profiling API

The first solution to this problem is the controller API. With the API, you can programmatically
invoke all profiling actions in your code. In the api / sanpl es/ of f| i ne directory, there is a
runnable example that shows you how to use the controller APl in practice. Execute . . / gr adl ew
in that directory to compile and run it and study the Gradle build file bui | d. gr adl e to understand
how the test program is invoked.

The Controller APl is the main interface for managing profiling actions at run time. It is contained
in bi n/ agent . j ar inyour JProfiler installation or as a Maven dependency with the coordinates

group: comjprofiler
artifact: jprofiler-probe-injected
version: <JProfiler version>

and the repository

https://maven. ej -t echnol ogi es. conl repository

If the profiling APl is used during a normal execution of your application, the API calls will just
quietly do nothing.

The drawback of this approach is that you have to add the JProfiler agent library to the class path
of your application during development, add profiling instructions to your source code and
recompile your code each time you make a change to the programmatic profiling actions.

Triggers

With triggers [p. 26], you can specify all profiling actions in the JProfiler GUI without modifying
your source code. Triggers are saved in the JProfiler config file. The config file and the session
ID are passed to the profiling agent on the command line when you start with offline profiling
enabled, so the profiling agent can read those trigger definitions.

119

@ Session Settings X
Triggers defined for the current session:
Application Settings
: Method invacation +
berier.BezierAnim$DemoControls.actionPerformed(java.awt.event. ActionEvent) 3
Call Tree Recording .
Q Timer x
Y Call Tree Filters Interval 10 minutes, offset 10 minutes
' CPU load threshold
| Trigger Settings 1L 80% CPU load
Heap usage threshold
[zEEs % 80% of maximum heap size
Qutput
; Database Settings
o Probe Settings
N~
@"' Advanced Settings b
General Settings Copy Settings From “ Cancel

In contrast to the profiling API, where you add API calls to your source code, triggers are activated
when a certain event occurs in the JVM. For example, instead of adding an API call for a certain
profiling action at the beginning or at the end of a method, you can use a method invocation
trigger. As another use case, instead of creating your own timer thread to periodically save a
snapshot, you can use a timer trigger.

Each trigger has a list of actions that are performed when the associated event occurs. Some of
these actions correspond to profiling actions in the controller API. In addition, there are other
actions that go beyond the controller functionality such as the action to print method calls with
parameters and return values or the action to invoke interceptor scripts for a method.

@ Trigger Wizard - Method invocation X
1. Trigger type Configure actions for this trigger
2. Specify methods
3. Actions Configured actions:
4. Description 5 print methad invocation +
5. Group 1D v
6. Finished E ®
£ Run interceptor script
On method entry:
On method exit:
On exception exit:
N
4 Back Next P Finish Cancel

Configuring offline profiling

If you have configured a launched session in JProfiler, you can convert it to an offline session by
invoking Session->Conversion Wizards->Convert Application Session To Offline from the main menu.
This will create a start script with the appropriate VM parameters and take the profiling settings
from the same session that you use in the JProfiler Ul. If you want to move the invocation to
another computer, you have to use Session->Export Session Settings to export the session to a
config file and make sure that the VM parameter in the start script references that file.

120

€ Convert local session to offline session *

1. Select local session Check required actions

2, Offline profiling

2. Locate output directary The conversion wizard has finished collecting all necessary information and is
4. Check actions now about to execute the required actions,

5. Finished

Please check the summary below.

Conversion type: Convert local session to offline session
Application sessicn: Animated Bezier Curve Demo
Output directory: C\Users\ingo

For offline profiling, a start script named start_session_offline_101.bat

will be created in the output directory. Use this start script to start offline
profiling.

4 Back Mext B Finis Cancel

When profiling an application server with the integration wizards, there is always a start script
or config file that is being modified so that the VM parameters for profiling are inserted into the
Java invocation. All integration wizards have a "Profile offline" option on the "Startup" step in
order to configure the application server for offline profiling instead of interactive profiling.

@ Integration Wizard b4
1. Choose wizard Choose whether to wait for the JProfiler GUI

2. Local or remote

3. Profiled JVM Please choose whether you would like your profiled WM to wait for a

4. Startup mode connection from the JProfiler GUI frentend before starting up:

Wait for a connection from the JProfiler GUI

[Easy] Profiling settings are transmitted directly by the JProfiler GUI at
startup. With this option you can profile the startup phase of your
application.

Startup immediately, connect later with the JProfiler GUI

[Easy] Profiling settings are transmitted directly by the JProfiler GUI once
you connect.

Io Profile offline, JProfiler GUI cannot connectl

[Advanced] You have to configure triggers that record data and save
snapshots that can be opened with the JProfiler GUI later on.

4 Back Next P Finis Cancel

You may want to pass the VM parameter yourself to a Java call, for example if you have a start
script that is not handled by the integration wizards. That VM parameter has the format

-agentpath: <path to jprofilerti l|ibrary>=offline,id=<ID>[, config=<path>]

and is available from the [Generi ¢ appli cati on] wizard.

Passing of f | i ne as a library parameter enables offline profiling. In this case, a connection with
the JProfiler GUI is not possible. The sessi on parameter determines which session from the
config file should be used for the profiling settings. The ID of a session can be seen in the top
right corner of the Application settings tab in the session settings dialog. The optional confi g
parameter points to the config file. This is a file that you can export by invoking Session->Export
Session Settings. If you omit the parameter, the standard config file will be used. That file is located
inthe . j profil er13 directory in your user home directory.

121

Offline profiling with Gradle and Ant

When you start offline profiling from Gradle or Ant, you can use the corresponding JProfiler
plugins to make your work easier. A typical usage of the Gradle task for profiling tests is shown
below:

pl ugi ns {
id "'comjprofiler' version 'X Y.Z
id'java'
}
jprofiler {
instalIDir = file('/opt/jprofiler")
}

task run(type: comjprofiler.gradle. TestProfile) {
offline = true
configFile = file("path/to/jprofiler_config.xm")
sessionld = 1234

Thecomjprofiler.gradl e.JavaProfil e task profiles any Java class in the same way that
you execute it with the standard JavaExec task. If you use some other method of launching
your JVM that is not directly supported by JProfiler, the comjprofiler.gradle.
Set Agent Pat hPr oper ty task can write the required VM parameter to a property. It is added
by default when applying the JProfiler plugin, so you can simply write:

set Agent Pat hProperty {
propertyName = 'agent Pat hProperty
offline = true
configFile = file("path/to/jprofiler_config.xm")
sessionld = 1234

and then use agent Pat hPr oper t y as a project property reference elsewhere after the task has
been executed. The features of all Gradle tasks and the corresponding Ant tasks are documented
in detail in separate chapters [p. 211].

Enabling offline profiling for running JVMs

With the command line utility bi n/ j penabl e, you can start offline profiling in any running JVM
with a version of 1.6 or higher. Just like for the VM parameter, you have to specify an of f| i ne
switch, a session ID and an optional config file:

jpenable --offline --id=12344 --config=/path/to/jprofiler_config.xmn

With an invocation like this, you have to select a process from a list of running JVMs. With the
additional arguments - - pi d=<PI D> - - noi nput other you can automate the process so that
it requires no user input at all.

On the other hand, when enabling offline profiling on the fly, it may be necessary to manually
start some recordings or to save a snapshot. This is possible with the bi n/j pcontrol | er
command line tool.

If the profiling agent is only loaded, but no profiling settings have been applied, no recording
actions can be switched on and soj pcont r ol | er will not be able to connect. This includes the

122

case where you enable profiling with j penabl e, but without the of f| i ne parameter. If you
enable offline mode, the profiling settings are specified and j pcont rol | er can be used.

More information onthej penabl e andj pcont r ol | er executables is available in the command
line reference [p. 211].

123

Comparing Snapshots

Comparing the runtime characteristics of your current application against a previous version is
a common quality assurance technique for preventing performance regressions. It also can be
helpful for solving performance problems within the scope a single profiling session, where you
may want to compare two different use cases and find out why one is slower than the other. In
both cases, you save snapshots with the recorded data of interest and use the snapshot
comparison functionality in JProfiler by invoking Session->Compare Snapshots in New Window from
the menu or clicking the Compare Multiple Snapshots button on the Open Snapshots tab of the
start center.

@ IProfiler Start Center X

Start Center

Open a Single Snapshot

Open Use this option to analyze a snapshot in detail. All views are available just like for a live profiling

Pe session.
Session

w Recent Snapshots

“ Use this option to re-open a recently opened snapshot.

Quick
Attach | Compare Multiple Snapshots I
== Use this option to compare certain aspects of different snapshots. IProfiler will switch to the snapshot
" comparison window,

New

Session

Open
Snapshots

Start Close

Selecting snapshots

Comparisons are created and viewed in a separate top-level window. First, you add a number
of snapshots in the snapshot selector. Then you can create comparisons from two or more of
the listed snapshots by selecting the snapshots of interest and clicking on a comparison tool bar
button. The order of the snapshot files in the list is significant because all comparisons will
assume that snapshots further down in the list have been recorded at a later time. Apart from
arranging snapshots manually, you can sort them by name or creation time.

Y \ Y v
P = o > 7
Memary P Telemetry Probe Start . - o
aris aris aiis Center
Available Snapshots o || 12
serverl.jps Sort By Creation Time
2019-03-22 11:11:54 Sort By Name
server2.jps
2019-03-22 11:11:54
server3.jps

2019-03-22 11:11:54

Unlike for the views in JProfiler's main window, the comparison views have fixed view parameters
that are shown at the top instead of drop-down lists that let you adjust the parameters on the
fly. All comparisons show wizards for collecting the parameters for the comparison, and you can
perform the same comparison multiple times with the same parameters. The wizards remember

124

their parameters from previous invocations so you don't have to repeat the configuration if you
compare several sets of snapshots. At any point, you can shortcut the wizard with the Finish
button or jump to another step by clicking on the step in the index.

When a comparison is active, the snapshots that were analyzed are shown with number prefixes.
For comparisons that work with two snapshot, the displayed differences are the measurements
from snapshot 2 minus the measurements from snapshot 1.

o I\) 0\

Memory cPU Telemetry Probe

Available Snapshots |]2
@ serverl.jps
2019-03-22 11:11:54
2 server2.jps
2019-03-22 11:11:54

serverd.jps
2019-03-22 11:11:54

For the CPU comparisons, you can use the same snapshot as the first and second snapshot and
select different threads or thread groups in the wizard.

¢ CPU Comparison Wizard - Call tree comparison X
1. Choose comparison type Choose the threads that should be compared

2, Select snapshots

3. Thread selection Please choose the thread for the comparison:

4. View parameters
First snapshot: @ Servlet request simulator 1 [main] A

Second snapshot: Same as for first snapshot
© Different thread

@ Servlet request simulator 2 [main]

4 Back Next P Finish Cancel

Comparisons with tables

The simplest comparison is the "Objects" memory comparison. It can compare data from the
"All objects", "Recorded objects" or the "Classes" view of the heap walker. The columns in the
comparison show differences for instance counts and size, but only the Instances Count column
shows the bidirectional bar chart where increases are painted in red and to the right, while
decreases are painted in green and to the left.

125

T File View Window Help
Y . Y w
& i = @
Memary CPU Telernetry Probe
[i [e i [« i [i
Available Snapshots & |]2
serverl.jps
2019-03-22 11:11:34

[1_ server2.jps
2019-03-22 11:11:54
server3.jps

2019-03-22 11:11:54

B

Snapshot Comparisan - IProfiler

L 7
ci'::; Export 5;::;;5 Help
Objects comparison
Aggregation: Classes
Objects: All objects
MName

char[]

Jjava.lang.5tring

Jjava.util HashMapSNode
com.sun.org.apachexerces.internal xni.QMame
javalang.Object[]

java.lang.5tringBuilder

java.lang.5tring[]
com.sun.org.apachexerces.intemal.util. Symbo...
int[]

com.sun.org.apachexerces.internal.util XMLStr...

bytel]
com.sun.org.apachexerces.internal xni XML5tr..,
short[]

java.util. HashMap

java.util. HashMapSNode[]

com.sun.arnanache xercesinternal utile XMI S

Total:

Qr

' Comparison 1 F 3 Comparison 2

Instance Count

+15,808 (+46 %)
+6,984 (+27 %)
+5,267 (+43 %)
+4,140 (+95 %)

+2,695 (+36 %)

+1,765 (+115 %)

+1,624 (+58 %)

+1,305 (+91 %)

+1,175(+36 %)

+1,080 (+85 %)

+1,050 (+48 %)

+990 (+95 %)

+852 (+99 %)

+797 (+24 %)

+736 (+25 %)

+A3IN (+112 %)

+72,286 (+48 %)

Size 0

+2,789 kB
+167 kB

+168 kB

+132 kB

+209 kB
+42,360 bytes
+150 kB
+41,760 bytes
+584 kB
+25,920 bytes
+2,716 kB
+23,760 bytes
+42,960 bytes
+38,256 bytes
+88,360 bytes
+30 240 hutes
+8,242 kB

- @

In the view settings dialog you can choose whether you want this bar chart to display absolute
changes or percentages. The other value is displayed in parentheses. This setting also determines

how the column is sorted.

T Objects Comparison YView Settings

Size Scale

O automatic &

Mixed units

Primary Measure

© Instance count

Shallow size

Differences of Primary Measure

© Sort by values

Sort by percentages

Show zero difference values)

Only show classes that appear in both snapshots

>
MB kB bytes
(7]
@

The measurement in the first data column is called the primary measure and you can switch it
from the default instance counts to shallow sizes in the view settings.

126

The context menu of the table gives you a shortcut into the other memory comparisons with

the same comparison parameters and for the selected class.

Objects comparison

Aggregation: Classes

I File View Window Help Snapshot Comparisen - IProfiler - O X
|9 LY 1Y Y @ —
4 8§ ®m o > (7]
Memary CPU Telernetry Probe Start View
i i ari i Center | O Seings | P
Available Snapshots 4= |2 Objects comparison
serverl.jps Aggregation: Classes
2019-03-22 11:11:54 Objects: All objects
server2.jps MName Size Instance C... @
2019-03-22 11:11:54 char[| +2,789 kB (+67 %) +15,808
i byte[| +2,716 kB (+77 %) +1,050
2019-03-22 11:11:54 int(] +384 kB (+8 %) #1175
e e java.lang.Object]] +209 kB (+43 %) +2,695
java.util.HashMap$Node +168 kB (+43 %) +5,267

Objects: All objects
Name Instance Count Size @
char[] +15,808 (+46 %) +2,789 kB
java.lang.String +6,984 (+27 %) +167 kB
Jjava.util. HashMapSMod e ol + 43 %5) +168 kB
com.sun.org.apachexe Create Allocation Call Tree Comparison %) +132 kB
java.lang.Object(] Create Allocation Hot Spot Cemparison +209 kB
javalang.StringBuilder +42,360 bytes
javalang.String[] = Show Source F4 +150 kB
com.sun.org.apachexen i gpo. Bytecode +41,760 bytes
int[] +524 kB
com.sun.org.apachexen Sort Classes » +25,920 bytes
bytel] 2 Find Ctrl+F +2. 716 kB
com.sun.org.apachexen +23,760 bytes
short]] +* Export View Ctrl+R +42,960 bytes
java.util. HashMap +38,256 bytes
java.util. HashMapSMNode View Settings Ctrl+T +88,360 bytes
COm_sin. o Anach ey ercEs INTENNALTITIS AT S B+ S0 T+ 112 71 +30 240 hutes
Total: +72,286 (+48 %) +8,242 kB
@

Like the objects comparison, CPU hot spot, probe hot spot and allocation hot spot comparisons
are shown in a similar table.

Comparisons with trees

For each of the CPU call tree, the allocation call tree and the probe call tree you can calculate
another tree that shows the differences between the selected snapshots. In contrast to the
regular call tree views, the inline bar diagram now displays the change, either in red for increases
or in green for decreases.

127

Call tree comparison

Thread selection: @8 Allthreads
Thread status: == Runnable
Aggregation: Methods

Difference calculation: Total call times

+6,994 mes (+32 %) £0 inv. java.util.concurrent. ThreadP oolExecutor§Worker.run
() — 5 403 ms (+32 %) +69 inv. com.gjt.demo.server.handlers.WsHandlerlmpl.getExchangeRate
0— +5,403 ms (+32 %) +69 inv. com.gjt.demo.server.handlers.WsHandlerlmpl.lockupExchangeRate
0 5,402 ms (+32 %) +69 inv. com.ejt.mock.MockHelper.runnable
D 197 ps (+24 %) +69 inv. java.util. Random.nextint
@™ 11,355 ms (+38 %) +18 inv, RMI: 192.168.218.1
Gl 11,352 ms (+38 %) +18inv. com.ejt.dema.server handlers.RmiHandlerlmpl.remoteOperation
G50 +1,352 ms (+38 %) +18 inv. com.ejt.demo.server.handlers.RmiHandlerlmpl.performWork
D' +927 ms (+44 %) +18 inv. com.gjt.mock.MeckHelper.runnable
b9 310 ms (+26 %) <18 inv. com.gjt.demo.server.handlers.RmiHandlerlmpl.makeWebServiceCalls
@D1+310 ms (+26 %) +17 inw. com.gjt.demo.server.handlers.HandlerHelper.makeWebServiceCall
B 1 +310 ms (+40 %) +51 inv. com.gjt.demo.server.handlers.WsHandler.getEx changeRate [com.sun.proxy.5Pn
m +24 ps (+0 %) +17 inv. java.lang.ThreadLocal get
D +40 ps (+21 %) +18 inv. java.utilRandom.nextint
@A@ +113 ms (+37 %) +19 inv, com.gjt.dema.server. handlers.RmiHandlerimpl.executeldbcStatements
0 +111 ms (+38 %) +19 inv. java.sgl.Statement.executeQuery

- @

Depending on the task at hand, it may make it easier for you if you only see call stacks that are
present in both snapshot files and that have changed from one snapshot file to the other. You
can change this behavior in the view settings dialog.

T Call Tree Comparison View Settings X

Time Scale

O Automatic 0 Mixed units 5 ms us

MNode Description

Show percentage bar ﬂ
Always show fully qualified names)
Always show signature (7]
Shorten packages (7]
Time Differences (7]

© Sort by values
Sort by percentages

Show zero difference values)

Only show call stacks that appear in both snapshots|

For the CPU and probe call tree comparisons it may be interesting to compare the average times
instead of the total times. This is an option on the "View parameters" step of the wizard.

128

T CPU Comparison Wizard - Call tree comparison X

1. Choose comparison type Select view parameters
2. Select snapshots
3, Thread selection Please specify the following parameters that are necessary in order to calculate

4. View parameters the snapshot comparison:

Thread status: B Runnable -

Aggregation level: @ Methods -

Difference calculation: o Total call times

Average call times

4 Back MNext p Finish Cancel

Telemetry comparisons

For telemetry comparisons you can compare more than 2 snapshots at the same time. If you
don't select any snapshots in the snapshot selector, the wizard will assume that you want to
compare all of them. Telemetry comparisons do not have a time axis, but show the numbered
selected snapshots as an ordinal x-axis instead. The tool tips contain the full name of the snapshot.

4 § ® e = t F O

Memory CPU Telemetry Probe Start View
c ison ison G ion i Center BPOrt Cttings Help
Available Snapshats Z= |2 Memory comparison

serverl.jps Value type: Current value (when snapshot was saved)
2019-03-22 11:11:54 Memory type: Heap

2 server2jps 1 2 3
2019-03-22 11:11:54 "

3 server3.jps
2019-03-22 11:11:54 70MB 3

eome e
SOMBf \

OME] \

s0MB] \

20 ME

10 MB

mm sed size p p @

L x .Compari;on1 4 Comparison2 | [Comparison 3

The comparison extracts one number from each snapshot. Because telemetry data is
time-resolved, there are multiple ways to do so. The "comparison type" step of the wizard gives
you the option to use the value when the snapshot was saved, calculate the maximum value or
find the value at a selected bookmark.

129

T VM Telemetry Comparison Wizard - Memory comparison

1. Choose comparison type Choose the comparison type
2. Select snapshots
2. Memory type One value is extracted from each snapshot for the comparison graph. Please

4. Comparison type select what kind of value should be compared:

5.C d t
armpared measurements o Current value (when snapshot was saved)

Maximum value
Value at bookmark
[Choose one]

Only bookmark names that exist in all snapshots are shown.

4 Back MNext p Finish Cancel

130

IDE Integrations

When you profile your application, the methods and classes that come up in JProfiler's views
often lead to questions that can only be answered by looking their source code. While JProfiler
provides a built-in source code viewer for that purpose, it has limited functionality. Also, when
a problem is found, the next move is usually to edit the offending code. Ideally, there should be
a direct path from the profiling views in JProfiler to the IDE, so you can inspect and improve code
without any manual lookups.

Installing IDE integrations

JProfiler offers IDE integrations for Intelli] IDEA, eclipse and NetBeans. To install an IDE plugin,
invoke Session->IDE Integrations from the main menu. The plugin installation for Intelli] IDEA is
performed with the plugin management in the IDE, for other IDEs the plugin is installed directly
be JProfiler. The installer also offers this action to make it easy to update the IDE plugin along
with the JProfiler installation. The integration wizard connects the plugin with the current
installation directory of JProfiler. In the IDE plugin settings, you can change the used version of
JProfiler at any time. The protocol between the plugin and the JProfiler GUI is backwards
compatible and can work with older versions of JProfiler as well.

@ General Settings X
Ul Session Defaults Snapshots IDE Integrations Updates External Programs

IDE Integration

To integrate JProfiler with an IDE, choose the target IDE and click on "Integrate” below.

Intelli] IDEA v

Integrate O

The Intelli) IDEA integration can also be installed from the plugin manager. In that case, the plugin
will ask you for the location of the JProfiler executable when you profile for the first time.

On different platforms, the JProfiler executable is located in different directories. On Windows,
it's bi n\j profiler.exe, on Linux or Unix bi n/j profil er and on macOS there is a special
helper shell script Cont ent s/ Resour ces/ app/ bi n/ macos/j profiler.sh in the JProfiler
application bundle for the IDE integrations.

Source code navigation

Everywhere a class name or a method name is shown in JProfiler, the context menu contains a
Show Source action.

131

Aggregation level Classes h
. Telemetries 9areg o

Name Instance Count Size

byte[] I 2,552 674 kB
.".'. Live Memary java.lang.String I, 12,051 289 kB
javalang.Object[] — (53 300 kB
All Objects java.util. HashMap$ Show Selection In Heap Walker 70 163 kB
javalang.Class Add Selection To Class Tracker 386 kB
Recorded Objects Jjavalang.invoke.ls 99,936 bytes
Al ion Call T int[] Show Source F4 I 16,019 kB
EEmE IS java.util.concurren Show Bytecode 87,904 bytes
Allocation Hot Spots java.security.Acces 64,560 bytes
java.awt.geom.Affi || Mark Current Values 105 kB
Class Tracker J.ava‘lang‘lntager Remove Mark 20,240 bytes
java.lang.Class[] 36,864 bytes
java.awt.Rectangle Sort Classes » 37,152 bytes
b RleapilValkay Jjava.lang.invoke.M /o Find ChleF 54,528 bytes
Javalang.invoke.M " " 31,488 bytes
sunjavadd.pipeRe + £ view ChrleR 38,320 bytes
I =TS java.util. Hashtable P 30,502 bytes
java.util. HashMap View Settings Ctrl+T 39,504 bytes
O e o ™ s et
Total: 85,600 19,872 kB

O Menitors & Locks v @

If the session was not started from the IDE, the built-in source code viewer is shown that utilizes
line number tables in the compiled class files to find methods. A source file can only be found if
its root directory or a containing ZIP file is configured in the application settings

€ Session Settings X
Application Settings Sezsion name: | Animated Bezier Curve Demo Id: 101 0
Session Type
Profiled VM ‘ Attach to an already running Hot5pot/OpenJ)3 JVM and profile it
Code Editor Attach Select from all local VMs () Attach to remote JVM () Kubernetes
Fey Launch a new JVM and profile it
Call Tree Recording {Cﬁ &

[sumat Launch type: () Application Web Start

Call Tree Filters
Application Settings

- O M T 4 i

Trigger Settings Java VIM: 11 [ChUsershingoj rsdk-11_0_13-b1.. * Configure JREs
Working directory: [startup directory]
Database Settings WM options: 0
Main class or executable JAR: | bezier.BezierAnim
Probe Settings
Program arguments: block (7]
@.- Advanced Settings Open browser with URL

Java File Path

demohbezier\sre]

Class path

© source psth @
Library path &)

General Settings Copy Settings From “ Cancel

Together with the source code display, a bytecode viewer based on the jclasslib bytecode viewer
™ shows the structure of the compiled class file.

M https://github.com/ingokegel/jclasslib

132

https://github.com/ingokegel/jclasslib
https://github.com/ingokegel/jclasslib

= Viewer Window berier.BezierAnim (C\Users\ingo\projectsjprofiler\dist\demo\bezierf\src) - ... — m} X

Show: | @ Bezierfinim -

General Information Minor version:

2 Constant Pool Major version: 50(1.6]
Interfaces

Fields Constant pool count: 141

Methods Access flags: 00021 [public]

Attributes This class: cp_info #23 <berzier/BezierAnim>
Super class: cp info #2309 <javax/swing/JApplet>
Interfaces count: 0
Fields count: 3
Methods count: 6

Attributes count: 2

Source Bytecode

If the session is launched from the IDE, the integrated source code viewer is not used and the
Show Source action defers to the IDE plugin. The IDE integrations support launched profiling
sessions, opening saved snapshots as well as attaching to running JVMs.

For live profiling sessions, you start the profiled application for the IDE similarly to running or
debugging it. The JProfiler plugin will then insert the VM parameter for profiling and connect a
JProfiler window to it. JProfiler is running as a separate process and is started by the plugin if
required. Source code navigation requests from JProfiler are sent to the associated project in
the IDE. JProfiler and the IDE plugin cooperate to make window switching seamless without
blinking task bar entries, just as if you were dealing with a single process.

When starting the session, the "Session startup" dialog lets you configure all profiling settings.
The configured profiling settings that are used for a launched session are remembered by JProfiler
on a per-project or on a per-run-configuration basis, depending on the IDE integrations. When
a session is profiled for the first time, the IDE plugin automatically determines a list of profiled
packages based on the topmost classes in the package hierarchy of your source files. At any later
point, you can go to the filter settings step in the session settings dialog and use the reset button
to perform this calculation again.

For snapshots, the IDE integration is set up by opening a snapshot file from within the IDE with
the File->Open action or by double-clicking on it in the project window. Source code navigation
from JProfiler will then be directed into the current project. Finally, the IDE plugin adds an Attach
to JVM action to the IDE that lets you select a running JVM and get source code navigation into
the IDE, similar to the mechanism for snapshots.

Sometimes you may want to switch to the IDE without a particular class or method in mind. For
that purpose, the tool bar in the JProfiler window has an Activate IDE button that is shown for
profiling sessions that are opened by an IDE integration. The action is bound to the F11 key, just
like the JProfiler activation action in the IDE, so you can switch back and forth between the IDE
and JProfiler with the same key binding.

=1 e, e - 3 — —
= l I % T N ML 1+ .:H- '
| = i Jl' EF"] P L 3 J
Start Activate Save Session Start Stop Start Add View Add Configure
Run GC Ex| Hel)
Center | IDE |Snapshot Settings Recordings Recordings Tracking | o Bookmark PO cetiings ®P | Telemetry Telemetries
. -
Telemetries
......... REREEREE R R R R REE R ERERERERRERERERE
010 020 30 040

133

IntelliJ IDEA integration

To profile your application from Intelli] IDEA, choose one of the profiling commands in the Run
menu, the context menu in the editor, or click on the corresponding toolbar button.

W(EMan~) > ¥ zlO @l T B O BY¥ Q

GOLN Tools VC5 Window Help

P Run ‘Main’ Shift+F10
#£ Debug 'Main' Shift+F9
F% Run 'Main' with Coverage

@ Profile 'Main'

P Run.. k Alt+5hift+F10
#¥ Debug... Alt+Shift+F9

Attach to Local Process...
[Edit Configurations...
3 Import Test Results 4

@ Attach to WM

Copy Reference Ctrl+Alt+Shift+C
[l Paste Ctrl+V
Paste from History... Ctrl+Shift+V
Paste Simple Ctrl+Alt+Shift+V
Column Selection Mode Alt+Shift+|nsert
Find Usages Alt+F7
Refactor b
Folding »
Analyze »
Go To »
Generate... Alt+Insert
Recompile 'Main.kt' Ctrl+Shift+F9
’ Run 'bytecode viewer' Ctrl+Shift+F10

#¥ Debug 'bytecode viewer'
¥# Run 'bytecode viewer with Coverage
@ Profile 'bytecode viewer' k
K Select 'bytecode viewer'

I nral Hicknne .

JProfiler can profile most run configuration types from IDEA, including applications servers. To
configure further settings, edit the run configuration, choose the Startup/Connection tab, and
select the JProfiler entry. The screen shot below shows the startup settings for a local server
configuration. Depending on the run configuration type, you can adjust JVM options or retrieve
profiling parameters for remote profiling.

134

SENEF‘ DeploymEntl Logsl Code Coverage Startup/Connection

P Run
*C Debug
¥ Coverage

@ IProfiler

Startup script: | C\Users\ingo\appservers\apache-tomcat-8.0.36\bin\catalina.bat run HE‘ Use default
Shutdown script: | C\Users\ingo\appservers\apache-tomcat-8.0.36\bin\catalina.bat stop HE‘ Use default
Environment Variables
Pass environment variables

Name | Value -
JAVA_OPTS -agentpath: C:\Users\ingo\projects\jprofiler\dist\bin\windows-x6...

Use profiling settings: Project-specific L[] Skip session startup dialog

Debug parameters for profiling agent: | ‘

Server JVM: | cu/Progrem Files/Java/jak1.2.0_101 -]

¥ Rafera laimckhe Brild Acbiests $nnl imnd s

The profiled application is then started just as with the usual "Run" commands. Precise source

code navigation is implemented for Java and Kotlin.

On the JProfiler tab of the IDE settings, you can adjust the used JProfiler executable and whether

you always want to open a new window in JProfiler for new profiling sessions.

Settings x

@) Taols » JProfiler

Appearance & Behavior JProfiler executable: | Ch\Users\ingo\projects\jprofilerdist\bin'jprofiler.exe Hj

Keymap (| Always open new windows in JProfiler
Editor
Plugins
Version Control
Build, Execution, Deployment
Languages & Frameworks
Tools
‘Web Browsers

External Tools

JProfiler

Terminal
Diff & Merge
PsiViewer

B (o) [) [Len]

The JProfiler tool window in IDEA is shown when you profile a run configuration from IDEA, when

you open a JProfiler snapshot or when you attach to a running JVM.

| JProfiler B, bytecode viewer

¢k | [Z] Consale | @ JProfiler
u
5
g u 4] ,‘,ApplyGraph 27 Recordings: m.‘ o,
“leml Mehe] Total Time * I Self Time
¥ st .
E Proceed graph was cal ick on Apply Graph above
g
\E For more options, crezte the graph in JProfiler instead
i,
&

135

The action in the tool bar with the JProfiler icon activates the JProfiler window. On the right side
of the tool bar, several toggle buttons give access to important recording actions in JProfiler. If
a recording is active, the corresponding toggle button is selected.

Of particular relevance is the CPU recording action, because CPU graph data can be shown directly
in the IDE. The only parameter for graph calculation that is offered in the IDE is the thread status.
To configure advanced parameters like thread selection or to use the call tree root, call tree
removal and call tree view filter settings from the call tree view, you can generate the graph in
the JProfiler window, it will then be shown in the IDE as well.

When you calculate a graph, the list of hot spots will be populated and the source code will be
annotated with gutter icons for incoming and outgoing calls. The popup on the gutter icons
shows an inline graph, clicking on a method will navigate to it. The list of hot spots shows you
interesting entry points for analyzing the graph. When double-clicking on a table row, the source
code is shown.

import ...

=Y 2 . - frem1 e o 1.
Choose outgeing calls

60,283 ps (4 inv.) org.gjt.jclasslib.browser.FrameContentsTabbedPaneWrapper.<init>

6,048 p8 (1 inv.) javax.3wing.JPanel.<init>

783 us (1 inw.) org.gjt.jclasslib.browser.FrameContent.split

559 ps (1 inwv.) org.gjt.jclasslib.browser.FrameContent#Position.<clinit>
11 ps (1 inwv.) org.gjt.jclasslib.browser.FrameContent.get

8 us (1 inv.) org.gjt.jclaaslib.browser.FrameContent$Position.values

6 us (4 inv.) java.util.Collection.add

5 ps (1 inv.) Java.util.Arraylist.<init>

4 ps (1 inv.) kotlin.jvm.internal.Intrinsics.checkParameterIsNotNull

4 ps (1 inv.) Java.awt.Borderlayout.<inits>

This method: 68,048 ps total time, 1 invocation € Show in JProfiler

- fun focus{focusedIlabbedPane: BrowserTabbedPane) {
this. focusedTabbedPane = focusedlabbedPane
}

Frm ~lneall1Taha il f

The Show in JProfiler button contains actions that activate the JProfiler window, either the selected
node in the method graph or the corresponding call tree analysis in the method graph. For
outgoing calls, the "Cumulated outgoing calls" analysis is offered, for the incoming calls, the
"Backtraces" analysis is shown. All these actions are also available in the context menu of the
hot spot list or as keyboard actions.

136

™98 code Analyze Refector Build Run Tools VCS Window Help

Class... Crle N 5yser) ¢ FrameContent.kt ¥ | K bytecode viewer ~ | P @ K

@z S X | 6 FrameContent.kt x | '€y JFramejava X | 6 BrowserFramekt x
Symbol... Ctrl+ Alt+Shift+ N
Custom Folding... Cirl+ Alt+Period
= Ctrl+G / This library is free software: you can redistribute

< Back Ctrl+Alt+Left package org.git.jclasslib.browser

Ctrl+Shift+Backspace import ...

class FrameContent (val frame: BrowserFrame) : JPanel()
Bookmarks]
Select In... Alt+F1 val wrappers = Position.values().map { TabbedPaneR
Jump to Navigation Bar Alt+Home
) private var splitMode: SplitMode = SplitMode.NONE
Declaration Ctrl+B
Implementation(s) Ctrl+Alt+B var focusedTabbedPane: BrowserIabbedPane = wrapper
Type Declaration Ctrl+Shift+B
Super Method Ctrl+U val selectedTab: BrowserTab?
: get() = focusedTabbedPane.selectedTab
Test Ctrl+Shift+T -
Related Symbel... Ctrl+Alt+Home init {
Incoming Profiled Calls Ctrl+ Alt+Shift+8
E= SrEnme Ctrl+F12 Outgoing Profiled Calls Ctrl+ Alt+Shift+9
Ctrl+Alt+Shift+0, M

File Path Ctrl+Alt+F12 Show This Method In IProfiler
Ctrl+H Show Backtraces In JProfiler

fr+H Show Cumulated Outgoing Calls In JProfiler

Ale+H Show In Hot Spots

Next Highlighted Error F2 fun closeRllTabs() {

Ctrl+ Alt+Shift+0, B
Ctrl+Alt+Shift+0, O
Ctrl+Alt+Shift+0, H

Previnne Hinhlinhted Frear Shift+F2 wrappers.forEach { it.tabbedPane.removeRll() }

eclipse integration

The eclipse plugin can profile most common launch configuration types including test run
configurations and WTP run configurations. The eclipse plugin only works with the full eclipse

SDKs and not with partial installations of the eclipse framework.

To profile your application from eclipse, choose one of the profiling commands in the Run menu
or click on the corresponding toolbar button. The profile commands are equivalent to the debug
and run commands in eclipse and are part of eclipse's infrastructure, except for the Run->Attach

JProfiler to JVM menu item which is added by the JProfiler plugin.

S eclipse-workspace - Eclipse

File Edit Source Refactor Mavigate Search Project Run Window Help

N-ofe]e-ivis-o-Rle-a-iwe-ime 9-is

h Project Run Window Help

Qv @ @ Run Ctrl+F11
4&, Debug F11
gg Profile
=, Coverage Last Launched Ctrl+5Shift+F11

Profile History >
Profile As >

Profile Configurations..,

Run History >
Run As >

Run Configurations...

Debug History >
Debug As >

Debug Cenfigurations...

Coverage History >
Coverage As >
Coverage...

Toggle Breakpoint Ctrl+Shift+B

@ Toggle Tracepoint

Tnnnle | ine Rreaknnint

137

If the menu item Run->Profile ... does not exist in the Java perspective, enable the "Profile" actions
for this perspective under Window->Perspective->Customize Perspective by bringing the Action Set
Availability tab to front and selecting the Profile checkbox.

Several JProfiler-related settings including the location of the JProfiler executable can be adjusted
in eclipse under Window->Preferences->/Profiler.

NetBeans integration

In NetBeans, you can profile standard, free form and Maven projects that use the exec Maven
plugin. To profile your application from NetBeans, choose one of the profiling commands in the
Run menu or click on the corresponding toolbar button. For Maven projects that start an
application in another way and for Gradle projects, start the project normally and use the
Profile->Attach JProfiler To A Running JVM action in the menu.

For free form projects, you have to debug your application once before trying to profile it, because
the required filenbpr oj ect /i de-t argets. xm is set up by the debug action. JProfiler will add
a target named "profile-jprofiler" to it with the same contents as the debug target and will try to
modify the VM parameters as needed. If you have problems profiling a free form project, check
the implementation of this target.

You can profile web applications with the integrated Tomcat or with any other Tomcat server
configured in NetBeans. When your main project is a web project, selecting Profile main project
with JProfiler starts the Tomcat server with profiling enabled.

If you use NetBeans with the bundled GlassFish Server and your main project is set up to use a
GlassFish Server, selecting Profile main project with JProfiler starts the application server with
profiling enabled.

The location of the JProfiler executable and the policy for opening new JProfiler windows can be
adjusted under Miscellaneous->/Profiler in the options dialog.

() NetBeans IDE

File Edit View Mavigate Source Refactor Run Debug Profile Team Tocls Window Help

L e 1@ T B DB G
bug Profile Team Tocls Window Help Q
> @ Profile Main Project With JProfiler Ctrl+Shift+F3

Profile File With JProfiler

CD Profile Project (C:\Users\ingo'Decuments\MNetBeansProjects\maven) Ctrl+F2
Profile File
Profile Test File
Attach to Project
'E:)b Attach to External Process
Finish Profiler Session Shift+F2

Take Thread Dump
Take Heap Dump...

Run GC

Take Snapshot of Collected Results Alt+F2
Reset Collected Results Alt+Shift+F2

L& Insert Profiling Point...

138

A Custom Probes

A.1 Probe Concepts

To develop a custom probe for JProfiler, you should be aware of some basic concepts and
terminology. The common basis of all of JProfiler's probes is that they intercept specific methods
and use the intercepted method parameters and other data sources to build a string with
interesting information that you would want to see in the JProfiler Ul.

The initial problem when defining a probe is how to specify the intercepted methods and get an
environment where you can use the method parameters and other relevant objects for building
the string. In JProfiler, there are 3 different ways to do that:

+ Ascript probe [p. 145] is completely defined in the JProfiler Ul. You can right-click a method
in the call tree, choose the script probe action and enter an expression for the string in a
built-in code editor. This is great for experimenting with probes, but only exposes a very limited
segment of the capabilities of custom probes.

+ The embedded probe [p. 154] API can be called from your own code. If you write a library, a
database driver or a server, you can ship probes with your product. Anybody who profiles
your product with JProfiler, will get your probes added automatically to the JProfiler Ul.

+ With the injected probe [p. 149] API, you can write probes for 3rd party software in your IDE
using the full capability of JProfiler's probe system. The APl makes use of annotations to define
the interceptions and to inject method parameters and other useful objects.

Profiled JVM

s N

Profiled application

Embedded (0)
probe @
Injected
probe

JProfiler Ul N

Script .
probe

Profiling
agent

The next question is: what should JProfiler do with the string that you have created? There are
two different strategies available: payload creation or call tree splitting.

Payload creation

The string that is built by a probe can be used to create a probe event. The event has a description
thatis set to that string, a duration that is equal to the invocation time of the intercepted method,
as well as an associated call stack. At their corresponding call stacks, probe descriptions and

139

timings are cumulated and saved as payloads into the call tree. While events are consolidated
after a certain maximum number, the cumulated payloads in the call tree show the total numbers
for the entire recording period. If both CPU data and your probe are being recorded, the probe
call tree view will show the merged call stacks with the payload strings as leaf nodes and the
CPU call tree view will contain annotated links into the probe call tree view.

Probe Events Call tree with annotated payloads
Payload A, time 200 ms .. Method 1
Payload A, time 100 ms Payloads
Payload A, time 300 ms ': Payload A, count 3, time 600 ms
Payload B, time 100 ms Payload B, count 2, time 300 ms
Payload B, time 200 ms Method 2
: Method 3
chronological cumulated

Just like for CPU data, payloads can be shown in a call tree or in a hot spots view. The hot spots
show which payloads are responsible for most of the expended time and the back traces show
you which parts of your code are responsible for creating these payloads. In order to get a good
list of hot spots, the payload strings should not contain any unique IDs or timestamps, because
if every payload string is different, there will be no cumulation and no clear distribution of hot
spots. For example, in the case of a prepared JDBC statement, the parameters should not be
included in the payload string.

Script probes create payloads automatically from the return value of the configured script.
Injected probes are similar, they return the payload description from an interception handler
method annotated with Payl oadl nt er cept i on either as a string or as a Payl oad object for
advanced functionality. Embedded probes, on the other hand, create payloads by calling Payl oad.
exi t with the payload description as an argument, where the time between Payl oad. ent er
and Payl oad. exi t is recorded as the probe event duration.

Payload creation is most useful if you're recording calls to services that happen at different call
sites. A typical example is a database driver where the payload string is some form of query
string or command. The probe takes the perspective of the call site, where the work that is
measured is performed by another software component.

Call tree splitting

The probe can also take the perspective of the execution site. In that case, it is not important
how the intercepted method is called, but rather what method calls are executed after it. A typical
example is a probe for a servlet container where the extracted string is a URL.

More important than creating payloads is now the ability to split the call tree for each distinct
string that is built by the probe. For each such string, a splitting node will be inserted into the
call tree that contains the cumulated call tree of all corresponding invocations. Where otherwise
there would be just one cumulated call tree, now there is a set of splitting nodes segmenting the
call tree into different parts that can be analyzed separately.

140

Call tree without splits Call tree with splits

Method 1, 1 inv., 1400 ms Method 1, 1 inv., 1400 ms
|: Method 2, 4 inv., 900 ms
Method 3, 3 inv., 500 ms

Split string A |

— Method 2, 3 inv., 200 ms
L Method 3, 1inv., 400 ms

Split string B |

— Method 2, 1inv., 700 ms
— Method 3, 2 inv., 100 ms

Multiple probes can produce nested splits, a single probe by default produces only one split
level, unless is has been configured as reentrant which is not supported for script probes.

In the JProfiler UI, call tree splitting is not bundled with the script probe feature, but is a separate
feature [p. 172]called "Split methods". They just split the call tree without creating payloads, so
no probe view with name and description is required. Injected probes return the split string from
an interception handler method annotated with Spl i t | nt er cept i on, while embedded probes
call Spli t. ent er with the split string.

€ Session Settings X
— "C This list contains methods that should be split into multiple branches in the call tree, similarly to
Application Settings request splitting of the "HTTP server" probe. A configurable script returns a string that is displayed
above the actual methed node. Fer example, you can split the call tree for different argument
values
EJ Call Tree Recording
- If this feature is abused, the call tree can become very large, adding significant overhead.
Methed Call Recording N n)) .
@ bezier.BezierAnimSDemo.createGraphics2Diint, int) #
Exceptional Methods Split by return value of script "Pixels: " + (i1 7 i2) x
Split Metheds
T Call Tree Filters
Trigger Settings
; Database Settings
o Probe Settings
{.'9:: Advanced Settings
General Settings Copy Settings From “ Cancel

Telemetries

Custom probes have two default telemetries: The event frequency and the average event duration.
Injected and embedded probes support additional telemetries that are created with annotated
methods in the probe configuration classes. In the JProfiler Ul, script telemetries are independent

141

from the script probe feature and are found in the "Telemetries" section, under the Configure
Telemetries button in the tool bar.

@ Configure Custom Telemetries X

DataBus connections [plain] +

DataBus connections [Script line ""DataBus.getInstance().getActi Add Telemetry View

Add MBean Telemetry Line
I Add Script Telemetry Line I

@ Help “ Cancel

Telemetry methods are polled once per second. Inthe Tel enet ry annotation, you can configure
the unit and a scale factor. With the | i ne attribute, multiple telemetries can be combined into
a single telemetry view. With the st acked attribute of the Tel enet r yFor mat you can make the
lines additive and show them as a stacked line graph. The telemetry-related APIs in the embedded
and injected probes are equivalent but only applicable for their respective probe types.

Control objects

Sometimes it is interesting to tie probe events to associated long-lived objects that are called
"control objects" in JProfiler. For example, in a database probe, that role is taken by the physical
connection that executes a query. Such control objects can be opened and closed with the
embedded and the injected probe APIs which generates corresponding events in the probe
events view. When a probe event is created, the control object can be specified, so that the probe
event contributes to the statistics that is shown in the "Control objects" view of the probe.

@ Session View Profiling Window Help factorial jps - JProfiler - m} X
> (% 1 o
Smr s Session Start Stop Star R did e
Center = ot Semings | Recordings Recordings Tracking LHEE poey | BEEE (D
e server s
G,\; Time Line @ control Objects & Call Tree Records F:c::irlal_lc?f:-l:‘e o
HTTP Client ecords request 1o the factorizl cache
Web Services Show Centrol Objects: | Both open and closed b
INDI D Name Start Time End Time Event Count Event Duration
5 Factorial cache co... 0:00.683 [Dec 17, ... g8 8943 ms
ms 2 Factorial cache co.. 0:00.693 [Dec 17, ... 828 9,699 ms
4 Factorial cache co... 0:00,693 [Dec - 758 9,230 ms.
RN 3 Factorial cache co... 0:00.683 [Dec 17, ... m 9,351 ms
1 Factorial cache co... 0:00683 [Dec 17, .. 814 10,024 ms.
Class Loaders
Exceptions
Sockets
Files
Processes
Factorial server
Factorial cache
P
MB
wy e Total: 4,000 48,249 ms
@ 3recordings Dec 17, 2021, 10:08:01 AM VM #1 00:16 Il snapshot

142

Control objects have display names that have to be specified when they are opened. If a new

control object is used when creating a probe event, the probe has to provide a name resolver
in its configuration.

In addition, probes can define custom event types via an enum class. When the probe event is
created, one of those types can be specified and shows up in the events view where you can can
filter for single event types. More importantly, the time line view of the probe that shows control
objects as lines on a time axis is colored according to the event type. For a probe without custom
event types, the coloring shows the idle state where no events are recorded and the default

event state for the duration of probe events. With custom types, you can differentiate states, for
example "read" and "write".

€ Session View Profiling Window Help factorial jps - JProfiler - m} X
> Ef t (7
Start Session View
Center o Settings PO cttings Help
e server 5
Q;'Tlme Line @ Control Objects & Call Tree * Records F:c:f)‘nal_lc.‘a_(.l'l-e o
HTTP Client =cords request to the factorisl cache
Web Services Show Centrel Objects: Both open and closed = -
......... T I B B B B A
JNDI Control Objects 0:10 0:20 0:30
IMS Factorial cache connection 24 [ID 3] rrm |:
Factorial cache connection #1 [ID 5] Line
LTI Facterial cache connection #3 [ID 4] 1110 eee—
Factorial cache connection 22 [ID 2] Il e —
Class Loaders
Factorial cache connection #5 [I0 1] 1 11 NI
Exceptions
Sockets
Files
Processes
Factorial server
Factorial cache
w
{m MBeans = Idle ™= Read = \yrite /@
@ 3recordings Dec 17, 2021, 10:08:01 AM VM #1 00:16 [Snapshot

Recording

Like for all probes, custom probes do not record data by default, but you have to enable and
disable recording as necessary. While you can use the manual start/stop action in the probe
view, it is often necessary to switch on probe recording at the beginning. Because JProfiler does
not know about custom probes in advance, the recording profiles have a Custom probes check
box that applies to all custom probes.

143

@ Configure Recording Profiles X

Configured recording profiles:

r& CPU only +

1
ﬁ’ CPU and Allocation Recording

ﬁ My recording profile &

CPU data Call tracer Complexity data
Allocation call stacks Monitor recording Custern probes
Record database probes: [none] A d

Record built-in probes: [none] -

Recording overhead: s

@ Help “ Cancel

Similarly, you can choose All custom probes for the trigger actions that start and stop probe
recording.

@ Trigger Wizard - CPU load threshold X

1. Trigger type Configure actions for this trigger
2. Threshold

3. Actions Configured actions:
4. Descript]
5. G:Z:FI[;D” Q Start probe recording &

6. Finished Probe: | All custom probes X
Rec MongoDB

Cassandra
HBase

HTTP Server
HTTP Client
Web Services
JNDI

M5

RMI

Class Loaders
Exceptions
Sockets

Files
Processes

All custom probes

4 Back Next b Finish Cancel

For programmatic recording, you cancallControl | er. st art ProbeRecor di ng(Control | er.
PROBE_NAME_ALL_CUSTOM ProbeRecor di ngOpt i ons. EVENTS) to record all custom probes,
or pass the class name of the probe in order to be more specific.

144

A.2 Script Probes

Developing a custom probe in your IDE requires a clear understanding of the interception point
and the benefits that the probe will provide. With script probes, on the other hand, you can
quickly define simple probes directly in the JProfiler GUI and experiment without having to learn
any API. Unlike embedded or injected custom probes, script probes can be redefined during a
running profiling session, leading to a fast edit-compile-test loop.

Defining script probes

A script probe is defined by selecting an intercepted method and entering a script that returns

the payload string for the probe. Multiple such method-script pairs can be bundled in a single
probe.

The script probe configuration is accessed in the session settings. This is the place to create and

delete script probes as well as for saving your script probes to a set that can be imported by
other profiling sessions.

@) Session Settings X
g

Script probes defined for the current session:

o Image buffers

Measures the areas of image buffers " »

Application Settings

E‘ Call Tree Recording
-

' Call Tree Filters

Trigger Settings

; Database Settings
o Probe Settings

Built-In Probes
Script Probes

Customn Probes

{';;} Advanced Settings

General Settings Copy Settings From “ Cancel

Each script probe needs a name and optionally a description. The name is used to add a probe
view to JProfiler's view selector in the "JEE & Probes" section. The description is shown in the
header of the probe view and should be a short explanation of its purpose.

For selecting a method you have multiple options, including selecting a class from the configured
classpath or selecting a class from the profiled classes if the profiling session is already running.
In the second step, you can then select a method from the selected class.

145

@ Create Script Probe X

1. Mame and description Specify the payload interceptions
2. Payload interceptions

Intercepted methods:

+ Call tree annotations Q bezier.BezierAnimSDemo.createGraphics2D{int, int) | + |
3. Finished

Payload creation script: | "Pixels: * Search in Configured Class Path

Search in Other JAR or Class Files
Search in Profiled Classes

Enter Manually (Advanced)

Cuick Help

Use the current object (null for static methods) as well as the methed parameters to
construct and return a payload string.

Probe events, probe call tree and probe hot spots will be shown for these payloads.

w Advanced Options

4 Back Next P Finish Cancel

A much easier way to select the intercepted method is from the call tree view. In the context
menu, the Intercept Method With Script Probe action will ask you if you want to create a new probe
or add an interception to an existing probe.

” Thread status: o Thread selection: Aggregation level:
Telemetri
lemetries Bm Runnzble 88 2l thread groups v | (@ Methods -

m— 96.8% - 1,223 ms - 1 inv. java.awt.EventDispatchThread .run
,’:’, Live Memory () 60,95 - 769 ms - 348 inv. bezier.BezierAnimSDemo.paint
0- 37.4% - 472 ms - 348 inv. bezier.BezierAnim$Demo.drawDemo

w- 18.0% - 226 ms - 348 inv. java.awt.Graphics.drawlmage
ﬁ Heap Walker FET r 40 o . =
=5 Show Call Graph earRect
. I Show Threads limage.createGraphics
CPU Views RenderingHint
Add Methed Trigger nage.getWidth
Call Tree @ Add As Exceptional Method pekaround
) s Exceptional o nage.getHeight
Hot Spots @ =< split Method with a Script itep
I @ Intercept Method With Script Probe Inu‘ammate
Call Graph P K
Lr Ctrl+ Alt+
Outlier Detection Delete
Complexity Analysis Restore Removed Sub-Trees Ctrl+Alt+5
T Add Filter From Selection »
Call Tracer
i @ Show Tree Legend
JavaScript XHR N L
i Show Mode Details Ctrl+Alt+
- _ . = Show Source F4 M 0

Probe scripts

In the script editor, you have access to all parameters of the intercepted method as well as the
object on which the method was called. If you need access to the return value of the intercepted
method or any thrown exceptions, you have to write an embedded or injected probe.

In this environment, your script can construct the payload string, either as an expression or as
a sequence of statements with a return statement. The simplest version of such a script simply
returns par anet er.toString() for one parameter or Stri ng. val uet (par anet er) for a
parameter with a primitive type. If it returns nul | , no payload will be created.

If you record CPU and probe data at the same time, the call tree view in the CPU section will
show links into the probe view at the appropriate call stacks. Alternatively, you can select to show
the payload strings inline in the CPU call tree view. The "Payload interceptions->Call tree
annotations" step of the probe wizard contains this option.

146

@ Settings Edit Search Code Help Edit
& ¥ LB
$ BEE PR % O
Show Test
Copy Cut Paste L -l Find Replace —y Help

Please enter an expression (no trailing semicolon) or a script (ends with a return statement) that consists
of regular Java code. The following parameters are available:

J'mup

|
=

A
- com.jprofiler.api.agent.ScriptContext scriptContext

- java.lang.Class<Object> ¢
- bezier.BezierAnim.Demo currentObject

-int i1
-int i2

The expected return type is java.lang.String

Script:

J.r'leels: "o+ {11 * 12)

One more parameter that is available to the script is the script context, an object of type com

jprofiler.api.agent. ScriptContext thatallows you to store data between invocations of
any script that is defined for the current probe. For example, let's suppose that the intercepted
method A only sees objects that have no good text representation, but the association between
object and display name could be obtained by intercepting method B. Then you could intercept
method B in the same probe and save the object-to-text association directly to the script context.
In method A you would then get that display text from the script context and use it to build the

payload string.

(

Method A, intercepts: ‘

- object ¢

@ A [o

scriptContext.putObject(c,n);
return null;

|\

(

Timed method B, intercepts:

@ - object c

return|scriptContext.getObject(c); [« E

147

If these kinds of concerns get too complex, you should consider switching to the embedded or
injected probe APIs.

Missing capabilities

Script probes are designed to facilitate an easy entry to custom probe development, but they
are missing a couple of capabilities from the full probe system that you should be aware of:

+ Script probes cannot do call tree splitting. In the JProfiler Ul this is a separate feature as
explained in the custom probes concepts [p. 139]. Embedded and injected probes offer call
tree splitting functionality directly.

+ Script probes cannot create control objects or create custom probe event types. This is only
possible with embedded or injected probes.

+ Script probes cannot access return values or thrown exceptions, unlike embedded and injected
probes.

+ Script probes cannot handle reentrant interceptions. If a method is called recursively, only
the first call into it is intercepted. Embedded and injected probes offer you fine-grained control
over reentrant behavior.

+ Itis not possible to bundle telemetries other than default telemetries into the probe view.
Instead, you can use the script telemetry feature as shown in the custom probes
concepts. [p. 139]

148

A.3 Injected Probes

Similarly to script probes, injected probes define interception handlers for selected methods.
However, injected probes are developed outside the JProfiler GUI in your IDE and rely on the
injected probe API that is provided by JProfiler. The APl is licensed under the permissive Apache
License, version 2.0, making it easy distribute the associated artifacts.

The best way to get started with injected probes is to study the example in the api / sanpl es/
si npl e-i nj ect ed- pr obe directory of your JProfiler installation. Execute . . / gr adl ewin that
directory to compile and runiit. The gradle build file bui | d. gr adl e contains further information
about the sample. The example in api / sanpl es/ advanced- i nj ect ed- pr obe shows more
features of the probe system, including control objects.

Development environment

The probe API that you need for developing an injected probe is contained in the single artifact
with maven coordinates

group: comjprofiler
artifact: jprofiler-probe-injected
version: <JProfiler version>

where the JProfiler version corresponding to this manual is 13.0.4.

Jar, source and javadoc artifacts are published to the repository at

https:// maven. ej -t echnol ogi es. conl repository

You can either add the probe API to your development class path with a build tool like Gradle
or Maven, or use the JAR file

api /jprofiler-probe-injected.jar

in the JProfiler installation.

To browse the Javadoc, go to

api / j avadoc/ i ndex. ht m

That javadoc combines the javadoc for all APIs that are published by JProfiler. The overview for
thecom jprofiler.api.probe.injectedpackageis agood starting point for exploring the
API.

Probe structure

An injected probe is a class annotated with com j profil er. api . probe. i nj ect ed. Probe.
The attributes of that annotation expose configuration options for the entire probe. For example,
if you create a lot of probe events that are not interesting for individual inspection, the event s
attribute allows you to disable the probe events view and reduce overhead.

@r obe(nane = "Foo", description = "Shows foo server requests", events = "fal se")
public cl ass FooProbe {
}

149

To the probe class, you add specially annotated static methods in order to define interception
handlers. The Payl oadl nterception annotation creates payloads while the
Splitlnterception annotation splits the call tree. The return value of the handler is used as
the payload or the split string, depending on the annotation. Like for script probes, if you return
nul I, the interception has no effect. Timing information is automatically calculated for the
intercepted method.

@°r obe(nane = "FooBar")
public cl ass FooProbe {
@rayl oadl nt er cepti on(
i nvokeOn = | nvocationType. ENTER,
met hod = @t hodSpec(cl assNane = "com bar. Dat abase",
met hodName = "processQuery",
par anet er Types = {"com bar. Query"},
returnType = "void"))
public static String fooRequest (@Paraneter(0) Query query) {
return query. get Verbose();
}

@plitlnterception(
met hod = @t hodSpec(cl assNane = "com f 0oo. Server",
net hodNane = "handl eRequest ",
par anet er Types = {"com f 0o. Request"},
returnType = "void"))
public static String barQuery(@araneter(0) Request request) ({
return request.getPath();
}

As you can see in the above example, both annotations have a net hod attribute for defining the
intercepted methods with a Met hodSpec. In contrast to script probes, the Met hodSpec can have
an empty class name, so all methods with a particular signature are intercepted, regardless of
the class name. Alternatively, you can use the subt ypes attribute of the Met hodSpec to intercept
entire class hierarchies.

Unlike for script probes where all parameters are available automatically, the handler methods
declare parameters to request values of interest. Each parameter is annotated with an annotation
fromthecom jprofiler.api.probe.injected. paraneter package, so the profiling agent
knows which object or primitive value has to be passed to the method. For example, annotating
a parameter of the handler method with @Par anet er (0) injects the first parameter of the
intercepted method.

Method parameters of the intercepted method are available for all interception types. Payload
interceptions can access the return value with @Ret ur nVal ue or a thrown exception with
@xcepti onVal ue if you tell the profiling agent to intercept the exit rather than the entry of
the method. This is done with the i nvokeOn attribute of the Payl oadl nt er cept i on annotation.

In contrast to script probes, injected probes handlers can be called for recursive invocations of
the intercepted method if you set the r eent r ant attribute of the interception annotation to
t rue. With a parameter of type Pr obeCont ext in your handler method, you can control the
probe's behavior for nested invocations by calling Pr obeCont ext . get Qut er Payl oad() or
ProbeCont ext.restartTi m ng().

Advanced interceptions

Sometimes a single interception is not sufficient to collect all necessary information for building
the probe string. For that purpose, your probe can contain an arbitrary number of interception
handlers annotated with | nt er cept i on that do not create payloads or splits. Information can
be stored in static fields of your probe class. For thread safety in a multi-threaded environment,

150

you should use ThreadLocal instances for storing reference types and the atomic numeric
types from the j ava. uti |l . concurrent. at om c package for maintaining counters.

Under some circumstances, you need interceptions for both method entry and method exit. A
common case is if you maintain state variables like i nMet hodCal | that modify the behavior of
another interception. You can seti nMet hodCal | totrue in the entry interception, which is the
default interception type. Now you define another static method directly below that interception
and annotate it with @\ddi ti onal I nterception(i nvokeOn = | nvocationType. EXIT).
The intercepted method is taken from the interception handler above, so you do not have to
specify it again. In the method body, you can set your i nMet hodCal | variable to f al se.

private static final ThreadLocal <Bool ean> i nMet hodCal |l =
ThreadLocal .withlnitial (() -> Bool ean. FALSE) ;

@ nterception(
i nvokeOn = | nvocati onType. ENTER,
met hod = @kt hodSpec(cl assNane = "com f oo. Server",
nmet hodNane = "internal Cal | ",
par anet er Types = {"com f 0o. Request"},
returnType = "void"))
public static void guardEnter() {
i nMet hodCal | . set (Bool ean. TRUE) ;
}

@\ddi tional I nterception(lnvocationType. EXIT)
public static void guardExit() {

i nMet hodCal | . set (Bool ean. FALSE) ;
}

@plitlnterception(
nmet hod = @kt hodSpec(cl assNane = "com f oo. Server",
met hodNanme = "handl eRequest ",
par anmet er Types = {"com f 00. Request"},
returnType = "void"),
reentrant = true)
public static String splitRequest(@araneter(0) Request request) {
if (linMethodCall.get()) {
return request.getPath();
} else {
return null;

}

You can see a working example of this use case in api / sanpl es/ advanced- i nj ect ed- pr obe/
src/ mai n/ j ava/ AdvancedAw Event Pr obe. j ava.

Control objects

The control objects view is not visible unless the cont rol Cbj ect s attribute of the Probe
annotation is set to t r ue. For working with control objects you have to obtain a Pr obeCont ext
by declaring a parameter of that type in your handler method. The sample code below shows
how to open a control object and associate it with a probe event.

151

@°r obe(nane = "Foo", control Cbjects = true, custoniTypes = M/Event Types. cl ass)
public class FooProbe {
@nterception(
i nvokeOn = | nvocationType. EXI T,
nmet hod = @kt hodSpec(cl assNane = "com f oo. Connect i onPool ",
nmet hodNane = "creat eConnecti on",
par anet er Types = {},
returnType = "com foo. Connection"))
public static void openConnecti on(ProbeContext pc, @ReturnVal ue Connection c) {
pc. openCont rol Obj ect (c, c.getld());

}

@pPay| oadl nt er cepti on(
i nvokeOn = | nvocationType. EXI T,

met hod = @t hodSpec(cl assNanme = "com f oo. Connect i onPool ",
net hodName = "creat eConnecti on",
par anet er Types = {"com foo. Query", "com foo. Connection"},
returnType = "com f 0oo. Connecti on"))

public static Payl oad handl eQuery(
Pr obeCont ext pc, @araneter(0) Query query, @Paranmeter (1) Connection c) {
return pc.createPayl oad(query. get Verbose(), ¢, M/Event Types. QUERY);

Control objects have a defined lifetime and the probe view records their open and close times
in the timeline and the control objects view. If possible, you should open and close control objects
explicity by calling ProbeContext.openControl Gbject() and ProbeContext.
cl oseCont rol Obj ect (). Otherwise you have to declare a static method annotated with
@ont r ol bj ect Nare that resolves the display names of control objects.

Probe events can be associated with control objects if your handler method returns instances
of Payl oad instead of St ri ng. The Pr obeCont ext . cr eat ePayl oad() method takes a control
object and a probe event type. The enum with the allowed event types has to be registered with
the cust onilypes attribute of the Pr obe annotation.

Control objects have to be specified at the start of the time measurement which corresponds
to the method entry. In some cases, the name of payload string will only be available at method
exit, because it depends on the return value or other interceptions. In that case, you can use
Pr obeCont ext . cr eat ePayl oadW t hDef err edNanme() to create a payload object without a
name. Define an interception handler annotated with @\ddi t i onal | nt er cept i on(i nvokeOn
= I nvocationType. EXI T) right below and return a Stri ng from that method, it will then
automatically be used as the payload string.

Overriding the thread state

When measuring execution times for database drivers or native connectors to external resources,
it sometimes becomes necessary to tell JProfiler to put some methods into a different thread
state. For example, it is useful to have database calls in the "Net I/0" thread state. If the
communication mechanism does not use the standard Java I/0 facilities, but some native
mechanism, this will not automatically be the case.

With a pair of ThreadSt at e. NETI O. enter () and ThreadSt at e. exi t () calls, the profiling
agent adjusts the thread state accordingly.

152

@nterception(invokeOn = | nvocationType. ENTER, nethod = ...)
public static void enterMethod(ProbeContext probeContext, @hisValue JConponent
conmponent) {
Thr eadSt at e. NETI O. enter () ;
}

@\ddi tional I nterception(lnvocationType. EXI T)
public static void exitMthod() {
ThreadState. exit();

}

Deployment

There are two ways to deploy injected probes, depending on whether you want to put them on
the classpath or not. With the VM parameter

-Djprofiler.probed assPat h=. ..

a separate probe class path is set up by the profiling agent. The probe classpath can contain
directories and class files, separated with ;' on Windows and "' on other platforms. The profiling
agent will scan the probe classpath and find all probe definitions.

If it's easier for you to place the probe classes on the classpath, you can set the VM parameter

-D profiler.custonProbes=...

to a comma-separated list of fully qualified class names. For each of these class names, the
profiling agent will try to load an injected probe.

153

A.4 Embedded Probes

If you control the source code of the software component that is the target of your probe, you
should write an embedded probe instead of an injected probe.

Most of the initial effort when writing an injected probe goes into specifying the intercepted
methods and selecting the injected objects as method parameters for the handler method. With
embedded probes, this is not necessary, because you can call the embedded probe API directly
from the monitored methods. Another advantage of embedded probes is that deployment is
automatic. Probes ship together with your software and appear in the JProfiler Ul when the
application is profiled. The only dependency you have to ship is a small JAR file licensed under
the Apache 2.0 License that mainly consists of empty method bodies serving as hooks for the
profiling agent.

Development environment

The development environment is the same as for injected probes, with the difference that the
artifact name is j profi |l er - pr obe- enbedded instead of j profi | er - probe-inj ect ed and
that you ship the JAR file with your application instead of developing the probe in a separate
project. The probe APl that you need for adding an embedded probe to your software component
is contained in the single JAR artifact. In the javadoc, start with the package overview for com
jprofiler.api.probe. enbedded when you explore the API.

Just like for injected probes, there are two examples for embedded probes as well. In api /
sanpl es/ si npl e- enbedded- pr obe, there is an example that gets you started with writing an
embedded probe. Execute . ./ gradl ewin that directory to compile and run it and study the
gradle build file bui | d. gr adl e to understand the execution environment. For more features,
including control objects, go to the example in api / sanpl es/ advanced- enbedded- pr obe.

Payload probes

Similar to injected probes, you still need a probe class for configuration purposes. The probe
classmustextendcom j profil er. api . probe. enbedded. Payl oadPr obe orcom j profiler.
api . probe. enrbedded. Spli t Pr obe, depending on whether your probe collects payloads or
splits the call tree. With the injected probe API, you use different annotations on the handler
methods for payload collection and splitting. The embedded probe API, on the other hand, has
no handler methods and needs to shift this configuration to the probe class itself.

public class FooPayl oadProbe extends Payl oadProbe {
@verride
public String getNane() {
return "Foo queries";

}

@verride

public String getDescription() {
return "Records foo queries";

}

Whereas injected probes use annotations for configuration, you configure embedded probes
by overriding methods from the base class of the probe. For a payload probe, the only abstract
method is get Nane(), all other methods have a default implementation that you can override
if required. For example, if you want to disable the events view to reduce overhead, you can
override i sEvent s() toreturnfal se.

For collecting payloads and measuring their associated timing you use a pair of Pay| oad. ent er ()
and Payl oad. exi t () calls

154

public void neasuredCall (String query) {
Payl oad. ent er (FooPay| oadPr obe. cl ass) ;

try {
per f or mor k() ;

} finally {
Payl oad. exi t (query);
}

The Payl oad. ent er () call receives the probe class as an argument, so the profiling agent knows
which probe is the target of the call, the Payl oad. exi t () call is automatically associated with
the same probe and receives the payload string as an argument. If you miss an exit call, the call
tree would be broken, so this should always be done in a finally clause of a try block.

If the measured code block does not produce any value, you can call the Payl oad. execut e
method instead which takes the payload string and a Runnabl e. With Java 8+, lambdas or method
references make this method invocation very concise.

public void nmeasuredCal | (String query) {
Payl oad. execut e(FooPayl oadPr obe. cl ass, query, this::performrk);

}

The payload string must be known in advance in that case. There is also a version of execut e
that takes a Cal | abl e.

public QueryResult neasuredCall (String query) throws Exception {
return Payl oad. execut e(Payl oadPr obe. cl ass, query, () -> query.execute());
}

The problem with the signatures that take a Cal | abl e is that Cal | abl e. cal | () throws a
checked Excepti on and so you have to either catch it or declare it on the containing method.

Control objects

Payload probes can open and close control objects by calling the appropriate methods in the
Payl oad class. They are associated with probe events by passing them to a version of the
Payl oad. ent er () or Payl oad. execut e() methods that take a control object and a custom
event type.

public void nmeasuredCal | (String query, Connection connection) {
Payl oad. ent er (FooPayl oadPr obe. cl ass, connection, M/Event Types. QUERY);

try {
per f or MAbr k() ;

} finally {
Payl oad. exi t (query);
}

The control object view must be explicitly enabled in the probe configuration and custom event
types must be registered in the probe class as well.

155

public class FooPayl oadProbe extends Payl oadProbe {

@verride

public String getNane() {
return "Foo queries";

}

@verride

public String getDescription() {
return "Records foo queries";

}

@verride
publ i c bool ean isControl Gbjects() {
return true;

}

@verride
public C ass<? extends Enune get Custoniypes() {
return Connecti on. cl ass;

}

If you do not explicitly open and close your control objects, the probe class must override
get Cont r ol Obj ect Nane in order to resolve display names for all control objects.

Split probes

The split probe base class has no abstract methods, because it can be used to just split the call
tree without adding a probe view. In that case, the minimal probe definition is just

public class FooSplitProbe extends SplitProbe {}

One important configuration for split probes is whether they should be reentrant. By default,
only the top-level call is split. If you would like to split recursive calls as well, override
i sReentrant () toreturntrue. Split probes can also create a probe view and publish the split
strings as payloads if you override i sPayl oads() to returntrue in the probe class.

To perform a split, make a pair of callsto Split.enter() andSplit.exit().

public void splitMethod(String paraneter) {
Split.enter(FooSplitProbe.class, paraneter);

try {
per f or Mor k(par aneter);

} finally {
Split.exit();
}

Contrary to to payload collection, the split string has to be passedtothe Spl i t . ent er () method
together with the probe class. Again, it is important that Spli t. exi t () is called reliably, so it
should be in afinally clause of a try block. Spl i t also offers execut e() methods with Runnabl e
and Cal | abl e arguments that perform the split with a single call.

Telemetries

It is particularly convenient to publish telemetries for embedded probes, because being in the
same classpath you can directly access all static methods in your application. Just like for injected
probes, annotate static public methods in your probe configuration class with @'el enetry and

156

return a numeric value. See the chapter on probe concepts [p. 139] for more information. The
@el enet ry annotations of the embedded and the injected probe APIs are equivalent, they are
just in different packages.

Another parallel functionality between embedded and injected probe APl is the ability to modify
the thread state with the Thr eadSt at e class. Again, the class is present in both APIs with different
packages.

Deployment

There are no special steps necessary to enable embedded probes when profiling with the JProfiler
Ul. However, the probe will only be registered when the first call into Payl oad or Spl i t is made.
Only at that point will the associated probe view be created in JProfiler. If you prefer the probe
view to be visible from the beginning, as is the case for built-in and injected probes, you can call

Payl oadPr obe. r egi st er (FooPayl oadPr obe. cl ass) ;
for payload probes and
Spl i t Probe. regi ster(FooSplitProbe.cl ass);

for split probes.

You may be considering whether to call the methods of Payl oad and Spl i t conditionally, maybe
controlled by a command line switch in order to minimize overhead. However, this is generally
not necessary, because the method bodies are empty. Without the profiling agent attached, no
overhead is incurred apart from the construction of the payload string. Considering that probe
events should not be generated on a microscopic scale, they will be created relatively rarely, so
that building the payload string should be a comparatively insignificant effort.

Another concern for containers may be that you do not want to expose external dependencies
on the class path. A user of your container could also use the embedded probe APl which would
lead to a conflict. In that case you can shade the embedded probe API into your own package.
JProfiler will still recognize the shaded package and instrument the API classes correctly. If
build-time shading is not practical, you can extract the source archive and make the classes part
of your project.

157

B Call Tree Features In Detail

B.1 Auto-Tuning And Ignored Methods

If the method call recording type is set to instrumentation, all methods of profiled classes are
instrumented. This creates significant overhead for methods that have very short execution
times. If such methods are called very frequently, the measured time of those method will be
far to high. Also, due to the instrumentation, the hot spot compiler might be prevented from
optimizing them. In extreme cases, such methods become the dominant hot spots although this
is not true for an uninstrumented run. An example is the method of an XML parser that reads
the next character. Such a method returns very quickly, but may be invoked millions of times in
a short time span.

This problem is not present when the method call recording type is set to sampling. However,
sampling does not provide invocations counts, only shows longer method calls and several views
do not have their full functionality when sampling is used.

To alleviate the problem with instrumentation, JProfiler has a mechanism called auto-tuning.
From time to time, the profiling agent checks for methods with high instrumentation overhead
and transmits them to the JProfiler GUI. In the status bar, an entry alerting to the presence of
overhead hot spots will be shown.

Complexity Analysis
Call Tracer

JavaScript XHR

6 overhead hot spots ! @ 1 active recordin @) Auto-update5s VM #1
P) P

You can click on that status bar entry to review the detected overhead hot spots and choose to
accept them into the list of ignored methods. These ignored methods will then not be
instrumented. When a session is terminated, the same dialog is shown.

@ Overhead Hot Spots Detected X

Some methods with excessive instrumentation overhead have been detected. They are called very
frequently, their execution times are very short, and the time required for measuring those calls is
disproportional.

Since they distort the overall picture, JProfiler recommends that you add these methods to the list
«of ignored methods.

You can edit the list of ignored methods in the filter settings section of the session settings.
[m] java.awt.Graphics2D.clearRect{int, int, int, int)
@ jova.awt.EventQueue.invokel ater{java.lang. Runnable)
@ Javax.swing.JComponent._paintimmediately(int, int, int, int)
@ Jjavax.swing.RepaintManager.addDirtyRegionD(java.awt.Container, int, int, int, int)
@ Jjavax.swing.RepaintManager.paintDirtyRegions(java.util.Map)
@ Jjavax.swing.RepaintManagerSPaintManager.paintDoubleBufferedFPScales{javax.swing.JCompe...

Disable auto-tuning

O Help “ Cancel

After you apply the new profiling settings, all ignored methods will be missing in the call tree.
Their execution time will be added to the self time of the calling method. If later on you find that

158

some ignored methods are indispensable in the profiling views, you can remove them in the
Ignored Methods tab in the session settings.

@ Session Settings X

X This list contains methods that should be completely ignared by IProfiler. The main use cases are
Application Settings «call site mec isms of dy ic languages and overhead hot spots that create excessive
overhead for dynamic instrumentation.

E= Call Tree Recording During profiling overhead hot spots are indicated in the status bar and at the end of a session you
are prompted whether to accept them as ignored methods. If you would like to deactivate this
feature, please clear the list, edit the profiling settings and disable auto-tuning on the "CPU

Y Call Tree Filters Profiling” tab.

. . -
Define Filters @ org.codehaus.groovy.runtime.callsite.CallSite. o

@ java.awt.Graphics2D.clearRectiint, int, int, int)
Ignored metheds
@ java.awt.EventQueue.invokel ater(java.lang.Runnable) 0
| Trigger Settings [m] javax.swing.JCompenent._paintimmediately(int, int, int, int)
(@ javax.swing.RepaintManager.addDirtyRegion0(java.awt.Container, int, int, int, int)

; Database Settings (@ javax.swing.RepaintManager paintDirtyRegions{java.util.Map)

o Probe Settings

@": Advanced Settings

@ javax.swing.RepaintManagerSPaintManager. paintDoubleBufferedFP Scales(javax.swing JComp...

General Settings Copy Settings From “ Cancel

The default configuration for ignored methods includes the call site classes for Groovy that are
used for the dynamic method dispatch, but make it difficult to follow the actual call chain.

If you want to manually add ignored methods, you can do so in the session settings, but a much
easier way is to select a method in the call tree and invoke the Ignore Method action from the
context menu.

. Thread status: o Thread selection: Aggregation level:
Telemetri
lemetries B Runnzble 88 2l thread groups v | (@ Methods -

0— 95.8% - 1,223 ms - 1 inv. java.awt.EventDispatchThread.run
":’. Live Memary ¥ M 4.2% - 53,806 ps - 1 inv. bezier.BezierAnim$Demo.ru
@1 2.1% - 27,271 s - 336 inv. bezier.Bezierfinim$Der =G Show Call Graph
(@ 1.7%- 21,217 ps - 336 inv. bezier.BezierAnim3Der I Show Threads
Heap Walker 0 0.1% - 1,745 ps - 336 inv. java.lang. Thread.sleep
@ 0.0% - 257 ps - 336 inv. bezier.BezierAnim$Demo Add Method Trigger

I CPU Views (@ Add As Exceptional Method
=< Split Method with a Script
Call Tree @ Intercept Method With Script Probe
Hot Spots Verge splitting leve Ctrl+Alt+N
Call Graph &= Remove Selected Sub-Tree Deletf

Restore Removed 5

Outlier Detection Compact bezier.BezierAnim$Demo Add Filter From Selection

Compact bezier.

Complexity Analysis (@ Show Tree Legend

@ Ignore bezier.BezierAnim$Demo

- o cl Show Node Details Ctrl+Alt-
| bezier. =
gnore bezier = Show Source Fs
JavaScript XHR ﬂ Ignore method bezier.BezierAnim$Demo.run() il Show Bytecode
- . + Expand Multiple Levels

In the filter settings, you can also ignore entire classes or packages by setting the type of the
filter entry to "lgnored". The Add Filter From Selection menu contains actions that depend on the
selected node and suggestignoring the class or packages up to the top-level package. Depending
on whether the selected node is compact-profiled or profiled, you also see actions for changing
the filter to the opposite type.

159

In case you don't want to see any messages about auto-tuning, you can disable it in the profiling
settings. Also, you can configure the criteria for determining an overhead hot spot. A method is
considered an overhead hot spot if both of the following conditions are met:

« The total time of all its invocations exceeds a threshold in per mille of the entire total time in
the thread

* Its average time is lower than an absolute threshold in microseconds

@ Session Settings X
g

L4 Enable CPU profili
Application Settings [Enable profiling

Auto-Tuning For Instrumentation

Enable aute-tuning 0

A method is an overhead hot spot and will be suggested for inclusion into the list of ignored
methods, if both of the following conditions are true:

Call Tree Recording

T Call Tree Filters

1. The total time of the method is more than 10 % permille of the entire total time
| Trigger Settings 2. The average time of the method is less than 100 | %) ps
Auto-tuning is only perfermed if the method call recording type is set to "Instrumentation” on
; Database Settings the method call recording tab.
Call Tree Recording Options
o Probe Settings CPU times for instrumentation: n Elapsed times 0 Estimated CPU times 0
Instrument native methods (7]
@" Advanced Settings Thread resolution for async sampling &
CPU Profiling Exceptional Method Run Recording
Probes & JEE Maximum number of separately recorded method runs: 5% @
Memaory Profiling Time type for determining excepticnal method runs: 0 All states v

Thread Profiling Call Tree Splitting

Miscellaneous Maximum number of splits: 128 % @

General Settings Copy Settings From “ Cancel

160

B.2 Async And Remote Request Tracking

Asynchronous execution of tasks is a common practice, both in plain Java code and even more
so with reactive frameworks. Code that is adjacent in your source file is now executed on two
or more different threads. For debugging and profiling, these thread changes present two
problems: On the one hand, it is not clear how expensive an invoked operation is. On the other
hand, an expensive operation cannot be traced back to the code that caused its execution.

JProfiler provides different solutions to this problem depending on whether the call stays in the
same JVM or not. If the async execution takes place in the same JVM that invokes it, the "Inline
Async Executions" call tree analysis [p. 176] calculates a single call tree that contains both call
sites as well as execution sites. If a request to a remote JVM is made, the call tree [p. 51] contains
hyperlinks to call sites and execution sites, so you can seamlessly navigate both ways between
different JProfiler top-level windows that show profiling sessions for the involved JVMs.

Enabling Async And Remote Request Tracking

Async mechanisms can be implemented in various ways and the semantics of starting tasks on
a separate thread or in a different JVM cannot be detected in a generic way. JProfiler explicitly
supports several common asynchronous and remote request technologies. You can enable or
disable them in the request tracking settings. By default, request tracking is not enabled. It is
also possible to configure request tracking in the session startup dialog that is shown directly
before a session is started.

@ Async And Request Tracking Types X

Available tracking types:

Async tracking)
D Executors O
Kotlin Coroutines)
T @
SWT @
Thread start)
Remote request tracking ()
RMI @
Remote EJB @)
HTTP requests)

O Help “ Cancel

In JProfiler's main window, the status bar indicates if some async and remote request tracking
types are enabled and gives you a shortcut to the configuration dialog.

1 Monitars & Locks

Async tracking is active for:
; Databases

* Executors
@ JEE & Probes

= VY

« AWT

Click to teggle or press [Ctrl+F3]

@ 3 active recordings) Auto-updateSs VM

JProfiler detects if an async request tracking type that is not activated is used in the profiled JVM
and shows you a . natification icon next to the async and remote request tracking icon in the
status bar. By clicking on the notification icon, you can activate the detected tracking types. Async

and remote request tracking can produce substantial overhead and should only be activated if
necessary.

161

0% |

Threads With request tracking, local async executions can be shown inline.

The following request tracking types have cccurred in the profiled JVM:

Menitors & Locks * Executors
« AWT

B =D il ow

Databases Click to activate request tracking for the above tracking types.

M V

@ 3 active recordings D Auto-update 25 VM

Async Tracking

If at least one async tracking type is activated, the call tree and hot spot views for CPU, allocation
and probe recording show information about all activated tracking types together with a button
that calculates the "Inline Async Executions" call tree analysis. In the result views of that analysis,

the call tree of all async executions is connected with the call sites by way of an I "async
execution" node. By default, the async execution measurements are not added to the ancestor
nodes in the call tree. Because it is sometimes useful to see aggregated values, a checkbox at
the top of the analysis allows you to do that where appropriate.

Thread status: O Thread selection: Aggregation level:
== Runnable a All thread groups v 0 Methods -

Async tracking: Executors and AWT | Inline Async Executions

0 W 53 5% - 612 ms - 5 inv, java.util.concurrent. Thread PoolExecutorSWorker.run
J

(D) = 39,6% - 457 ms - 1 inv. jdbcJdbeDemo.main

Ol 6.8% - 79,039 s - 1 inv. java.awt.EventDispatchThread.run
J P

The simplest way to offload a task on another thread is to start a new thread. With JProfiler, you
can follow a thread from its creation to the execution site by activating the "Thread start" request
tracking type. However, threads are heavy-weight objects and are usually reused for repeated
invocations, so this request tracking type is more useful for debugging purposes.

The mostimportant and generic way to start tasks on other threads uses executors in the j ava.
util.concurrent package. Executors are also the basis for many higher-level third party
libraries that deal with asynchronous execution. By supporting executors, JProfiler supports a
whole class of libraries that deal with multi-threaded and parallel programming.

Apart from the generic cases above, JProfiler also supports two GUI toolkits for the JVM: AWT
and SWT. Both toolkits are single-threaded, which means that there is one special event dispatch
thread that can manipulate GUI widgets and perform drawing operations. In order not to block
the GUI, long-running tasks have to be performed on background threads. However, background
threads often need to update the GUI to indicate progress or completion. This is done with special
methods that schedule a Runnabl e to be executed on the event dispatch thread.

In GUI programming, you often have to follow multiple thread changes in order to connect cause
and effect: The user initiates an action on the event dispatch thread, which in turn starts a
background operation via an executor. After completion, that executor pushes an operation to
the event dispatch thread. If that last operation creates a performance problem, it's two thread
changes away from the originating event.

162

Finally, JProfiler supports Kotlin coroutines'”, Kotlin's multi-threading solution that is implemented
for all Kotlin backends. The async execution itself is the point where a coroutine is launched. The
dispatching mechanism of Kotlin coroutines is flexible and can actually involve starting on the
current thread, in which case the "async execution" node has an inline part that is then reported
separately in the text of the node.

G) 18 execution sites were were inlined O x @’P O
Thread status: Thread selection: Agaregation level:
== Runnable a All thread groups @ Methods

Add async execution time to tree O

[Show suspended time [7]
m— 100.0% - 80,305 ps - 1inv. ic.netty.util.concurrent.FastThreadLocalRunnable.run
T 2088 ms async execution (79,567 ps was already inling)

O— 96.2% - 2,008 ms suspended time

@G, 1.5%- 30,755 ps - 1 semantic inv. io.ktor.samples.simulateslowserver. SimulateSlowServerApplicationKt$module$ 281 invokeSuspend
W 15%-30732 ps - 1inv. io.ktor.response. ApplicationResponseFunctionsKt.respondTextSdefault
W 0.0%-4pus-1inv. io.ktor.util. pipeline.PipelineContext.getContext

@G, 0.8%- 16,928 ps - 2 semantic inv. io.ktor.samples.simulateslowserver. SimulateSlowServerApplicationKtSmodule$ 1.invokeSuspend
O 0.6% - 12,568 ps - 2 inv. kotlink.coroutines time. TimeKt.delay
Q 0.2% - 4,296 ps - 2 inv., java.time.Duration.ofSecends

@

Suspending methods can interrupt the execution which is then possibly resumed on different

threads. Methods where suspension was detected have an additional & "suspend" icon with a
tooltip that shows the number of actual calls versus the semantic invocations of the method.
Kotlin coroutines can be suspended deliberately, but because they are not bound to threads,
the waiting time will not appear anywhere in the call tree. To see the total time taken until a

coroutine execution is finished, a © "suspended" time node is added below the "async execution"
node that captures the entire suspension time for the coroutine. Depending on whether you are
interested in the CPU time or in the wall clock time of async executions, you can add or remove
those nodes on the fly with the "Show suspended times" check box at the top of the analysis.

Tracking unprofiled call site

By default, both executor and Kotlin coroutine tracking only track async executions where the
call site is in a profiled class. This is because frameworks and libraries can use these async
mechanisms in a way that is not directly related to the execution of your own code and the added
call and execution sites would just add overhead and distraction. However, there are use cases
for tracking unprofiled call sites. For example, a framework can start a Kotlin coroutine on which
your own code is then executed.

If such call sites in unprofiled classes are detected, the tracking information in the call tree and
hot spot views shows a corresponding notification message. In live sessions, you can switch on
tracking for unprofiled call sites separately for executor and Kotlin coroutine tracking directly
from those views. These options can be changed at any time on the "CPU profiling" step of the
session settings dialog.

M https://kotlinlang.org/docs/reference/coroutines.html

163

https://kotlinlang.org/docs/reference/coroutines.html

Thread status: O Thread selection: Aggregation level:
= Runnable v | @8 Allthread groups + | @ Methods -

Async tracking: Kotlin Coroutines Inline Async Executions ¥ Track unprofiled calls || @

Q = —100.0% - 80,305 ps - 1inv. io.netty.util.cory For Kotlin Coroutines le.run - inline async executions
() 33,33 - 30,755 ps - 1inv. io.ktor.samples simulaTESTOmSETvET SITOTaTE s s erverApplicationKtSmodule$25 1.invokeSuspend
()™ 21.1% - 16,928 ps - 4 inv. io.ktor.samples simulateslowserver. SimulateSlowServerApplicationkKtSmodule$1.invokeSuspend

It is important to understand that Kotlin coroutines can only be tracked when their launch
happened while CPU recording was active. If you start CPU recording later on, the async executions
from Kotlin coroutines cannot be inlined. JProfiler will notify you just like for the detection of call
sites in unprofiled classes. If you need to profile long-lived coroutines that are started at the
beginning of the application, then using the attach mode is not an option. In that case, launch
the JVM with the -agentpath VM parameter [p. 10] and start CPU recording at startup.

Remote Request Tracking

For selected communication protocols, JProfiler is able to insert meta-data and track requests
across JVM boundaries. The supported technologies are:

« HTTP: HttpURLConnection, java.net.http.HttpClient, Apache Http Client 4.x, Apache Async Http
Client 4.x, OkHttp 3.9+ on the client side, any Servlet-API implementation or Jetty without
Servlets on the server side

« Additional support for async JAX-RS calls for Jersey Async Client 2.x, RestEasy Async Client 3.x,
Cxf Async Client 3.1.1+

* Web services: JAX-WS-RI, Apache Axis2 and Apache CXF
* RMI
* Remote EJB calls: JBoss 7.1+ and Weblogic 11+

In order to be able to follow the request in JProfiler you have to profile both VMs and open them
at the same time in separate JProfiler top-level windows. This works with both live sessions as
well as with snapshots. If the target JVM is not currently open, or if CPU recording was not active
at the time of the remote call, clicking on a call site hyperlink will show an error message.

When tracking remote requests, JProfiler makes call sites and execution sites explicit in the call
trees of the involved JVMs. A call site in JProfiler is the last profiled method call before a recorded
remote request is performed. It starts a task at an execution site that is located in a different
VM. JProfiler allows you to jump between call sites and execution sites by using hyperlinks that
are shown in the call tree view.

164

Thread status: o Thread selection: Aggregation level:
B Runnable v | @8 All thread groups * (D Methods -

I 100.0% - 4,573 ms - 5 inv. c.e.d.server.DemoServerS3.run
) e— 95 .5% - 4,569 ms - 5 inv. c.e.d.s.handlers.RequestHandler.run
0— 98.6% - 4511 ms - Sinv. c.e.d.s.handlers.RequestHandler.performWerk
() —35,3% - 3,048 ms - 5 inv. c.e.d.s.handlers.RequestHandler.makelpaCall
@l 6.9% - 313 ms - 5 inv. c.e.d s.handlers.RequestHandler.makeRmiCall
(@1 6.7% - 308 ms - 5 inv. c.e.d.s.handlers.HandlerHelper.makeRmiCall
Wi137%-169ms-5 inv. j.r.registry.Registry.lookup
0' 2.8% - 126 ms - 5 inv. j.r.registry LocateRegistry.getRegist:
|~ 0.3%- 12,318 ps - 15 inv. c.e.d.s.handlers,RmiHandler.remoteOperation [c.s.proxy.$Proxy3] - jump to execution site [call site: #1]
W1 3.4% - 153 ms - 5 inv. ce.mock.MockHelper.runnable
@l 2.1% - 96,091 ps - 5 inv. c.e.d.s.handlers.RequestHandler.makeHttpCall
@ 0.0% - 14 s - 5inv. j.util.Random.nextint
@ 1.3%- 58595 us - 5inv. c.e.d.s.handlers. RequestHandler.workWithGlobalResource
) 0.0%-9us-1inv c.e.d.s.handlers.RequestHandler. < clinit>

@

Call sites have the same identity with respect to remote request tracking for all threads. This
means that when you jump from call sites to execution sites and vice versa, there is no
thread-resolution and the jump always activates the "All thread groups" as well as the "All thread
states" thread status selection, so that the target is guaranteed to be part of the displayed tree.

Call sites and execution sites arein a 1:n relationship. A call site can start remote tasks on several
execution sites, especially if they are in different remote VMs. In the same VM, multiple execution
sites for a single call site are less common, because they would have to occur at different call
stacks. If a call site calls more than one execution site, you can choose one of them in a dialog.

An execution site is a synthetic node in the call tree that contains all executions that were started
by one particular call site. The hyperlink in the execution site node takes you back to that call
site.

Thread status: ﬂ Thread selection: Aggregation level:
O All states * . All thread groups - @ Methods hd

D— 74.2% - 163 5 - 9inv. j.u.concurrent. ThreadP oolExecutorSWorker.run

“1 B 8.4% - 18,480 ms - 15 inv. called from call site #1 (remote VIV 22

v 8.4% - 18,475 ms - 15 inv. c.e.d.s.handlers.RmiHandlerlmpl.remoteOperation
i“ﬂ' 8.4% - 18,470 ms - 13 inv. c.e.d.s.handlers.RmiHandlerlmpl.perfermWork
439152% - 11,524 ms - 15 inv. c.e d.s.handlers.RmiHandlerlmpl.executeldbcStatements

&1 2.8% - 6,095 ms - 15 inv. c.e.d.s.handlers.RmiHandlerlmpl.makeHttp Calls
m 0.4% - 849 ms - 13 inv. c.e.mock.MockHelper.runnable
m 0.0% - 124 ps - 13 inv. j.util.Random.nextint
@13.4%- 7473 ms - 105 inv. c.e.d.s.handlers.DemoHttpServerS1.handle
b- 25.8% - 56,871 ms - 1 inv. c.e.d.s.test.RemoteDemoServer.main

- @

If the same call site invokes the same execution site repeatedly, the execution site will show the
merged call tree of all its invocations. If that is not desired, you can use the exceptional
methods [p. 181] feature to split the call tree further, as shown in the screen shot below.

165

Thread status: o Thread selection: Aggregation level:
o Allstates v | @8 All thread groups * (D Methods -

) mmm— 10.0% - 1105 - 8 inv. j.u.concurrent. ThreadP oolExecutorSWorker.run
"i M 16,5% - 18,291 ms - 13 inv. called from call site #1 (remote VM #3
@A"“ 9,3% - 10,227 ms - 10 inv. c.e.d.s.handlers.RmiHandlerlmpl.remoteOperation [merged exceptional runz]
v 1.6% - 1,781 ms - 1inv. c.e.d.s.handlers.RmiHandlerlmpl.remoteOperation [exceptional run]
@A@ 1.6% - 1,781 ms - 1inv, c.e.d.s.handlers.RmiHandlerimpl.performWork
439 1.0% - 1,074 ms - 1 inv. c.e.d.s.handlers.RmiHandlerimpl.executeldbcStatements
& 0.6% - 702 ms - 1inv. c.e.d.s.handlers.RmiHandlerlmpl.makeHttpCalls
D 0.0% - 4177 ps - 1inv. c.emock.MockHelper.runnable
0.0% - 1 ps - 1inv, jutil. Random.nextint
Ua0 1.5% - 1,701 ms - 1inv. c.e.d.s.handlers.RmiHandlerlmpl.remoteQperation [exceptional run]
@A@ 1.3% - 1,638 ms - 1inv. c.e.d.s.handlers.RmiHandlerimpl.remoteQperation [exceptional run]
bad 1.3% - 1,489 ms - 1inv. c.e.d.s.handlers.RmiHandlerlmpl.remoteCperation [exceptional run]
Ug0 1.3% - 1,426 ms - 1inv. c.e.d.s.handlers.RmiHandlerlmpl.remoteQperation [exceptional run]
0' 5.6% - 6,137 ms - 90 inv. c.e.d.s.handlers.DemoHttpServerdl.handle

@

Unlike execution sites which are only referenced from a single call site, call sites themselves can
link to several execution sites. With the numeric ID of a call site, you can recognize the same call
site if you see it referenced from different execution sites. In addition, a call site displays the ID
of the remote VM. The ID of the profiled VM can be seen in the status bar. It is not the unique
ID that JProfiler manages internally, but a display ID that starts at one and is incremented for
each new profiled VM that is opened in JProfiler.

v @
-? @ 3active recordings C’J Auto-update 5 s 00:12 o Profiling

166

B.3 Viewing Parts Of The Call Tree

Call trees often contain too much information. When you want to reduce the displayed detail,
there are several possibilities: you can restrict the displayed data to one particular sub-tree,
remove all unwanted data, or use a more coarse-grained filter for displaying method calls. All
of these strategies are supported by JProfiler.

Setting call tree roots

If you profile a use case that consists of multiple tasks that run sequentially, each sub-tree can
be analyzed separately. Once you have found the entry point to such a sub-task, the surrounding
call tree is only a distraction and the timing percentages in the sub-tree inconveniently refer to
the root of the entire call tree.

To focus on a particular sub-tree, JProfiler offers the Set As Root context action in the call tree
and the allocation call tree views.

Thread status: ﬂ Thread selection: Aggregation level:
== Runnable - . All thread groups - @ Methods b

0— 100.0% - 2,937 ms - 1 inv. CompileTest.main
() m— 93 5% - 2,746 ms - 1 inv. com.sun.tools.javac.api.JavacTaskimpl.call
() w— 93,5% - 2,746 ms - 1inv. com.sun.toolsjavac.apiJavacTaskimpl.deCall
@— 93.3% - 2,746 ms - 1inv. com.sun.tools.javac.main.Main.compile
(D) m— 72 5% - 2,307 ms - 1 inv. com.sun.tools javac.main.JavaCompiler.compile

0- 41.6% - 1,220 ms - 1 inv., cDm‘sun‘tooI5.Javac.mam.]avaCDmEHEr.comE\IeZ

#5 Show Call Graph 'mp.Enter.main

I Show Threads

laskListener.isEmpty
Add Method Trigger
G @ Add As Exceptional Method
@ +< Split Method with a Script

Compiler.parseFiles
vaCompiler.initProcessAnnotations

G o Intercept Method With Script Probe :DmF”EI’.dUSE .
q) i . ~ pmpiler.processAnnotations
q vierge splitting leve LAl lavacProcessingEnvironment.close
G mpiler.stoplfError
[n SE Remove Selected Sub-Tree Delete 'e:wve P
[e e Re - cec Ctrl+Alt=5 mpiler.now
G aut
g © Show Tree Legend
@nu| o Show Node Details Cirl+Alt+| Fompiler.instance
@ 0 = ShowSource F4 irocessArgs
@ § showbecec g
8 g 'E' Expand Multiple Levels ;E::L;r;'é;
@ 0 % Collapse Al le
0 0y ler.close
© of & _SetAsRoot Cirl+Alt+R |
@ 0 Reset Root A A Alt+ Shift+ R
P L
E Analyze 4

-

@

After setting a call tree root, information about the selected root is shown at the top of the view.
A single scrollable label shows the last few stack elements leading up to the root and a detail
dialog with the entire stack of the call tree root can be displayed by clicking on the Show More
button.

167

Thread status: o Thread selection: Aggregation level:
B Runnable v | @8 All thread groups * (D Methods -

Calltree roct: | com.sun.tools.javac.mainJavaCompiler.enterTrees — com.sun.tools javac.mainJavaCompiler.compile — coir Show more x

() m—100.0% - 956 ms - 1 inv. com.sun.tocls.javac.comp.Enter.main

() —100.0% - 956 ms - 1inv. com.sun.toolsjavac.comp.Enter.complete
() w5319 - 651 ms - 1inv, com.sun.toolsjavac.code Sy
() ™. 27.9% - 267 ms - 1 inv. com.sun.toolsjavac.comp.Enter.
@l 3.9% - 37,543 ps - 1 inv. com.sun.tools,javac.comp.Annot:
@ 0.0% - 6 us - 1inv. com.sun.tools.javac.util ListBuffer. <init
@ 0.0% - 5 ps - 2 inv. java.util.lterator.hasMext CompileTest.main(java.lang.String[)
@ 0.0%-4us-1 !nv. Fam‘sL.ln.too\s.Javac.utlI.LlstBuf'Fer.next com.sun tools javac.api.JavacTaskimpl.call)
@ 0.0% - 4 us - 1inv. java.util lterator.next
@ 0.0%-2ps-1inv. com.sun.tocls javac.util List.iterator

@ 0.0% - 1 us - 1inv. com.sun.toolsjavac.comp.Annotate.en
0% - 20 ps - 1 inv, java.util.Set.add com.sun.tools.javac.mainJavaCompiler.compile(com.sun tools.java

@ Call Tree Root X

Complete stack trace of the call tree root:

com.sun.tools.javac.apiJavacTaskimpl.doCall()
com.sun.toolsjavac.main.Main.compile(java.lang.String[1, java.lang

Do

@ 0.0% - 2 ps - 2 inv. com.sun.toolsjavac.api.MultiTaskListener.isE: com.sun.tools.javac.main.JavaCompiler.enterTrees(com.sun.tools jat
@ 0.0% - 2 us - 2inv, java.util.lterator.hasMext

@ 0.0% - 1 ps - 1inv, java.util.lterator.next

@

When you use the set root action recursively, the call stack prefixes will simply be concatenated.
To go back to the previous call tree, you can either use the Back button of the call tree history
to undo one root change at a time, or the Reset Root And Show All action in the context menu to
go back to the original tree in a single step.

3 . ® © (¢ == B
Start . Add View Show Record o Show
Center HEE pooey | EEEE o RED CPU = s | ey SRR
” Thread status: 0 Thread selection: Agagregation level:
" Telemetri
Slemetnes BN Runnable - s All thread groups - @ Methods -

What is most important about changing the call tree root, is that the hot spots view will show
data that is calculated for the selected root only, and not for the entire tree. At the top of the
hot spots view, you will see the current call tree root just like in the call tree view to remind of
you the context of the displayed data.

Thread status: ﬂ Thread selection: Agagregation level: Hot spot options:
B Runnable - @ All thread groups - @ Methods hd Self times -
Calltree roct: | com.sun.toolsjavac.maindavaCompiler.enterTrees — com.sun.tools javac.mainJavaCompiler.compile — coir Show more x
Hot Spot Self Tirme Average Time Invocations
i. com.sun.toolsjavac.util List.reverse I 2,056 s (7 %) 18 ps 4,020
% com.suntools.javac.util List.prependList I 71,340 ps (7 %) 30 pus 2,357
L. com.sun.toolsjavac.util List.<init> I 7,065 ps (7 %) Ops 298,479
i. com.sun.toolsjavac.file ZipFilelndexSZipDirectory.readEntry N 65,179 ps (6 %) 2ps 26,873
% com.suntools.javac.util List.nonEmpty I 55,241 us (6 %) Ops 591,329
& java.util.AbstractCollection. <init> I 31,504 s (2 %) Ops 298 479
1. com.sun.toolsjavac.util List.setTail I 25,018 ps (3 %) 0ps 291,369
1. com.sun.toolsjavac.fileZipFilelndexSEntry.compareTo(java... I 21,872 us (2 %) Ops 91,521
i, com.sun toolsjavac file ZipFilelndexSEntry.compareTo(com... I 21,785 ps (2 %) Ops 91,521
1. jeva.util. Map.get I 13,226 ps (1 %) O ps 50,074
% java.util Arrays.sort I 16,364 us (1 %) 818 s 20
. com.sun.toolsjavac.fileZipFilelndex. getdBytelittieEndian I 14,128 ps (1 %) Ops 133,230
1. com.sun.toolsjavac file ZipFilelndex.qet?Bytel ittleEndian 12811 ps (1 %) 0 ps 107,712
% javalang.String.compareTo W 12,228 ps (1 %) Ops 92,814
1. com.sun.toolsjavac file.RelativePath$RelativeFile. <init>(co... Il 10,514 ps (1 %) Ops 11,788
% com.sun.toolsjavac.util Name.qgetBytes W 10,141 ps (1 3%) Ops 14,858
1. com.sun.toolsjavacfileZipFilelndexSZipDirectory.buildindex Il 8,811 ps (0 %) 440 s 20
. com.sun.tools.javac.util. SharedNameTable fromUtf M 2,390 ps (0 %) Ops 11,657
I W onn o no A cen

Removing parts of the call tree

Sometimes it's helpful to see how the call tree would look like if a certain method was not present.
For example, this can be the case when you have to fix several performance problems in one
g0, because you are working with a snapshot from a production system that cannot be iterated

168

quickly like in your development environment. After solving the main performance problem, you
then want to analyze the second one, but that can only be seen clearly if the first one is eliminated
from the tree.

Nodes in the call tree can be removed together with their sub-trees by selecting them and hitting
the Del et e key or by choosing Remove Selected Sub-Tree from the context menu. Times in ancestor
nodes will be corrected accordingly as if the hidden nodes did not exist.

Thread status: 0 Thread selection: Aggregation level:

B Runnable v | @8 All thread groups * (D Methods -

0— 93.3% - 2,746 ms - 1inv. com.sun.tools,javac.main.Main.compile
(D) w7365 - 2,307 ms - 1 inv. com.sun.toclsjavac.main.JavaCompiler.compile

() . 116% - 1,220 ms - 1 inw. (Dm‘SLII'LtUUlS.jEVEC.I’HEH‘I.JEVECDI’I’]EilEr.EUmE\lEz

=4 Show Call Graph imp.Enter.main
I Show Threads

laskListener.isEmpty
Add Methed Trigger

G @ Add As Exceptional Method CompilerparseFiles

@ =< split Method with a Script vaCompilerinitProcessAnnotations
y [} Intercept Method With Script Probe 'DmF'IEr'dDSE .
d) . ampiler.precessAnnotations
q erge sp 1 +A lavacProcessingEnvironment.close
[npiler.stoplfError
a SE Remove Selected Sub-Tree Delete lemove
q Re - cec Ctrl+Ali=5 mpiler.now
G " aut
U
% @ Show Tree Legend
@. o Show Node Details Ctrl+Alt+] ‘ompiler.instance
= Show Source F4
W Cmas Bidarnds M o

There are three removal modes. With the Remove all invocations mode, JProfiler searches for all
invocations of the selected method in the entire call tree and removes them together with their
entire sub-trees. The Remove sub-tree only option only removes the selected sub-tree. Finally,
the Set self-time to zero leaves the selected node in the call tree bug sets its self-time to zero. This

is useful for container nodes like Thr ead. r un that may include a lot of time from unprofiled
classes.

@ Remove Mode X

There are several ways to remove the selected node:

0 Remove all invocations of the | selected method ~ | @)
Remove sub-tree only @)

Set self-time to zero ﬂ

Just like for the Set As Root action, removed nodes influence the hot spots view. In this way, you
can check what the hot spots would look like if those methods were optimized to the point of
not being important contributions.

When you remove a node, the header area of both the call tree and the hot spots views will show
a line with the count of the removed nodes and a Restore Removed Sub-Trees button. Clicking on

that button will bring up a dialog where you can select removed elements that should be be
shown again.

169

Thread status: o Thread selection: Aggregation level:
B Runnable v | @8 All thread groups * (D Methods -

Removed nodes: | 1 removed node g‘;

0— 90.3% - 1,789 ms - 1 inv. com.sun.toecls.javac.main.Main.compile

() w5023 - 1,351 ms - 1 inv, com.sun.tools,javac.mainJavaCompiler.compile
() w51 6% - 1,220 ms - 1inv. com.sun.tool

@l 5.1% - 101 ms - 1inv. cem.sun.toclsjavac.n

@ 14%-28429 ps- 1inv. com.sun.tools.javag

@ 0.0%-493 ps - 1 inv. com.sun.tools javac.m

@ 0.0% - 27 us - 1inv. com.sun.toolsjavac.ma @ com.sun.toolsjavac.mainJavaCoempiler.enterTrees(com.sun.tools,jay

@ 0.0%-10 s - 1inv, com.sun.toolsjavac.prel

@ 0.0% - 7 ps - 1 inv. com.sun.tools javac.mair|

0.0% - 7 ps - 1 inv. com.sun.tools javac.util.

€ Select Removed Nodes to be Restored X

Currently remeved nodes:

@

@ 00%-4ps-1inv. com.sun.toolsjavac.mair
@ 0.0% - 3 ps - 1 inv. com.sun.tools javac.util.
W o00%-Tps-2 inv. java.lang.StringBuilder. <i
D 00%-1ps-5 inv. java.lang.StringBuilder.ag
D 00%-1us-2 inv. java.lang.StringBuilder.to)
21.0% - 415 ms - 1 inv. com.sun.teolsjavac.m
1% - 2,493 ps - 1inv. com.sun.teols javac.mai
0% - 670 ps - 1 inv, com.sun.toolsjavac.main.
0% - 427 ps - 1 inv, com.sun.toolsjavac.file.C
0

.0% - 36 ps - 1inv. com.sun.tools.javac.main. 0K Cancel

@

Call tree view filters

The third feature in the call that has an influence on the displayed data in the hot spots view is
the view filter. When you change your call tree filters, it has a large effect on the calculated hot
spots [p. 51]. To emphasize this interdependence with the call tree view, the hot spots view
shows the call tree view filter in a line above the view together with a button to remove the
additional filters.

Thread status: ﬂ Thread selection: Agagregation level: Hot spot options:
== Runnable = m All thread groups b @ Methods hd Self times hd
Call tree root: com.sun.toolsjavac.mainJavaCompiler.generate — com.sun.toolsjavac.mainJavaCompiler.compile2 * Show more x
Removed nodes: 3 removed nodes Sg
Call tree view filters: | com.sun.tools x |
Hot Spot Self Tirme Average Time Invocations

i, java.io.OutputStream.close I 10,505 ps (6 %) 909 ps 12

L com.suntools.javacjvm.Gen.genMethod I 770 s (4 %) 151 ps 51

i, java.io.FileOutputStream. <init> I G427 s (4 %) 535 ps 12

% com.suntools.javacjvm.Gen.initCode I 4767 s (3 %) 3 pus 51

L. com.suntoelsjavac.jvm.Code.<init> G772 %) 66 s 51

i. com.suntoolsjavac.jvm.Code.emitStackMapFrame I 3,067 ps (1 %) 105 ps 2

% com.suntools.javac.jvm.Pool.makePoolValue I 2597 s (1 %) Tus 1,696

1. com.sun.toolsjavac.jvm.ClassWriterSCWSignatureGenerato.., [l 1,907 ps (1 %) s 585

1. com.sun.toolsjavac.code TypesSDescriptorCache findDescri... Il 1,662 ps (1 %) 207 ps g

% com.sun tools.javac.)vm.ClassWriterwritePool M 1,655 ps (1%) 137 s 12

& com.suntools.javac.codeKinds.kindMame W 1,636 s (1 %) 818 ps 2

% com.sun.toolsjavac.jvm.Gen.setTypeAnnotationPositions W 1,602 ps (1 %) Bus 1495

% com.suntools.javacjvm.Pool.put M 1,570 ps (0 %) Ops 1,696

. com.suntoolsjavac.codeTypehasTag W 1,351 ps (0 %) Ops 3928

B e e e e T B e T m oo P i

@

Setting a call tree root, removing parts of the call tree and view filters can be used together, with
the limitation that view filters have to be set last. As soon as view filters are configured in the
call tree, the Set As Root and >Remove Selected Sub-Tree actions do not work anymore.

Interaction with the call graph

Invoking the Show Graph action in either the call tree or the hot spots view will show a graph that
is limited to the same call tree root, does not include the removed methods and uses the
configured call tree view filters. At the top of the graph, the information about these changes is
displayed in a similar form as in the call tree.

170

@ Create Call Graph

1. Select graph options Select options for the call graph

2. Select first node

The call graph can be calculated for all threads, a thread group or a single thread as
well as for any aggregation level. The thread status selection determines the meaning
of times that are displayed in the call graph.

Thread selection: | 88 All thread groups A
Thread status: == Runnable v
Aggregation level: @ Methods h

Use root that was set in the call tree view
Use view filter that was set in the call tree view

Remove nodes that were removed in the call tree view

Mext P Cancel

When creating a new graph in the graph view itself, check boxes in the wizard let you choose
which of these call tree adjustment features should be taken into account for the calculation of

the call graph. Each check box is only visible if the corresponding feature is currently used in the
call tree view.

Thread status: Thread selection:

Aggregation level:
== Runnable | @8 All thread groups

@ Methods
View filters: com.sun.tools

Call tree root: com.sun.toolsjavac.mainJavaCompiler.generate — com.sun.tools,javac.mainJavaCompiler.compile2 — com.s* Show more

Rernoved nedes: | 3 removed nodes Show more

c.s.tjijvm.Code
endScopes
1,438 ps, 67 ps self, 110 im

=l

a c.stjjvm.Gen
E o visitMethodDef
}9 109 ms, 153 us self, 51 inv.
ﬁ c.stjjvm.Gen
gensStat
,@ 86,321 us, 247 us self, 255 1|

171

B.4 Splitting The Call Tree

Call trees are cumulated for repeated invocations of the same call stacks. This is necessary
because of memory overhead and the need for consolidating data in order to make it
understandable. However, sometimes you want to break the cumulation at selected points so
you can view parts of the call tree separately.

JProfiler has a concept of splitting the call tree with special nodes that are inserted into the call
stack and show semantic information that has been extracted from the method invocation above
the inserted node. These splitting nodes allow you to see additional payload information directly
inside the call tree and to analyze their contained sub-trees separately. Each splitting type can
be merged and unmerged on the fly with the actions in the context menu and has a cap on the
total number of splitting nodes so that the memory overhead is bounded.

Call tree splitting and probes

Probes [p. 102] can split the call tree according to the information that they collect at selected
methods of interest. For example, the "HTTP server" probe splits the call tree for each different
URL. The splitting in this case is highly configurable, so you can include only the desired parts of
the URL, some other information from the servlet context or even produce multiple splitting
levels.

Thread status: 0 Thread selection: Aggregation level:
’ Telemetries == Runnable - & All thread groups - @ Methods b
X W_ 61.1% - 4,991 ms - 7 inv. com.ejt.demo.server.DemoServers3.run
,‘:‘, B M v & 3).7%- 2,676 ms - 3 inv. HTTP: /demo/view2
(D) == 32.7% - 2,676 ms - 3 inv. com.gjt.demo.senver.handlers.RequestHandler.run
B (w3243 - 2,644 ms - 3 inv. com.ejt.deme.serverhandlers RequestHandler.performWork
'ﬁ Heap Walker @ 0.4%- 31,723 ps - Jinw. com.ejt.demo.server.handlers.RequestHandler.workWithGlobalReso
ol 13.8% - 1,125 ms - 1 inv. HTTP: /demo/viewd
@ 9.3% - 763 ms - 1inv. HTTP: /demo/view3
I CPU Views (@12.7% - 221 ms - 1 inv. com.gjt.demo server.handlersJmsHandler.onMessage
@l 24% - 197 ms - 1inv. com.gjt.dema.server.handlers.JdbclobHandler.run
Call Tree @ 0.0%- 60 ps - 1inv. com.gjt.demo.server.handlers. JmsHandlerSJmsType. < clinit>
(@ 0.0% - 10 ps - 1inv. com.ejt.demo.server.handlers.RequestHandler < clinit>
Hot Spots @ 0.0%-8ps-2inv. com.ejt.demo.server.handlers)msHandlerSimsTypevalues
@ 0.0%- 2 ps - 1inv. com.ejt.demo.server.handlers.JmsHandlerSmsType.getDestination
Call Graph ﬁ- 31.8% - 2,601 ms - 9 inv. java.util.concurrent. ThreadPoolExecutor$Worker.run
D154% - 442 ms-1 inv., java.awt.EventDispatchThread.run
Outlier Detection @ 1.7% - 138 ms - 1inv. com.egjt.demo.server.gui.GuiDemoServerd151.run

Complexity Analysis
Call Tracer
JavaScript XHR

— -~ @

If you write your own probe, you can split the call tree in the same way, with both the
embedded [p. 154] and the injected [p. 149] custom probe systems.

Splitting methods with scripts

The same splitting functionality that is available to probes can be used directly in the call tree,
with the Split Method With a Script action. In the screen shot below, we want to split the call tree
for a JMS message handler to see the handling of different types of messages separately.

172

Aggregation level:

Thread status: o Thread selection:
v | (@ Methods -

B Runnable v | @8 All thread groups

0_ 61.1% - 4,981 ms - 7 inv. com.gjt.demo.server.DemeServerS3.run
a- 32.7% - 2,676 ms - 3 inv. HTTP: /demo/view?2
@- 32.7% - 2,676 ms - 3 inv. com.gjt.dema.server handlers.RequestHandler.run
(D) = 32.4% - 2,644 ms - 3 inv. com.ejt.demo.server.handlers.RequestHandler.performWork
0 0.4% - 31,723 ps - 3 inv. com.gjt.demo.server.handlers.RequestHandler.workWithGlobalResource
@ " 13.8% - 1,125 ms - 1 inv, HTTP: /demoy/view3
@1 9.3% - 763 ms - 1 inv. HTTP: /demo/view3
¥ oM 2.7%- 221 ms - 1inv. com.ejft.dema.server.handlersJmsHandler.onMessag -
@12.7%- 219 ms - 1inv. com.ejt.demo.server.handlersJmsHandler.handle =5 Show Call Graph
@ 1.5%- 124 ms - 1inv. com.gjt.demo.server.handlersJmsHandler.ma, Show Threads

@ 1.2% - 94,298 ps - 1 inv. com.gjt.demo.server.handlers.JmsHandler.p
@12.4% - 197 ms - 1inv. com.ejt.demo.server handlers JdbclobHandler.run Add Method Trigger
@ 0.0% - 60 ps - 1 inv. com.gjt.demo.server.handlersJmsHandlerSImsType.<c .
0 0.0% - 10 ps - 1 inv. com.gjt.demo.server.handlers.RequestHandler. < clinit> @ Add As Exceptional Method
@ 0.0%-8ps-2inv. com‘ejt.damo.ser\rer.hand\ers.JmsHand\erSJmsType.va\LI =< Split Method with a Script I
@ 0.0%-2ps-1inv. (.nm‘ejt.damn.ser\rer.hand\ers.JmsHand\erSJmsType.getl © Intercept Method With Script Probe
b- 31.8% - 2,601 ms - 9 inv. java.util.concurrent. ThreadPoolExecutorS\Worker.r - i .

Ul 5.4% - 442 ms - 1 inv. java.awt.EventDispatchThread.run erge splitting leve Ctrl+A
0 1.7% - 138 ms - 1inv. com.egjt.demo . server.gui.GuiDemoServer$151.run
5= Remove Selected Sub-Tree Delete
Restore Removed Sub-Trees Ctrl+Alt+5
Y Add Filter From Selection 4

@ Shrw Tree | anend

Instead of writing a probe, you just enter a script that returns a string. The string is used for
grouping the call tree at the selected method and is displayed in the splitting node. If you return
nul I, the current method invocation is not split and added to the call tree as usual.

@ Settings Edit Search Code Help Edit x
o [? = y
= im 7
o Show Test
Undo Redo Copy Cut Paste o Find Replsce s Help
=—— Please enter an expression (ne trailing semicolon) or a script (ends with a return statement) that censists of
=" regular Java code. The following parameters are available:
JAVA
- com jprofiler.api.agent.ScriptContext scriptContesxt
- jgva.lang.Class< Object> ¢
- com.gjt.demo.server.handlers JmsHandler currentObject
- javax jms.Message message
The expected return type is java.lang.String
Script:
; ;]
1 Inessage‘ getJMSDestination() .toString ()

The script has access to a number of parameters. It is passed the class of the selected method,
the instance for non-static methods, as well as all method parameters. In addition, you get a
Scri pt Cont ext object that can be used to store data. If you need to recall some values from
previous invocations of the same script, you can invoke the get Obj ect/ put Obj ect and
get Long/ put Long methods in the context. For example, you may want to split only the first
time a particular value for method parameter is seen. You could then use

if (scriptContext.getCbject(text) != null) {
scri pt Cont ext . put Obj ect (text);
return text;

} else {
return null;

}

173

as part of your splitting script.

Splitting nodes are inserted below the selected method. For the example in the above screen
shot, we now see the handling code for each JMS message destination separately.

@ . 5472 - 30,008 ms - 11 inv. java.util.concurrent. Thread PoolExecutorSWorker.run
() 5,59 - 26,215 ms - 411 inv. com.ejt.demo.server.handlers.DemoHttpServerS1.handle
@17.8% - 3,641 ms - 63 inv. RMI: 172.30,32.1
U&% 0.1% - 24,638 ps - 2 inv. com.ejt.demo.server.handlers.RmiHandlerlmpl. remoteOperation
0 I 35.3% - 16,403 ms - 7 inv. com.ejt.demo.server.DemaoServers3.run
al 13.9% - 6,430 ms - 6 inv, HTTP: /demo/view3
@1 6.0% - 2,765 ms - 3 inv. HTTP: /demo/view3
al 5.8% - 2673 ms - 4 inv, HTTP: /demo/viewd
@ 14,5% - 2,074 ms - & inv. com.gjt.demo.server.handlers.JdbclobHandler.run
@ 3.3%- 1,532 ms - 2inv. HTTP: /demo/viewl
a 1.3% - 596 ms - Tinv, HTTP: /demo/view2
@ 0.7% - 309 ms - 5 inv, com.gjt.demo.server.handlers. JmsHandler.onMessage
=< 0.5% - 224 ms - 1 inv. paymentProcessor
v 0.1% - 50,375 ps - 1 inv. deliveryService
@ 0.1% - 50,342 ps - 1 inv, com.gjt.demo.server.handlers.JmsHandler.handleMessage
@ 0.1%- 47434 ps - Tinv. com.gjt.demo.server.handlers.JmsHandler.perfformWork
0 0.0% - 1,939 ps - 1 inv. com.gjt.demo.server.handlers.msHandler.makeHttpCall
@ 00%- 917 ps- 1inv. com.gjt.demo.server.handlers.msHandler.makeRmiCall
=G 0.1% - 26,956 ps - 2 inv. mailService
0 0.0% - 3,129 ps - 1inv. com.gjt.demo.server.handlers.JmsHandler. handleMessage
@ 0.0%- 14,825 ps - Sinv. com.gjt.demo.server.handlers.RequestHandler.run
(@ 0.0% - 45 ps - B inv. com.ejt.demo.server.handlers.JmsHandlerSmsType.values

The splitting location is bound to a method, not to the selected call stack. If the same method is
present somewhere else in the call tree, it will be split as well. If you use the Merge splitting level
action, all splits will be merged into a single node. That node gives you a chance to unmerge the
split again.

Thread status: ﬂ Thread selection: Aggregation level:
BN Runnable - . All thread groups - 0 Methods v

0_ 64.8% - 39,855 ms - 17 inv. java.util.concurrent. ThreadPoolExecutorSWorker.run
0_ 56.6% - 34,809 ms - 544 inv, com.ejt.demo.server.handlers.DemoHttpServerS1.handle
@1 7.9% - 4,856 ms - 83 inv. RMI: 172.30.32.1
@A@ 0.0% - 24,639 ps - 2 inv. com.gjt.demo.server.handlers.RmiHandlerlmpl.remoteOperation
0- 35.2% - 21,660 ms - T inv. com.gjt.demo.server.DemoServerS3.run
@7 10.5% - 6,435 ms - & inv. HTTP: /demo/view5
al T9% - 4,843 ms - B inv, HTTP: /demo/viewd
@1 6.0% - 3,693 ms - 4 inv. HTTP: /dema/view3
(D146%-2820ms- 11 inv. com.gjt.demo.server.handlers. JdbcJobHandler.run
ol 3.2% - 1,942 ms - 3 inv, HTTP: /demo/viewd
@ 2.5%- 1,535 ms - 2inv, HTTP: /demojview]
(@ 0.6% - 363 ms - 6 inv. com.ejt.demo.server.handlersJmsHandler.onMessage
v 0.6% - 336 ms - 5 inv. merged method sp _
@ 0.6% - 356 ms - 5 inv. com.gjt.demo.ser Show Call Graph
@ 0.0%-3,129 ps- Tinv. com.ejt.demo.serve T oo Threads
0 0.0% - 14,825 ps - 3 inv. com.gjt.demo.server.h -
@ 0.0%- 38 ps - 10inv. com.ejt.demo.server.han Add Method Trigger
[m} 0.0% - 5 ps - 5 inv. com.ejt.demo.server.handly o
0 0.0% - 2 ps - 3 inv. com.ejt.dema.server.handl

Add As Exceptional Method

Split Method with a Script

Intercept Method With Script Probe

Ix Unmerge splitting level Ctrl+Alt+ M I
E= Remove Selected Sub-Tree Delete
Restore Removed Sub-Trees Ctrl+Alt+5

Add Filter From Selection

@ Show Tree Legend

A Ol Mlade Plaile Fael Al

@

If you produce too many splits, a node labeled capped method splits will contain all further split
invocations, cumulated into a single tree. With the hyperlink in the node, you can reset the cap
counter and record some more splitting nodes. For a permanent increase in the maximum
number of splits, you can increase the cap in the profiling settings.

174

Thread status: 0 Thread selection: Aggregation level:
B Runnable v | @8 All thread groups * (D Methods -

0_ 62.9% - 28,020 ms - 11 inv. java.util.concurrent. ThreadPoclExecutorSWorker.run
. 55,2% - 25,302 ms - 390 inv. com.gjt.demo.server.handlers.DemoHttpServerS1.handle
@ I 55,2% - 25,484 ms - 388 inv. com.ejt.mock.serviet MockServiet.service
) . 5529 - 25 474 ms - 389 inv. HTTP: JexchangeRate
55.2% - 25,472 ms - 383 inv. com.ejt.deme server.handlers.DemoHttpServerSd.run

-< W 54.7% - 25,256 ms - 387 inv. capped method splits reset splitting cap counter €3
B_ 534.7% - 23,247 ms - 387 inv. com.gjt.mock.MockHelper.runnable
@ 0.0% - 633 s - 387 inv. java.lang.String.hashCode
m 0.0% - 579 ps - 387 inv. java.util.concurrent. ThreadlocalRandom.nextint
) 0.0% - 468 us - 387 inv. java.lang.String.equals
@ 0.0% - 430 ps - 387 inv. java.util.concurrent. ThreadLocalRandom.current
=% 0.1% - 58,332 ps - 1inv. Time stamp: 1639731959654
=G 01% - 47,440 s - 1inv, Time stamp: 1639731953442
m 0.1% - 34,682 ps - 386 inv. com.sun.net httpserver.HttpExchange.sendResponseHeaders
0 0.1% - 26,744 ps - 386 inv. java.io.OutputStream.close
@ 0.0% - 12,329 ps - 389 inv. com.gjt.demo.server.handlers.DemoHttpServer.toParameterMap
0 0.0% - 3,499 ps - 386 inv. java.lang.String.valueQf
m 0.0% - 1,428 ps - 386 inv. java.lang.String.getBytes
m 0.0% - 1,305 ps - 386 inv, java.io.QutputStream.write
0 0.0% - 559 ps - 389 inv. java.util. Map.get
m 0.0% - 526 ps - 389 inv. com.sun.net.httpserver.HttpExchange getRequestUR|

Q- ~ @

To edit split methods after you have created them, go to the session settings dialog. If you don't
need a particular split method anymore, but want to keep it for future use, you can disable it
with the checkbox in front of the script configuration. This is better than just merging it in the
call tree, because the recording overhead may be significant.

@ Session Settings X
g

‘<: This list contains methods that should be split into multiple branches in the call
tree, similarly to request splitting of the "HTTP server” probe. A configurable
script returns a string that is displayed above the actual methed node. For

Application Settings

example, you can split the call tree for different argument values
E Call Tree Recording
If this feature is abused, the call tree can become very large, adding significant
Method Call Recording prehead
Exceptional Methods @ com.gjt.demo.server.handlers.JmsHandler.onMessage(javax jms.Message) o
Split Methods Split by return value of script: message.get/MSDestination().to5 = - x
Y Call Tree Filters
| Trigger Settings

; Database Settings
o Probe Settings

General Settings Copy Settings From “ Cancel

175

B.5 Call Tree Analyses

The call tree [p. 51] shows the actual call stacks that JProfiler has recorded. When analyzing the
call tree, there are a couple of transformations that can be applied to the call tree to make it
easier to interpret. These transformations can be time-consuming and change the output format
in a way that is incompatible with the functionality in the call tree view, so new views with the
results of the analyses are created.

To perform such an analysis, select a node in the call tree view and choose one of the call tree
analysis actions from the tool bar or the context menu.

t T 0T < H

View Show Record o Shew

T e, BelP | end cPU Bock Fonward | pn AnsbeEe
Show Flame Graph Ctrl+Alt+F
Thread status: @) Thread selection: I Collapse Recursions Crl+Alt+L IE\:
== Runnable = 88 Allthread groups Calculate Cumulated Qutgoing Calls Ctrl+Alt+G -

Calculate Backtraces To Selected Method Ctrl+Alt+B |

() — 03 5% - 2,746 ms - 1 inv. com.sun.tools javac.m
(0 — 7,6% - 2,307 ms - 1inv. com.sun.tools.javac, Inline Async Executions Crl+Alt+E
(0w 41,6% - 1,220 ms - 1 inv. com.sun.tocls,javac.mainJavalompiler.compiles
() ™8 27.7% - 813 ms - 1inv. com.sun.tools.javac.main.JavaCompiler.attribute

- 813 ms - 1 inv. com.sun.tools.javac.comp.Attr.attrib
% - 813 ms - 1inv. com.sun.toels.javac.comp.Attr.attribClass
1 ps - 1inv. com.sun.teols.javactree JCTree.hasTag
@ 0.0% - 7 us - 2 inv. com.sun.toolsjavac.util. AbstractLog.useSource
@ 0.0%- 4 ps - 1inv. com.sun toelsjavac.comp.CompileStates.isDone
@ 0.0%-1ps - 1inv. com.sun.tools.javac.api. MultiTaskListener.isEmpty
@ 0.0% - 1 us - 1inv. com.sun.toolsjavac.mainJavaCompiler.errorCount
@163%- 184 ms - 1 inv. com.sun.toelsjavac.main.JavaCompiler.desugar
(@15.4% - 157 ms - 1inv. com.sun.tools javac.main.JavaCompiler.generate
@l 2.2% - 63,365 ps - 1 inv. com.sun.toolsjavac.mainJavaCompiler.flow
@ 0.0% - 35 ps - 1 inv. com.sun.tools javac.mainJavaCompilerS2. < clinit>
@ 0.0% - 24 ps - 1 inv. com.sun.tools javac.mainJavaCompiler.reportDeferredDiagnostics
@ 0.0%- 16 s - 1inv. com.sun.toolsjavac.comp. Tedo.poll
@ 0.0%- 7 ps - 2inv. com.sun toolsjavac.comp.Tedo.size
@ 0.0% - 2 ps - 1inv. com.sun.tools.javac.main.JavaCompilerwamingCount
@ 0.0% - 1ps - 2inv. com.sun.toolsjavac.mainJavaCompiler.printCount
@ 0.0%-1ps- 1inv. com.sun.toolsjavac.util Log.hasDiagnosticListener
() == 32.6% - 956 ms - 1inv. com.sun.tools.javac.main.JavaCompiler.enterTrees

v @

A nested view will be created below the call tree view. If you invoke the same analysis action
again, the analysis will be replaced. To keep multiple analysis results at the same time, you can
pin the result view. In that case, the next analysis of the same type will create a new view.

@ 6,890 recursions were collapsed in the selected call tree fragment (7] x (4=]
Thread status: Thread selection: Aggregation level:
B Runnable a All thread groups @ Methods

Call tree root | com.sun toolsjavac.mainJavaCompiler.attribute — com.sun.toolsjavac.mai* Show more

()G e 100,0% - 813 ms - 12 inv. com.suntocls.javac.comp.Attr.attribClass
(D () —100.0% - 813 ms - 21 inv. com.sun tonlsiavac. comn. AttratribClass

In live sessions, the result views are not updated together with the call tree and show data from
the time when the analysis was made. To re-calculate the analysis for the current data, use the
reload action. If the call tree itself has to be re-calculated, like in the allocation tree with disabled
auto-updates, the reload action takes care of that as well.

Collapsing recursions

A programming style that makes use of recursions leads to call trees that are difficult to analyze.
The "Collapse recursions" call tree analysis calculates a call tree where all recursions are folded.
The parent node of the current selection in the call tree serves as the call tree root [p. 167] for
the analysis. To analyze the entire call tree, select one of the top-level nodes.

176

” Telernetries @ 6,890 recursions were collapsed in the selected call tree fragment @ x (‘? @

Thread status: Thread selection: Aggregation level:
":;' Live Memary == Runnable 88 Allthread groups @ Methods

Call tree root: | com.sun.tools,javac.mainJavaCompiler.attribute — com.sun.toolsjavacmai* Show more

]
ﬁ bicpiial e (L) @) m—100.0% - 813 ms - 12 inv. com.sun.tools javac.comp.Attr.attribClass
@G) I 1(00.0% - 813 ms - 31 inv. com.sun.toolsjavac.comp.AttrattribClass
i (D G w— 30,7% - 311 ms - 12 inv. com sun toclsjavac.comp.Attr.attribClassBody
CPU Views @@ 02%-1613ps-12
©) 0.2%- 1,613 ps inv. com.sun.tools.javac.comp.Attr.isSerializable
@G) 0.0% - 175 ps - 12 inv. com.sun.teolsjavac.codelintaugment

4 Call Tree 0.0% - 175 ps - 24 inv. com.sun.toolsjavac.util. AbstractLog.useSource

mlc}
@G) 0.0% - 162 us - 12 inv. com.sun.toolsjavac.comp.Check.checkClassOverrideEqualsAnd|
Collapsed Recursions @G 0.0%-125 ps - 31 inv. com.sun.toolsjavac.code Types.supertype

DG 00%-72ps-12inw. com.sun.toels javac.comp.Check.checkFunctionallnterface
Hot Spots @G 0.0%-48 us- 54inv. com.sun.toolsjavac.code Type.hasTag

@G) 0.0% - 35 s - 29 inv. com.sun.toels.javac.comp.Check.checkMonCyclic
Call Graph @@ 0.0%- 26 ps - 12 inv. com.sun.tools.javac.code.DeferredLintHandler.flush

@G) 0.0% - 24 us - 12 inv. com.sun.toels.javac.comp.Check.checkDeprecatedAnnotation
Outlier Detection @@ 00%-12 us - 11 inv. com.sun.tools.,javac.comp. TypeEnvs.get

D@ 00%-11ps- 22 inw. com.sun.tools javac.tree JCTree.pos
Complexity Analysis @ &) 0.0% -9 ps - 20 inv, com.sun.teolsjavac.comp. Checksetlint

moved 166 ps - 19 inv. com.sun.toolsjavac.comp.Attr.attribClass

Call Tracer
JavaScript XHR @

Arecursion is detected when the same method was already called higher up in the call stack. In
that case, the sub-tree is removed from the call tree and stitched back to the first invocation of
that method. That node in the call tree is then prefixed with an icon whose tool tip shows the
number of recursions. Below that node, stacks from different depths are merged. The number
of merged stacks is shown in the tool tip as well. The total number of collapsed recursions is
shown in the header, above the information about call tree parameters that were set for the
original call tree.

()) e 100,0% - 813 ms - 12 inv. com.sun.tools,javac.comp.Attr.attribClass

v m 100.0% - 813 ms - 31 inv. com.sun.tools.javac.comp
- i iavac.comp.Attr.attribClassBody

ttr.isSerializable

5 0.0% - 175 ps - T2inv, com.sun.toolzjavac.code Lint.augment

@@ 0.0%-175 ps - Minv. com.sun.toolsjavac.util.Abstractlog.useSource

@G) 0.0% - 162 ps - 12 inv. com.sun.teolsjavac.comp Check.checkClassOverrideEqualsindl

@ 0.0%- 125 ps - 31 inv. com.sun.tools.javac.code Types.supertype

5 0.0% - 72 ps - 12 inv. com.sun.toolsjavac.comp.Check.checkFunctionallnterface

For a simple recursion, the number of merged stacks is the number of recursions plus one. So
a node whose recursion tool tip shows "1 recursion" would contain a tree with nodes that show
"2 merged stacks" in their recursion tool tip. In more complex cases, recursions are nested and
produce overlapping merged call trees, so that the number of merged stacks varies from stack
depth to stack depth.

At the point where a sub-tree is removed from the call tree to be merged higher up, a special
"moved nodes" placeholder is inserted.

Analyzing cumulated outgoing calls

In the call tree, you can see the outgoing calls for a selected method, but only for one particular
call stack where that method has been invoked. The same method of interest may have been
invoked in different call stacks and it's often useful to analyze a cumulated call tree of all those
invocations in order to get better statistics. The "Calculate cumulated outgoing calls" analysis
shows a call tree that sums all outgoing calls of a selected method, regardless of how the method
was invoked.

177

” Telernetries 145 top-level call sites of the selected method were merged (7] x @? (=]

Thread status: Thread selection: Aggregation level:
’!:!' Live Memaory == Runnable 88 Allthread groups @ Methods
Collapse 333 recursions in the merged call tree fragment
]
WG Heep Walker (@ ¢ mm—100.0% - 345 ms - 661 inv. com.sun.tools.javac.code.Symbol§ClassSymbol.complete
(D @) —09,9% - 944 ms - 727 inv. com.sun.toolsjavac.codeSymbol.complete
(D ¢ m— 51,7% - 866 ms - 169 inv. com.sun.tools,javacjvm.ClassReader$1.complete
I CPU Views (@ @) m—91.7% - 856 ms - 169 inv. com.sun.tools.javac jvm.ClassReader.complete

@G} W 5,7% - 620 ms - 28 inv. com.sun.toolsjavac.jvm.ClassReader fillln{com.sun.tog
(@G ™ 353% - 2328 ms - 141 inv. com.sun.toolsjavac.jvm.ClassReader fillln(com.sun.tools,)
@@ 03%-3,190 us- 133 inv. com.sun.tools javac.comp.Annotate.flush

@G} 0.2% - 1,970 ps - 141 inv. com.sun.toolsjavac,jvm.ClassReader.completeEnclosing
@G 0.1%- 615 ps - 141 inv. com.sun toels javac.code ScopeSErrorScope.<init>
[m]
Q

4 Call Tree

Cumulated Qutgoing

© 0.0%- 107 ps - 144 inv. com.sun.tools,javacjvm.ClassReader.completeOwners

Hot Spots
G) 0.0% - 33 ps - 100 inv, com.sun.teolsjavac.comp.Annotate.enterStart
Call Graph D@ 0.0%-42 ps- 95 inw. com.sun.tools javac.comp.Annotate.enterDoneWithoutFlush
@l 7.7% - 72,882 ps - 12 inv. com.sun tools,javac.comp.MemberEnter.complete
Outlier Detection @ 04% - 4,017 s - 3 inv. com.sun.tools,javac.code Symtabs2.complete
D@ 0.1%-830ps- 2inw. com.sun.toels javac.code Symtab81.complete
Complexity Analysis @@ 0.0%-118ps- 16 inv. com.sun.toolsjavac.code. TypeSErrorType.<init>
Call Tracer
JavaScript XHR @

For the selected method, JProfiler collects all its top-level invocations without considering recursive
calls and cumulates them in the result tree. The header shows how many such top-level call sites
were summed in that process.

At the top of the view, there is a checkbox that allows you to collapse recursions in the result
tree, similar to the "Collapse recursions" analysis. If recursions are collapsed, the top level node
and the first level of outgoing calls show the same numbers as the method call graph.

Calculating backtraces

The "Calculate backtraces" analysis complements the "Calculate cumulated outgoing calls"
analysis. Like the latter, it sums all top-level calls of the selected method without considering
recursive calls. However, instead of showing outgoing calls, it shows the back traces that contribute
to the invocations of the selected method. The call originates at the deepest node and progresses
toward the selected method at the top.

' Telernetries Merged backtraces for 166 call sites of the selected method &) x & [¢=]
Thread status: Thread selection: Agaregation level: Summation mode:
’!:l' Live Memaory == Runnable B8 Allthread groups @ Methods Total times +
Collapse 322 recursions in the merged call tree fragment
i
WG Heop Walker @ () em—10.0% - 345 ms - 661 hot spot inv. com.sun.tools javac.code.Symbol5ClassSymbal.co
() m— 55,0% - 651 ms - 59 hot spot inv. com.sun.tools,javac.comp.Enter.complete
(@@ 18.4% - 78,939 ps - 18 hot spot inv. com.sun.tools javac,jvm.ClassReader.loadClass
P] i)
I CPU Views (@1 7.0% - 66,024 us - 29 hot spot inv. com.sun.toolsjavac.code.SymbolSClassSymbol.flags
@G) 15.0% - 46,914 us - 12 hot spot inv. com.sun.tools,javac.comp.AttrvisitClassDef
4 Call Tree (@1 3.8% - 35,643 ps - 9 hot spot inv. com.sun.tools javac.code SymbolSClassSymbol.members
@12.2%- 21,012 ps - 7 hot spot inv. com.sun.toolsjavac.code TypeSClassType.complete
Backtraces (@1 2.0% - 18,465 us - 41 hot spot inv, com.sun.toolsjavac.code.Symbol$ClassSymbol getinterfaces

@@ 1.5%- 14,080 ps - 14 hot spot inv. com.sun.tools.javac jvm.ClassReader32.getEnclosingType
Hot Spots @ 1.3%- 12,089 us - 66 hot spot inv, com.sun.toolsjavac.code SymbolSClassSymbol.getSuperclass
@@ 0.0%- 183 ps - 406 hot spot inv. com.sun.tools,javac,jvm.ClassWriter.enterlnner

Call Graph

Outlier Detection
Complexity Analysis
Call Tracer

JavaScript XHR @

This analysis is similar to the hot spots view, only that by default it sums total times instead of
self times for the selected method, and the hot spots view only shows methods whose self time
is a significant fraction of the total time. At the top of the view there is a radio button group

178

labeled Summation mode that can be set to Self times. With that selection, the summed values
for the selected method match that of the default mode in the hot spots view.

In the back traces, the invocation counts and times on the back trace nodes are only related to
the selected method. They show how much the invocations along that particular call stack have
contributed to the values of the selected method. Similar to the "Calculate cumulated outgoing
calls" analysis, you can collapse recursions and the first level in the backtraces is equivalent to

the incoming calls in the method call graph.

Call tree analyses in the call graph

In the call graph, each method is unique while in the call tree methods can occur in multiple call
stacks. For one selected method, the "Calculate cumulated outgoing calls" and the "Calculate
backtraces" analyses are a bridge between the viewpoints of the call tree and the call graph.
They put the selected method in the center and show the outgoing and incoming calls as trees.

With the Show Call Graph action, you can switch to the full graph at any time.

Sometimes, you want to switch the perspective in the opposite direction and change from graph
to a tree view. When you are working in the call graph, you can show the cumulated outgoing
calls and the backtraces as trees for any selected node in the graph with the same call tree

analyses as in the call graph.

Aggregation level:

’ Telemetries Thread status: Thread selection:
== Runnable 88 Allthread groups @ Methods
B o . i
|'| tve emory b - ¢.s1jjvm.ClassReadsr - I
= & loadClass i ,ﬁ
B . 138 ms, 348 ps self, 207 inv. | -:“
ﬁ Heap Walker x / |l,;. |‘I
[
. L
= c.stj.comp.Enter fo
[E] =] Il
I CPU Views - . complete el |
956 ms, 37 s self, 1 inv. I
i
Call Tree I
Calculate Backtraces To Selected Method Ctrl+Alt+B ,"l"'l ||‘
/
SRESpok Calculate Cumulated Qutgeing Calls Ctrl+Alt+G / I\'
Call Graph ; Y T I II|
[
’ - | |
utReylle sctun = c.stjjvm.ClassReader m/ f
S E e completeOwners 4l |
SIS S 99,442 s, 113 ys self, 149 inv. .‘I
Call Tracer i) III
/
. c.stjjvm.ClassReader§2 {
JavaScript XHR a ;élEnclusingTvpe EFJ
pe © 14217us.8Tussef 87inv.

In the Intelli] IDEA integration [p. 131], the call graph that is shown in the gutter of the editors
contains actions to show these trees directly.

Showing classes for allocations
A little bit different from the previous call tree analyses is the "Show classes" analysis in the
allocation call tree and the allocation hot spots views. It does not transform the call tree to
another tree, but shows a table with all allocated classes. The result view is similar to the recorded

objects view [p. 69], but restricted for a particular allocation spot.

179

671 instances in 15 classes have been allocated at the .
” Telemetries selected call stack €D Reload analysis X ¢ @

Recorded allocations: | Live objects at 00:06, 1/10 allocations, All classes

i’:’l LA Aggregation level @ Methods

All Objects Allocation spot: java.awt.Graphics2D fill — bezier.BezierAnimSDemo.drawDemo — be* Show more

Recorded Objects Mame Instance Count Size
Jjava.util. HashMapShode I 103 5,856 bytes
4 Allocation Call Tree java.awt.geom.Point2DS0ouble I 1,984 bytes
X java.awt.geom.AffineTransform I 50 4,248 bytes
Allocation Classes intl] B 32,488 bytes
. java.awt.geom.Point2D4Float K Td4 bytes
Allocation Hot Spots java.awt.geom.Rectangle2D5Float) 992 bytes
Fes= T java.util. HashMap 3 1,488 bytes
java.util. HashMapSNode] | Il 31 1,488 bytes
i sun.java2d.loops.GraphicsPrimitiveMgréPrimitiveSpec [l 31 496 bytes
'ﬁ Heap Walker sun.javadd.pipeAlphaPaintPipeSTileContext K 1,488 bytes
java.awt.GradientPaintContext I 30 1,920 bytes
X java.awt.RenderingHints Il 30 480 bytes
I btz java.awt.geom.Path2D3Floats Copylterator I 0 960 bytes
iava lann Intener . 0 AR0 btes
- Total: 671 56,072 bytes

Threads
@

In the analysis result views that show call trees, both the "Calculate cumulated outgoing calls"
and the "Calculate backtraces to selected method" analyses are available. Invoking them creates
new top-level analyses with independent parameters. Any call tree removals from the previous
analysis result view are not reflected in the new top-level analysis.

The Show Classes action, on the other hand, does not create a new top-level analysis when used
from a call tree analysis result view. Instead, it creates a nested analysis that is two levels below
the original view.

180

C Advanced CPU Analysis Views

C.1 Outlier Detection And Exceptional Method Recording

In some situations, it's not the average invocation time of a method that is a problem, but rather
that a method misbehaves every once in a while. In the call tree, all method invocations are
cumulated, so a frequently called method that takes 100 times as long as expected once every
10000 invocations will not leave a distinct mark in the total times.

To tackle this problem, JProfiler offers the outlier detection view and the exceptional method
recording feature in the call tree.

Outlier detection view

The outlier detection view shows information about the call durations and invocation counts of
each method together with the maximum time that was measured for a single call. The deviation
of the maximum call time from the average time shows whether all calls durations are in a narrow
range or if there are significant outliers. The outlier coefficient that is calculated as

(maxi mumtine - average tine) / average tine

can help you to quantify methods in this respect. By default, the table is sorted such that the
methods with the highest outlier coefficient are at the top. Data in the outlier detection view is
available if CPU data has been recorded.

3 m
’ Telernetries Thread status: All states Change
Method Total Time I, Avg, Time Max. Time Qutlier Coeff. o
"! Live M bezier.BezierdnimSDemo.block(boolean) 801 ms 440 1,822 ps 200 ms 109.21
Wy Liventemon bezier BezierAnimSDemo.ctep(int, int) | 8l6msl 436 1873us ___ 200mg 106,22

bezier.BezierAnimSDemo.paint(java.awt.Graph... 1,693 ms 437 3,879 ps 204 ms 51.6
'ﬁ Heap Walker java.lang.Thread sleep(leng) 4,491 ms 436 10,302 ps 13,720 ps 0.33

I CPU Views

Call Tree

Hot Spots

Call Graph

Qutlier Detection
Complexity Analysis
Call Tracer
JavaScript XHR

- -~ @

To avoid excessive clutter from methods that are only called a few times and from methods that
are extremely short running, lower thresholds for the maximum time and the invocation count
can be set in the view settings. By default, only methods with a maximum time of more than 10
ms and an invocation count greater than 10 are shown in the outlier statistics.

Configuring exceptional method recording

Once you have identified a method that suffers from exceptional call durations, you can add it
as an exceptional method in the context menu. The same context menu action is also available
in the call tree view.

181

Thread status:) ©30 All states Change

Method Total Time Inw. Avg, Time Mazx. Time Qutlier Coeff. 0
bezier.BezierAnimSDemo.block(boolean) 201 ms 440 1,822 us 200 ms 109.21
bezier.BezierAnimSDemesiosizt_on 216 ms 436 1,873 ps 200 ms 106.22
bezier BezierAnimsDem{ @) Add As Exceptional Method o5 ms 437 3,879 s 204 ms 1.6
java.lang.Thread.sleep(lc _ 91 ms 436 10,302 ps 13,720 ps 0.33

= Show Source F4
i Show Bytecode

Sort Outlier Statistics 2
£ Find Ctrl+F
T Export View Ctrl+R
View Settings Ctrl+T

When you register a method for exceptional method recording, a few of the slowest invocations
will be retained separately in the call tree. The other invocations will be merged into a single
method node as usual. The number of separately retained invocations can be configured in the
profiling settings, by default it is set to 5.

When discriminating slow method invocations, a certain thread state has to be used for the time
measurement. This cannot be the thread status selection in the CPU views, because that is just
adisplay option and not a recording option. By default, the wall clock time is used, but a different
thread status can be configured in the profiling settings. The same thread state is used for the
outlier detection view.

@ Session Settings X

[4 Enable CPU profili
Application Settings B Enable [relibe

Auto-Tuning For Instrumentation

Call Tree Recording [l ari-mig L7

T Call Tree Filters

n into the list of ignored

ethod is an overhead hot spot an
methods, if both of the following co

Trigger Settings

; Database Settings

Call Tree Recording Options

o Probe Settings CPU times for instrumentation: ° Elapsed times 0 Estimated CPU times 0
Instrument native methods (7]

{';J:f‘ Advanced Settings Thread resolution for async sampling @
CPU Profiling Exceptional Method Run Recerding
Probes & JEE Maximum number of separately recorded method runs: 5% 0
Memory Profiling Time type for determining exceptional method runs: EX All states ¥
Thread Profiling Call Tree Splitting
Miscellaneous Maximum number of splits: 128 |+ @

Async And Remote Request Tracking

() Gl =y <o | i orrred Sl b [0

General Settings Copy Settings From “ Cancel

In the session settings, you can remove exceptional methods or add new ones without the context
of the call tree or the outlier detection view. Also, the exceptional method configuration provides
the option to add exceptional method definitions for well known systems, like the AWT and
JavaFX event dispatch mechanisms where exceptionally long-running events are a major problem.

182

@ Session Settings X

This list contains methods whose exceptional invocations are split in the call tree.
Excepticnal invocations are those where the total time spent in the methed is much more
time than the median time for that method.

Application Settings

-

E: Call Tree Recording You can find methods with pronounced exceptional invocations in the outlier detection
view and add them from there.

Method Call R d
od el Recording Exceptional invocations are only recorded if the method call recording type is set to

Exceptional Methods li=InEncatatioe:
Split Methods @ bezier.BerierAnimSDemo.step(int, int) +
Search in Configured Class Path
Y Call Tree Filters Search in Other JAR or Class Files
Search in Profiled Classes
| Trigger Settings Enter Manually (Advanced)

| Common Exceptional Methods * |

; Database Settings
0 Probe Settings

General Settings Copy Settings From “ Cancel

Exceptional methods in the call tree

Exceptional method runs are displayed differently in the call tree view.

. Thread status: o Thread selection: Aggregation level:
Telemetries I All states ¥ 88 Al thread groups * D Methods hd
() = 50,0% - 10,434 ms - 1 inv. bezier.BezierAnim$Dema.run
":’. Live Memaory 0 e 50,03 - 10,483 ms - 1 inv. java.awt.EventDispatchThread.run
@I 16.3% - 3,467 ms - 838 inv. bezier.BezierAnimSDemo.paint
(@1 4.7% - 984 ms - 838 inv. bezier.BezierAnim$Demo.drawDemo
b Heap Walker (§*13.9% - 808 ms - 833 inv. bezier.BezierAnimSDemo.step [merged exceptional runs]

wl 2.6% - 546 ms - 838 inv. java.awt.Graphics.drawlmage

¥ My, 1.0% - 200 ms - 1 inv. bezier.BezierAnim3Demo.step [exceptional run]
I CPU Views @ 1.0% - 200 ms - 1inv. berier.BezierAnimSDemo.block
@ 0.0% - 29 ps - 12 inv. bezier.BezierAnimSDemo.animate

Call Tree @ 1.0%- 200 ms - 1inv. bezier.BezierAnimSDemo.step [exceptional run]
G-‘ 1.0% - 200 ms - 1inv, bezier.BezierAnimSDemo.step [exceptional run]
Hot Spots G‘ 1.0% - 200 ms - 1 inv, bezier.BezierAnimSDemo.step [exceptional run]
@ 1.0%- 200 ms - 1inv. bezier.BezierAnimSDemo.step [exceptional run]
Call Graph @ 0.6% - 116 ms - 838 inv. bezier.BezierAnimS$Demo.createGraphics2D
0.0% - 1,115 ps - 838 inv. java.awt.Graphics2D dispose
Outlier Detection (@ 0.1%- 10,965 ps - 838 inv. bezier.BezierAnim$DemoS1.run

Complexity Analysis
Call Tracer
JavaScript XHR
— i ~| @

The split method nodes have modified icons and show additional text:

* @ [exceptional run]

Such a node contains an exceptionally slow method run. By definition, it will have an invocation
count of one. If many other method runs are slower later on, this node may disappear and
be added to the "merged exceptional runs" node depending on the configured maximum
number of separately recorded method runs.

@ [merged exceptional runs]

Method invocations that do not qualify as exceptionally slow are merged into this node. For
any call stack, there can only be one such node per exceptional method.

* @ [current exceptional run]

183

If an invocation was in progress while the call tree view was transmitted to the JProfiler GUI,
it was not yet known whether the invocation was exceptionally slow or not. The "current
exceptional run" shows the separately maintained tree for the current invocation. After the
invocation completes, it will either be maintained as a separate "exceptional run" node or be
merged into the "merged exceptional runs" node.

Like for call tree splitting by probes [p. 102] and split methods [p. 172], an exceptional method
node has a Merge Splitting Level action in the context menu that lets you merge and unmerge all
invocations on the fly.

Thread status: 0 Thread selection: Agagregation level:
O All states = . All thread groups - @ Methods hd
0_ 50,0% - 13,242 ms - 1 inv. bezier.BezierAnim$Demo.run

0 o 50,0% - 13,242 ms - 1 inv, java.awt.EventDispatchThread.run
@l 15.8% - 4,192 ms - 1,065 inv. bezier BezierAnimSDemo.paint

=3 Show Call Graph 10.block
T Show Threads Emo.animate
G a.drawDemo
g Add Method Trigger pge
createGraphics2D
Lo (@ Add As Exceptional Method bse
@ 0 +< Split Method with a Script run
@ Intercept Method With Script Probe
|52 Unmerge splitting level Cirl+Alt+M |
5= Remove Selected Sub-Tree Delete
Restore Removed Sub-Trees Chrl+Alt+5
T Add Filter From Selection »

184

C.2 Complexity Analysis

The complexity analysis view allows you to investigate the algorithmic complexity of selected
methods depending on their method parameters.

To refresh the details on big O notation, an introduction to algorithmic complexity " and a
comparative guide to complexities for common algorithms “ are recommended readings.

First, you have to select one or more methods that should be monitored.

@ Configure Complexity Recordings X
Configured methods:
@ sort.Comparison.executeBubbleSort(int] 1, int) +

Script returning the complexity as an integer | i x

[m] sort.Comparison.executeSelectionSort{int] , int)
[m] sort.Comparison.executelnsertionSort(int[], int)

[m] sort.Comparisen.executeQuickSort{int]], int)

A4

@ Help “ Cancel

For each method, you can then enter a script whose return value of type | ong is used as the
complexity for the current method call. For example, if one of the method parameters of type
java.util . Col | ectionisnamedi nputs, the script could bei nputs. si ze().

@ Settings Edit Search Code Help Edit X
P = ‘ e
= e
Show Test
Copy Cut pame Fnd Repiace Help
;_:' Please enter an expression (no trailing semicolon) or a script (ends with a return statement) that consists of
regular Java code. The following parameters are available:
| JAVA

- com jprofiler.api.agent.ScriptContext scriptContext

- java.lang.Class< Object> ¢
- sort.Comparison currentObject

- int[] intArray
-int i

The expected return type is long

Script:

1 intArray.length

Complexity recording is independent of CPU recording. You can start and stop complexity
recording directly in the complexity analysis view or by using a recording profile or a trigger
action [p. 26]. After recording has been stopped, a graph with the results is displayed plotting
the complexities on the x-axis against the execution times on the y-axis. To reduce memory
requirements, JProfiler can combine different complexities and execution times into common
buckets. The drop-down at the top allows you to switch between the different configured methods.

M https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
) https://bigocheatsheet.com/

185

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
https://bigocheatsheet.com/

The graph is a bubble chart, where the size of each data point is proportional to the amount of
measurements in it. If all measurements are distinct, you will see a regular scatter chart. In the
other extreme, if all method invocations have the same complexity and execution time, you will
see a single large circle.

’ Telernetries Complexity recording: (@) sort.Comparison.executeBubbleSort(int[], int) v

Curve fits: Quadratic (R'=0.205) [best fit] -

‘!:l' Live Memaory
L
'ﬁ Heap Walker

I CPU Views 154 o

Call Tree E

=

u
Hot Spots E 4

£ 0
Call Graph
Outlier Detection

5
Complexity Analysis
Call Tracer
. [SEREREEN T T T T T
JavaScript XHR 0 1,000 2,000 3,000 4,000 5,000
©o- . Complexity

If there are at least 3 data points, a curve fit with common complexities is shown. JProfiler tries
curve fits from several common complexities and initially shows you the best fit. The drop-down

for the curve fits allows you to show other curve fit models as well. The R’ value embedded in
the description of the curve fit shows you how good the fit is. The models in the drop-down are

sorted in descending order with respect to R? so the best model is always the first item.

Complexity recording: Q sort.Comparison.executeBubbleSort(int]], int) v
Curve fits: Quadratic (R"=0.296) [best fit]
Quadratic (R*=0.998) [best fit]

Exponential (R°=0.986
204 Cubic (R'=

n*log(n) (R

Linear (R°=0.515
15 Logarithmic (R-=0.552

Constant (R°=0

me in ms

Note that R* can be negative, because it is just a notation and not really the square of anything.
Negative values indicate a fit that is worse than a fit with a constant line. The constant line fit

always has an R’ value of 0 and a perfect fit has a value of 1.

You can export the parameters of the currently displayed fit by choosing the "Properties" option
in the export dialog. For automated analysis in a quality assurance environment, the command
line export [p. 214] supports the properties format as well.

186

C.3 Call Tracer

Method call recording in the call tree cumulates calls with the same call stacks. Keeping precise
chronological information is usually not feasible because the memory requirements are huge
and the volume of the recorded data makes any interpretation quite difficult.

However, in limited circumstances, it makes sense to trace calls and keep the entire chronological
sequence. For example, you may want to analyze the precise interlacing of method calls of several
cooperating threads. A debugger cannot step through such a use case. Alternatively, you would
like to analyze a series of method invocations, but be able to go back and forth and not just see
them once like in the debugger. JProfiler provides this functionality with the call tracer.

The call tracer has a separate recording action that can be activated in the call tracer view, with
a trigger [p. 26] or with the profiling APl [p. 119]. To avoid problems with excessive memory
consumption, a cap is set on the maximum number of collected call traces. That cap is configurable
in the view settings. The rate of collected traces heavily depends on your filter settings.

Call tracing only works when the method call recording type is set to instrumentation. Sampling
does not keep track of single method calls, so it is technically not possible to collect call traces
with sampling. Calls into compact-filtered classes are recorded in the call tracer, just like in the
call tree. If you just want to focus on your own classes, you can exclude these calls in the view
settings.

@ Call Tracer View Settings X

Trace Recording

Maximum number of recorded call traces: 100,000 | =

Record calls into unprofiled classes €

Time Display
© Relative to first trace
Relative to previcus node

Relative to previous node of the same type

Method Display
C] Show signature

Show class names in methed nodes

The traced method calls are displayed in a tree with three levels that make it easier to skip related

calls by collapsing them. The three groups are = threads, © packages and @ classes. Each time
the current value for any of these groups changes, a new grouping node is created.

At the lowest level there are @ method entry and @ method exit nodes. Below the table with
the call traces, the stack trace of the currently selected method trace is shown. If call traces into
other methods have been recorded from the current method or if another thread interrupts the
current method, the entry and exit nodes for the that method will not be adjacent. You can
navigate on the method level only by using the Previous Method and Next Method actions.

187

@ H 2 82 8 % ¢ % 2 %3 0 U »

Start Stop save Session start stop stet anae | hod Export VW Help Record Hide
Center Snapshot Setfings Recordings Recordings Tracking Bookmark Settings Traces Selectsd Hidds
15,364 traces, 0 hidden element
' Telemetries —

L AWT-EventCQueue-0 (3 traces) +0ps
java.awt (1 trace) +0ps
-1:1' Live Memaory [<] java.awt.EventDispatchThread (1 trace) +0ps
@ run() +0ps
bezier (2 traces) +0ps
b Heap Walker @ bezier BezierAnimSDemo (2 traces) +0ps
op. paint(java.awt.Graphics) +0ps
op. createGraphics2D(int, int) +0ps
I CPU Views I Thread-0 (3 traces) +58ps
bezier (3 traces) +58ps
Call Tree © bezier.BezierAnimsDemo (3 traces) +58 ps
@ runi) + 58 ps
Hot Spots @ block({boolean) % Hide Selected Delete +58 ps
Call Graph _ @blockiboolean) Show Hidden Ctrl- Alt+5 L 66 s
AMWT_ExcentCicne 2 170 uc

Outlier Detection <top level call> Show Source F4

i Show Bytecode
Complexity Analysis

A Skip To Previous Method Trace Alt+Up

Call Tracer @) Skip To Mext Method Trace Alt+Down
JavaScript XHR /O Find CtileF
- 5 T Export View Ctrl-R

v @ 1 active recording — @ Profiling

The timing that is displayed on the traces and all grouping nodes refers to the first trace by
default, but can be changed to show relative times since the previous node. If the previous node
is the parent node, that difference will be zero. Also available is the option to show relative times
with respect to the previous node of the same type.

Even with appropriate filters, a huge number of traces can be collected in a very short time. To
eliminate traces that are of no interest, the call tracer allows you to quickly trim the displayed
data. For example, certain threads might not be relevant or traces in certain packages or classes
might not be interesting. Also, recursive method invocations can occupy a lot of space and you
might want to eliminate those single methods only.

You can hide nodes by selecting them and pressing the delete key. All other instances of the
selected nodes and all associated child nodes will be hidden as well. At the top of the view you
can see how many call traces out of all the recorded traces are still shown. To show hidden nodes
again, you can click on the Show Hidden tool bar button.

£ 8B T S % 2 & 0 |lwm |0 O

Start Stop Start Add View Record Hide: Show Previous Mext

Run GC Expont Hel
Recordings Recordings Tiacking Bookmark PO certings il Tisces || Selected Hidden | Method Method

15,363 of 15,364, 1 hidden element

:- AWT-EventQueue-0 (3 traces) +0ps
T Thread-0 (2 traces) +58us

188

C.4 JavaScript XHR Origin Tracking

With JavaScript XHR origin tracking, you can split servlet invocations for different stack traces in

the browser during XMLHttpRequest " or Fetch “ requests, so you can better correlate the
activity in the profiled JVM with actions in the browser. in the following, "XHR" designates both
the XMLHttpRequest and the Fetch mechanisms.

Browser plugin

To use this feature, you have to use Google Chrome ¥ as the browser and install the JProfiler

- . 4
origin tracker extenS|on().

G Google x

& C [https//www.google.com H

The Chrome extension adds a button with a & JProfiler icon to the tool bar that starts tracking.
When you start tracking, the extension will intercept all XHR calls and report them to a locally
running JProfiler instance. As long as tracking has not been started, JProfiler will show an
information page that tells you how to set up JavaScript XHR origin tracking.

” Telemetries JavaScript XHR Origin Tracking
":" Live Memaory IProfiler can track the JavaScript stack traces of XHR calls frem a Chrome browser into the profiled JVM.
When XHR tracking is active, you get
.
ﬁ Heap Walker = Atree of JavaScript calls that initiate XHR calls into the profiled VM
» JavaScript call tree splitting below the URL splitting level
I CRUMiars = Full JavaScript stack traces in the call tree
Call Tree To activate this feature, you have to install the JProfiler Chreme extension and toggle the & IProfiler
tracking butten in Chrome.
Hot Spots
G After you complete these actions, this notice will disappear and the JavaScript XHR call tree will be shown.
all Grap

Outlier Detection
Complexity Analysis
Call Tracer

JavaScript XHR

When tracking is activated, the JProfiler extension will ask you to reload the page. This is necessary
for adding instrumentation. If you choose to not reload the page, event detection may not work.

The tracking status is persistent on a per-domain basis. If you restart the browser while tracking
is active and visit the same URL, tracking will automatically be enabled, without the need to
reload the page.

https://xhr.spec.whatwg.org/

https://fetch.spec.whatwg.org/

http://www.google.com/chrome/
https://chrome.google.com/webstore/detail/jprofiler-origin-tracker/mnicmpklpjkhohdbcdkflhochdfnmmbm

189

https://xhr.spec.whatwg.org/
https://fetch.spec.whatwg.org/
http://www.google.com/chrome/
https://chrome.google.com/webstore/detail/jprofiler-origin-tracker/mnicmpklpjkhohdbcdkflhochdfnmmbm
https://chrome.google.com/webstore/detail/jprofiler-origin-tracker/mnicmpklpjkhohdbcdkflhochdfnmmbm

JavaScript XHR tree

If the XHR calls are handled by a JVM that is profiled by an active profiling session in JProfiler, the
JavaScript XHR view will show a cumulated call tree of these calls. If the view remains empty, you
can switch the "Scope" at the top of the view to "All XHR calls" to check if any XHR calls have been
made.

Scope: | XHR calls that were recorded in this JVM b

& completeOutstandingRequest (http://
= http://localhost:8082/js/app-6fada3
@ ScopeSapply (hitp://localhos
@ ScopeSdigest (http://|
& Scope.Seval (http://loc
E] http://localhost B0B2/j
@ processQueue (http
& serverRequest (hitp
& sendReq (hitp d J
@ http://localhost:28082/js/app-6f380a36,j5:48063: 11 jump to execution site
& http://localhost:8082/js/app-6f280a36.js:54520:28
E] http://localhost:B082/js/app-6880a36.s:74205:20
ga handler (http://localhost:8!
=2 §cupe.$apply-http /flo
@ ScopeSdigest (http
& Scope.Seval (hitp://loc
a2 hitp://localhost:8082/js/a
@ processQueue (http
& serverRequest (http
& sendReq (hitp://localhos
@ nttp://localhost:2082/)
£, mouseup on <a> [ng-mouseup: 'entryClicked(entry, Sevent)']
&, click on <button> [ng-click: 'settingsService.settings.readingMode = 'all""
51 XAMLHttpRequest.requestloaded (http://localhost 2022/)s/app-6F22 5:48087:9)

Javascript & call stack nodes include information on the source file and the line number. The

function where the XHR call is made has a @ special icon and and adjacent hyperlink in case the
XHR call was handled by the profiled JVM. The hyperlink will take you to the Javascript splitting
node in the call tree view [p. 51] where you can see the server side call tree that was responsible
for handling requests of this type.

At the top of the tree you find ‘% browser event nodes that show event name and element name
together with important attributes that help you pin down the source of the event. Not all requests
have an associated event.

The extension is aware of several popular JavaScript frameworks and walks the ancestor hierarchy
between the target node of an event up to the node where the event listener is located, looking
for attributes that are suitable for display and splitting the call tree. Failing to find
framework-specific attributes, it stops at an i d attribute. In the absence of an ID, it searches for
"control elements" like a, but t on or i nput . All failing, the element where the event listener is
registered will be shown.

In some cases, the automatic detection of interesting attributes may not be suitable and you
may prefer a different call tree splitting. For example, some frameworks assign automatic IDs,
but it would be more readable to group all elements together with a semantic description of the
action. To achieve a different call tree splitting, add the HTML attribute

data-jprofiler="..."

to the target element or an element between the target and the location of the event listener.
The text in that attribute will be used for splitting and other attributes will be ignored.

190

Call tree splitting

In the call tree view, XHR calls will split the call tree for each separate combination of browser

event and call stack. The & splitting nodes show information about the browser event. If no
eventisin progress, likein a call to set Ti meout (), the last few stack frames are displayed inline.

Thread status: 0 Thread selection: Aggregation level:
B Runnable - 88 All thread groups * D Methods b
0_ 59.6% - 938 ms - 3 inv. org.eclipse jetty.util.thread QueuedThreadPoolS3.run
(@ . 45.0% - 712 ms - 3 inv. HTTP: /rest/category/get
@® 12.7% - 200 ms - 3 inv. HTTP: /rest/category/entries
v 5. 87,291 ps - 1inv. click on <button> [ng-click: 'settingsService.settings.readingMode = 'all''] show more
(315.5% - 87,284 ps - 1inv. com.commafeed. CommaFeedApplicationS4.doFilter
Ol 5.5% - 87,277 s - 1inv. io.dropwizard.servlets.CacheBustingFilter.doFilter
0 0.0% - 2 ps - 1 inv. javax servlet.http.HttpServietRequest.getRequestURI
m 0.0% - 1 ps - 1inv. java.lang.String.contains
a1 47% - 74,036 ps - 1 inv. http://localhost:8082/js/app-6f380a36,js:48063:11 — sendReq — serverRequest — processQueue — http://loca
! 2.5% - 38,281 ps - 1inv. http://localhost 8082 js/app-6f880236.j:48063:11 — sendReq — serverRequest — processQueue — http://loca

E:—E. 0.8% - 12,129 s - 1 inv. mouseup on <a> [ng-mouseup: 'entryClicked(entry, Sevent)'] show more
() 0.8%-12,122 ps - 1 inv. com.commafeed.CommaFeedApplication$4.doFilter
D 0.8% - 12,112 ps - 1 inv. io.dropwizard.serviets.CacheBustingFilter.doFilter
0 0.0% - 2 ps - 1 inv. javax servlet.http. HttpServietRequest.getRequestURI
D 0.0%-1ps-1 inv. java.lang.5tring.contains
o 0.6% - 8,935 ps - 1 inv, HTTP: /rest/user/settings
0- A0.4% - 636 ms - 3 inv. java.util.concurrent. ThreadPoolExecutorS\Worker.run

@

The "show more" hyperlink on these nodes opens the same detail dialog that is opened by the
View->Show Node Details action. For JavaScript splitting nodes, the detail dialog does not show
the text of the node, but the entire browser call stack. To inspect the call stack of other JavaScript
splitting nodes, leave the non-modal detail dialog open and click on those nodes, the detail dialog
will update its contents automatically.

€@ Details for Selected Element X

http://localhost:8082/73/app-6£880a36.]
gsendReq (http://1 lhost:8082/9s/
serverRequest
processQueue | Js/
http://localhost:8082/s/app-6£380a36.73:51502:27
Scope.- feval
Scope.fdigest
Scope.fapply (ht
HTMLButtonElement.<anonymous> | P/
HIMLButtonElement.jQuery.event.dispatch |

elemData.handle (http://localhos
HTMLButtonElement.<anonymous> (<anor us>:4:186)
click on <button> [ng-click: 'settingsService.settings.readingMode = "all'']

This Invocation Sub-Tree €& All Invocations &)

Total 87,291 us 87,291 us 97,213 us
Self T s T s 18 ps
Calls 1 1 2

191

D Heap Walker Features In Detail

D.1 HPROF And PHD Heap Snapshots

The HotSpot JVM and the Android Runtime both support heap snapshots in the HPROF format,
The IBM J9 JVM writes such snapshots in the PHD format. PHD files do not contain garbage
collector roots, so JProfiler simulates classes as roots. Finding class loader memory leaks may
be difficult with a PHD file.

Native heap snapshots can be saved without the profiling agent and incur a lower overhead than
JProfiler heap snapshots, because they are saved without the constraints of a general purpose
API. On the flip side, the native heap snapshots support less functionality than JProfiler heap
snapshots. For example, allocation recording information is not available, so you cannot see
where objects have been allocated. HPROF and PHD snapshots can be opened in JProfiler
withSession->0pen Snapshot, just like you would open a JProfiler snapshot. Only the heap walker
will be available, all other sections will be grayed out.

In a live session, you can create and open an HPROF/PHD heap snapshot by invoking Profiling->Save
HPROF/PHD Heap Snapshot. For offline profiling [p. 119], there is a "Create an HPROF heap dump"
trigger action. It is usually used with the "Out of memory exception" trigger to save an HPROF
snapshot when an Qut Of Menor yEr r or is thrown.

@ Trigger Wizard - Out of memory exception X
1. Trigger type Configure actions for this trigger
2. Actions
3. Description Configured actions:
4.6 [0}
roup lT' II Create an HPROF/PHD heap dump ‘:‘*

5. Finished

4 Back Next P Finish Cancel

This corresponds to the VM parameter "’
- XX: +HeapDunmpOnQut OF Menor yEr r or

that is supported by HotSpot JVMs.

An alternative way to extract an HPROF heap dump from a running system is via the command
line tool j map that is part of the JRE. Its invocation syntax

jmap -dunp:live, format=b,file=<fil ename> <Pl D>

M http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

192

http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

is difficult to remember and requires you to use the j ps executable to find out the PID first.
JProfiler ships with an interactive command line executable bi n/j pdunp that is much more
convenient. It lets you select a process, can connect to processes running as a service on Windows,
has no problems with mixed 32-bit/64-bit]VMs and auto-numbers HPROF snapshot files. Execute
it with the - hel p option to get more information.

Taking HPROF heap snapshots without loading the profiling agent is also supported in the JProfiler
GUI. When attaching to a process, locally or remotely, you always have the possibility to just take
an HPROF heap snapshot.

@ IProfiler Start Center >
Start Center
O On this computer On another computer On a Kubernetes cluster
Open Container: [}l None, showing top level processes Select Container
Session
Status: All detected HotSpot/Open)d WMs ~ Show Services
‘ PID Process Mame
Quick 10076 org jetbrains.kotlin.daemon KetlinCompileDaemon --daemon-runFilesPath C:\Users\in...
Attach 13343
23104
O 26688 org.jetbrains.kotlin.daemon KotlinCompileDaemon --daemon-runFilesPath ChUserslin...
bezier.E‘szierAmm block
New 20184 org.gradlelauncher.daemon.bootstrap.GradleDaemon 7.3
Session 33524 org.jetbrains.jps.cmdline.Launcher Ci/Users/ingo/AppData/Local/)etBrains/Toolbox/ap...
33912 org.gradle.wrapper.GradleWrapperMain --daemen screenshotsLightEn
Open
Snapshots Legend: Profiling agent loaded JProfiler GUI connected Offline mode
m (7] Heap Dump Only Close

HPROF snapshots can contain thread dumps. When an HPROF snapshot was saved as a
consequence of an Qut Of Menor yEr r or, the thread dump may be able to convey what part of
the application was active at the time of the error. The thread that triggered the error is marked
with a special icon.

All'thread groups
‘ Telemetries & greup

main

Monitor Ctrl-Break

‘!:I Live Memory
» system

Finalizer
b Heap Walker Reference Handler

Signal Dispatcher

Current Object Set

Thread Dump
I CPU Views

javalang.QutOfMemoryError. <init> () (line: 48)
— Java.utilArrayList.<init= (int) (line: 152)
Threads misc.00MTest main(java.lang.String[1) (line: 41)

r? Monitors & Locks
; Databases
A

IEE R Draber

193

D.2 Minimizing Overhead In The Heap Walker

For small heaps, taking a heap snapshot takes a couple of seconds, but for very large heaps, this
can be a lengthy process. Insufficient free physical memory can make the calculations a lot
slower. For example, if the JVM has a 50 GB heap and you are analyzing the heap dump on your
local machine with only 5 GB of free physical memory, JProfiler cannot hold certain indices in
memory and the processing time increases disproportionately.

Because JProfiler mainly uses native memory for the heap analysis, it is not recommended to
increase the - Xnx value in the bi n/ j profil er. vnopti ons file unless you have experienced
an Qut Of Menor yEr r or and JProfiler has instructed you to make such a modification. Native
memory will be used automatically if it is available. After the analysis has completed and the
internal database has been built, the native memory will be released.

For a live snapshot, the analysis is calculated immediately after taking the heap dump. When
you save a snapshot, the analysis is saved to a directory with the suffix . anal ysi s next to the
snapshot file. When you open the snapshot file, the heap walker will be available very quickly.
If you delete the . anal ysi s directory, the calculation will be performed again when the snapshot
is opened, so if you send the snapshot to somebody else, you don't have to send the analysis
directory along with it.

If you want to save memory on disk or if the generated . anal ysi s directories are inconvenient,
you can disable their creation in the general settings.

@ General Settings x

Ul Session Defaults Snapshots IDE Integrations Updates External Programs

Heap Dump Analysis
The heap walker needs to analyze the heap dump before it can be shown. Depending on the heap size, this
analysis can take a leng time. JProfiler can save the results of the analysis, so that snapshots can be
opened much faster.
Store heap dump analysis

If the analysis is missing, JProfiler will simply perform it again when you open the snapshot.

You can also use the jpanalyze command line tool to pre-analyze snapshots were taken automatically in
offline mode.

HPROF snapshots and JProfiler snapshots that were saved with offline profiling [p. 119] do not
have an . anal ysi s directory next to them, because the analysis is performed by the JProfiler
Ul and not by the profiling agent. If you do not want to wait for the calculation when opening
such snapshots, the j panal yze command line executable can be used to pre-analyze [p. 214]
snapshots.

It is advisable to open snapshots from writable directories. When you open a snapshot without
an analysis, and its directory is not writable, a temporary location is used for the analysis. The
calculation then has to be repeated each time the snapshot is opened.

A big part of the analysis is the calculation of retained sizes. If the processing time is too long
and you don't need the retained sizes, you can disable their calculation in the overhead options
of the heap walker options dialog. In addition to retained sizes, the "Biggest objects" view will
not be available either in that case. Not recording primitive data makes the heap snapshot

194

smaller, but you will not be able to see them in the reference views. The same options are
presented when opening snapshots if you choose Customize analysis in the file chooser dialog.

@ Heap Snapshot Options X

Select recorded ohjects

Initially, the heap walker will show only those objects that have been
recorded in the dynamic memory view section.

Perform full GC in heap snapshot 0

Retain objects held by soft references hd

Calculate retained sizes 0
Record primitive data (7]

195

D.3 Filters And Live Interactions

When looking for objects of interest in the heap walker, you often arrive at an object set that has
too many instances of the same class in it. To further trim the object set according to your
particular focus, the selection criteria could then involve their properties or references. For
example, you may be interested in HTTP session objects that contain a particular attribute. In
the merged outgoing reference view of the heap walker you can perform selection steps that
involve chains of references for the entire object set.

However, the outgoing references view where you see individual objects offers much more
powerful functionality to make selection steps that constrain references and primitive fields.

© Classes Ml Allocations EIZ Biggest Objects K References o Time @ Inspections +

Current object set: 5,574 instances of java.util.HashMap$Node
2 selection steps, 178 kB shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references A Use.. Apply filter ... * =G Show In Graph @ | @

Object By restricting the selected value Shallow Size Allocation Time (him:s)
[] With a code snippet
hash = 124406272
key & java.lang.StringBuffer
coder (declared by ja

ringBuilder) = 0
ARuilder = 17

roamnt (derlared b iava lar

When you select a top-level object, a primitive value or a reference in the outgoing references
view, the Apply Filter->By Restricting The Selected Value action becomes enabled. Depending on
the selection, the filter value dialog offers different options. Whatever options you configure,
you always implicitly add the constraint that objects in the new object set must have outgoing
reference chains like the selected one. Filters always work on the top-level objects by restricting
the current set of objects into a possibly smaller set.

© Classes Wl Allocations uﬂ Biggest Objects 3 References O Time @ Inspections +

Current object set: 5,574 instances of java.util.HashMap$Node
2 selection steps, 178 kB shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references v Use.. > Apply filter ... ¥ Show In Graph @ @

Object Retained Size Shallow Size Allocation Time (h:m:s)
W jova.util HashMapSNode (0x57ca 1,539 kB 32 bytes n/a
hash = 124406278
key @ java.lang.StringBuffer (0:79f1
coder (declared by java.lar

@ Filter Value X

count [declared by java.lar Y Select all objects from the current object set for which the following is true:
value (declared by java.lang.A
next & java.util.HashMapShode (0x

c 3/} The object has an cutgeing reference chain just like the selected one
value :)javax‘swing.UIManagerSLAFStatE (]

S/J The selected primitive value satisfies the following condition:

Selection step 2: Class
java.util.HashMapSNede

5,374 instances of java.util.HashMapSNode

Integer value equals v 12345 v

Selection step 1: All objects, after full GC, retaining sorcrererence

Constraining primitive values works in both HPROF and JProfiler heap snapshots. For reference
types, you can ask JProfiler to filter non-null values, null values, and values of a selected class.
Filtering by the result of the t oSt ri ng() method is only available in live sessions, except for
java.lang. Stringandjava. | ang. C ass objects where JProfiler can figure this out by itself.

196

© Classes Ml Allocations .. Biggest Objects K References O Time @ Inspections +
X

Filter Val
Current object set: 5,574 instances of ja| © Fitter Value

2 selection steps, 178 kB sh Y Select zll objects from the current object set for which the following is true:

Outgoing references v Use.. ™ o The ohject has an outgoing reference chain just like the selected one
Object o The selected reference satisfies the fellowing condition:
\:‘i Jjava.util HashMapSNede (0:57ca)

hash = 124406278 The reference is not null
The reference is null

coder (declared by java.lang.AbstractStrini
O Theinstance is of the type:

count (declared by java.lang.Ab: trin
value (declared by java.lang.A ring
next 'Qjava.utll.HashMapSNDde (0
value & javax.swing.UIManagerSLAFState ((x Also match derived classes
The result of the teString() method satisfies the condition:

Selection step 2: Class
java.util.HashMapSNode contans

5,574 instances of java.util. HashMapSNode

Selection step 1: All objects, after full GC, retaining sorrrererence:

java.lang.String

The most powerful filter type is the code filter snippet. In the script editor, you have access to
the object or reference and can write an expression or script whose boolean return value decides
whether an instance should be retained in the current object set or not.

@ Settings Edit Search Code Help Edit X

VY RE PR RO

— Test
Undo Redo Comy Cw Pasme 0 Find Reslsce L Hep

Y Select all objects from the current object set for which the following is true:

a The object has an cutgeing reference chain just like the selected one

o The selected reference passes the following filter script:

Please enter an expression (no trailing semicolon) or a script (ends with a return statement) that consists of
regular Java code. The following parameters are available:

- com jprofiler.api.agent.ScriptContext scriptContext

- sun.awt.image.PixelConverter pixelConverter

Ellmup

The expected return type is boolean

Filter script:

1bixelCDnverter.getAJ.phaMask() & 255 == 255

Of course this feature can only work for live sessions, because JProfiler needs access to the live
objects. Another consideration is that an object may have been garbage collected since the heap
snapshot was taken. In that case, such an object would not be included in the new object set

when a code snippet filter is executed.
Apart from filters, there are two other features in the outgoing references view for interacting
with individual objects: The Show toString() Values action invokes the t oSt ri ng() method on all

objects that are currently visible in the view and shows them directly in the reference nodes. The
nodes can become very long and the text may be cut off. Using the Show Node Details action

from the context menu helps you to see the entire text.

197

© Classes Wl Allocations .. Biggest Objects K References ® Time @ Inspections +

Current object set: 7 instances of sun_font.FontFamily
2 selection steps, 336 bytes shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references A Use.. Apply filter ... =5 Show In Graph

Object Retained Size Shallow Size Allocation Time (him:s)
L
initialized = false
logicalFont = true
familyRank = 2
familyWidth = 0 @ Details for Selected Element X
familyName ':>Java‘lang‘5trmg (0 7bae) ["Menospaced”]
fontSequence 'Djava.ut\I.ArrayLlst-Cx"l:ef- ["[sunfont.Fontfan] = Sunfont.FontFamily (0x7bad) ["Font family: Monospaced
B o1 fnnt EnntEammihe (e Theel FEant famihe Carif plain=null bold=null italic=null belditalic= null initialized=false"]

Selection step 2: Class
sun.font.FontFamily

7 instances of sun.font.FontFamily

Selection step 1: All objects, after full GC, retaining soft references

A more general method of obtaining information from an object than calling the t oSt ri ng()
method is to run an arbitrary script that returns a string. The Run Script action next to the Show
toString() Values action allows you to do that when a top-level object or a reference is selected.
The result of the script execution is displayed in a separate dialog.

@ Settings Edit Search Code Help Edit X
s P = \
= m 7
Show Test
Undo Redo Copy cut Paste Find Replace | . o Help
Run a script with the selected instance as a parameter.
The returned string will be displayed in a dialog.
Please enter an expression (ne trailing semicolon) or a script (ends with a return statement) that censists of
regular Java code. The following parameters are available:
- com jprofiler.api.agent.ScriptContext scriptContext
- java.lang.Class< Object> ¢
The expected return type is java.lang.String
Script:
A = []
1 |1:r.::v java.util.stream.Collectors;
2 Arrays.stream{c.getDeclaredMethods())
3 .map{m -> m.toeString())
4 .collect (Collectors.joining (™\n"))

198

D.4 Finding Memory Leaks

Distinguishing regular memory usage from a memory leak is often not quite simple. However,
both excessive memory usage and memory leaks have the same symptoms and so they can be
analyzed in the same way. The analysis proceeds in two steps: Locating suspicious objects and
finding out why those objects are still on the heap.

Finding new objects

When an application with a memory leak is running, it consumes more and more memory over
time. Detecting the growth of memory usage is best done with the VM telemetries and the
differencing functionality [p. 69] in the "All objects" and the "Recorded objects" views. With these
views you can determine if you have a problem and how severe it is. Sometimes, the difference
column in the instance tables already gives you an idea what the problem is.

X v
/' Telemetries Memory pool: | Heap

Overview

Memary 300 MB

Recorded Objects
Recorded Throughput
GC Activity 200 ME
Classes b
Threads
CPU Load

100 MB
Custom Telemetries

'I:I' Live Memary

b Heap Walker

= Freesize: 115.2ME ™ Used size: 107.3MB ™ Comrnitted size: 222.7ME m» /@ /@ p

Any deeper analysis of a memory leak requires the functionality in the heap walker. To investigate
a memory leak around a particular use case in detail, the "Mark heap" functionality [p. 79] is
best suited. It allows you to identify new objects that have remained on the heap since a particular
previous point in time. For these objects, you have to check whether they are still legitimately
on the heap or if a faulty reference keeps them alive even though the object serves no further
purpose.

2 @ H 2 8 8 % C G 0 m A

Stant Save Semsion Stan stop Stant Add B = Take Mark
Stop 3 . - i Run GC Export _ Help
Center Snapshot Setings Recordings Recordings Tracking Baokmark Settings Snapshot| Hezp

/. Telemetries o No snapshot has been taken.
For a maximum of features:

'I:I' Live Memaory

Press ﬂ to take a JProfiler heap snapshot

Another way to isolate a set of objects that you are interested in is through allocation recording.
When taking a heap snapshot, you have the option to show all recorded objects. However, you
may not want to limit allocation recording to just a particular use case. Also, allocation recording
has a high overhead, so the Mark Heap action will have a comparatively much smaller impact.
Finally, the heap walker lets you select old and new objects at any selection step with the Use
new and Use old hyperlinks in the header if you have marked the heap.

199

© Classes Ml Allocations .. Biggest Objects 3 References o Time @ Inspections +

Current object set: 122,311 objectsin 1,295 classes.

1 selection step, 8,976 kB shallow size

52,008 new instances (42.5%) since the last heap dump Use old

© Classes v Use.. ™ & Group By Class Loaders Calculate estimated retained sizes
Name Instance Count Size
byte[] I (2339 1,065 kB
java.lang.String I 13,730 330 kB
java.util.HashMapSMode I 12433 429 kB

float[] I G G50 1,470 kB

Analyzing the biggest objects

If a memory leak fills up the available heap, it will dwarf other types of memory usage in the
profiled application. In that case, you don't have to examine new objects, but simply analyze
what objects are most important.

Memory leaks can have a very slow rate and may not become dominant for a long time. Profiling
such a memory leak until it becomes visible may not be practicable. With the built-in facility in
the JVM to automatically save an HPROF snapshot [p. 192] when an Qut O Menor yEr r or is thrown,
you can get a snapshot where the memory leak is more important than the regular memory
consumption. In fact, it's a good idea to always add

- XX: +HeapDunpOnQut O Menor yEr r or

to the VM parameters or production systems so you have a way to analyze memory leaks that
may be hard to reproduce in development environments.

If the memory leak is dominant, the top objects in the "Biggest objects" view of the heap walker
will contain the memory that was retained by mistake. While the biggest objects themselves may
be legitimate objects, opening their dominator trees will lead to the leaked objects. In simple
situations, there is a single object that will contain most of the heap. For example, if a map is
used to cache objects and that cache is never cleared, then the map will show up in the dominator
tree of the biggest object.

© Classes Wl Allocations .- Biggest Objects i References o Time @ Inspections 3

Current object set: 65,775 objects in 1,249 classes.

1 selection step, 5,572 kB shallow size

Mo grouping v = Tree - Use.. v =3 Show In Graph @ w @
ObJect Retained Size

W sun.awtimage. BuﬂmgSurfaceData Tdbf) I 1,427 kB (26 %)
I bezier.BezierAnim (0x52 I - kE (S %)
v 541 kB (99.]IeakMap = java.util. HashMap
m— 541 KE (99.9%) table @ java.utilHashMap$Nodel]
}Q Another 1.471 instances with a total retained size of 525 kB and a maximum single retained size of 1.216 bytes
aﬁ Ancther 6 instances with a total retained size of 376 bytes and a maximum single retained size of 144 bytes
@ sun.awtimage.OffScreenlmage (0xaal5) I 561 kB (6 %)
@ jeva.utilzip. leF\IESSDur(E Ox1cT! Il 103 kB (1 %)
@ sun.awtAppContext (0 1 W 56,632 bytes {1 %)
) com jprofiler.agent.d.a (W 53,248 bytes (0 %)

e 5£8)

0 java.lang.invoke, MethDdType w 7Hf) W 45,600 bytes (0 %)
\1,3 Jjdk.internal.loader.BuiltinClassLoader (0x7hd) B 44,240 bytes (0 %)

@ sun javald.loops. Graphl(sPrlmltNeMgr 0x 1£5) W 32,536 bytes (0 %)
[i sun.security.provider.Sun ([] 037824 bytes (0 %)
\EI sun.awt. ExtendedKe)rCDdes)] 133184 bytes (0 %)

Finding strong references chains from garbage collector roots

An object can only be a problem if it is strongly referenced. "Strongly referenced", means that
there is at least one chain of references from a garbage collector root to the object. "Garbage

200

collector" roots (in short GC roots) are special references in the JVM that the garbage collector
knows about.

To find a reference chain from a GC root, you can use the Show Path To GC Root actions in the
"Incoming references" view or in the heap walker graph. Such reference chains may be very long
in practice, so they can generally be interpreted more easily in the "Incoming references" view.
The references point from the bottom towards the object at the top level. Only the reference
chains that are the result of the search are expanded, other references on the same levels are
not visible until a node is closed and opened again or the Show All Incoming References action in
the context menu is invoked.

O Classes Wl Allocations EIZ Biggest Objects 1 References o Time @ Inspections 3

Current object set: 1,728 instances of java.awt.geom.GeneralPath
2 selection steps, 55 kB shallow size, Calculate retained and deep sizes Use retained objects

Incoming references - Use.. = =3 Show In Graph 7:?.} W @ d‘, Show Paths To GC Root

Object Retained Size Shallow Size Allocation Time (him:s)
[]
@ value of java.util HashMap$Node (0x2dad
O element of java.util.HashMapSNede[] (Cxdf27
@ table of java.util.HashMap (0x2da3
O leakMap of bezier.BezierAnim (0x522¢c
O this$0 of bezier.BezierAnimSDemo (0x42b3
eijﬁ\fﬂ stack of AWT-EventQueue-0 in bezier.BezierAnimSDemo. paint(java.awt.Graphics)
Oijava stack of AWT-EventQueue-0 in javax.swingJComponent._paintimmediately(int, int, int, int)
Oijava stack of AWT-EventQueue-0 in javax.swingJComponent.paintToOffscreen{java.awt.Graphics, int, int, int, int, ir
eijava stack of AWT-EventQueue-0 in javax.swing.RepaintManagerSPaintManager.paint{javax.swing.JComponent, jay
eijava stack of AWT-EventQueue-0 in javax.swing.RepaintManagerSPaintManager.paintDoubleBufferedFPScales(java
oijava stack of AWT-EventQueue-0 in javax.swing.RepaintManager.paint(javax.swing JCormponent, javax.swing.JCorr
Oijava stack of Thread-0 in bezier.BezierAnimSDemo.run()
[] Jjava.awt.geom.GeneralPath (0 243 bytes 32 bytes 0:0:06.5
M java.awt.oeom.GeneralPath (0 248 bytes 32 bvtes nfa

To get an explanation for types of GC roots and other terms that are used in the reference nodes,
use the tree legend.

© Classes Wl Allecations nﬂ Biggest Objects 1 References O Time @ Inspections »

Current object set: 1,728 instances of java.awt.geom.GeneralPath
2 selection steps, 55 kB shallow size, Calculate retained and deep sizes Use retained objects

Incoming references v Use.. ™ Show In Graph [Show Paths To GC Root
Object Retained Size Shallow Size Allocation Time (him:s)

) java.awt.geom.GeneralPath (0x2da6 248 bytes 32 bytes 0:0:14.6
@ value of java.util.HashMap$Node (0x2dad
0 element of java.util.HashMapSNede[] (Txdf27
@ table of java.util.HashMap (0x2da3
N LealeMan ~f hezier Rerierfnim (0507

When you select nodes in the tree, the non-modal tree legend highlights all used icons and terms
in the selected node. Clicking on a row in the dialog will show an explanation at the bottom.

201

@ Treelegend X

Node Icons
[] Instance in current object set
<] Class object in current object set
e Incoming reference
Reference cycle
(=] Incoming reference in path to GC root
o Class reference
i GC root
a{, Cutoff node
Terms And Abbreviations
JNI global Global reference from native NI code
INI lecal Local reference from native JNI code
array content Reference from an array
class loader Reference from a class loader
collection Reference from a Java collection
constant pool Reference from the constant poel of a class
field Reference from an instance field of an object

instance of class Reference from an instance to its class

interface Reference threugh implementing an interface
map key Reference from a key in a Java map

map value Reference from a value in a Java map
i B S S S S

An object that is used in an active stack frame cannot be garbage collected.
Stack frames can be active permanently if a method calls never returns.

The thread and the method name of the stack frame are specified.

Important types of garbage collector roots are references from the stack, references created by
native code through JNI and resources like live threads and object monitors that are currently
being used. In addition, the JVM adds in a couple of "sticky" references to keep important systems
in place.

Classes and classloaders have a special circular reference scheme. Classes are garbage collected
together with their classloader when

* no class loaded by that classloader has any live instances
+ the classloader itself is unreferenced except by its classes
+ noneofthej ava. | ang. O ass objects are referenced except in the context of the classloader

© Classes Wl Allocations .. Biggest Objects 3 References O Time @ Inspections +

Current object set: 134 instances of java.util. HashMap$Node
4 selection steps, 4,288 bytes shallow size, Calculate retained and deep sizes Use retained objects

Incoming references v Use.. =5 Show In Graph @ | @ iShDWPEthSTD GC Root
Object Retained Size Shallow Size Allocation Time (him:s)
@ jeva.util HashMapSNode (0xa68b) 5,344 bytes 32 bytes n/a

D element of java.util.HashMap$hNode[] (0xdf72)
1 P
Q table of java.util HashMap (0xa62z)
D resourceCache of javax.swing.UIDefaults (0xa290)
1 g
O element of javax.swing UlDefaults] | (Tedfda)
@ tables of javax.swing.UIManagerSLAFState ((xa28d)
@ value of java.util HashMapSMode (0xa22
0 next of java.util.HashMapSMode (0xa28b)
J p
@ element of java.util. HashMapSMode[] (Trecfd3)
D table of java.util HashMap [0x51f3)
J P
@ table of sun.awt. AppContext (0x5174

¥ R & static mainAppContext of class sun.awt.AppContext (0x2bf)
i sticky class
DO constant of class com.sun.java.swing.SwingUtilities3 (0 1b3
DO constant of class com.sun.java.swing.plaf windows.AnimationController (x5ac)

In most circumstances, classes are the last step on the path to the GC root that you are interested
in. Classes are not GC roots by themselves. However, in all situations where no custom

202

classloaders are used, it is appropriate to treat them as such. This is JProfiler's default mode
when searching for garbage collector roots, but you can change it in the path to root options
dialog.

@ Path To GC Root Options X

Select options for the path to root analysis:

Calculating a single path to a garbage collector root is faster and often
sufficient for memory leak detection.

o Single root (7]

Up to 2 roots

Allroots @

This search follows strong references only, as per the initial retention
setting for the heap dump.

Also follow soft,weak,phantom and finalizer references for this search 0
I Stop search at classes Io

If you have problems interpreting the shortest path to a GC root, you can search for additional
paths. Searching for all paths to GC roots is not recommended in general because it can produce
a large number of paths.

In contrast to the live memory views, the heap walker never shows unreferenced objects. However,
the heap walker may not only show strongly referenced objects. By default, the heap walker also
retains objects that are only referenced by soft references, but eliminates objects that are only
referenced by weak, phantom or finalizer references. Because soft references are not garbage
collected unless the heap is exhausted, they are included because otherwise you might not be
able to explain large heap usages. In the options dialog which is shown when you take a heap
snapshot, you can adjust this behavior.

@ Heap Snapshot Options X

Select recorded objects
Initially, the heap walker will show only those objects that have been

recorded in the dynamic memory view section.

Perform full GC in heap snapshot 0
Retain objects held by strong referencesonly

soft

Show Overhead Option
weak

phantom m Cancel

finalizer

Having weakly referenced objects in the heap walker may be interesting for debugging purposes.
If you want to remove weakly referenced objects later on, you can use the "Remove objects
retained by weak references" inspection.

203

© Classes Ml Allocations EIZ Biggest Objects K References o Time @ Inspections +

Current object set: 65,775 objects in 1,249 classes.

1 selection step, 5,572 kB shallow size

Available Inspections:

* Duplicate objects Description
Remove objects that are retained through a weak, soft or phantom reference.
[Collections & Arrays
This will only work for weak reference types that you have not removed when
P4 Reference & field analysis taking the heap snapshot.
(&’ Weak references Configuration

Weak reference type: soft references -
Select weakly referenced objects

Remove objects retained by weak references Status

B Stack references 0 Mot calculated 1:9) Calculate inspection and create a new object set

. Thread locals

@ Classes & Class loaders

When searching for paths to GC roots, the reference types that were selected to retain objects
in the heap walker options dialog are taken into account. In that way, the path to GC root search
can always explain why an object was retained in the heap walker. In the options dialog for the
path to GC root search you can widen the acceptable reference types to all weak references.

@ Path To GC Root Options X

Select options for the path to root analysis:

Calculating a single path to a garbage collector root is faster and often
sufficient for memory leak detection.

© Single roct @

Upto 2 roots

Allroots @)

This search follows strong references only, as per the initial retention
setting for the heap dump.

I Also follow soft,weak, phantom and finalizer references for this sear(hl (7]
Stop search at classes 0

Eliminating entire object sets

Until now we have only looked at single objects. Often you will have many objects of the same
type that are part of a memory leak. In many cases, the analysis of a single object will also be
valid for the other objects in the current object set. For the more general case where the objects
of interest are referenced in different ways, the "Merged dominating references" view will help
you to find out which references are responsible for holding the current object set on the heap.

204

© Classes Ml Allocations EIZ Biggest Objects K References o Time @ Inspections +

Current object set: 5,574 instances of java.util.HashMap$Node
2 selection steps, 178 kB shallow size, Calculate retained and deep sizes Use retained objects

Merged dominating references v || Objects to GC roots Use.. v @

m— 79% - 4,419 instances ()| OPJectsto GCreots a0 Map§Node]]
BN 760 - 4,246 instances | GC roots to objects il. HashMap
M 18% - 1,019 instances O 279 instances of java.utilLHashSet
W 17% - 999 instances (¥ 1 instance of bezier.BezierAnim
B 14% - 804 instances @Y 60 instances of java.lang.Module
I 3% - 170 instances O 7 instances of java.util.Collections$UnmodifiableMap
I
1 2% - 125 instances @1 GC root
% - 123 instances O class sun.font.TrueTypeFont
% - 121 instances (3 class sun.awt.ExtendedKeyCodes
1% - 102 instances 0 1 instance of sun.awt.windows.WToolkit
1% - 100 instances 0 1 instance of sun.awt.windows.WDesktopProperties
1% - 80 instances (Y 1 instance of com.sun.swing.internal.plaf basic.resources.basic
0% - 53 instances 0 1 instance of java.lang.ModuleLayer
0% - 49 instances O class java.security.Provider
0% - 45 instances (3 31 instances of java.security.Provider§Service
N% - 3R instances 4 rlass sun iawa?d lnons SurfacsTane

All references may be transitive 0

Each node in the dominating reference tree tells you how many objects in the current object set
will be eligible for garbage collection if you eliminate that reference. Objects that are referenced
by multiple garbage collector roots may not have any dominating incoming reference, so the
view may only help you with a fraction of the objects, or it may even be empty. In that case, you
have to use the merged incoming reference view and eliminate garbage collector roots one by
one.

205

E Configuration In Detail

E.1 Trouble Shooting Connection Problems

When a profiling session cannot be established, the first thing to do is to have a look at the
terminal output of the profiled application or application server. For application servers, the
stderr stream is often written to a log file. This may be a separate log file and not the main log
file of the application server. For example, the Websphere application server writes a
nati ve_stderr. | og file where only the stderr output is included. Depending on the content
of the stderr output, the search for the problem takes different directions:

Connection problems

If stderr contains" Wi ti ng for connection ...",theconfiguration of the profiled application
is ok. The problem might then be related to the following questions:

+ Did you forget to start the "Attach to remote JVM" session in the JProfiler GUI on your local
machine? Unless the profiling agent is configured to start up immediately with the "nowait"
option, it will wait until the JProfiler GUI connects before letting the VM continue to startup.

+ Is the host name or the IP address configured correctly in the session settings?

+ Did you configure a wrong communication port? The communication port has nothing to do
with HTTP or other standard port numbers and must not be the same as any port that is
already in use. For the profiled application, the communication port is defined as an option
to the profiling VM parameter. With the VM parameter - agent pat h: <path to jprofilerti
I'i brary>=port=25000, a port of 25000 would be used.

* Isthere afirewall between the local machine and the remote machine? There may be firewalls
for incoming as well as for outgoing connections or even firewalls on gateway machines in
the middle.

Port binding problems

If stderr contains an error message about not being able to bind a socket, the port is already in
use. In that case, check the following questions:

+ Didyou start the profiled application multiple times? Each profiled application needs a separate
communication port.

+ Are there any zombie java processes of previous profiling runs that are blocking the port?
+ Is there a different application that is using the communication port?

If there are no lines in stderr that are prefixed with JProfil er> and your application or
application server starts up normally, the - agent path: [path to jprofilerti library]
VM parameter has not been included in the Java call. You should find out which java call in your
startup script is actually executed and add the VM parameters there.

206

E.2 Scripts In JProfiler

JProfiler's built-in script editor allows you to enter custom logic in various places in the JProfiler
GUI, including custom probe configuration, split methods, heap walker filters and many more.

@ Settings Edit Search Code Help Edit X
XPEE P9 % O
= [z] =
Shaw Test
Copy Cut Pame Fnd Repace Help
;_:' Please enter an expression (no trailing semicolon) or a script (ends with a return statement)
‘?'m that consists of regular Java code. The following parameters are available:

- com.jprofiler.api.agent.ScriptContext scriptContext
- javax servlet.hitp. HitpServletRequest servietRequest

The expected return type is java.lang.String

Script:

lI This assumes that a guery parameter nam "action" is used
2 5tring action = servletReguest.getParameter("action”);

3 5tring uri = servletRequest.getRegquestURI();

4if (action '= null) [

5 return uri + "?action=" + actiomn;

Loalan L

The box above the edit area shows the available parameters of the script as well as its return
type. By invoking Help->Show Javadoc Overview from the menu you can get more information on

classes from the com j profil er. api . * packages.

A number of packages can be used without using fully-qualified class names. Those packages
are:

+ java.util.
+ java.io.*

You can put a number of import statements as the first lines in the text area in order to avoid
using fully qualified class names.

All scripts are passed an instance of com j profi | er. api . agent. Scri pt Cont ext that allows
you to save state between successive invocations of the script.

To get the maximum editor functionality, it is recommended to configure a JDK in the general
settings. By default, the JRE that JProfiler runs with is used. In that case, code completion does
not offer parameter names and Javadoc for classes in the JRE.

207

@ General Settings X

Ul Session Defaults Snapshots [DE Integrations Updates External Programs
Default Session (7]
Edit Default Session Settings
If you have modified the default session settings, you may wish to restore the initial settings.
Reset Default Session Settings
JREs For Launching Profiling Sessions (7]
Default JRE: | 11 [C:\Users\ingo'jdks'jbrsdk-11_0_13-b1731.16] - Configure JREs

DK For Code Editor (7]
© Currently Used JRE @)

Script types

Scripts can be expressions. An expression doesn't have a trailing semicolon and evaluates to the
required return type. For example,

obj ect.toString().contains("test")

would work as a filter script in the outgoing reference view of the heap walker.

Alternatively, a script consists of a series of Java statements with a return statement of the
required return type as the last statement:

i mport java.l ang. managenent . Managenent Fact ory;
return Managenent Fact ory. get Runti meMXBean() . get Upti ne();

The above example would work for a script telemetry. JProfiler automatically detects whether
you have entered an expression or a script.

If you want to reuse a script that you have entered previously, you can select it from the script

history. If you click on the & Show History tool bar button, all previously used scripts are shown.
Scripts are organized by script signature and the current script signature is selected by default.

Code completion

Pressing CTRL- Space brings up a popup with code completion proposals. Also, typing a dot (".")
shows this popup after a delay if no other character is typed. The delay is configurable in the
editor settings. While the popup is being displayed, you can continue to type or delete characters
with Backspace and the popup will be updated accordingly. "Camel-hump" completion is
supported. For example, typing NPE and hitting CTRL- Space will propose java. | ang.
Nul | Poi nt er Excepti on among other classes. If you accept a class that is not automatically
imported, the fully qualified name will be inserted.

208

1 This assumes that & ouerv param=ter named Maction® is used

2 5tring action = servletRequest.getParameter("action");

3 5tring uri = servletRequest.getReq @ getServletPath() String
tllr (action !=.nu11: { . . equestediessionId() String
= return uri + "?action=" + acti

6] else [equestURI () String
7 return uri; emotelser() String
8} getQueryString () String

athTranslated() String
athInfo() String
ethod () String

eader (3tring argl) String
getContextPath() String

The completion popup can suggest:

* O variables and script parameters. Script parameters are displayed in bold font.
packages, when typing an import statement

9 classes

@ fields, when the context is a class

* W methods, when the context is a class or the parameter list of a method

Parameters with classes that are neither contained in the configured session class path nor in
the configured JDK are marked as [unr esol ved] and are changed to the genericj ava. | ang.
Obj ect type. To be able to call methods on such parameters and get code completion for them,
add the missing JAR files to the class path in the application settings.

Problem analysis

The code that you enter is analyzed on the fly and checked for errors and warning conditions.
Errors are shown as red underlines in the editor and red stripes in the right gutter. Warnings
such as an unused variable declaration are shown as a yellow backgrounds in the editor and
yellow stripes in the gutter. Hovering the mouse over an error or warning in the editor as well
as hovering the mouse over a stripe in the gutter area displays the error or warning message.

The status indicator at the top of the right gutter is green if there are no warnings or errors in
the code, yellow if there are warnings and red if errors have been found. You can configure the
threshold for problem analysis in the editor settings.

209

@ Java Editor Settings ®

Code Completion Popup Setting:
"4 Auto-import classes during code completion
Auto-popup code completion after dot
Delay: 1,000 ¥ ms

Popup height: 10 | ¥ | entries

Display Code Problems
Nene Errors only @ @ Errors and Warnings @

JDK For Code Editor

The runtime libraries of the configured JDK will be used for code completion and script compilation.You
can configure a default DK in the general settings.

© Default JDK
Override default JDK with

If the gutter icon in the top right corner of the dialog is green, your script is going to compile
unless you have disabled error analysis in the editor settings. In some situations, you might want
to try the actual compilation. Choosing Code->Test Compile from the menu will compile the script
and display any errors in a separate dialog. Saving your script with the OK button will not test
the syntactic correctness of the script unless the script is used right away.

Key bindings

Pressing SHI FT- F1 opens the browser at the Javadoc page that describes the element at the
cursor position. Javadoc for the Java runtime library can only be displayed if a JDK with a valid
Javadoc location is configured for the code editor in the general settings.

All key bindings in the Java code editor are configurable. Choose Settings->Key Map from the
window menu to display the key map editor. Key bindings are saved in the file $HOWE .
jprofiler13/editor_keynmap. xm . This file only exists if the default key map has been copied.
When migrating a JProfiler installation to a different computer, you can copy this file to preserve
your key bindings.

210

F Command Line Reference

F.1 Command Line Executables For Profiling

JProfiler includes a number of command line tools for setting up the profiling agent and controlling
profiling actions from the command line.

Loading the profiling agent into a running JVM

With the command line utility bi n/ j penabl e, you can load the profiling agent into any running
JVM with a version of 6 or higher. With command line arguments you can automate the process
so that it requires no user input. The supported arguments are:

Usage: jpenable [options]

jpenabl e starts the profiling agent in a selected |ocal JVM so you can connect
toit froma different conputer. If the JProfiler GU is running locally, you
can attach directly fromthe JProfiler GU instead of running this executable.

* |f no argument is given, jpenable attenpts to discover |ocal JVMs that
are not being profiled yet and asks for all required i nput on the command
l'i ne.

* with the follow ng argunents you can partially or conpletely supply all
user input on the command |ine:

-d --pid=<Pl D> The PID of the JVMthat should be profiled
-n --noi nput Do not ask for user input under any circunstances
-h --help Show t his hel p

- - opti ons=<OPT> Debuggi ng options passed to the agent

QU node: (default)

-g --qgui The JProfiler GU wll be used to attach to the JVM

-p --port=<nnnnn> The port on which the profiling agent should listen for
a connection fromthe JProfiler GU

O fline node:

-o --offline The JVMwi Il be profiled in offline node
-c --config=<PATH> Path to the config file with the profiling settings
-i --id=<ID> ID of the session in the config file. Not required, if

the config file holds only a single session.

Note that the JVM has to be running as the same user as jpenabl e, otherw se
JProfiler cannot connect to it.

An exception are Wndows services running under the |ocal system account if you
list theminteractively with jpenable.

Saving HPROF snapshots

If you just need a heap snapshot, consider using the bi n/ j pdunp command line tool that saves
an HPROF snapshot [p. 192] without loading the profiling agent into the VM:

211

Usage: jpdunp [options]

j pdunp saves an HPROF heap dunp froma locally running JVMto a file.
The HPROF file can then be opened in the JProfiler GU.

* if no argument is given, jpdunp lists all locally running JVMs.
* with the followi ng argunents you can partially or conpletely supply all
user input on the command |ine:

-p --pid=<Pl D> The PID of the JVM whose heap shoul d be dunped
Wth a specified PID, no further questions will be asked.
-a --all Save all objects. If not specified, only live objects are
dunped
-f --file=<PATH> Path to the dunp file. If not specified, the dunp file
<VM nane>. hprof is witten in the current directory.
If the file already exists, a nunber is appended.
-h --help Show t his hel p

Note that the JVM has to be running as the sane user as jpdunp, otherw se
JProfiler cannot connect to it.

An exception are Wndows services running under the |ocal system account if you
list theminteractively with jpdunp.

This has a lower overhead than loading the profiling agent and saving a JProfiler heap snapshot.
Also, because the profiling agent can never be unloaded, this method is suitable for JVMs running
in production.

Controlling the profiling agent

When you start the bi n/ j pcontr ol | er executable without arguments, it attempts to connect
to a profiled JVM on the local machine. If multiple profiled JVMs were discovered, you can select
one from a list. Because the discovery mechanism uses the attach API of the Oracle JVM, this
only works for Oracle JVMs starting with Java 6.

j pcontrol I er can only connect to JVMs where the profiling settings have been set, so it does
not work if the JVM was started with the "nowait" option for the - agent pat h VM parameter.
That option is set when choosing the Startup immediately, connect later with the JProfiler GUI radio
button on the "Startup mode" screen of an integration wizard and no JProfiler GUI has yet
connected to the agent. Using j penabl e without the --of f1 i ne argument also requires a
connection from the JProfiler GUI before j pcontrol | er can connect to the profiled process.

If you want to connect to a process on a remote computer, or if the JVM is not a HotSpot JVM
with a version of 6 or higher, you have to pass the VM parameter - Dj prof i | er. j mxSer ver Port =
[port] to the profiled JVM. An MBean server will be published on that port and you can specify
the chosen port as an argument to j pcontrol | er. With the additional VM parameter
-Djprofiler.jnmPasswordFil e=[file] youcan specify a properties file with key-value pairs
of the form user =passwor d to set up authentication. Note that these VM parameters are
overridden by the com sun. nanagenent . j nxr enpt e. port VM parameter.

With the explicit setup of the JMX server, you can use the command line controller to connect
to a remote server by invoking j pcontrol | er host: port. If the remote computer is only
reachable via an IP address, you have to add - Dj ava. rmi . server. host nane=[| P addr ess]
as a VM parameter to the remote VM.

By default, j pcontrol | er is an interactive command line utility, but you can also automate
profiling sessions with it without the need for manual input. An automated invocation would
pass[pid | host:port] toselectaprofiled)VM aswellasthe--non-interacti ve argument.
In addition, a list of commands is read, either from stdin, or from a command file that is specified

212

with the - - conmand- f i | e argument. Each command starts on a new line, lines that are blank
or start with a "#" comment character are ignored.

Commands for this non-interactive mode are the same as the method names in the JProfiler

MBean ", They require the same number of parameters, separated by spaces. String must be
surrounded by double quotes if they contain spaces. In addition, asl eep <seconds>command
is provided that pauses for a number of seconds. This allows you to start recording, wait for
some time and then save a snapshot to disk.

The supported arguments of jpcontroller are shown below:

Usage: jpcontroller [options] [host:port | pid]

* if no argunment is given, jpcontroller attenpts to discover |ocal JVMs that
are being profiled

* if a single nunmber is specified, jpcontroller attenpts to connect to the JVM
with process ID [pid]. If that JVMis not profiled, jpcontroller cannot
connect. In that case, use the jpenable utility first.

* otherwi se, jpcontroller connects to "host:port", where port is the value
that has been specified in the VM paraneter -Djprofiler.jnmxServerPort=[port]
for the profiled JVM

The follow ng options are avail abl e:
-n --non-interactive Run an autonat ed session where a |list of conmands
is read fromstdin.
-f --command-fil e=<PATH> Read commands froma file instead of stdin. Only
applicable together with --non-interactive.

Syntax for non-interactive conmands:
See the javadoc for RenpteControllerMBean (https://bit.ly/2D nDN5) for a
list of operations. Paraneters are separated by spaces and nust be quoted if
they contain spaces. For exanpl e:

addBookmark "Hello world"

start CPURecordi ng true

sl eep 10

st opCPURecor di ng

saveSnapshot /path/to/ snapshot.jps

The sl eep <seconds> conmmand pauses for the specified nunber of seconds.
Enpty lines and lines starting with # are ignored.

M https://www.ej-technologies.com/resources/jprofiler/help/api/javadoc/com/jprofiler/api/agent/mbean/
RemoteControllerMBean.html

213

https://www.ej-technologies.com/resources/jprofiler/help/api/javadoc/com/jprofiler/api/agent/mbean/RemoteControllerMBean.html
https://www.ej-technologies.com/resources/jprofiler/help/api/javadoc/com/jprofiler/api/agent/mbean/RemoteControllerMBean.html

F.2 Command Line Executables For Working With Snapshots

When using offline profiling [p. 119] to save snapshots programmatically, it may also be necessary
to programmatically extract data or reports from those snapshots. JProfiler offers two separate
command line executables, one for exporting views from a snapshot and one for comparing
snapshots.

Exporting views from a snapshot

The executable bi n/ j pexport exports view data to various formats. If you execute it with the
- hel p option, you will getinformation on the available view names and view options. For reasons
of conciseness, duplicate help texts in the output below have been omitted.

Usage: jpexport "snapshot file" [gl obal options]
"vi ew nane" [options] "output file"
"view nane" [options] "output file"

where "snapshot file" is a snapshot file with one of the extensions:
.jps, .hprof, .hpz, .phd
"view name" is one of the view nanes |isted bel ow
[options] is a list of options in the format -option=val ue
"output file" is the output file for the export

d obal options:

- obf uscat or =none| pr oguar d| yguard
Deobf uscate for the sel ected obfuscator. Defaults to "none", for other
val ues the mappingFile option has to be specified.

- mappi ngfile=<fil e>
The mapping file for the sel ected obfuscator.

- out put di r =<out put di rectory>
Base directory to be used when the output file for a viewis a
relative file.

-ignoreerrors=true|fal se
Ignore errors that occur when options for a view cannot be set and
continue with the next view The default value is "false", i.e. the
export is term nated, when the first error occurs.

- csvsepar at or =<separ at or character>
The field separator character for the CSV exports. Defaults to ',

Avai | abl e vi ew nanes and opti ons:
* Tel emetryHeap, Tel enetryObjects, Tel enetryThroughput, Tel emetryGC,
Tel enetryd asses, Tel enetryThreads, Tel enetryCPU
opti ons:
-format=htm | csv
Det erm nes the output format of the exported file. If not present, the
export format will be determined fromthe extension of the output
file.
-m nw dt h=<nunber of pixel s>
M ni mum wi dt h of the graph in pixels. The default value is 800.
- m nhei ght =<nunber of pixel s>
M ni mum hei ght of the graph in pixels. The default value is 600.

* Bookmar ks, ThreadMonitor, CurrentMnitorUsage, MonitorUsageH story
opti ons:
-format =htm | csv

* All Objects
opti ons:
-format=htm | csv
-viewfilters=<comma-separated |ist>
Sets view filters for the export. If you set view filters, only the
speci fi ed packages and their sub-packages will be displayed by the

214

exported view.
-viewfiltermde=startsw th|endsw th|contains|equal s
Sets the view filter node. The default value is contains.
-viewfilteropti ons=casesensitive
Bool ean options for the view filter. By default, no options are set.
- aggr egat i on=cl ass| package| conponent
Sel ects the aggregation |level for the export. The default value is
cl asses.
- expandpackages=true| f al se
Expand package nodes in the package aggregation |evel to show
contai ned cl asses. The default value is "false". Has no effect for
ot her aggregation levels and with csv output fornmat.

* Recor dedObj ect s
like Al Objects, but with additional options:
-liveness=live|gc|all

Sel ects the |liveness node for the export, i.e. whether to display live
obj ects, garbage col |l ected objects or both. The default value is live
obj ect s.

* AllocationTree
opti ons:

-format =ht m | xm

-viewfilters=<conma-separated |ist>

-viewfilternmde=startsw th|endsw th|contains|equals

-viewfilteropti ons=casesensitive

- aggr egat i on=net hod| cl ass| package| conponent
Sel ects the aggregation |level for the export. The default value is
nmet hods.

-w dt h=<nunber of pixel s>
M ni mum wi dth of the tree map in pixels. The default value is 800.

- hei ght =<nunber of pixel s>
M ni mrum hei ght of the tree map in pixels. The default value is 600.

-class=<fully qualified class nanme>
Specifies the class for which the allocation data shoul d be
calculated. If enpty, allocations of all classes will be shown. Cannot
be used together with the package opti on.

- package=<ful ly qualified package nanme>
Speci fies the package for which the allocation data should be
calculated. If enpty, allocations of all packages will be shown.
Cannot be used together with the class option.

-liveness=live|gc|all

* Al ocati onHot Spot s
opti ons:

-format =ht m | csv| xm

-viewfilters=<conma-separated |ist>

-viewfiltermde=startsw th|endsw th|contains|equals

-viewfilteropti ons=casesensitive

- aggr egat i on=net hod| cl ass| package| conponent

-class=<fully qualified class nanme>

- package=<ful ly qualified package name>

-liveness=live|gc|all

-unprofil edcl asses=separ at el y| addt ocal | i ng
Selects if unprofiled classes should be shown separately or be added
to the calling class. The default value is to show unprofiled classes
separatel y.

-val uesunmat i on=sel f| t ot al
Determ nes how the tines for hot spots are calcul ated. Defaults to
"sel f".

- expandbackt races=true| f al se
Expand backtraces in HTM. or XM. format. The default value is "fal se".

* (Cl assTracker

215

|'i ke Tel enetryHeap, but with additional options:
-cl ass
The tracked class. If missing, the first tracked class is exported.

* Call Tree
opti ons:
-format =ht m | xm
-viewfilters=<conma-separated |ist>
-viewfilternpde=startswi th|endsw th|contains|equal s
-viewfilteropti ons=casesensitive
- aggr egat i on=net hod| cl ass| package| conponent
-wi dt h=<nunber of pixel s>
- hei ght =<nunber of pixel s>
-t hr eadgr oup=<nane of thread group>
Selects the thread group for the export. If you specify thread as well
, the thread will only be searched in this thread group, otherw se the
entire thread group will be shown.
-t hread=<nanme of thread>
Sel ects the thread for the export. By default, the call tree is nerged
for all threads.
-threadstatus=al | | runni ng| wai ti ng| bl ocki ng| neti o
Sel ects the thread status for the export. The default value is
"runni ng".

* Hot Spot s
opti ons:
-format =ht m | csv| xm
-viewfilters=<conma-separated |ist>
-viewfilternpde=startswi th|endsw th|contains|equal s
-viewfilteropti ons=casesensitive
- aggr egat i on=net hod| cl ass| package| conmponent
-t hr eadgr oup=<nane of thread group>
-t hr ead=<name of thread>
-t hreadst atus=al | | runni ng| wai ti ng| bl ocki ng| neti o
- expandbackt races=true| f al se
-unprofil edcl asses=separ at el y| addt ocal | i ng
-val uesummat i on=sel f | t ot al

* MethodStatistics
opti ons:
-format =htm | csv
-threadstatus=al | | runni ng| wai ti ng| bl ocki ng| neti o
-viewfilters=<conma-separated |ist>
-viewfiltermde=startsw th|endsw th|contains|equals
-viewfilteroptions=casesensitive

* Conpl exity
opti ons:

-format=htm | csv| properties

-fit=best|constant|linear|quadratic| cubic|exponential]|logarithmc|n_log_n
The fit that should be exported. The default value is "best". No curve
fitting data is exported to CSV.

- met hod=<net hod nanme>
The nethod nane for which the conplexity graph should be exported. If
not given, the first method will be exported. Otherw se, the first
net hod nane that starts with the given text will be exported.

-w dt h=<nunber of pixel s>

- hei ght =<nunber of pixel s>

* ThreadHi story
l'i ke Tel enetryHeap, but w th changed opti ons:
-format =ht m

* MonitorUsageStati stics

216

*

opti ons:
-format=htm | csv
-type=noni t or s| t hr eads| cl asses
Sel ects the entity for which the nonitor statistics should be
cal cul ated. The default value is "nonitors"

Pr obeTi meLi ne
i ke ThreadHi story, but with additional options:
- pr obei d=<i d>
The internal ID of the probe that should be exported. Run "jpexport
--listProbes" to list all available built-in probes and for an
expl anati on of custom probe nanes.

Pr obeCont r ol Obj ect s
opti ons:
- pr obei d=<i d>
-format=htm | csv

ProbeCal | Tr ee
opti ons:
- pr obei d=<i d>
-format=ht m | xm
-viewfilters=<conmma-separated |ist>
-viewfiltermde=startsw th|endsw th|contains|equal s|w | dcard|regex
-viewfilteropti ons=excl ude, casesensitive
- aggr egat i on=net hod| cl ass| package| conponent
-w dt h=<nunber of pixel s>
- hei ght =<nunber of pi xel s>
-t hr eadgr oup=<nane of thread group>
-t hr ead=<name of thread>
-t hreadstatus=al | | runni ng| wai ti ng| bl ocki ng| neti o
Selects the thread status for the export. The default value is "all"

Pr obeHot Spot s

opti ons:
- pr obei d=<i d>
-format =htm | csv| xn
-viewfilters=<comma-separated |ist>
-viewfilternmde=startsw th|endsw th|contains|equal s|w | dcard|regex
-viewfilteropti ons=excl ude, casesensitive
- aggr egat i on=net hod| cl ass| package| conponent
-t hr eadgr oup=<nane of thread group>
-t hread=<nanme of thread>
-t hreadstatus=al | | runni ng| wai ti ng| bl ocki ng| neti o
- expandbackt races=t rue| fal se

ProbeTel enetry
l'i ke Tel enetryHeap, but with additional options:
- pr obei d=<i d>
-tel emetrygroup
Sets the one-based i ndex of the telenetry group that should be
exported. This refers to the entries that you see in the drop-down
i st above the probe telenetry view The default value is "1".

ProbeEvent s

opti ons:
- pr obei d=<i d>
-format =ht m | csv| xni

ProbeTr acker

l'i ke Tel enetryHeap, but with additional options:
- pr obei d=<i d>
- i ndex=<nunber >

217

Sets the zero-based i ndex of the drop-down |ist that contains the
tracked el enents. The default value is O.

Some examples for using the export executable are:

j pexport test.jps Tel emetryHeap heap. ht m
j pexport test.jps Recordedbj ects -aggregati on=package - expandpackages=true objects. htnl

j pexport test.jps -ignoreerrors=true -outputdir=/tnp/export
Recor dedObj ect s obj ects. csv
Al |l ocationTree -class=java.lang. String allocations. xm

Comparing snapshots

The executable bi n/ j pconpar e compares different snapshots [p. 124] and exports them to
HTML or a machine-readable format. Its - hel p output is reproduced below, again without any
duplicate explanations.

Usage: jpconpare "snapshot file"[,"snapshot file",...] [gl obal options]
"conpari son nane" [options] "output file"
"conpari son nane" [options] "output file"

where "snapshot file" is a snapshot file with one of the extensions:
.jps, .hprof, .hpz, .phd
"conparison nane" is one of the conparison nanes |listed bel ow
[options] is a list of options in the format -option=val ue
"output file" is the output file for the export

d obal options:

- out put di r =<out put di rectory>
Base directory to be used when the output file for a conparison is a
relative file.

-ignoreerrors=true|fal se
Ignore errors that occur when options for a conpari son cannot be set
and continue with the next conparison. The default value is "fal se",
i.e. the export is termnated, when the first error occurs.

- csvsepar at or =<separ at or charact er >
The field separator character for the CSV exports. Defaults to ',"'.

-sortbyti nme=fal se|true
Sort the specified snapshot files by nodification time. The default
value is fal se.

-listfile=<fil ename>
Read a file that contains the paths of the snapshot files, one
snapshot file per line.

Avai | abl e conpari son nanes and options:
* (bj ects
opti ons:
-format=htnm | csv
Determ nes the output format of the exported file. If not present, the
export format will be determined fromthe extension of the output
file.
-viewfilters=<conma-separated |ist>
Sets view filters for the export. If you set viewfilters, only the
speci fi ed packages and their sub-packages will be displayed by the
exported view.
-viewfiltermde=startsw th|endsw th|contains|equal s
Sets the view filter node. The default value is contains.
-viewfilteropti ons=casesensitive

218

*

*

Bool ean options for the view filter. By default, no options are set.
- obj ects=al | | r ecor ded| heapwal ker
Conpare all objects (JVMIl only) or recorded objects, or objects in
the heap wal ker. The default is all objects for .jps files and
heapwal ker for HPROF files.
- aggr egat i on=cl ass| package| conponent
Sel ects the aggregation |level for the export. The default value is

cl asses.

-liveness=live|gc|all
Sel ects the liveness node for the export, i.e. whether to display live
obj ects, garbage collected objects or both. The default value is live
obj ect s.

Al | ocat i onHot Spot s
opti ons:

-format=htm | csv

-viewfilters=<conma-separated |ist>

-viewfilternode=startswi th|endsw th|contains|equal s

-viewfilteroptions=casesensitive

-cl asssel ection
Cal cul ate the conparison for a specific class or package. Specify a
package with a wildcard, like 'java.aw.*".

- aggr egat i on=ret hod| cl ass| package| conponent
Sel ects the aggregation |level for the export. The default value is
nmet hods.

-liveness=live|gc|all

-unprofil edcl asses=separ at el y| addt ocal | i ng
Sel ects if unprofiled classes should be shown separately or be added
to the calling class. The default value is to show unprofil ed cl asses
separately.

-val uesunmat i on=sel f | t ot al
Det ermi nes how the tinmes for hot spots are cal cul ated. Defaults to
"sel f".

Al | ocationTree

opti ons:
-format =htm | xm
-viewfilters=<comma-separated |ist>
-viewfiltermde=startsw th|endsw th|contains|equals
-viewfilteropti ons=casesensitive
-cl asssel ecti on
- aggr egat i on=net hod| cl ass| package| conponent
-liveness=live|gc|all

* Hot Spot s

opti ons:

-format =htm | csv

-viewfilters=<conma-separated |ist>

-viewfilternpde=startswi th|endsw th|contains|equal s

-viewfilteropti ons=casesensitive

-firstthreadsel ection
Cal cul ate the conparison for a specific thread or thread group.
Specify thread groups like 'group.*' and threads in specific thread
groups like 'group.thread'. Escape dots in thread names wth
backsl| ashes.

- secondt hr eadsel ecti on
Cal cul ate the conparison for a specific thread or thread group. Only
available if '"firstthreadselection' is set. |If enpty, the same val ue
as for 'firstthreadselection' will be used. Specify thread groups |ike
"group.*' and threads in specific thread groups |like 'group.thread .
Escape dots in thread names with backsl ashes.

-threadstatus=al | | runni ng| wai ti ng| bl ocki ng| neti o
Selects the thread status for the export. The default value is
"runni ng".

219

- aggr egat i on=net hod| cl ass| package| conponent

-di fferencecal cul ati on=total | aver age
Sel ects the difference cal cul ation method for call times. The defaul t
value is total tines.

-unprofil edcl asses=separ at el y| addt ocal | i ng

-val uesunmat i on=sel f| t ot al

Cal | Tree

opti ons:
-format =ht m | xm
-viewfilters=<comma-separated |ist>
-viewfilternpde=startswi th|endsw th|contains|equal s
-viewfilteropti ons=casesensitive
-firstthreadsel ection
- secondt hr eadsel ecti on
-threadstatus=al | | runni ng| wai ti ng| bl ocki ng| neti o
- aggr egat i on=net hod| cl ass| package| conponent
-di fferencecal cul ati on=t ot al | aver age

Tel enet r yHeap
opti ons:
-format=htm | csv
-m nw dt h=<nunber of pixel s>
M ni mum wi dt h of the graph in pixels. The default value is 800.
- m nhei ght =<nunber of pi xel s>
M ni mum hei ght of the graph in pixels. The default value is 600.
-val uet ype=curr ent | maxi nunf bookmar k
Type of the value that is calculated for each snapshot. Default is the
current val ue.
- booknar knare
If valuetype is set to 'booknark', the nane of the bookmark for which
t he val ue shoul d be cal cul at ed.
- measur ement s=maxi mum fr ee, used
Measurenments that are shown in the conparison graph. Concatenate
mul ti ple values with commas. The default value is 'used' .
- menor yt ype=heap| nonheap
Type of the nmenory that should be anal yzed. Default is 'heap'.

- menor ypool
If a special menory pool should be analyzed, its name can be specified
with this paraneter. The default is enpty, i.e. no special nmenory
pool .

Tel enet ryObj ect s
opti ons:
-format=htm | csv
-m nwi dt h=<nunber of pixel s>
- m nhei ght =<nunber of pi xel s>
-val uet ype=current | maxi munj bookmar k
- booknar kname
- measur enent s=t ot al , nonarrays, arrays
Measurenents that are shown in the conparison graph. Concatenate
mul ti ple values with commas. The default value is '"total"'.

Tel enetryd asses
like Tel emetryCbjects, but with changed options:
-measurenents=total ,filtered,unfiltered

Tel enet ryThr eads
l'i ke Tel enetryQObj ects, but with changed options:
- measur enent s=t ot al , runnabl e, bl ocked, neti o, wai ti ng

Pr obeHot Spot s

opti ons:
-format =htm | csv

220

-viewfilters=<comma-separated |ist>

-viewfilternmde=startsw th|endsw th|contains|equal s|w | dcard|regex

-viewfilteropti ons=excl ude, casesensitive

-firstthreadsel ection

- secondt hr eadsel ecti on

-t hreadst at us=al | | runni ng| wai ti ng| bl ocki ng| neti o

- aggr egat i on=net hod| cl ass| package| conponent

-di fferencecal cul ati on=total | aver age

- pr obei d=<i d>
The internal ID of the probe that should be exported. Run "jpexport
--listProbes" to list all available built-in probes and for an
expl anati on of custom probe nanes.

* ProbeCal | Tree
| i ke ProbeHot Spots, but with changed options:
-format=htm | xm

* ProbeTel emetry
i ke Tel emetryObjects, but with additional or changed options:

- measur ement s
The one-based indices of the nmeasurenents in the tel emetry group that
are shown in the conmpari son graph. Concatenate nultiple values with
comms, like "1,2". The default value is to show all neasurenents.

- pr obei d=<i d>

-tel emetrygroup
Sets the one-based i ndex of the telenetry group that should be
exported. This refers to the entries that you see in the drop-down
i st above the probe telenetry view The default value is "1".

Automatic output formats

Most views and comparisons support multiple output formats. By default, the output format is
deduced from the extension of the output file:

.html
The view or comparison is exported as an HTML file. A directory named j prof i | er _i nages
will be created that contains images used in the HTML page.

.CSV
The data is exported as CSV data where the first line contains the column names.

When using Microsoft Excel, CSV is not a stable format. Microsoft Excel on Windows takes the
separator character from the regional settings. JProfiler uses a semicolon as the separator in
locales that use a comma as a decimal separator and a comma in locales that use a dot as a
decimal separator. If you need to override the CSV separator character you can do so by setting
the global csvsepar at or option.

xml
The data is exported as XML. The data format is self-descriptive.

If you would like to use different extensions, you can use the f or mat option to override the
choice of the output format.

Analyzing snapshots

If the generated snapshots have heap dumps in them, you can use the bi n/ j panal yze executable
to prepare the heap dump analysis in advance [p. 79]. Opening the snapshot in the JProfiler GUI
will then be very fast. The usage information of the tool is shown below:

221

Usage: jpanalyze [options] "snapshot file" ["snapshot file" ...]

where "snapshot file" is a snapshot file with one of the extensions:
.jps, .hprof, .hpz, .phd
[options] is a list of options in the format -option=val ue

Opt i ons:

- obf uscat or =none| pr oguar d| yguard
Deobf uscate for the selected obfuscator. Defaults to "none", for other
val ues the mappingFile option has to be specified

- mappi ngfile=<fil e>
The mapping file for the sel ected obfuscator

-renmoveunr ef erenced=t rue| f al se
If unreferenced or weakly referenced objects shoul d be renpved

-retai ned=true| fal se
Cal cul ate retained sizes (biggest objects). renpveunreferenced will be
set to true

-retai nsoft=true|fal se
I f unreferenced objects are renoved, specifies if soft references
shoul d be retained.

-ret ai nweak=true| fal se
I f unreferenced objects are renopved, specifies if weak references
shoul d be retained.

-ret ai nphant omet rue| f al se
If unreferenced objects are renoved, specifies if phantom references
shoul d be ret ai ned.

-retainfinalizer=true|false
If unreferenced objects are renopved, specifies if finalizer references
shoul d be ret ai ned.

Ther emoveUnr ef er enced, ther et ai ned and allther et ai n* command line options correspond
to the options in the heap walker options dialog.

222

F.3 Gradle Tasks

JProfiler supports profiling from Gradle with special tasks. In addition. JProfiler offers a number
of command line executables for working with snapshots [p. 214] that have corresponding Gradle
tasks.

Using Gradle tasks

To make the JProfiler Gradle tasks available in a Gradle build file, you can use the pl ugi ns block

pl ugi ns {
id 'comjprofiler' version 'XY.Z
}

If you do not want to use the Gradle plugin repository for this purpose, the Gradle plugin is
distributed in the file bi n/ gradl e. j ar.

Next, you have to tell the JProfiler Gradle plugin where JProfiler is installed.

jprofiler {
instalIDir = file('/path/to/jprofiler/hone')
}

Profiling from Gradle

With tasks of type com j profiler.gradl e. JavaProfil e you can profile any Java process.
This class extends Gradle's built-in JavaExec, so you can use the same arguments for configuring
the process. For profiling tests, use tasks of type com j profil er. gradl e. Test Profi | e that
extend the Gradle Test task.

Without any further configuration, both tasks start an interactive profiling session where the
profiling agent waits on the default port 8849 for a connection from the JProfiler GUI. For offline
profiling, you have to add a couple of attributes that are shown in the table below.

Attribute Description Required
offline Whether the profiling run should be in offline mode. No, of f | i neand
nowai t cannot
nowait Whether profiling should start immediately or whether both bet r ue.
the profiled JVM should wait for a connection from the
JProfiler GUI.
sessionld Defines the session ID from which profiling settings should Required if

be taken. Has no effect if neither nowai t nor offline are
set because in that case the profiling session is selected |+ of flineisset

in the GUI. * nowait is set
fora1.5)VM
configFile Defines the config file from which the profiling settings No
should be read.
port Defines the port number on which the profiling agent No

should listen for a connection from the JProfiler GUI. This
must be the same as the port configured in the remote

223

Attribute Description Required

session configuration. If not set or zero, the default port
(8849) will be used. Has no effectif of f | i ne is set because
in that case there is no connection from the GUI.

debugOptions | If you want to pass any additional library parameters for No
tuning or debugging purposes, you can do that with this
attribute.

An example for profiling a Java class with a main method that is compiled by the containing
project is given below:

task run(type: comjprofiler.gradle.JavaProfile) {
mai nCl ass = ' com nmycor p. MyMai nd ass'
cl asspath sourceSets. main.runti med asspath
offline = true
sessionld = 80
configFile = file('path/to/jprofiler_config.xm")

You can see a runnable example of this task in the api / sanpl es/ of f|1 i ne sample project.
Unlike the standard JavaExec task, the JavaPr of i | e task can also be started in the background
by calling createProcess() on it. See the api/sanpl es/ nhean sample project for a
demonstration of this feature.

If you need the VM parameter that is required for profiling, the com j profiler. gradl e.
Set Agent pat hProperty task will assign it to a property whose name is configured with the
propert yNanme attribute. Applying the JProfiler plugin automatically adds a task of this type
named set Agent Pat hPr operty to your project. For getting the VM parameter that would be
used in the previous example, you can simply add

set Agent Pat hProperty {
propertyNane = 'profilingVnParaneter'
offline = true
sessionld = 80
configFile = file('path/to/jprofiler_config.xm")

to your project and add a dependency to set Agent Pat hPr oper ty to some other task. Then
you can use the project property prof i | i ngVnPar anet er in the execution phase of that task.
When assigning the property to other task properties, surround its usage with adoFirst {..
. } code block in order to make sure that you are in the Gradle execution phase and not in the
configuration phase.

Exporting data from snapshots

Thecom jprofiler.gradl e. Export task can be used to export views from a saved snapshot
and replicates the arguments of the bi n/ j pexport command line tool [p. 214]. It supports the
following attributes:

224

Attribute Description Required
snapshotFile | The path to the snapshot file. This must be a file with a . j ps Yes
extension.
ignoreErrors | Ignore errors that occur when options for a view cannot be No
set and continue with the next view. The default value is
f al se, meaning that the export is terminated when the first
error occurs.
csvSeparator | The field separator character for the CSV exports. Defaults No
to ll,ll.
obfuscator Deobfuscate class and method names for the selected No
obfuscator. Defaults to "none", for other values the
mappi ngFi | e option has to be specified. One of none,
proguard or yguar d.
mappingFile | The mapping file for the selected obfuscator. May only be Only if
set if the obf uscat or attribute is specified. obf uscat or is
specified

On the export task, you call the vi ews method and pass a closure to it in which you call
viewnane, file[, options]) oneormultipletimes. Each calltovi ewproduces one output
file. The nane argument is the view name. For a list of available view names, please see the help
page on the j pexport command line executable [p. 214]. The argumentfi | e is the output file,
either an absolute file or a file relative to the project. Finally, the optional opt i ons argument is
a map with the export options for the selected view.

An example for using the export task is:

task export(
snapshot
views {

type: comjprofiler.gradle.Export) {
File = file('snapshot.jps')

view'Call Tree', 'callTree.htnl")
vi ew' Hot Spots', 'hotSpots.htm ',

Comparing sn

[threadStatus: 'all', expandBacktraces: 'true'])

apshots

Like the bi n/ j pconpar e command line tool [p. 214], the com j profi |l er. gradl e. Conpare
task can compare two or more snapshots. It attributes are:

Attribute Description Required
snapshotFiles | The snapshot files that should be compared. You can pass any Yes
I t er abl e containing objects that gradle resolves to file collections.
sortByTime If set to t r ue all supplied snapshots files are sorted by their file No
modification time, otherwise they are compared in the order they
were specified in the snapshot Fi | es attribute.

225

Attribute Description Required

ignoreErrors | Ignore errors that occur when options for a comparison cannot No
be set and continue with the next comparison. The default value
is f al se, meaning the export is terminated when the first error
occurs.

Just like exported views are defined for the Export task, the Conpar e task has a conpari sons
method where nested callsto conpari son(nanme, file[, options]) definethecomparisons
that should be performed. The list of available comparison names is available on the help page
of the j pconpar e command line executable [p. 214].

An example for using the compare task is:

task conpare(type: comjprofiler.gradle. Conpare) {
snapshotFiles = files('snapshotl.jps', 'snapshot2.jps')
conparisons {
conparison('Call Tree', 'callTree.htm ")
conpari son(' Hot Spots', 'hot Spots.csv',
[val ueSummation: 'total', format: 'csv'])

or, if you want to create a telemetry comparison for multiple snapshots:

task conpare(type: comjprofiler.gradle.Conpare) {
snapshotFiles = fileTree(dir: 'snapshots', include: '*.jps')
sortByTi me = true
conpari sons {
conparison(' Tel enetryHeap', 'heap.htm', [val ueType: 'nmaxinmuni])
conpari son(' ProbeTel emetry', 'jdbc.html', [probeld: 'JdbcProbe'])

Analyzing heap snapshots

The gradle task com j profil er. gradl e. Anal yze has the same functionality as the bi n/
j panal yze command line tool [p. 214].

The task has asnapshot Fi | es attribute like the Conpar e task to specify the processed snapshots
and obfuscat or and mappi ngfil e attributes like the Export task for deobfuscation. The
attributes renmoveUnr ef er enced, retainSoft, ret ai nWak, r et ai nPhant om
retainFinalizer andretai ned correspond the arguments of the command line tool.

An example for using the Anal yze task is given below:

task anal yze(type: comjprofiler.gradle.Analyze) {

snapshotFiles = fileTree(dir: 'snapshots', include: '*.jps')
retai nWweak = true
obfuscator = 'proguard'

mappi ngFile = file(' obfuscation.txt")

226

F.4 Ant Tasks

The Ant'"” tasks provided by JProfiler are very similar to the Gradle tasks. This chapter highlights
the differences to the Gradle tasks and shows examples for each Ant task.

All Ant tasks are contained in the archive bi n/ ant . j ar . In order to make a task available to Ant,
you must first insert a t askdef element that tells Ant where to find the task definition. All
examples below include that taskdef. It must occur only once per build file and can appear
anywhere on the level below the project element.

Itis not possible to copy the ant . j ar archive to thel i b folder of your Ant distribution, you have
to reference a full installation of JProfiler in the task definition.

Profiling from Ant

The com jprofiler.ant.Profil eTask is derived from the built-in Java task and supports
all its attributes and nested elements. The additional attributes are the same as for the
Profi | eJava Gradle task [p. 223]. Ant attributes are case-insensitive and usually written in lower
case.

<t askdef nanme="profile"
cl assnane="com j profiler.ant.Profil eTask"
cl asspat h="<path to JProfiler installation>/bin/ant.jar"/>

<target name="profile">
<profile classname="M/Mai nC ass" of fline="true" sessi onid="80">
<cl asspat h>
<fileset dir="lib" includes="*.jar" />
</ cl asspat h>
</profile>
</target>

Exporting data from snapshots

Withthecom j profil er. ant. Export Task you can export view from snapshots, just like with
the Export Gradle task [p. 223]. Views are specified differently than in the Gradle task: they are
nested directly below the task element and options are specified with nested opt i on elements.

<t askdef nanme="export"
cl assnane="com j profiler.ant. Export Task"
cl asspat h="<path to JProfiler installation>/bin/ant.jar"/>

<t arget nanme="export">
<export snapshotfil e="snapshots/test.jps">
<vi ew nane="Cal | Tree" file="calltree.htm"/>
<vi ew nane="Hot Spots" fil e="hotspots. htnl ">
<option name="expandbacktraces" val ue="true"/>
<opti on nane="aggregation" val ue="cl ass"/>
</ vi ew>
</ export >
</target>

Comparing snapshots

Thecom j profil er.ant. Conpar eTask corresponds to the Conpar e Gradle task and performs
comparisons between two ore more snapshots. Like forthecom j profi | er. ant. Export Task,
comparisons are directly nested below the element and options are nested for each conpari son
element. The snapshot files are specified with a nested file set.

M http://ant.apache.org

227

http://ant.apache.org

<t askdef nane="conpare"
cl assnane="com j profil er.ant. ConpareTask"
cl asspat h="<path to JProfiler installation>bin/ant.jar"/>

<t arget nane="conpare">
<conpare sortbytime="true">
<fil eset dir="snapshots">
<i ncl ude name="*.jps" />
</fileset>
<conpari son name="Tel enetryHeap" fil e="heap. htm"/>
<conpari son nane="Tel enetryThreads" file="threads. htm ">
<opti on nane="neasurenents" val ue="inactive, active"/>
<option name="val uetype" val ue="booknark"/>
<opti on nane="booknar knane" val ue="test"/>
</ conpari son>
</ conpar e>
</target>

Analyzing heap snapshots

Like the Anal yze Gradle task, the equivalent com j profil er. ant. Anal yzeTask for Ant
prepares the heap snapshot analysis in snapshots that have been saved with offline profiling
for faster access in the GUI. The snapshots that should be processed are specified with a nested
file set.

<t askdef name="anal yze"
cl assnane="com j profiler.ant. Anal yzeTask"
cl asspat h="<path to JProfiler installation>/bin/ant.jar"/>

<target name="anal yze">
<anal yze>
<fileset dir="snapshots" includes="*.jps" />
</ anal yze>
</target>

228

	Introduction
	Architecture
	Installing
	Profiling a JVM
	Recording data
	Snapshots
	Telemetries
	CPU profiling
	Method call recording
	Memory profiling
	The heap walker
	Thread profiling
	Probes
	MBean browser
	Offline profiling
	Comparing snapshots
	IDE integrations
	Custom probes
	Probe concepts
	Script probes
	Injected probes
	Embedded probes

	Call tree features in detail
	Auto-tuning for instrumentation
	Async and remote request tracking
	Viewing parts of the call tree
	Splitting the call tree
	Call tree analyses

	Advanced CPU analysis views
	Outlier detection
	Complexity analysis
	Call tracer
	Javascript XHR

	Heap walker features in detail
	HPROF snapshots
	Minimizing overhead
	Filters and live interactions
	Finding memory leaks

	Configuration in detail
	Trouble shooting connection problems
	Scripts

	Command line reference
	Executables for profiling
	Executables for snapshots
	Gradle tasks
	Ant tasks

