install4j Manual

EJ Technologies

© 2017 ej-technologies GmbH. All rights reserved.

Index

INSTAIIA] NEIP ettt ettt sttt s bbbt et e b et et et et e e e e et ebesaeeaeene 5
LICENSING ettt ettt b e st b e s b et e bt bt e e bt s b e e bt e R e s b e e e b e re e bt e e e nresneens 6
A HEID TOPIES ovivveireiieireresese sttt st et ettt e e et e e e s e esessesbesbesbesbe st e sbesb et e s esbesensessansassasseseesaeseesens 7
AT CONCEPES ittt ettt ettt et s e st e bt e st s bt e s be e s b e e beesa b e s bt e bt e sabeesbeesabe e beesaaeeabeeseesaseenres 7
ALTLT PIOJEEES ettt ettt ettt ettt s et e st st e b e s ab e e b e e s bt e sabe e beesabesbeesaaesabeenneesaee 7
A.1.2 File sets and COMPONENTS ...c.cciriiriirierieieeeeeesesesesesresre e ssessessessessessessessessessessssessassessens 9
A.1.3 5Creens and GCHIONS ...ccciirieuirieeiee ettt sttt ettt st be sttt s be e e b e bebessenesbeneas 11
AT FOIMI SCIEENS ittt st sr e st b e st b e sbe b s b e b e sanenesns 14
ALT.5 LAYOUL SIOUPS .eeereeriiirieeiieesieeiteesitesteesteesttesteesbeesatesbeesseesasesseesasesasesssessusesseesseesssessseesns 17
AT.6 VATIADIES .ttt bbbt sttt be e 21
ALT.7 VM PATaMELEIS ...eeiiieeitieieesite sttt et sttt st e st e steesatesbeesatesbeesbeesasesabeessaesasessseesasesnsesnne 30
A8 JRE DUNGIES ..ttt ettt st b et b s 33
AT SEIVICES oottt st s s s n e bt 36
A.1.10 Elevation Of PrivIIEEESccviririiiiiiiirisesisesiesess et se e sse e ssessesresbestesbesbestassenees 39
AT.TT MEIEEA PrOJECES cuvevvivveriiriisiesiisiesiestestestestessestessessesteseeseeseesessessessessessessessessessessensessensensenss 42
A.1.12 Auto-update FUNCLIONANILY c.vvivieeririnecerereseseree et sre bbb b e 45
AT, 13 COAER SIBNING cveriiriiiiriirirese st st ste st ste et este st e seeseseesaeseesassessessessessessessessessessessessessensensenss 49
A.1.14 Styling of DMGS 0N MACOSiviiinininirinientesiesieeessesesesesseassessssessessessessessessessessenes 52
A2 GENErated INSTAIIEIS ...ttt et sttt s 56
A.2.7 INSEAIIET MOAES ..ottt sttt et b e st be e sbe e 56
A.2.2 CommMaNd lIN@ OPLIONS ..viiiiiiiieireriresese sttt sae e sae e e aesessessessessessessessessens 58
A.2.3 RESPONSE FIlBS uviiiriiriisieiiseeeset ettt s sttt e s sa e e e s eseesassessessessessens 62
AL2.4 JRE SEAMCR vttt ettt ettt et s e be e eab e et e e ba e sabeebaesteeeareebee e 64
A.2.5 DOWNIOAAS ..ottt ettt ettt sttt s et b et b bbb bt s et s b e ebe s 66
AL2.6 UPALES vttt sttt sttt sttt ettt et e e a et e s e s e esesnassassassessessesbessesbesbessesaensensenes 68
A2.7 Error NaNAIING ..ottt sttt st st st ae e s e e aennennesassaenens 70
A3 EXEENAING INSLAIA] woviiiiiriiieieeecete ettt sa e e e e sesbessesbesbesbesaesaesbens 72
A.3.T USING the INSTAIIA] AP ..c.viiiiiieeiiiriesereresese ettt e s sre bbb st b bt sbe e 72
A3.2 EXEENSIONS oottt s sae e 75

B RETEIENCE ..ottt sttt ettt ettt e aeeae e b e bt e bbb e b s benbeben 77
B.T CONFIGUIatioN SEEPS ..ottt ettt ettt et sbe bbbt sbesaenees 77
B.2 Step 1: GENEral SELLINGS ..coieiiiriieieeererteet ettt ettt ettt et s b e s bbb st bt e b e 78
B.2.T OVEIVIEW ..ttt sttt ettt ettt et et s et e s b e e b sae et e sbe et e sneenbesaeensesneen 78
B.2.2 APPIICAtioN INTO oottt ettt s bt 79

= J00 B = V7= TRV <T] o o SR 80
B.2.4 LANGUAEES .ottt s e s e e s 82
B.2.5 Media fil@ OPLIONS ..ottt ettt et sb et aas 84
B.2.6 COE SIZNMINEG ..evititiieieieietetetet ettt sttt st ettt ettt s e eae e bt besbesbesbesbenaes 86
B.2.7 MEIEEA PrOJECES ..oeinieieieieitetetetet ettt sttt sttt st ettt et e et seeae bt besbesbesbesbesaes 87
B.2.8 COMPIIEN VAriabIsoviiiieieieeeeete ettt ettt 88
B.2.9 ProjeCt OPTIONS eeeiieiieiieee ettt sttt s b e st s b n e s b b s resns 89
B.2.T0 DIAIOZS eueenieneiieieteteteeeee ettt sttt ettt ettt ettt b et h s bbb bbb 90
B.2.10.1 Search sequence dialogcocovuirieiiniiieeieeteeeeeee e 90
B.2.10.2 Language selection di@logcccoceveirirerineneniesiesiesie ettt 90
B.2.10.3 Variable selection dialogscccocevririrninerenereresreee ettt 90
B.2.10.4 Variables edit dialogscccecerririririrerenresere ettt 91
B.2.10.5 INPUL QIAI0E ..evirveiiiiiieeeeeetete ettt sttt ettt et 92
B.2.10.6 CoNfigure JDKS QI@lOgcoceeeriririirierienierieriestesie ettt ettt 92

B.2.10.7 Merged projects edit dialogcoceveriririinienieierieieieeeeeeeeeeee e 93

B.3 SEEP 2: FIlS ittt sttt sttt e b e s b e b e s b e eresbenrenbenee 94

B.3.T OVEIVIEBW .ottt st st b e bbb sne s 94
B.3.2 Defining the diStribULION trE@iviviiirieiericccceeteese s e 95
B.3.2.T OVEIVIEW ..vuiiiieiiieitrietstet ettt ettt ettt b et b bbbt b et b et b e b se st b e ebe s 95
B.3.2.2 Fil@ WIZAId ..eveieiiieiieieetee ettt ettt sttt ettt 98
B.3.2.3 WiZArd STEPS .vivvirierieriiieieieeeestsesesestestestestestestestesseseessesaessessessssassessessessessessessenes 100
B.3.2.3.1 SEIECE AIFECLONY .ooviiireiririrertrese sttt e e besse e sbesbesbe st sbe st e sbensanean 100
B.3.2.3.2 SEIECL IS ettt 100
B.3.2.3.3 COMPIler Variable ..ot sae 100
B.3.2.3.4 INSTAll OPLIONS ..vevviviriiiiiiiiirieicieereeenee et se s re s sbesbe st b st se e b e saessennens 101
B.3.2.3.5 Exclude files and dir€CLONIESivvivierieriirieieieieeeeeese e se s see s sre e e 103
B.3.2.3.6 EXCIUAE SUFFIXES ..uertiieiiieiiicteenenee ettt 103
B.3.3 VIEWING the FESUILS .iviviiiiiiiiiieieeectcs ettt aenesessasseens 104
B.3.4 File OPLIONS ..ttt sttt ettt e se s e e s e ssassessessesbesbesbestesbesbesensenes 105
B.3.5 Defining installation COMPONENTSccvvivireriniinininine e seeseeseesesseens 108
B.3.6 DHAIOES ..vovveeeririiririiisesestestes sttt et st e st st st s b e bbbt e et et e e e s e e s e e s e eneeneeresrenrens 110
B.3.6.1 Distribution file ChOOSer dialogcccovvviririrenereieieceereeeee e 110
B.3.6.2 Folder properties dialOgccccvevirviririinienieniinenenenesesiesseseessessessessesesnssessessessessens 110
B.4 StEP 3: LAUNCNEIS woiuiiiiieieieieietetee sttt st st sttt et e s e e e e esaesassassessessessenes 111
BT OVEIVIEW ...ttt ettt sttt ettt b ettt b et bbbt st e st st e b et e b e e b et ene st eneee 111
B.4.2 LAUNCNEET WIZAITeieiiieiiieirieirieste ettt sttt st 113
B.4.3 WiZAId STEPS .iuvevviieieieieieieieteteesesressessestessesbestesseste st essessessessessessensessessesesssesessessessenns 114
B.4.3.1T EXECULADIE .ottt 114
BL4.3.2 ICOMN ettt bbbt st b et b bbbt 116
B.4.3.3 JaVa INVOCALIONuvreeiiciieee ettt eetree e eetre e e e s tre e e e s saba e e e senaraaeeesnsaaeeesnnnseaeens 117
B.4.3.4 VM OPTLIONS IlE wooviiieieiieiiiiinesesise sttt sbe b st b b s s s 119
B.4.3.5 SPIASh SCrEEN ...ovviiiirtetrererere sttt se s e s e sbesbe s e sresbesaeees 120
B.4.3.6 ADVANCEA OPLIONS ..eiviirieiiiiieteeeese sttt st sttt ess e s e e e sesaesassessessessessessessenes 121
B.4.3.6.1 REAINECLION ..coveuiiiieiiieerieertetet ettt ettt 121
B.4.3.6.2 WINAOWS VEIrSiON iNFO ..ccveciiiiieiiininenininesese sttt see s ssesseseesesessessenns 122
B.4.3.6.3 WINdOWs ManifeSt OPLIONScccvvivireninineniniesiesiesieseessesessesenesessessessessessenes 123
B.4.3.6.4 UNIX OPLIONS outiiiiiieienieeiesieetesieete sttt st estesites b saeessesssesbesssessesusessesssessesnsessens 124
B.4.3.6.5 MACOS OPLIONS eeeieiieeiieieeriteeieerte sttt s b e s e b e saee s beesais 125
B.4.3.6.6 MENU INTEEIatiON ..cuivueeviiriiiiinieeienieesie st st ste st sbestesbesasesbeebesbeessesaeebesueenses 127
B.4.3.6.7 NAtiVe [IDrari@sccooeveeiirieirieirieeeieteee ettt 128
B.4.3.6.8 Preferred VM ...ttt ettt 129
B.4.3.6.9 Text [ines 0N Splash SCrEeN ...t 130
B.4.3.7 DIAIOES ..ouveuveieiiiieteisesestse sttt sttt ettt b s bbb bbb te b nbn 131
B.4.3.7.1 Main class selection dialogcccvuvirininenininieienieerereese e 131
B.4.3.7.2 Class Path dialogccviveriiniinieiiieieieieteesesese s st be s neens 131
B.4.3.7.3 Native libraries entry dialogcccoevveviviirininiininininieneseneseeseeseesseeeeeeens 132
B.4.3.7.4 VisUal POSITIONING c..eviviviiriiriinieniinieniesiesiesieteseeste e seessesessessessessessessessessessens 132

B.5 StEP 4 INSTAIIEL .viviieieieieteeeeete ettt a e s s bbb b b e 134
B.5.T OVEIVIEW ..ttt ettt sttt st st b e s n e n e e e e 134
B.5.2 SCre@nSs & QCLIONS ..cviviiiiiniieiisieeiesteste ettt st ste st sie st sbe et sreetesbeebesaeesbesaaentesssenbesunenee 135
B.5.3 Configuring apPliCatioNsc..ccuevieriiiiininirenenenesese st sse s e s essesassaeseens 138
B.5.4 CONTIZUIINEG SCIEENSeovtviiriiriiririnesesesie st st st ste et stessessessessessessessessensessssessessessessessens 154
B.5.5 AVAIlabIe SCIrEENSiviiiiiieieteec ettt n s s ens 157
B.5.6 CONFIGUIING QCLIONS ..voviiiiiiiieiiiiesesesie sttt sttt sb et sa et sa e s esassessessesbessessesbessesnes 173
B.5.7 AVAilable @CtIONS ...c.cociiiiiriririntercres et s bbb e 175
B.5.8 Screen and aCtiOn SrOUPS ...ccvververiirierierieieieteteeeeeteesessessessessessessessessessessessessensensens 238
B.5.9 Configuring form COMPONENTScceviiiriiriririninesenesie ettt eseesse s seseesessassesnes 242
B.5.10 LAYOUL BIOUPS ...eevveiruiieieeriteeieesiee st tette sttt st esseesite e st esseesaseesseesaeeenseesseesnseeseesssesnseesseens 244

B.5.11 Available form COMPONENTScocvviriririrerenrese et sse e 249

B.5.T2 CUSLOM COUR oiitiiiiiieiitieestteeettee st e sttt e sbteeste e esbeessabeesssteessaseesasseesssseesasseesssesesssnessnns 288

B.5.13 UPALe OPLIONS ..eiveeiieiiriirieririsesesesie st st ste et ssestesse s essesaesesssesassessessessessessessessessensenes 289
B.5.14 AULO-UPAALE OPLIONS ..ooviieiriiriiiiriirisiese sttt ste et e e esae e saeaeeesessassessessessessessessenes 290
B.5.15 DIGIOES wiuveveriiieieieieteieesesesesestestestessesbestessessessessessessesasssesessessessessessessessessessessensenses 292
B.5.15.1T CUSTOM COUR BNEIY 1tiriiiiiiieieieteeeeeeseste st ste st ste et b esae s esseseesasseesessessessessessenns 292
B.5.15.2 Class Selector dialOgcvviviriiviinininiireniriesieeneeeeeeee e se e sre e ssesreseessessens 292
B.5.15.3 REGISTIY IAIOE ..cuvevirieiiiiiiiininisese sttt sttt et esae s esseaesessnesassassessessessesaens 293
B.5.15.4 Application template dialogccocuvvivvervininiiniinirenseene e 293
B.5.15.5 Link S€leCtion dialOg ...cccevivieriiriirieieieieerteesesesese sttt a s e neneens 293
B.5.15.6 STring €dit di@lOgcvveviririiiiiiirissese e s s sresae s 293
B.5.15.7 JAVa COAR BAILON wiiviiiriiiiiiieiceecteeetee ettt et streeveestessaveebeesaneebeestassaneentaees 294
B.5.15.8 JaVa €ditOr SEUNES ...cvcverierierieieieereeesese st st sttt sbessessessessesesssesessessessessessenes 297
B.5.15.9 COE BAIlEIY cuvirviieieieeeieteteeees ettt sttt a e e e s sa e e e e ssesresaesresaens 298
B.5.15.10 KEY MAP EAITON .iviviriiireririsesisestestestestestesresteseessessessesseseesessessessessessessessessenns 298
B.5.15.11 ID Selection dIialOgccvevveviiriiireiininesenesestese et e e sressesseseessesve s 298
B.5.15.12 INtEEration WIZardcccvveviviinieniiniinieniesiesiessessessesesseseseessesessessessessessessessessessenns 299

B.6 STEP 5: IMEAIA ..eovvevirierieriiiseseste ettt ettt e st s b st s b b st b e b s e e et et e e e s e eneeraereenes 300
B.B.T OVEIVIEW ...ttt ettt ettt sttt b ettt b et tenen 300
B.6.2 MEdIa il TYPES ..evvireereiriiiiririresese ettt a e e sse e e s e ssesbesbesbesresbesbesbesaensenrans 301
B.6.3 Media fil& WIZArdcccceeviviririiininireresesesese ettt e e ssesbe s e s e sbesbesbesaessesae s 303
B.6.4 WiZAId STEPS .iuvevviriirieieiiieieieteteesessesiessestessessestesbessessessessessessessessensessessesesssesessessessenns 304
B.6.4.1 PIAtFOrM w.eeiiiiiiietie ettt ettt sttt 304
B.6.4.2 INStAllEr OPLIONS ..eiuiiiiieieeeirererese sttt se s b ssesresbesbesbessesbenne 305
B.6.4.3 DAta fil@S .oueeueeeiirieieieieiee ettt 308
B.6.4.4 BUNAIEA JRESvveriiieiiirieiecirietctrt ettt ettt ettt ettt 310
B.6.4.5 Customize project defaults ... s sae s 312
B.6.4.6 32-bit OF 64-Dit (WINAOWS) ..cveviiriiieiiiririeieirieiecresieiceste ettt 314
B.6.4.7 Executable processing (WiNAOWS)cccoveririeneninienienieieeeeeneesesesessessessessessenns 315
B.6.4.8 Launcher (macOS single bUNAIE)cccvveririinininiineninireneneseeereeeee e e ssens 316
B.6.4.9 64-bit SettingS (MACOS) ...ovviiiiriiiririrtnese sttt sse s sse e sessessessessessessessenns 317
B.6.4.10 Additional files in DMG (IMACOS) ...eoovviiivriiiiiieenieeeetee e ssire e st seaveessreeesrneesane 318
B.6.4.11 DMG OPtioNS (MACOS) .eecueiriieiienieeieesiee sttt sttt st et esaeesreesreesaseeseesneesanees 319

B.7 SEEP 6: BUIIA .ttt ettt 320
B.7.T OVEIVIEW ..ttt ettt sttt bttt b ettt b bbbt enenn 320
B.7.2 BUIlA OPLIONS ..ottt sttt sttt et a et sse s e ssessassessessessessestessessessensensenes 320
B.8 JRE AOWNIOAA WIZAIM ...oooviiieicericieccieecre ettt etre v et saveebeesaneeaneeebeesanesareenbeeenns 322
B.9 JRE DUNAIE WIZAIM ..ottt ettt et et et e stee b e esbeesaneebeesanesareenbeennns 323
B.T0 PreferenCeS ..ottt ettt ettt b e sttt b e 326
B.11 Command liN@ COMPILEE .uviieieieieietcictrer ettt a e s e sesbasbesaeene 327
B.T1.T OVEIVIEW .ottt ettt ettt sttt s e nenes 327
B.171.2 OPLIONS eouiieiiiiieienieeie sttt sttt sttt satesbe st e s b e st e sbessbesbeesbesbasasesbaenbesasensesssensesnaensensns 328
B.11.3 USing inStall4d] With @nt ...cccoiviiiniiiininircieseseeeer e ssesae st s sbe s 331
B.11.4 Using install4j wWith gradle ... e 334
B.11.5 Using install4j With MaveN ... e sseens 338
B.11.6 Relative reSoUrCe PAths ..ottt st ss e b ssesenes 339
B.12 LAUNCNEE APL ..ottt ettt sttt st s e st st st b st bbb et e s et esaensessenassnssessessessenns 340
B.12.1 Controlling the Splash SCreeN ...t e s 340

B.12.2 Receiving startup NOLIfICAtIONSccvveviriiririininenenerenese e see e s sees 340

Welcome To Install4j

Thank you for choosing install4j. To help you get acquainted with install4j's features, this manual
is divided into two sections:

*+ Help topics [p. 7]

Help topics present important concepts in install4j. They are not necessarily tied to a single
configuration step. Help topics are recommended reading for all install4j users.

The help topics section does not cover all aspects of install4j. Please turn to the reference
section for an exhaustive explanation of all features that can be found in install4j.

+ Reference [p. 77]

The reference section covers all configuration step, all dialogs and all features of install4j. It
is highly hierarchical and not optimized for systematic reading.

The reference section is the basis for install4j's context sensitive help system. Each configuration
step and each dialog have one or more corresponding items in the reference section.

We appreciate your feedback. If you feel that there's a lack of documentation in a certain area
of if you find inaccuracies in the documentation, please don't hesitate to contact us at
support@ej-technologies.com.

mailto:support@ej-technologies.com

Install4j Licensing

With a 60-day evaluation license you can integrate install4j into your build process before
purchasing it. The evaluation period can be renewed until you actually start distributing installers.

install4jlicenses can be purchased easily and securely online. We accept a large variety of payment
methods including credit cards, checks and purchase orders. Pricing information is available
online.

install4j licenses are either

* Per-developer licenses
With one license a single user is allowed to install install4j on multiple machines.

For automated builds, you have to ensure that the install4j IDE is not running when running
your build, otherwise the GUI will terminate and the build will fail.

* Floating licenses
Afloating license purchase includes a license server which allows a maximum concurrent user
count. An arbitrary number of developers may install install4j.

A floating license includes an unlimited number of automated build agents.

install4j comes in two editions

 Windows Edition

This edition can only generate installers for Microsoft Windows. The install4j IDE and the
command line compiler themselves can run on other supported platforms as well.

* Multi-Platform Edition
This edition can generate installers for all supported platforms.

Please read the included file | i cense. t xt to learn more about the scope of the license. For
licensing questions, please contact sales@ej-technologies.com.

You can enter your license key by invoking Hel p- >Enter |icense key from install4j's main
menu. To make it easier for you to enter the license key, you can use the [Paste from clipboard]
button, after copying any text fragment which contains the license key to your system clipboard.
If a valid license key can be found in the clipboard content, it is extracted and displayed in the
dialog.

If a license has been entered, the licensing information is visible in the about dialog (Hel p- >About
i nstal | 4j). The install4j command line compiler [p. 327] also prints licensing information except
when invoked with the quiet option [p. 328].

Your license contains the information whether is is a license for the Multi-Platform or Windows
edition. If the evaluation mode is different than the scope of your license, you will have to restart
install4j.

https://www.ej-technologies.com/redir.php?product=install4j&target=trial
https://www.ej-technologies.com/redir.php?product=install4j&target=order
https://www.ej-technologies.com/redir.php?product=install4j&target=prices
https://www.ej-technologies.com/redir.php?product=install4j&target=sales&type=sales

A Help Topics

A.1 Concepts
A.1.1 Install4j Projects

Project files

A project in install4j is the collection of all information required to build media files. A project is
saved to asingle XML filewith an . i nst al | 4] extension. Projectfiles are platform-independent,
you can open and compile them on any supported platform. Any paths that you enter in install4j
are saved as absolute paths by default. This allows you to move the project file to a different
location on your computer and the compilation will still work. If you wish to use your project file
on multiple computers or platforms or compile your launchers by automatic build agents, it is
more convenient to use relative paths. install4j provides an option to convert all paths to relative
paths [p. 89] when you save your project.

install4j keeps a list of recently opened projects under Pr oj ect - >Reopen. By default, install4j
opens the last project on startup. This behavior can be changed in the preferences dialog [p. 326]
. You can pass the name of a project file as a command line parameter to install4j to open it on
startup. Also, the command line compiler [p. 327] expects the project file name as its argument.

Contents of a project

The following paragraphs give a high-level overview of the elements that you can configure in
install4j. Each of the configuration sections in install4j as seen in the screenshot below represents
a top-level concept in install4j.

"= install4j Multi-Platform Edition
Project Steps Buld Help

PeEEY 2320 @

E Enter general project settings @ w
General Settings In this step, you can specify the languages that the generated installers should support, Your
installers can have a fixed language or they can be multi-language installers,
Principal language: English [en] v
Custom lacalization File: [EE]
wWith a custom localization, you can localize your own messages in actions and
screens. Also, you can override the defaulk messages in the
Launchers $INSTALL4]_HOME resourcefmessages directory.
—_— hoose additional languages For the installer:
‘:I Language Custom localization File
Installer
=l
S 5
Media
3
Buid If wou define additional languages, the installer will ask the user to choose a language with the default
selection set according ko the system locale,
Skip language selection dialog if auto-detected locale matches a supported language
Application Info | Jawva Version Media File Options | Compiler Wariables | Project Options
52 Idle
\ E A

Typically, a project defines the distribution of a single application. An application has an
automatically generated application ID [p. 289] that allows installers to recognize previous
installations.

At the core of the project definition is the sequence of installer screens and actions [p. 11]. They
determine what the users see, what information they can enter and what the installer does.
install4j offers a lot of flexibility regarding the configuration of of your installer. Besides creating
traditional application installers, install4j is equally suited to create small applications that modify
the target system in some way. The install4j runtime is localized into many languages. You can
configure your installers to support one or multiple languages [p. 82] .

Most installers install files to a dedicated directory and optionally to several existing directories
on the target computer. That's what the "Files" section [p. 94] in the install4j IDE is for. Here,
you define a "distribution tree", and optionally "installation components" which can also be
downloaded on demand [p. 308] . The actual installation of these files is handled by a special
action (the "Install files" action) which is part of the default project template. If your installers
should not install any files, you can remove that action and ignore the "Files" configuration
section. When the "Install files" action is executed, it creates an uninstaller. The uninstaller offers
the same flexibility as the installer and is configured in the same way.

Unless the installed files are only static data, you will need application launchers to allow the
user to start your application. You can define one or several application launchers in the
"Launchers" section [p. 111] . Launchers generated by install4j have a rich set of configuration
options including an optional splash screen or advanced features like a single instance mode.
Configured launchers can also be "services" that run independently of logged-on users. install4j
offers special installation screens and actions for services.

install4j has many advanced features concerning the runtime-detection or bundling of JREs. You
define Java version constraints and a search sequence [p. 80] for both your installers and your
generated launchers. In this way, you ensure that the launchers run with the same JRE as your
installers. Bundling of JREs is configured on a per-media set basis [p. 310] and includes an optional
on-demand download of a JRE.

Finally, the media file definitions define the actual executables that you distribute. They capture
platform-specific information and provide several ways to override project settings. You typically
define one media file for each platform. Multiple media files for the same platform can be added
as needed. Media files are either installers or archives. Archives simply capture the launchers
and the distribution tree. Archives are a limited way to create a distribution and might not be
suitable if you rely on the flexibility that is offered by installers.

Project reports

A project, and especially the definition of the installer and uninstaller, is very hierarchical and
possibly quite complex. In order to check all your projects settings on a single page, or to print

out your project definition, install4j offers a @ project report. This action is available from the
menu and toolbar. When you generate a report, an HTML file is written to disk. In addition, a
directory named i nst al | 4] _i nages is created which holds all required icons. The export
directory for project reports is remembered across restarts of install4j. install4j will suggest a
file name based on the project name. If that file already exists, a number will be appended to
make the file name unique.

A.1.2 File Sets And Installation Components

Introduction

install4j offers two mechanisms to group files: File sets and installation components. File sets
are configured in the distribution tree and can be used in a variety of use cases as building blocks
for your installers. Installation components are presented to the user at runtime and mark certain
parts of the distribution tree that have to be installed if the user chooses an installation
component.

Both file sets and installation components are optional concepts that can be ignored if they are
not required for an installer project: There is always a "Default file set" to which you can add files
in the distribution tree and on the installation components tab you do not have to add any
components.

File sets

File sets are a way to group files in the distribution tree. When you need to select files in other
parts of the install4j IDE, you can select the file set node instead of selecting single files and
directories. Each file set has a special "Installation directory" child node that maps to the
installation directory selected by the user at run time. Custom installation roots are defined
separately for different file sets. If you require the same installation root in two different file sets,
you simply define the same root twice.

=i Default file st
H Installation directory

: n[] Cantent of ,\dist
3 Files for Windows XP [1D 17]
Installation directary
7 bin

[l Content of .\xp\bin
P $4installer:sys, system320ir}
,_1] File \xp\driver.dl (shared
3 Files For Windows Vista [ID 19]

Installation directory

[][s]=][«]

~[[7] Content of .|vistalbin
= P ${installer:sys,system320ir}

Define Distribution Tree | View Results | Installation Components

The installation of file sets can be toggled programmatically at run time. The code snippet to
disable the installation of a file set at run time s
context.getFi |l eSet Byl d("123"). set Sel ect ed(fal se); if the ID of the file set is "123".
You could insert this snippet into a "Run script" action that is placed before the "Install files"
action on the screens &actions tab [p. 135] . File set IDs are displayed when the "Show IDs" toggle
button in the lower right corner of the distribution tree is selected.

A common use case is to exclude platform-specific files from certain media files. You can define
file sets for different platforms and exclude all unneeded file sets in the media wizard [p. 312] .
This is an example of how to use file sets at design time in the install4j IDE.

Within one file set, all relative paths must be unique. However, the same relative path can be
present in different file sets. Suppose you have different DLL files for Windows 7 and for Windows
8 and higher. You can create two file sets so that the installer contains both alternative versions.
Once you find out whether you run on Windows 7 or on Windows 8 and higher, you can disable
the file set that should not be installed with the code snippet shown above. By default, all included
file sets are installed. If the same relative path occurs twice, it is undefined which version is used.
In this case you have to make sure to disable the file sets that are not appropriate.

Installation components

If you define installation components. the installer can ask the user which components should
be installed. In the configuration of an installation component you mark the files that are required
for this component. A single file or directory can be required by multiple installation components.

Installation components:

nt @ Files | Options | Description | Dependencies
g Source Code
= 1:.] Demas () Allfiles in the distribution tree
-k Demo 1 - "
H elected files:
- g Demo 2 @s)
H ?
i g Demo 3 =[] & Default file st
¢ B+ P nstallation directary
i [e] [bin
[] demas
b] b
O (4 souree
i@ Files For Windows xP
S [#] @ Files for Windows vista

Define Distribution Tree || View Results | Installation Components

Installation components are defined in a folder hierarchy. This means you can have groups of
installation components that are enabled or disabled with a single click. Most options in the
configuration of an installation component are used by the "Installation components" screen [p.
154]. They decide how the installation component is presented to the user, whether it should be
initially selected or mandatory, and if it has dependencies on other installation components that
should be automatically selected.

Another important feature of installation components is that they can be marked as
"downloadable". If you configure the download option in the media wizard [p. 308] , separate
data files will be created for the downloadable components.

install4j also offers a two-step selection for installation components: In the first step, the user is
asked for the desired "installation type". An installation type is a certain selection of installation
components. Typical installation type sets are [Full, Minimum, Customize] or [Server, Client, All].
The display and the configuration of installation types is handled by the "Installation type" screen.
For each configured installation type, you can decide whether the user should be able to further
customize the associated installation component selection in the "Installation components"
screen or not.

10

A.1.3 Screens And Actions

Introduction

With screens and actions you configure two separate aspects of the installer: the user interface
that is displayed by your installer and uninstaller and the actual installation and uninstallation.
Every screen can have a list of actions attached that are executed when the user advances to
the next screen. install4j offers a wide variety of pre-defined screens and actions that you can
arrange according to your needs. Some of these screens and actions are quite generic and can
be used as programming elements, such as the "Configurable form" [p. 14] screen and the "Run
script" action.

Installer applications

Building an install4j project creates media files which are either installers or archives. An installer
is defined as a sequence of screens an actions and is executed when the user executes the media
file. Installers usually install an uninstaller which removes the installation. The uninstaller, too,
is a freely configurable sequence of screens and actions. Archives do not have an installer or
uninstaller and the user extracts the contained data with other tools.

In addition to the installer and uninstaller, you can define custom installer applications [p. 138]
that are added to the distribution tree. These custom installer applications can use the same
screens and actions that the installer can use. Unlike installer and uninstaller, they are also added
to archives. They can be used to write separate maintenance applications for your installations
that are either invoked directly by the user or programatically by your application.

An important use-case for custom installer applications is to create a first-run installer for archives.
While there is no need to install files to the installation directory in the case of an archive, there
will usually be screens and actions that set up the environment of your application. In order to
avoid the duplication of screens and actions, install4j offers the possibility to create links to
screens and actions. In this way, a custom installer application can include a partial set of the
screens and actions in the installer. Such a first-run installer should be added tothe. i nst al | 4j

runtime directory in order to no expose it as part of the application. This is done by specifying
its executable directory property as the empty string. You can invoke the first-run installer
programatically withthecom i nstal | 4j . api . | auncher. Appl i cati onLauncher utility class.
Please see the Javadoc for more information. When any of the generated launchers of an installed
archive are run for the first time, the system property i nstal | 4j . fi r st Run will be set. You
can query that property with Bool ean. get Bool ean("i nstal | 4j . firstRun") atthe beginning
of your main method to decide whether to launch the first-run installer or not.

Another common use case for custom installer applications is to create auto-updaters.
Auto-updaters are described in detail in a separate help topic [p. 45] .

Control flow

Atruntime, install4j instantiates all screens and actions and organizes the screen flow and action
execution. There are a number of aspects regarding this control flow that you can customize in
the install4j IDE. Both screens [p. 154] and actions [p. 173] have an optional "Condition expression"
property that can be used to conditionally show screens and execute actions. Screens have a
"Validation expression" property that is invoked when the user clicks on the "Next" button allowing
you to check whether the user input is valid and whether to advance to the next screen. These
are the most commonly used hooks in the control flow for "programming" the installer. All
"expression" properties in install4j can be simple Java expressions or scripts of Java code as
described on the help page for the Java code dialog [p. 294] .

11

Candition expression Failure strategy Continue on Failure
‘alidation expression Error message
Rollback barrier O =
Quit after screen] Condition expression
Eiack button Safe back button Rollback barrier O
Can be executed multiple Himes F]

Common properties of screens Common properties of actions

If you use a series of screens to query information from the user, the users expect to be able to
g0 back to previous screens in order to review or change their input. This is fine as long as no
actions are attached to the screen. When actions have been executed, the questions is what
should happen if the user goes back to a screen with actions and clicks on "Next" again. By
default, install4j executes actions only once, but that may not be what you want, if they operate
on the user input in a screen. Since install4j has no way of knowing what should happen in this
case, itapplies a "Safe back button" policy by default: if the previous screen had actions attached,
the back button is not visible. You can change this policy for each screen, either making the back
button always visible or always hidden. The "Can be executed multiple times" property of each
action is relevant in the case where you you make the back button always visible for the next
screen.

Another hook into the control flow is the ability to declare every screen as a "Finish" screen, i.e.
the "Next" button will be replaced with a "Finish" button and the installer will quit after that
button is pressed. Consider to use a "banner" screen in that case since it alerts the user that a
special screen has been reached.

Rollback behavior

At any time in the installation sequence the user can hit the "Cancel" button. The only exception
in the standard screens is a customizable progress screen where the "Cancel" button has been
disabled. install4j is able to completely roll back any modification performed by its standard
actions. However, the expectation of a user might not be that the installation is rolled back.
Consider a series of post-installation screens that the user doesn't feel like filling out. Depending
on the installer, the user might feel that installation will work even if the installer is cancelled at
that point. A complete rollback would then irritate the user. That's why install4j has the concept
of a "rollback barrier". Any action or screen can be a rollback barrier which means that any actions
before and including that action or screen will not be rolled back if the user cancels later on.

By default, only the "Installation screen" is a rollback barrier. This means that if the user cancels
while the installation is running, everything is rolled back. If the user cancels on any of the
following screens, nothing that was performed on or before the installation screen is rolled back.
With the "Rollback barrier" property of actions and screens you can make this behavior more
fine-grained and customize it according to your own needs.

Error handling

Every action has two possible outcomes: failure or success. If an action succeeds the next action
is invoked. When the last action of a screen is reached, the next screen is displayed. What should
happen if an action doesn't succeed? This depends on how important the action is to your
installation. If your application will not be able to run without the successful execution of this
action, the installer should fail and initiate a rollback. However, many actions are of peripheral
importance, such as the creation of a desktop link. Declaring that the installer has failed because
a desktop link could not be created and rolling back the entire installation would be
counterproductive. That's why the failure of an action is ignored by install4j by default. If a
possible failure of an action is critical, you can configure its "Failure strategy" to either ask the
user on whether to continue or to quit immediately.

Standard actions in install4j fail silently, i.e. the "Create a desktop link" action will not display an
error message if the link could not be created. For all available failure strategies, you can configure

12

an error message that is displayed in the case of failure. The "Install files" action has its own,
more granular failure handling mechanism that is automatically invoked after the installation of
each file.

Standard and customizable screens

install4j offers a series of standard screens that are fully localized and serve a specific purpose.
These standard screens have a preferred order, when you insert such a screen it will insert itself
automatically in the correct position. This order is not mandated, you can re-order the screens
in any way you like, however they may not yield the desired result anymore. If for example you
place the "Services" screen after the screen with the "Install service" actions (typically the
"Installation" screen), the "Services" screen will not be able to modify the service installations
anymore and the default values are used.

The customizable screens don't have a fully defined purpose, their messages are configurable
and empty by default. For example the "Display progress" screen is similar to the "Installation"
screen, however the title and the subtitle are configurable. Customizable screens also do not
have any restriction with respect to how many times they can occur. While the "Installation"
screen (and other screens) can occur only once for an installer, the "Display progress" screen
could be used multiple times.

The "Welcome" and "Finish" screens have a special layout that is called "banner screen" in install4;.
There are customizable banner screens to help you reproduce this layout if you require itin a
different context. The most flexible of all customizable screens are the "configurable form"
screens. They allow you to freely define the contents of a screen and are described in a separate
help topic [p. 14].

13

A.1.4 Form Screens

Introduction

Some screens in install4j contain a configurable form. In these screens, you can configure a list
of form components [p. 242] along the vertical axis of the form. install4j provides you with
properties to control the initialization of form components and the way the user selection is
bound to installer variables [p. 21] . With this facility you can easily generate good-looking installer
screens that display arbitrary data to the user and request arbitrary information to be entered.

Standard screens that have a configurable form include the "Additional confirmations" and the
"Finish" screen. In addition, install4j offers a customizable form screen (similar to the "Additional
confirmations" screen) and a customizable banner form screen (similar to the "Finish" screen).
For screens that have a configurable form, a "Form Components" tab is shown in the
"Configuration" section of the screen configuration [p. 154] . The actual configuration of the form
components is performed in a separate dialog:

Form components: SR
@ Configuration
Coupled Form Components
Text Specify alternative JOK base directary
Initially selected]
Initialization script final J¥M3elector, WMLocation[] lac...
Reset initialization on previous]
e
Text
Icon
Icon-text gap 4
Font color —
Font
Variable name other DK
{Name)
(Description)
9 ek

By default, a form is top-aligned and fills the entire available horizontal space. You can change
this default behavior in the properties of the containing screen. For example, for a set of radio
buttons that should be centered horizontally and vertically, the "Fill horizontally" and "Fill vertically"
properties of the screen must be set to "false".

Form components

install4j offers a large number of form components that represent most common components
available in Java and some other special components that are useful in the context of aninstaller.
All components that expect user input have an optional leading label. The components themselves
are left-aligned on the entire form. If you leave the label text empty, the form component will
occupy the entire horizontal space of the form.

Every form component has configurable insets. For vertical gaps that are meant to separate
groups of form components, consider using a "Vertical spacer" form component since it makes
the grouping clearer and allows to to reorder form components more easily.

You can preview your form at any time with the [Preview Form] button. The preview dialog
performs all variable replacements of compiler variables and custom localization keys, but not
of installer variables. No initialization scripts are run. The preview is intended to give you quick
feedback about visual aspects of your form. It does not show the actual screen where the form
mights be smaller and other elements might be present. For example, the "Finish" screen is a

14

banner screen where form occupies a relatively limited space in the bottom right corner and is
intended to show a few check boxes at most.

- :
= Preview E]

This is a structural preview of your form
Mote that the sppearance of your screen might be different

Automatically detected JDKs:

fdurnry

[] Specify alternative JDK base directory

Close

Every form component always has its preferred vertical height. For some form components such
as the "List" form component, this preferred vertical size is configurable. If the vertical extent of
the form exceeds the available vertical space, a scroll bar is shown. If you want such a form
component to fill the entire available vertical space, you can select the "Fill vertical space" property
for the form component and deselect the "Scrollable" property of the form screen. In that case,
there will be no scroll bar for the form.

User input

If a form component can accept user input, you need some way to access the user selection
afterwards. install4j saves user input for such form components to the installer variable [p. 21]
whose name is specified in the "Variable name" property. That variable can then be used later
on, for example in condition expressions for screens and actions. If you have a check box that
saves its user input to a variable called "userSelection", the condition expression

cont ext . get Bool eanVari abl e("user Sel ecti on")

will skip the screen or action for which that condition expression is used. The user selection in
form components is written to the variables before the validation expression for the screen is
called. If you have a text field that saves its input to the variable "fileName", the validation
expression

Util.showOptionDi al og("Do you really want to delete " + context.getVariable("fileNane"),
new String[] {"Yes", "No"}, JOptionPane. QUESTI ON MESSAGE) == 0
used on the same screen will block the advance to the next screen if the user answers with "No".
The values of installer variables accommodate the general typej ava. | ang. Obj ect . Every form
component saves its user input in its "natural" data type, for example:

+ For check boxes, the typej ava. | ang. Bool ean is used. For this special case the context offers
the convenience method get Bool eanVari abl e.

+ For text fields, the type j ava. | ang. Stri ng is used.
+ For drop down lists the type j ava. | ang. | nt eger is used (the selected index).
+ For date spinners, the type j ava. | ang. Dat e is used.

15

The description of the value type for each form component that accepts user input is shown in
the registry dialog [p. 293] when you select the form component.

Initialization

For each form component, install4j offers several properties that allow you to customize its initial
state. However, there may be other advanced properties or a more complex logic is required
for modifying the form component. For this purpose, the "Initialization script" property is provided.
Form components can expose a well-known component in the initialization script that allows
you to perform these modifications. This so-called "configuration object" is usually contained in
the form component itself. For example a "Check box" form component exposes a
configurationObject parameter of type j avax. swi ng. JCheckBox and a "Text field" form
component exposes a j avax. swi ng. JText Fi el d.

As with actions and screens [p. 11] in general, the possibility that the user moves back and forth
in the screen sequence presents a dilemma to install4j. Any form components that accepts user
input has a configurable initial value and any form component can have an initialization script.
This initialization is performed when the user enters the screen for the first time. Should this
initialization be performed again when the user moves back and then enters the screen once
again? Since install4j does not know, it initializes every form component only once by default.
This policy can be changed with the "Reset initialization on previous" property for each form
component.

16

A.1.5 Layout Groups

Introduction

Alayout group is an elementin a form screen [p. 14]. It contains a number of form components
and other layout groups. With layout groups you can achieve virtually any kind of visual layout.

There are two different kinds of layout groups: vertical and horizontal groups. A horizontal group
puts the contained elements side by side, while a vertical group organizes them from top to
bottom. Essentially, the top-level of a form screen is a vertical layout group itself.

Use case: Side by side

Putting two form components side by side is done with a single horizontal group:

Z Configure Form Components El

Form components:

Configuration

g Horizontal separator [ID 1

=
Hi tal 2 for
A Textfield [1 El
- i Cell spacing s
T Password field [Insets 0;0;0;0
Horizontal separstor [I Anchor] viest
Align first label

g Directory chooser [ID 1045] Make children same height []

[«)[=] (=] = [o]¢] [&]=] <] (e]x]]

(Name)
{Description)
o
Z Preview El
This is a structural preview of your form
Mote that the appearance of your screen might be different
Admin Account
User: ‘Bnh Password: ||oo|ou| |
License
Key file: ‘ | [Browse...]

The leading labels of the first form component in the horizontal layout group ("User:") and those
of the form components on the same level as the horizontal group ("Key file:") are aligned. There
is a property on the horizontal layout group to switch off this alignment.

17

Use case: Two columns

Two columns of form components are realized with two vertical layout groups inside a horizontal
layout group:

= Configure Form Components E‘

Form components: Preview Form

=] E Horizontal group (7 form comp...| Configuration

! =]
B]:DI Vertical group (2 form com... Visibilty scrint

[E Drop-down list [ID 1125] =
H £ .
@ Cell spacing 1]
(o] List [1D 1058] Insets 0300
5 B vertical group (5 form com.... Anchor El North-est

Make children same width

~ g Add [Button] [1

. Remove [Button] [

«[=] (8] s &)+ ()=)s] (]x]#]

= Mo 5]
(4 IG Spring [ID Bl
g Ue Button] 1
e W [ID 1057]
(o™ Down [Button] [ID 1057]
(Name)
{Description)
5

This is a structural preview of your form
Mote that the appearance of your screen might be different
[Three
Down

In this case the second column with the buttons takes up a fixed amount of horizontal space,
since buttons do not automatically grow beyond their preferred size. In order to make all buttons
of equal size, the "Make children same width" property has been selected. Two buttons are
aligned at the top of the column, two buttons at the bottom. This is achieved with a "Spring"
form component after the second button that has its axis set to "Vertical". It pushes all further
components to the bottom.

Use case: Breaking label alignment

Alignment of leading labels can be broken by introducing vertical layout groups:

Z Configure Form Components

: Preview Form
Form components: @

~[f4g Drop-down st [ID 1243] Configuration
Hl
erti =]
= I vertical group (2 form comp visbilty seriat
g Text field [ID 1244] =]
H }
Lol N Cell spacing 5
g Textfield (1D 1235] Iomets 005050
Anchar T Morth-wvest

Make children same width []

(Hame)
(Description)

«[»)) s [els] [@]=) <] (¢]x]e]

P

This is a structural preview of your form
Mote that the appearance of your screen might be different

Select one of the following options:

VM parameters: | |

Arguments: | |

Close

Here, the long leading label of the first form component does not enlarge the leading labels of
the two text field form components. The latter are aligned only among themselves.

Use case: Center and right alighment

Single form components can be centered or right-aligned if you enclose them in a horizontal
layout group and set the "Anchor" property on the layout group accordingly.

19

= Configure Form Components rzl

Form components:

= m» Horizontal group (1 form com...

1) e =
e Radio button group [I0 1243] || 3€

Configuration

Visibility script
]‘; Text field [ID 1251] =
: Cell spacing 5
B-E Horizontal group (1 form com... Insets 0;0;0;0
b Button [0 1254] Anchor Center
£ Align first label

Make children same height []

(&)= s (o))

(Name)
(Description)

[¢]» [8])(= 5]

P

This is a structural preview of your form
Mote that the appearance of your screen might be different

@ Elignt O server

Mot centered: |

Right aligned

Close

For the layout group with the radio button group, the anchor has been set to "Center", for that
with the button the anchor has been set to "East". This only works with form components that
do not grow horizontally. Some form components that do grow horizontally can be restricted to
a fixed horizontal size, such as the text field by specifying a non-zero column count.

20

A.1.6 Variables

Introduction

With variables you can customize many aspects of install4j. They can be used in all text fields
and text properties in the install4j IDE as well as from the install4j API [p. 72] . The general variable
syntax is

${prefix:variabl eNane}

where prefix denotes the functionality scope of the variable and is one of

+ compiler
Compiler variables are replaced by the install4j compiler when the project is built.
* installer
Installer variables are evaluated when the installer or uninstaller is running.
* launcher
Launcher variables are evaluated when a generated application launcher is started.
* i18n
Custom localization keys are evaluated at runtime and depend on the chosen installer language.
* (no prefix)

Variables with no prefix resolve to environment variables when used in the launcher
configuration.

Text fields in the install4j IDE where you can use variables have a # variable selector [p. 90]
next to them. The variable selection dialog shows all known variables that can be used in the
current context.

** Select Variable El
Avallable Variables: All vatisble types 3
[sys.installationDir |All varishle bypes

[P sys.userHome [Installer runtime varisbles
P sysaindowsDir [oodins es
[P sys.systemzzoir 2P Custom localization kE
P? sys.programFilesDir

[?? syS.programiroupliv

[?) sys.mediaFile

[?D sys.mediaDirectory

b myToolDireckory
44 otherAppversion
b sys.version

04 sys.shortMame
o8 sys fullame
b sys.setMame
44 sys.platform

Lok svslannuaneld

Edit Campiler Yariables
5

The above dialog, for example, is shown when clicking on the ¥ button in a text property of an
installer element [p. 135] or form component [p. 242] . There, you can use compiler variables,
installer variables and custom localization keys, but not launcher variables.

For both compiler and installer variables install4j offers a fixed set of "system variables". These
variables are prefixed with "sys.". These variables are not writable and it is discouraged to use
this prefix for your own variables.

21

Compiler variables
Compiler variables are written as
${ conpi | er: vari abl eName}

The value of a compiler variable is a string that is known and replaced at compile time. The
installer runtime or the generated launchers do not see this variable, but just the value that was
substituted at runtime.

You can use compiler variables for various purposes. The most common usage of a compiler
variable is the possibility to define a string in one place and use it in many other places. You can
then change the string in one place instead of having to look up all its usages. An example of
this is the pre-defined "sys.version" variable that contains the value of the text field where you
enter the application version [p. 79] . Another usage for compiler variables is to override certain
project settings on a per-media file basis. For example, if you want to include one directory in
the distribution tree for Windows but another one for macOS, you can use a compiler variable
for that directory and override it [p. 312] in the media file wizard. Finally, compiler variables can
be overridden from the command line compiler [p. 327] and the ant task [p. 331].

When you use a compiler variable in your project that is not a system variable, it must be defined
in on the Compiler Variables tab [p. 88] of the General Settings step [p. 78] . If an unknown
variable is encountered, the build will fail. You can use other variables in the value of a variable.
Recursive definitions are detected and lead to a failure of the build. It is not possible to define
compiler variables with the name of a system variable.

install4j provides a number of system compiler variables:

+ sys.version

The version of your application as configured under General Settings->Application Info.
+ sys.shortName

The short name of your application as configured under General Settings->Application Info.
+ sys.fullName

The full name of your application as configured under General Settings->Application Info.
+ sys.publisher

The publisher of your application as configured under General Settings->Application Info.
*+ sys.publisherUrl

The publisher URL of your application as configured under General Settings->Application Info.
+ sys.setName

The display name in the install4j IDE of the currently compiled media file as configured in the
Media section. If the default name of the media file is not suitable, you can rename the media
file.

+ sys.platform

The platform descriptor of the currently compiled media file. One of "windows", "linux", "unix",
"macos". The value of this variable depends on your choice in the platform step of the media
file wizard.

+ sys.languageld

The 2-letter | SO 639 code (see < a
href="htp/Ammnlocgov/standards/iso639-2/php/code.istphp >hitp/Amwvilocgov/standards/iso639-2/php/code listphp)
for the principal language of the installer. This variable can be overridden on the command
line or the ant task which is useful if you build different installers for different languages.

22

+ sys.withjre

Avariable that contains "_with_jre" if a JRE is statically bundled with a media file and the empty
string if not. This is useful if media files with and without JRE are built.

+ sys.date

The current date in the format <tt>YYYYMMDD</tt> (e.g. "20090910").The value is set at the
start of a build and will not change during a single build.

+ sys.time

The current time in the format <tt>HHMMSS</tt> (e.g. "153012") where HH is the hour in
24-hour format, MM is the minute and SS is the second. The value is set at the start of a build
and will not change during a single build.

+ sys.javaMinVersion

The minimum Java version as configured under General Settings->Java Version
+ sys.javaMaxVersion

The maximum Java version as configured under General Settings->Java Version
+ sys.install4jHome

The installation directory of the install4j IDE.
+ sys.applicationld

The application ID as configured under Installer->Update Options
+ sys.updatesUrl

The URL where auto updaters can download the update descriptor file <tt>updates.xml</tt>
as configured under Installer->Auto-Update Options. This variable is usually used in the "Update
descriptor URL" property of a "Check for update" action.

+ sys.fileSeparator

The platform-dependent separator for directories in a file path. On Windows, this is a backslash
("\"), on Unix a forward slash ("/").<p>Note that this is the value at compile-time, not at runtime.

+ sys.pathlistSeparator

The platform-dependent separator for lists of directories. On Windows, this is a semicolon
(";"), on Unix a colon (":").<p>Note that this is the value at compile-time, not at runtime.

You can access environment variables on the build machine with the syntax
${conpi | er: env. envi ronnent Vari abl eNane}

where "environmentVariableName" is the name of an environment variable. This only works if
no compiler variable with the same name is defined on the Compiler Variables tab. This is resolved
at build time, not at run time.

In order to debug problems with compiler variables, you can switch on the extra verbose
out put flaginthe Build step [p. 320] . All variable replacements will be printed to the build console.
Installer variables
Installer variables are written as

${installer:variabl eNane}

The value of an installer variable is an arbitrary object that is not known at compile time. Installer
variables are evaluated when requested in the installer or uninstaller. Installer variables can be
predefined in the install4j IDE like compiler variables, but this is not necessary. Undefined installer
variables come into existence the first time they are defined at runtime. However, it is an error

23

to use an undefined variable. For example, if you use an installer variable in an action, you have
to make sure that the installer variable is defined before the action is executed.

Installer variables are used to wire together actions, screens and form components at runtime.
The user input in screens is saved to variables, which can be used in the properties of certain
actions. Furthermore, variables are routinely used in condition and validation expressions. Some
examples are given in the help topic on form screens [p. 14] . In expression/script properties,
you retrieve variables by invoking

context.getVariable(String variabl eNane)
Variable value can be set with the installer API by invoking

context.setVariabl e(String variabl eName, Cbject vari abl eVal ue)

You can analyze the bindings of an installer variable on the "Installer Variables" tab of an installer
application configuration. It will show you a list of bound variables together with all bindings. In
order to document and categorize bound installer variables, you can pre-define them and set a
description for them, which will be displayed in the installer variable selector in the install4j IDE.

A common scenario is the need to calculate a variable value at runtime with some custom code
and use the result as the initial value of a component in a screen. To achieve this you can add a
"Set a variable" action to the startup screen and set its "Variable name" property to some variable
name. In contexts where a variable name is expected by install4j, you must not use the
${installer:variabl eNane} syntax butspecify vari abl eNane only. The return value of the
"Script" property is written to the variable. If, for example, the variable represents the initial
directory that is displayed for a customizable "Directory selection" screen, you then set the "Initial
Directory" property of that screento ${i nst al | er: vari abl eNane} . In this way you have wired
an action with a screen.

Another important use of installer variables is for the locations of custom installation roots [p.
95] . In most cases a custom installation root contains an installer variable that is resolved at
runtime. Often, one of the system installer variables that represent a "magic" folder can be used,
such as the Windows syst enB82 directory.

Installer variables can be passed to the installer or uninstaller from the command line prefixed
with -V (for example -VmyVar=test). Alternatively, you can specify a property file containing
installer variables with -varfile (for example -varfile myfile.prop). The variables will be String
objects.

install4j provides a number of system installer variables:

+ sys.installationDir [Source and Target]

The installation directory for the current installation. The value of this variable can change in
the installer as the user selects an installation directory in the "Installation directory" screen
or the installation directory is set via <tt>context.setinstallationDirectory(File
installationDirectory)</tt>.<p>Note that for single bundle installers on macOS, the installation
directory is usually just <i><tt>/Applications</tt></i>, not a separate subdirectory.</p>

+ sys.contentDir [Source and Target]

The directory that holds the installed files. On Windows, Linux and Unix, this is the same as
the installation directory. For single bundle installers on macOS, this is <i><tt>[Bundle
name].app/Contents/Resources/app/</tt></i>. To reference an installed file in a cross-platform
way, use this variable and not sys.installationDir.

+ sys.mediaFile [Source and Target]

The path of your media file. Not available for uninstallers.<p>On Windows and Unix this is the
same as sys.installerFile. On macOS§, this is the path to the DMG file. If you want to reference
the installer file, use sys.installerFile instead.</p>

24

sys.mediaDir [Source and Target]

The path of the directory where your installer file is located. Not available for uninstallers.<p>0On
Windows and Unix this is the same as sys.installerDir. On macOS, this is the directory where
the DMG file is located. If you want to reference files inside the DMG file, use sys.installerDir
instead.</p>

sys.installerFile [Source and Target]

The path of your installer file. Not available for uninstallers.<p>0On Windows and Unix this is
the same as sys.mediaFile. On macQS, this is the path to the installer inside the mounted
DMG. If you want to reference the DMG file, use sys.mediaFile instead.</p>

sys.installerDir [Source and Target]

The path of the directory where your installer file is located. Not available for uninstallers.<p>0On
Windows and Unix this is the same as sys.mediaDir. On macQOS, this is the path into the
mounted DMG. If you want to reference files in the same directory as the DMG file, use
sys.mediaDir instead.</p>

sys.resourceDir [Installer application state]

The directory where the resource files are present that have been configured on the
Installer->Custom Code & Resources tab.

sys.installationTypeld [Installer application state]

The ID of the selected installation type. This is only relevant if the "Installation Type" screen
has been added to the installer. The value is <tt>null</tt> as long as no installation type has
been selected.

sys.version [Installer application state]

For installers, the version of your application as configured under General Settings->Application
Info. In that case, the variable yields the same value as the compiler variable of the same
name. For custom installer applications, the installed version,which might not be the same as
the version for which the custom installer application was originally compiled.

sys.logFile [Installer application state]

The full path to the currently used log file. This is a path in the <tt>TEMP</tt> directory. For
installers, this changes after the "Install Files" action, when the log file is moved to a path in
the installation directory.

sys.responseFile [Installer application state]

If a response file is supplied with a <tt>-varfile</tt> command line argument, the full path to
the response file. If no response file is used, the variable value is <tt>null</tt>.

sys.preferredjre [Installer application state]

The home directory of the JRE that will be used by the installed launchers. This variable will
only be set after the 'Install files" action has run. It will be the same as
<tt>System.getProperty("java.home")</tt> or the <tt>sys.javaHome</tt> installer variable
unless a bundled JRE (shared or non-shared) has been installed. This variable is not available
in the uninstaller or custom installer applications, use the <tt>sys.javaHome</tt> directory
there.

sys.languageld [Installer application state]

The 2-letter | SO 639 code (see < a
href="hitp/Amwmwwiocgov/standards/iso639-2/php/code listphp >http/Ammwwdocgov/standards/iso639-2/php/code. listphp)
for the actual language of the installer. For fixed-language installers, this is the same as the

compiler variable of the same name. For multi-language installers, the value is determined at
runtime.

25

sys.programGroupDisabled [Installer application state/Program group]

If the user has disabled program group creation on the "Standard program group" screen.
This applies to both the Windows program group and the Linux/Unix launcher link directory
selection. If no "Standard program group" screen is present, the variable value will be
<tt>null</tt>.

sys.programGroupName [Installer application state/Program group]

The name of the program group that user has selected on the "Standard program group"
screen. If no program group has been selected, the variable value will be <tt>null</tt>. Only
set in Windows installers.

sys.programGroupDir [Installer application state/Program group]

The directory that has been selected as the program group. This is the full path to the actual
location of the program group, not just the name of the program group. If no program group
has been selected, the variable value will be <tt>null</tt>. Only set in Windows installers.

sys.programGroupAllUsers [Installer application state/Program group]

If the user has selected to create menu entries for all users on the "Standard program group"
screen. If no "Standard program group" screen is present, the variable value will be <tt>null</tt>.
Only set in Windows installers.

sys.symlinkDir [Installer application state/Program group]

The name of the directory for launcher links that user has selected on the "Standard program
group" screen. If no program group has been selected, the variable value will be <tt>null</tt>.
Only set in Linux/Unix installers.

sys.fileSeparator [Cross-platform variables]

The platform-dependent separator for directories in a file path. On Windows, this is a backslash
("\"), on Unix a forward slash ("/").

sys.pathlistSeparator [Cross-platform variables]

The platform-dependent separator for lists of directories. On Windows, this is a semicolon
(";"), on Unix a colon (":").

sys.userHome [Cross-platform variables]

The user home directory, typically something like <i><tt>C:\Users\$ USER</tt></i>on Windows
or <i><tt>/home/$USER</tt></i> on Unix platforms.

sys.userName [Cross-platform variables]
The user account name.
sys.workingDir [Cross-platform variables]

The working directory. For the installer, this is the temporary directory that the installer was
extracted to.

sys.tempDir [Cross-platform variables]

The temporary directory of the operating system. On all supported platforms, this is the value
of the <tt>TEMP</tt> environment variable.

sys.javaHome [Cross-platform variables]

The Java home directory of the currently used JRE.
sys.javaVersion [Cross-platform variables]

The Java version of the currently used JRE.
sys.confirmedUpdatelnstallation [Cross-platform variables]

If the user has confirmed an update installation on top of a previous installation. If a previous
installation is detected, the "Welcome" screen asks the user whether to perform an update

26

installation or choose another installation directory. The result of that question is saved to
this variable. If the "Welcome screen is not shown, this variable is not set and
<tt>Context#getBooleanVariable(...)</tt> returns false for this variable.

sys.desktopDir [Cross-platform variables]

The directory used to physically store file objects on the desktop. On Windows, a typical path
is <i><tt>C:\Users\[user = name]\Desktop</i></tt>. On macOS, this is the
<i><tt>~/Desktop</tt></i> directory and on Unix the freedesktop.org setting for the
<tt>XDG_DESKTOP_DIR</tt> directory is returned.

sys.docsDir [Cross-platform variables]

The directory used to physically store a user's common repository of documents. On Windows,
a typical path is <i><tt>C:\Users\[user name]\Documents</i></tt>. On macQOS, this is the
<i><tt>~/Documents</tt></i> directory and on Unix the freedesktop.org setting for the
<tt>XDG_DOCUMENTS_DIR</tt> directory is returned.

sys.downloadsDir [Cross-platform variables]

The directory used to physically store a user's downloads. On Windows, a typical path is
<i><tt>C:\Users\[user name]\Downloads</i></tt>. On macOS, this is the
<i><tt>~/Downloads</tt></i> directory and on Unix the freedesktop.org setting for the
<tt>XDG_DOWNLOAD_DIR</tt> directory is returned.

sys.appdataDir [Platform-specific variables]

The directory that serves as a common repository for application-specific data. On Windows,
a typical path is <i><tt>C:\Users\[user name]\AppData\Roaming</i></tt>. On macOSs, this is
the <i><tt>~/Library/Application Support</tt></i> directory.

sys.localAppdataDir [Platform-specific variables]

The user-specific directory that serves local applications to store computed data. On Windows,
a typical path is <i><tt>C:\Users\[user name]\AppData\lLocal</i></tt>. On macOS, this is the
<i><tt>~/Library/Caches</tt></i> directory.

sys.windowsDir [Platform-specific variables]
The Windows installation directory, typically <i><tt>C:\Windows</tt></i>.
sys.system32Dir [Platform-specific variables]

The system32 directory of your Windows installation, typically
<i><tt>C:\Windows\system32</tt></i>.

sys.commonDir [Platform-specific variables]

The common files directory of your Windows installation, typically <i><tt>C:\Program
Files\Common Files</tt></i>.

sys.programDataDir [Platform-specific variables]

The directory where applications can save data that is not specific to particular users. A typical
path is <i><tt>C:\ProgramData</i></tt>.

sys.startMenuDir [Platform-specific variables]

The directory containing Start menu items. A typical path is <i><tt>C\Users\[user
name]\AppData\Roaming\Microsoft\Windows\Start Menu</i></tt>.

sys.programsDir [Platform-specific variables]

The directory that contains the user's program groups. The groups are themselves file system
directories. A typical path is <i><tt>C:\Users\[user
name]\AppData\Roaming\Microsoft\Windows\Start Menu\Programs</i></tt>.

27

+ sys.startupDir [Platform-specific variables]

The directory that corresponds to the user's Startup program group. The system starts these
programs whenever any user logs onto Windows. A typical path is <i><tt>C:\Users\[user
name]\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup</i></tt>.

+ sys.sendToDir [Platform-specific variables]

The directory that contains Send To menu items. A typical path is <i><tt>C:\Users\[user
name]\AppData\Roaming\Microsoft\Windows\SendTo</i></tt>.

+ sys.templatesDir [Platform-specific variables]

The directory that serves as a common repository for document templates. A typical path is
<i><tt>C:\Users\[user name]\AppData\Roaming\Microsoft\Windows\Templates</i></tt>.

+ sys.favoritesDir [Platform-specific variables]

The directory that serves as a common repository for the user's favorite items. A typical path
is <i><tt>C:\Users\[user name]\Favorites</i></tt>.

+ sys.programGroupDir [Platform-specific variables]

The directory of the program group that will be or was created by the "Create standard program
group" action. If this action is not present, the value will be <tt>null</tt>. The value of this
variable can change in the installer as the user selects a program group on the "Create program
group" screen.

+ sys.fontsDir [Platform-specific variables]

The folder that contains fonts. A typical path is <i><tt>C:\Windows\Fonts</i></tt>. On macOS,
the value is <i><tt>/Library/Fonts</tt></i>.

+ sys.programFilesDir [Platform-specific variables]

The directory where programs are installed, typically something like <i><tt>C:\Program
Files</tt></i>. On macOS, the value is <i><tt>/Applications</tt></i>.

Launcher variables

Launcher variables are written as
${1 auncher: vari abl eNare}

The value of a launcher variable is a string that is not known at compile time. Launcher variables
are evaluated when a generated application launcher is started. Launcher variables can only be
used in the VM parameters text field [p. 117] of the launcher wizard [p. 113] . No user-defined
launcher variables exist, the available system launcher variables are:

+ sys.launcherDirectory
The directory in which your launcher has been installed at runtime.
* sys.jvmHome

The home directory of the JVM that your launcher is running with. This is useful to put JAR files
from the JRE into your boot classpath. The "home directory" is the directory that contains the
"bin" directory of the JRE.

+ sys.pathlistSeparator

The platform-dependent separator for lists of directories. On Windows, this is a semicolon
(";"), on Unix a colon (":").

+ sys.tempDir
The temporary directory for the current user.

28

118N messages

118N messages are written as
${i 18n: keyNane}

The value of an 118N message depends on the language that is selected for the installer. You
can use this facility to localize messages in your installers if they support multiple languages [p.
82] . You can supply key value pairs for internationalization in the custom localization file. The
variable selection dialog for 118N messages shows all system messages as well as all messages
in the custom localization file for the principal language of your project.

All standard messages displayed by install4j can be referenced with this syntax as well. You can
locate the key name in one of the message_*.utf8 files in the
$I NSTALL4J_HOME/ r esour ce/ messages directory and use it anywhere in your project. The
standard messages can be overwritten by your custom localization files.

Using variables your own applications

Many times there is a need in the installed applications to access user input that was made in
the installer. The install4j API provides the helper class
cominstall4j.api.launcher. Vari abl es to access the values of installer variables.

There are two ways that installer variables can be persisted in the installer: First, installer variables
are saved to the default response file . i nstal | 4j / response. varfil e that is created when
the installer exits or if a "Create response file" action is executed. Only response file variables
are saved to that file. Please see the help topic on response files [p. 62] for more information.
Second, selected installer variables can be saved to the Java preference store. The
cominstall4j.api.launcher. Variabl es helper class offers methods to load variables
from both sources.

Saving to the Java preference store is interesting if you want to modify those variable values in
your applications and save back the modified values. The Java preference store is available on
a per-user basis so that it is possible to modify settings even if the user does not have write
permissions for the installation directory. The com i nstal | 4j . api .| auncher. Vari abl es
helper class has methods for loading and saving the entire map of installer variables that way
saved by the installer. Also, it is possible to specify an arbitrary package to which the installer
variables are saved, so that communication of settings between installers is made possible.

Lastly, it is useful to access compiler variables in your own applications. For example, the version
number configured in the install4j IDE can be accessed in your own application through the
cominstall4j.api.launcher. Variabl es helper class.

29

A.1.7 VM Parameters

Fixed VM parameters

Fixed VM parameters can be configured in the launcher wizard [p. 117] where you can use compiler
variables [p. 21] to handle platform-specific changes or launcher variables [p. 21] to use
runtime-dependent variable in your VM parameters.

' Modify Launcher X
1. Select type Configure Java invocation

2. Executable info

3. Icon WM Parameters: |-Dapple laf.useScreenMenuBar =true b Q

4. Java invocation
Adv anced aglians
+ Native libraries
+ Preferred M

Allow WM passthrough parameters (e.g. -J-Xmx256m)

Configure Version-Spedific VM Parameters

5. VM options file Class path:
6. Splash screen [] Directory classes :F
7. Finished
Main dlass: HelloGui »
Arguments: 4
w Advanced Options
&) Help 4 Back Mext Finish Cancel

install4j has the ability to add specific VM parameters depending on the Java version. To set this
up, click on the [Configure version specific VM parameters] button. In the dialog, add rows
for each Java version that should receive specific VM parameters. The comparison checks if the
Java version string starts with the specified characters, so "1.8" will match "1.8.0_60", for example.
These VM parameters are added after the common VM parameters so you can use them to
override common settings.

*.vmoptions files

A common requirement is to adjust the VM parameters of your application launchers depending
on the runtime environment like the target platform or some user selection in the installer.

In addition to the fixed VM parameters, a parameter file in the same directory as the executable
is read and its contents are added to the existing VM parameters. The name of this parameter
file is the same as the executable file with the extension . vnopti ons. For example, if your
executable is named hel | 0. exe, the name of the VM parameter file is hel | 0. viopti ons. In
this file, each line is interpreted as a single VM parameter. The last line must be followed by a
line feed. install4j adapts your .vmoptions files during the compilation phase so that the line
endings are suitable for all platforms. For example, the contents of the VM parameter file could
be:

- Xnmx128m
- Xms32m

The . vropt i ons files allow the installer as well as expert users to modify the VM parameters
for your application launchers.

It is possible to include other . vnopt i ons files from a . viopt i ons file with the syntax

-include-options [path to other .vnoptions file]

30

For maximum cross-platform capability use just one include per . vnopti ons file. Recursive
includes are supported. You can also add this option to the fixed VM parameters of a launcher.
In that way, you do not have to create . viopt i ons files for all your launchers, but you can have
a single . vnopt i ons file for all of them.

This allows you to to centralize the user-editable VM options for multiple launchers and to have
. viopt i ons files in a location that can be edited by the user if the installation directory is not
writable. You can use environment variables to find a suitable directory, for example

-incl ude-options ${APPDATA}\ My Application\ny.vnoptions
on Windows and
-incl ude-options ${HOVE}/. nyApp/ ny. viopt i ons

on Unix. If you have to decide at runtime where the included . viopt i ons file is located, use an
installer variable:

-include-options ${installer:vnOptionsTargetDirectory}/nmy.vnoptions

and add a "Replace installer variables in a text file" action to replace it after you have set the the
viOpt i onsTar get Di r ect or y installer variable to a suitable path with a "Set a variable" action.

In addition to the VM parameters you can also modify the classpath in the . vnopt i ons files
with the following options:

+ -classpath [classpath]

Replace the classpath of the generated launcher.
+ -classpath/a [classpath]

Append to the classpath of the generated launcher.
+ -classpath/p [classpath]

Prepend to the classpath of the generated launcher.

For GUI launchers on macOS, the VM options are stored in a file called I nf 0. pl i st inside the
application bundle. The "Add VM options" action described below handles these platform-specific
differences. On macOS, .vmoptions files are only supported if Java 7+ is used, i.e. the Oracle JRE
option has been selected in the media file wizard.

Environment variables

You can use environment variables in the VM parameters and the . vinopt i ons file with the
syntax ${vari abl eName} where you replace vari abl eNarme with the desired environment
variable.

This environment variable syntax also works in the arguments text field and the classpath
configuration.
"Add VM options" action

In order to handle VM parameter additions in the installer in a cross-platform fashion, install4j
includes an "Add VM options" action [p. 173] that adds VM parameters to the . vnopt i ons file
on Microsoft Windows and Unix and modifies the | nf 0. pl i st file on macOS.

The Add VM options action creates a . vnopt i ons file if necessary or adds your options to the
. vopt i ons file if it already exists. However, a number of VM parameters can only occur once
so the action replaces the following parameters if they already exist:

¢« -Xmx
* -Xms

31

+ -Xss

+ -Xloggc

+ -Xbootclasspath

« -verbose

+ -ea/-enableassertions
+ -da/-disableassertions
« -agentlib

+ -agentpath

+ -javaagent

+ -splash

as well as the install4j-specific classpath modification options (see above).

To set an -Xmx value that depends on the total memory of the target system, you can use a "Set
a variable action" to calculate the numeric part of the -Xmx value using the utility method
Syst eml nf 0. get Physi cal Menory() and use thatvariable in the "VM options" property of the
"Add VM options" action. For example, in order to use 50% of the total memory for the maximum
heap size, you do the following after the "Install files" action:

1. Add a "Set a variable" action with variable name "xmx" and expression
"-Xnx" + Mat h.round(System nfo. get Physi cal Menory() * 0.5/ 1024 / 1024) + "nf

2. Add a "Add VM options" action with VM options

"${install er:xmx}".

32

A.1.8 JRE Bundles

Introduction

When deploying a Java application to users that are not all in the same environment, it is advisable
to bundle a JRE with your application or at least to offer a download with a bundled JRE. install4j
offers you a number of strategies for JRE bundling. A statically bundled JRE is always distributed
along with your application. Dynamical bundling means that if the installer cannot find a suitable
JRE on the target computer, it will download a JRE bundle from your web server.

Any JRE bundle that is installed by install4j will not interfere with default JRE installations. In
particular, it will not be integrated into browsers and no registry entries will be written. However,
itis possible to install JRE bundles as "shared", meaning that other installers generated by install4;
will be aware of these bundles. A shared JRE bundle will not be uninstalled when the application
that has installed the bundle is uninstalled itself. If you dynamically bundle a JRE for multiple
installers and install it as a shared JRE, only the first time when a user installs one of your installers,
a JRE will be downloaded. Subsequent installations of other installers will find that shared JRE.

Obtaining JRE bundles

ej-technologies offers a JRE bundle download service [p. 322] that is invoked from the install4j
IDE.

*2 Download JREs E|
1, Welcome Downloading JREs
2, Conneckion parameters
3. Download list of JREs The selected JREs are now being downloaded., You can cancel this process at
4, Select JREs For download any time with the Cancel button. Cnly the currently downloaded JRE will then
5. Download be discarded.
6. Finished

Downloading JRE 1 of 2

Windows (x86) 1.5.0_08 (10.8 MB)

Total progress:

T

All JREs are saved with at ar . gz extension to the directory $1 NSTALL4J_HOWE/ j r es or, if that
directory is not writable, to $HOVE/ . i nst al | 4j 6/ j r es. If you require JRE bundles on a computer
without an internet connection, you can transfer these files to the equivalent location of that
computer.

Please note that on macOS, only Oracle JREs can be bundled (Java 7+). The Apple JRE (Java 6) is
part of the operating system and may not be be installed by third parties.

Using JRE bundles

Downloaded JREs can be selected for bundling in the Bundled JRE [p. 310] step of the media
wizards [p. 303] . All generated launchers [p. 111] use the bundled JRE as their first choice.

33

Z Media Wizand - Windows

1. Media file type Bundle a JRE with your application

2. Installer options

3., Data files ‘¥ou can bundle a JRE with your application. It will be placed in the jre folder below your installation
4. 32-bit or 64-bit rook: directory. all launchers in this media file will use this JRE as their first choice.

5. Code signing

() Don't bundle a IRE
6. Bundled JRE
7. Customize praject defaults (5 Bundle the Fallawing JRE:
8. Finished Windaws (x36] 1.6.0 =
3 Dowrload JREs
Bundle Type

() Static bundle (distribute with media file)
(%) Dynamic bundle {(download on demand)

HTTP download URL {required): [htkp: i, test cam/ireswindows, tar.gz E]
FTP download URL (Fallback):]

[1nstal as a shared RE

l 4 Back][MNext p ” Finish “ Cancel]

If you would like to put your JRE bundles in a different directory, such as a directory in a
version-controlled location, you can copy the . tar. gz file (see above) to that directory and
choose the "Manual entry" JRE bundle to enter the path to the bundle file.

Creating JRE bundles

If the JRE bundles created by ej-technologies do not satisfy your needs, you can create a JRE
bundle from any installed JRE on your file system. install4j offers the "Create a JRE bundle" wizard
[p. 323] to make this task as simple as possible.

™ Create JRE bundle for; install4j El
1. Welcome Select the JRE

2. Select JRE

3. Create bundle Jawa home directory of the JRE that is to be bundled:

4. Finished E]

Jawa version of the selected JRE [e.g "1.4.2"]:

Custam id For identification of the JRE in the media file wizard [2.g. "custom"]:

[4 Eack][Mext p H Cancel]

If you wish to automate the process, a command line tool as well as an ant task [p. 323] for
building JRE bundles are available as well.

Packaging your own JRE can be useful if you want to add standard extensions such as the Java
Communications API to your JRE. The JRE bundle wizard only works for the platform you are
running on. That means, to create a JRE bundle for Windows, you have to run install4j on Windows,
to create a bundle for Linux, you have to run install4j on Linux.

In special cases you might want to create or modify a JRE bundle programmatically, i.e. without
using the install4j IDE or the command line tools. This can be done with the standard GNU tools
tar and gzi p. AJRE bundle for install4j is simply a file with the naming scheme:

34

[operating systeni-[architecture]-[JRE version].tar.gz

For windows bundles, the operating system name must be "windows", for other platforms any
name can be used. The . t ar. gz file directly contains the JRE, i.e. the bi n and | i b folders. The
steps to create a bundle are outlined below:

cd jre

tar cvf minix-x86-1.5.0.tar *

gzi p mnix-x86-1.5.0.tar

cp mnix-x86-1.5.0.tar.gz /usr/install4j/jres
First you change into the top-level directory of the JRE, then you tar all files and directories and
gzip the tar archive. The last step copies the bundle into the directory $| NSTALL4J_HOVE/ j r es.
You have to restart install4j for the JRE to be listed in the "Bundled JRE" step of the media file
wizard.

If you choose to bundle your JRE this way on Microsoft Windows, you have to install the tar and
gzip tool available at

* tar: http://gnuwin32.sourceforge.net/packages/tar.htm
*+ gzip: http://gnuwin32.sourceforge.net/packages/gzip.htm

35

http://gnuwin32.sourceforge.net/packages/tar.htm
http://gnuwin32.sourceforge.net/packages/gzip.htm

A.1.9 Services

Introduction

Many applications have a component that has to run in the background without user interaction.
On Windows, this is called a "service", on Unix a "daemon", in install4j the term "service" is used
exclusively. install4j can generate and install4j service launchers for your own application. On
Windows, managing services is a particularly demanding area and so other service executables
that have not been generated by install4j are supported as well.

Generated Service Launchers

A service launcher will be generated if the selected executable type in the "Executable" step [p.
114] of the launcher wizard is set to "Service". There are no special requirements for your code,
when the service is started, the mai n method of the configured main class will be called as for
GUI or console launchers. Also, there is no special "shutdown" interface for the service to be
notified when the service is stopped. To do any cleanup, use the Runt i me. addShut downHook()
method to register a thread that will be executed before the JVM is terminated.

A generated service launcher has to be installed and started, otherwise it will not run. These
actions are not performed by default. You have to add the following actions to the installer:

* Install a service

Installs a service, so that it can be started automatically when the computer is started. By
default, the name of the installed service is the launcher name that is configured in the launcher
section of the install4j IDE. You can select the launcher and rename in order to change the
service name. If you require a user-configurable service name or if you wish to install the
service multiple times, please use the method for external service launchers on Windows as
described below. If you treat the service launcher as an external service, you can specify a
service name in the install4j IDE.

You can configure the user account that is used for running the service. There are a few
well-known user accounts, like "Local System" (the default) or "Local Service" that you can
choose directly in the configuration of this action. In some cases, you might want to create a
separate user to run a service. install4j offers APl support for creating new user accounts with
the cominstall 4j.api.w ndows. WnUser class. If you would like to query the user for
details on the user account, it is possible to do that without using the API. On a configurable
form, add a "Windows user selector" component and select the "Show 'Create User' button"
property. The SID of the created or selected user is saved to the configured variable, say
"serviceUser". You also have to query the user for the password of the account. For that
purpose, add a "Password field" form component, set its variable to "servicePassword" and
choose that form componentin the "Password form component" property of the user selector
form component. In the "Install a service" action, you can then choose & her in the "Account"
property and enter ${i nstaller:serviceUser} in the nested "Account name or SID"
property as well as ${i nst al | er: servi cePasswor d} in the nested "Password" property.

36

g Configure Form Components @
Form components:
: * Password field 1D 2532] @ g ;?;I,I?J:::Ion
Password form component Password field
Variable for user creation. ..
- Show groups |}
Show wellknown principals =
Multiple selection |}
Orlly local objects =
E Help
Help text
El Initialization
Initislization script
| Reset initiglization on previous 7]
W Visibiity script Ut isAt esstWWindowsXP()
- El Label
LJ Text User:
Icon
Icon-text gap 4
Font color =
Font
E Layout
Insets 3; 0; 3; 0 [Default]
= User input
Variable name serviceMame
Show "Create User” button
i If selected, a button to create a new user will be displayed next to the
- “Browse” button. On dicking that button, a separate dialog will be shown
where the new user can be configured.

+ Start a service
Installing a service does not start it. You need this action to actually execute your code.

When the "Install Files" action runs and a previous installation is being updated, any running
services that are associated with the same executables are stopped.

Command Line Options Of Generated Service Launchers

Under some circumstances, services must be able to be installed and started manually from the
command line. While this is required functionality on Unix, on Windows service executables
usually offer no command line functionality. On Windows it is expected that there is a special
program that installs an uninstalls the service. This is done by the "Install a service" and "Uninstall
a service" actions in install4j. In addition, one can start and stop services in the Windows service
manager. install4j offers "Start a service" and "Stop a service" actions to do this programatically
in the installer. To improve usability, install4j adds Unix-like arguments to the generated service
launchers on Windows as well.

For Unix service executables, the usual st ar t , st op and st at us of daemon start script arguments
are available for the generated start script. The stop command waits for the service to shut down.
The exit code of the status command is 0 when the service is running and 3 when itis not running.

For debugging purposes, you may want to run the executable on the command line without
starting it as a background service. This can be done with the r un parameter. In that case, all
output will be printed on the terminal. If you want to keep the redirection settings, use the
run-redirect parameter instead. On Windows, the corresponding parameters are / r un and
/run-redirect.

To install a service on Windows from the command line, pass/ i nst al | to the generated service
executable. In this way, your service is always started when Windows is booted. To prevent the
automatic startup of your service when the computer is booted, pass the argument
/install-demand instead. As a second parameter after the /i nstal | parameter, you can
optionally pass a service name. In that way you can

37

+ install a service with a different service name than the default name.

+ Usethe same service executable to start multiple services with different names. To distinguish
several running service instances at runtime, you can query the system property
exedj . | aunchNane for the service name. Note that you also have to pass the same service
name as the second parameter if you use the / uni nstal |,/ start and/ st op parameters
explained below.

Generated windows services are always uninstalled by passing / uni nst al | to the generated
service executable. To start or stop the service, the /start /stop and /restart options are
available. In addition, the / st at us argument shows if the service is already running. The exit
code of the status command is 0 when the service is running, 3 when it is not running and 1
when the state cannot be determined (for example when it is not installed on Windows). All
command line switches also work with a prefixed dash instead of a slash (like - uni nstal |) or
two prefixed dashes (like - - uni nst al I').

External Service Launchers On Windows

As part of 3rd party software, you may want to install and start services that were not generated
by install4j. Both the "Install a service" action as well as the "Start a service" action provide a way
to select other service executables. In the drop-down list of the "Service" property, if you choose
[O her service executable] two new nested properties are shown: The "Executable"
property allows you to specify the external service executable. Note that this action does not
provide "service wrapper" functionality for regular executables. The selected executable has to
be a service executable, otherwise the action will not work. The "Name" property allows you to
specify the name of the installed service.

Configuration

=l General

finice Other sevice cxeatabil

Executable bintomcat.exe
Name Tomcat Web Server
Auto Start
Description
=l Mac 05X
Mac 05 X Dependencies
= Windows
Windows Dependencies
Windows Priority MNormal
Account Local System
Keep Current Account |
Restart on Failure =
Interactive M=
= Error Handling
Failure strategy Continue on failure
Error message
= Control Flow
Condition expression
Rollback barrier M=
Can be executed multiple times |

Service
The service launcher that will be installed.

38

A.1.10 Elevation Of Privileges

Introduction

Most operating systems have the concept of normal users and administrators. While regular
applications can run with limited privileges, installers often need full administrator privileges
because they make modifications to the system that are not granted to limited users. The required
privileges depend on two factors: The operating system and the type of operations that are
performed by the installer. The "Request privileges" action that is present in the "Startup"
sequence of both installers and uninstallers by default takes care of elevating the privileges to
the required level and optionally terminating the installer with an error message if the required
privileged cannot be obtained. Due to the differences for the different operating systems, this
configuration is made separately for Windows, macOS and Unix.

Configuration

=l Windows

Try to obtain full privileges if admin user v
Try to obtain full privileges if normal user
Obtain privieges for Main installation process

Show failure if requested privieges cannot be obtained [V
= Mac 05X
Try to obtain root privileges if admin user
Try to obtain root privileges if normal user
Obtain privieges for Helper process
Show failure if requested privieges cannot be obtained [
= Unixx
Show failure if current user is not root
= Error Handling
Failure strategy Continue on failure
Error message
=l Control Flow
Condition expression
Rollback barrier
Can be executed multiple times

Request privileges

Requests configurable administrator privileges, On Windows Vista and higher and on O3 ¥, the
installer will be restarted with the requested privileges or a helper process will be created that can
perform certain actions in a privileged context. When you restart the installer, you should not
install files before this action.

For the installer and the uninstaller, the privileges should be the same. This is why by default
the uninstaller has a "Request installer privileges" action that will request the same privileges
that were obtained in the installer. If you have more complex requirements, you can have multiple
"Request privileges" actions with appropriate condition expressions, each with a link in the
uninstaller.

Windows privileges

Since Windows Vista, "User Account Control" (UAC) limits privileges for all users by default. An
application can request full privileges, with different effects for normal users and admin users:
A normal user cannot be elevated to full privileges, so the user has to enter credentials for a
different administrator account. A normal user is not likely to have these credentials, so by default
the "Request privileges" action does not try to obtain full privileges for normal users. An admin
user can be elevated. A UAC prompt will be shown in this case and the user simply has to agree
in order to elevate privileges for the installer. Since it is not possible to write to the program files
directory without elevated privileges, this elevation is performed by default. With the "Try to
obtain full privileges if admin user" and the "Try to obtain full privileges if normal user" properties
in the "Windows" category, you can configure this behavior according to your own needs.

By default, the installer will fail if the requested privileges cannot be obtained. You can deselect
the "Show failure if requested privileges cannot be obtained" property in the Windows category
to continue and let the user install into the user home directory or another writable directory.

Under some circumstances, for example if you want to manage services in your installer, you
absolutely require full privileges. In this case, you can select the "Try to obtain full privileges if

39

http://en.wikipedia.org/wiki/User_Account_Control

normal user" property in the Windows category. When you insert a service action and the elevation
properties are not selected, you will be asked whether the necessary changes should be made
automatically.

macOS privileges

Similar to Windows, macOS limits privileges for all users by default and normal users and admin
users behave differently with respect to privilege elevation: A normal user cannot be elevated
to full privileges, so the user has to enter the root password. A normal user is not likely to have
the root password, so by default the "Request privileges" action does not try to obtain full
privileges for normal users. To elevate an admin user, an authenticate dialog will be shown and
users have to enter their own password. Contrary to Windows, admin users can always write to
the / Appl i cations directory, even without full privileges. That's why on macQOS no elevation
of privileges is requested by default.

Like on Windows, the installer will fail by default if the requested privileges cannot be obtained.
In the default setting this has no effect, because privileges are never requested.

Service installations require full privileges, so the "Try to obtain full privileges if admin user" and
the "Try to obtain full privileges if normal user" properties in the macOS category should be
selected in that case. Again, service actions will suggest to make the necessary changes
automatically when they are inserted into the project.

Unix privileges

install4j does not support elevation of privileges on Linux and Unix. Partly this is due to the
differentincompatible systems of elevation, most notably "su" and "sudo" which cannot be easily
detected. If full privileges are required, the user has to elevate the installer manually, either with
"su" or with "sudo" or with the corresponding GUI tools. In this case, the "Show failure if current
user is not root" has to be selected, so that an error message is shown if the installer is not
started as root.

Elevation mechanism

install4j does not elevate the entire process, but it starts an elevated helper process with full
privileges.

Elevated
helper
process

{ Elevated ":
cote

¥
elevales

— |
pushes up

launches

é y

Original b
levated | Unelevated
unelevated | T,

process

displays

[Installer UI (_JO)0x

All actions have an "Action elevation type" property that can be set to "Inherit from parent”, "Do
not elevate" and "Elevate to maximum available privileges". The root element in the element

40

hierarchy is always an installer application whose "Action elevation type" property is set to "Do
not elevate by default".

Actions whose "Action elevation type" property results to "Elevate to maximum available privileges"
will run in the helper process. They have full access to all installer variables as long as the contents
of the variables are serializable.

Actions can have a preferred elevation type that is set automatically when you add the action.
Actions that need to be elevated include

+ the "Install files" and "Uninstall files" actions
+ service actions

+ actions that add rights on Windows

+ actions that write files

+ the "Run executable or batch file" action

Actions that are explicitly not elevated by default include

+ the "Show URL" action

+ the "Show file" action

+ the "Execute launcher" action

+ actions that should run as the original user, such as registry actions
* actions that interact control the GUI of the installer application

Elevated actions can only interact with the GUI in a limited way. All methods in the
cominstall4j.api.Uil classfordisplaying message dialogs or option dialogs are supported.
You cannot call context.getWizardContext() or directly display a GUI using the Java Swing API.
Also, calling methods in the com api . i nstal | 4j . cont ext. Cont ext that change screens is
not supported. Since an elevated action runs in a different process, you cannot access any static
state in custom code. Installer variables are the only means to modify state from elevated actions.

For your own scripts or custom code, the API offers a way to push a piece of code to the elevated
helper process or to the original process if they exist. This is done by wrapping the code in a
cominstall4j.api.context.RenpteCall abl e and calling cont ext . runEl evated(...)
for the elevated helper process and cont ext . runUnel evat ed(...) for the original process
with the Renpt eCal | abl e. The Renpt eCal | abl e must be serializable, so its fields can be
transferred to the other process. Its execut e() method that contains the code returns a
Seri al i zabl e so you can return a result to the calling process. Several actions in install4j use
this mechanism, as explained in the next section.

41

A.1.11 Merged Projects

Introduction

There are two fundamental needs for merged projects: First, there are large projects where a
monolithic project file is undesirable since multiple developers work on the installer. Second, if
you have multiple products that share certain components, it is undesirable to duplicate
configuration for their installers.

The merged projects feature [p. 87] in install4j is a solution for both of these problems. You can
create project files that are separate installers by themselves, such as a "database installer" and
reuse them in multiple projects. On the other hand, you can also create project files that do not
install anything by themselves, but just contain a collection of "Run script" actions that are useful
in several of your installers.

™
Project Steps Build Window Help
nE \ e R -
2 H O 9 @ @ @ O
Mew Open Save Project | Downlead | Run Test Stop -
Project Project Project Repont IREs puild Buld Build P
(V] ' i a =
‘ Enter general project settings
General Settings In this step, you can select other projects that should be merged into
the current project, Some settings are merged automatically, screens
Files Database [.\components\database. install4j]
Merge files, launchers, custom installer applications g]
‘i? ﬁ Utility act.lons [.. components\util.install4] . x
Launchers Mo automatic merging, only selected screens and actions =
Installer
B .
Media i }
e
g

b Media File Options I Compiler Variables | Merged Projects Project Options
Build
[Application Info | Java Version Languages

| |22 1de ﬂ

Flat Merging Considerations

Merged projects in install4j are not sub-projects that will retain their structure at runtime. Merging
inserts selected elements into the main project before the main project is compiled. Files,
launchers and custom installer applications are inserted automatically, while elements from the
installer and the uninstaller have to be inserted manually by adding links to the installer and
uninstaller in your main project. At runtime, all merged elements are equivalent to the elements
that were defined directly in the main project.

Merging works across an arbitrary number of levels and is performed in a bottom-to-top fashion:
If the main project A includes a merged project B which in turn includes a merged project C, then
Cis first merged into B and the result is merged into A.

As a result of flat merging, there are no intermediary artifacts for merged projects, the result of
the compilation is a single monolithic installer. This has the advantage of being easy and flexible,
but collisions can occur unless concerns are properly separated between the main project and
its merged projects. In particular, all elements in the final result share the same namespace for
compiler and installer variables. All custom localization files are merged, so that localization in
merged projects is not impacted unless there is a collision in the message keys. Such problems
can be avoided if unique prefixes are used for compiler variables and installer variables as well

42

as custom localization keys. For example in project A, all variables could be prefixed with "a."
and in project B with "b.".

One area where such collisions are not possible is for IDs of any entity in a project, such as
launchers, file sets, actions, screens or form components. When a project is merged, install4j
prefixes all IDs with the application ID of that project. For example, if the application ID of a
merged project is "1406-2150-6354-3051" and a launcher has the ID "2265", the ID is changed
to "1406-2150-6354-3051:2265" after merging. This ensures that all IDs remain unique no matter
how many projects are merged. Beans (screens, actions and form components) in the merged
project are passed a special context that automatically prefixes all unqualified IDs with this
application ID. For example, if you have a script in your merged project that calls
cont ext . get Launcher Byl d("2265") this will succeed, even though the ID is now actually
"1406-2150-6354-3051:2265". If you want to access that same launcher configuration from a
script in the main project, you would have to call
cont ext . get Launcher Byl d(" 1406- 2150- 6354- 3051: 2265") .

Generally itis recommended to organize merged projects so that they are relatively self-contained
and only interact with their main project through common installer variables. In that way, the
main project can continue to work if the merged project is removed and the merged project can
work as a standalone installer.

Display Of Merged Elements

Merged project files are only displayed on the Merged Projects tab [p. 87] . There is no hierarchical
display of the elements of merged project files in the main project. Merging is only done at
compile time and the merged elements are added to the media file.

One exception is the merging of screens and actions which is not done automatically, but through
the placement of links on the screens & actions tab [p. 135] .

Merging Of Files

If you have enabled file merging for a merged project, files are merged automatically according
to the following rules: All files from the default file set of the merged project are merged into
the default file set of the main project. Roots are merged if the main project has roots with the
same name, otherwise they are discarded. Files in each other file set of the merged project are
only merged if the main project has a file set with the same name. To facilitate the set up of file
sets in the main project, there is an action to synchronize file sets in merged projects.

If there are files with the same relative paths, the main project has the highest precedence and
the most deeply nested merged project has the lowest precedence. For merged projects on the
same level, a project with a lower position in the list has a higher precedence than a project with
a higher position.

There is no merging of installation components. Installation components can only be defined in
the main project. However, with the appropriate definition of file sets in merged projects you
can easily contribute files to installation components in the main project. For example, if your
merged project installs your database, and you want to ask the user whether to install the
database, define a file set named "database" in the merged project and add all files to that file
set. In your main project, you also add a file set named "database" (when adding the merged
project, you will be asked whether to add that file set automatically). In your installation
component for the database, choose the file set "database". It will not contain any files in the
IDE, but during compilation, the files from the merged project will be added to it.

Merging Of Launchers And Custom Installer Applications

Launchers and custom installer applications are merged automatically if you have enabled
merging for launchers and custom installer applications. It is not an error if there are collisions
of launchers or custom installer applications with the same relative paths and the rules of

43

precedence are the same as for the merging of files. However, it is recommend not to hide
launchers in this way since this can lead to unexpected problems at runtime.

Both launchers and custom installer applications can be attributed to a particular file set. In that
case, they are only merged if the file set also exists in the main project. The attribution to a
particular installation component in the main project is done in this way, analogous to the way
it is done for files.

44

A.1.12 Auto-Update Functionality

Introduction

install4j can help you to include auto-updating functionality into your application. Auto-updating
means two things: First, there must be a way to check if there is a newer version available for
download. This check can be initiated by the user in various ways or the check can be triggered
automatically by your application. Second, there must be a way to download and execute an
appropriate installer for the new version.

install4j creates a special file updat es. xm in the media output directory when you build the
project. This file describes the media files of the current version. If you want to use install4j's
auto-update functionality, you have to upload this file to a web server. This file is downloaded
by deployed installations as described below and delivers information about the current version.

Downloading and installing the new version is done with a custom installer application [p. 138].
install4j offers several templates for updaters that correspond to the update strategies outlined
below in this help topic.

Z Select an Application Template @

Available application templates:
- Empty custom application
ber
tandalone updater
pdater with silent version check

pdater without version check

Type inko the tree to start quicksearch
Description

Quick start

To get update functionality similar to the one you see with install4j, please follow these
instructions:

1. When you build your project, install4j will create a file named updat es. xnl in the media file
output directory. Upload that file together with your media files to a directory on your web
server.

2. Go to Installer->Auto-Update Options and enter the URL for updat es. xni . This must be the
full URL to the file (like ht t p: / / waww. ser ver . conl downl oad/ updat es. xm).

3. Go to Installer->Screens & Actions, click on the add button, choose Add appl i cati on from
the popup menu, select the "Updater with silent version check" template and confirm with
[OK] to add the application.

4, Enter the "Executable name" property for the new updater application (for example
aut omat i cUpdat er).

5. Activate the "Launcher integration" tab for the new updater application and select the "Start
automatically when launcher is executed" check box. Leave all other settings at their default.

6. In your installer, add a "Configurable form" and add an "Update schedule selector" form
component to it.

That's it. In the installer, the user will get the possibility to choose the frequency of the update
checks. When the user executes a launcher after you publish an update, the updater will be

45

shown after the application window is displayed and tell the user about the new version. If the
user accepts, the new installer is downloaded and installed.

Of course your ideas for auto-update might be different. Maybe you do not have a GUI application
and you want to perform unattended updates, or you want to notify your users about updates
directly in your application. That's why we have made the auto-update functionality so flexible.
The updater installer application is composed of standard form components and actions, so you
can tailor it to your needs. Also, you can use the API to check for updates. Please read on for a
more in-depth explanation of the auto-update process and different auto-update strategies.

updates.xml

The updat es. xnl file is created in the media output directory each time you build the project.
You can use this file as is, however, some situations require that you modify the file before
uploading it to the web server. The file looks like the sample below:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<updat eDescri ptor baseUr| ="">
<entry target Medi aFil el d="8" updat abl eVer si onM n="" updat abl eVer si onMax=""
fil eName="hel | o_wi ndows_4_0. exe"
newVer si on="4. 0" newMedi aFil el d="8" fileSize="2014720" bundl edJre="">
<coment />
</entry>
<entry target Medi aFil el d="9" updat abl eVer si onM n="" updat abl eVer si onMax=""
fileName="hello_linux_4_0.rpni
newVer si on="4. 0" newMedi aFi | el d="9" fil eSize="817758" bundl edJre="">
<comment />
</entry>
<entry target Medi aFi | el d="10" updat abl eVer si onM n="" updat abl eVer si onMax=""
fil eName="hel | o_nmacos_4_0. dng"
newVer si on="4. 0" newMedi aFi | el d="10" fil eSi ze="1359872" bundl edJre="">
<comment />
</entry>
</ updat eDescri pt or >

The root of the updat es. xmi file is the updat eDescri pt or element. It contains the baseUr |

attribute that can be used to specify an alternate download URL for the installers. By default, it
is empty which means that the installers must be located in the same directory as the
updat es. xnl file. The updat eDescri pt or element contains one or more ent ry elements
which correspond to the media files that were created by the build.

When install4j determines whether an entry in the update descriptor is a match for the current
installation, it looks at three attributes of the entry element: Most importantly, the
t ar get Medi aFi | el d attribute has to match the media file ID of the current installation. You
can show media file IDs by invoking Pr oj ect - >Show | Ds in the main menu. If you discontinue
a media file, you can migrate users of that media file to a different media file by duplicating the
desired entry in updat es. xm and changing the t ar get Medi aFi | el d attribute to that of the
discontinued media file. Another criterion is the installed version of the application. Depending
on that version, you might want to offer different updates. The updat abl eVer si onM n and the
updat abl eVer si onMax attributes can set lower and upper limits for the installed versions that
should download the associated entry in the update descriptor. By default, these attributes are
empty, SO no version restrictions apply.

Attributes that describe the update installer include f i | eName which is necessary to construct
the download URL, and fi | eSi ze which contains the size of the file in bytes. newVer si on
contains the available version while newMedi aFi | el d is the media file ID of the update installer
which is the same as t ar get Medi aFi | el d unless you changed it yourself. Lastly, bundl edJre
contains the original file name of the JRE bundle without the . t ar. gz extension or the empty
string if no JRE is bundled in the installer. In addition to the above attributes, the nested coment
element can contain a description that should be displayed to the user. All of this information

46

can be used for custom logic to select a suitable update installer or be displayed to the user in
the updater. In addition, you can add any number arbitrary attributes to the entry element
yourself,

The update descriptor

The install4j runtime API contains the com i nstal | 4j . api . updat e. Updat eChecker utility
class that can download the updates.xm file and translate it to an instance of
cominstall4j.api.update. Updat eDescri ptor. From there, you can get a suitable
cominstall4j.api.update. Updat eDescri ptor Entry with a single method call. Please
see the Javadoc for more detailed information. The above API is primarily intended for use in
your application. The install4j runtime API contained in resour ce/ i 4j runti nme. j ar is always
on the class path for a generated launcher.

In a custom installer application, you would rather use a "Check for update" action that performs
the same actions as Updat eChecker and saves the downloaded Updat eDescri pt or to an
installer variable. All updater templates included with install4j execute the "Check for update"
action at some point.

Instances of Updat eDescri pt or Ent ry expose all attributes of the corresponding ent r y element
in the updat es. xnl file. They also give access to additional attributes added to the entry
element so you can implement custom logic to find a suitable update. The most important
method of the Updat eDescri pt or Ent ry class is the get Ur | () method that constructs the full
URL from which the update installer can be downloaded. If no baseUr | has been specified on
the updat eDescri pt or root element, the URL starts with the parent directory from which the
updat es. xnl file has been downloaded.

Some information in the update descriptor, such as the file names, file sizes, the new media file
IDs and others are known to the compiler and are automatically filled in when the updat es. xni
file is created. Other information, such as the base URL, is information that can be customized
on the auto-update options [p. 290] tab. Other customizable information includes version
requirements for the installed application, a localizable comment that can be displayed in the
updater and custom attributes that can be used for custom logic in updaters.

Strategy 1: Standalone updater

The easiest way to provide auto-update functionality to your users is to create a self-contained
updater application. This is done by adding an application on the screens & actions tab [p. 135]
and choosing the "Standalone updater" application template. Such an auto-updater can by
invoked manually by the user, on Windows, it can also be added to the start menu. No changes
in in your application code are required so far.

If you have a GUI application, you could provide integration with the updater by offering a "Check
for update" menu item or similar that invokes the updater. One problem in this scenario is that
if the updater downloads and executes the update installer, your application will still be running
and the user will receive a corresponding warning message in the installer. The solution to this
problemistousethecom i nstal |l 4j. api .l auncher. Appl i cati onLauncher classtolaunch
the updater. With this utility class you can launch the update installer by passing its ID as an
argument. IDs can be shown on the screens & action tab by toggling the "Show IDs" tool bar
button. If you launch an installer application such as an updater that way, the "Shut down calling
launcher" action will be able to close your application. To react to the shutdown, for example,
to invoke your own shutdown routine, you can pass a callback to the
Appl i cationLauncher. |l aunchApplication(...) call. After you were notified through the
call back, your application will be terminated with a call to System exi t ().

To easily get the code snippet for invoking the updater, select the updater application on the
Screens & Actions tab and click on the [Start Integration Wizard] button on the right.

47

Strategy 2: Updater with silent version check

In this scenario, you invoke the updater like in strategy 1, but rather than offering a "Check for
update" menu item, you do so on a regular schedule. For example, you automatically check for
updates every week or each time the user starts the application. In that case, the standalone
updater template is not suitable since you only want to give the user feedback if there is actually
a new version available. However, the standalone updater always starts with a "Welcome" screen,
verbosely checks for updates and informs the user that no new version is available. Most likely,
your users will be bothered if this is done automatically.

The "Updater with silent version check" application template is intended for this use case. It
checks for an update in the startup sequence and terminates the updater if no new version is
available. This means that if there is no new version available, your users will not see that a check
has taken place. Only if a new version is available will the updater display its window and inform
the user of the possibility to download the update installer.

For such an automatic check you will likely want to invoke the updater in a blocking fashion. If
you call Appl i cati onLauncher. | aunchApplication(...) withthebl ocki ngargumentset
to t r ue, the method will not return until the update installer has exited. If the user decides to
run the installer on the "Finish" screen, your application will terminate as explained in strategy
1.

Strategy 3: Updater without version check

If you want to take the integration one step further and display the availability of a new version
in your application yourself, you can use the com i nst al | 4j . api . updat e. Updat eChecker
class as explained under the "updates.xml" heading. In this way, you can create your own panel
that announces the new version and lets the user decide whether to download it or not. If the
user decides to download, the "Updater with silent version check" template is not suitable since
it informs the user about the new version once more.

The "Updater without version check" application template is intended for this use case. It
immediately starts downloading the new version and then proceeds to the "Finish" screen where
the user can decide to start the downloaded installer. In the other two templates the user can
choose the directory where the downloaded installer should be saved. That screen is omitted
in this template and the installer is downloaded to the user home directory by default. You can
change this default directory be passing the argument
- Dupdat er Downl oadLocation=[directory] to the
ApplicationLauncher. |l aunchApplication(...) call. Again, the updater will terminate
your application if the user starts the installer as explained for strategy 1.

Update schedule registry

For strategy 2 and 3 above, you check for an update on a regular schedule. install4j comes with
a standard implementation of an update schedule registry that frees you of the task to implement
oneyourself. Thecom i nst al | 4j . api . updat e. Updat eSchedul eRegi st ry classisintended
to be used in your application. You configure ancom i nst al | 4j . api . updat e. Updat eSchedul e
with - a call to UpdateSchedul eRegistry. setUpdateSchedule(...) and call
Updat eSchedul eRegi stry. checkAndReset () each time your application is started. If you
get a positive response, you can start a suitable updater as explained above. Please see the
Javadoc for more information.

To facilitate the configuration of the update schedule in your installer, install4j offers a special
"Update schedule selector" form component whose initial value is set to the current setting (if
any) and automatically updates the setting for the installed application when the user clicks
"Next".

48

A.1.13 Code Signing

Introduction

Code-signing ensures that the installer, uninstaller and launchers can be traced back to a particular
vendor. A third party certificate authority guarantees that the signing organization (you) is known
to them and has been checked to some extent. The certificate authority has the ability to revoke
a certificate in case it gets compromised.

The basis for code signing is a private key / public key pair that you generate on your computer.
The private key is only known to you and you never give it to anyone else. The certificate provider
takes your public key and signs it with its own private key. That key in turn is validated by an
official root certificate that is known to the operating system. The private key, the public key and
the certificate chain provided by the certificate provider are required for code signing.

On Windows, code signing is particularly important since Windows Vista. For unsigned applications
that require admin privileges, Window Vista and higher will display special warning dialogs to
alert the user that the application is untrusted and may harm the computer.

On macOS 10.8 or higher the default security setting makes it more difficult for the end user to
install an application that has not been signed, so code signing is practically required.

Obtaining Code Signing Certificates

You need different certificates for code signing on Windows and macOS:

Enter general project settings \ﬂa Q

In this step, you can configure code signing for Windows and Mac OS X. Code signing options apply
to all configured media files.

Windows
In order to sign Windows executables, you need a Microsoft Authenticode code signing certificate.
Sign Windows media files

@ .pvkand .spc files

PVK file: signingcompany _windows.pvk

i

4|

SPC file: signing\zompany_windows|spc
71 .pkes12 key store file

PKCS #12 file:

-

Mac 05 X
In order to sign Mac OS X application bundles, you need an Apple code signing certificate.
Sign Mac 05 X media files

PKCS #12 file: signing‘company_macos.pl2s

Ei

I Export from Mac 05 X keychain]

Media File Options Code Signing ‘ Compiler Varisbles Merged Projects I Project Options ‘

[Application Tnfo | Java Version | Languages |

* Windows

Purchase a code signing certificate from a certificate provider such as Thawte. You will create
a .pvk file on your computer using makecert.exe and you will get an .spc file from the certificate
provider that you can reference on the code signing tab [p. 86] .

If you have private key, public key and certificate chain in some other format, you can use
openssl to convert them to a PKCS #12 file (extension .p12) and specify that file instead.

49

http://www.thawte.com/code-signing/index.html
http://msdn.microsoft.com/en-us/library/windows/desktop/aa386968%28v=vs.85%29.aspx
http://www.openssl.org

* macO0S

Request a "Developer ID Application" Mac code signing certificate on a macOS machine. You
have to log in to the Member Center on Apple's Developer site to generate the certificate.

Afterwards open the Keychain Access utility on your Mac, go to "keys" and export the key that
belongs to your "Developer ID Application" certificate by right clicking on it. Choose .p12 as
file format. The keychain tool will ask you for a new password for the exported file. This is the
password you will have to specify during the install4j build to access your key.

You can find general information about code signing on Mac here.

Key Store Passwords

Private keys are sensitive information. If they get into the wrong hands, your identity is
compromised. Because of that, private keys are secured with a password. When install4j signs
your installers and launchers, it needs to work with the private key.

When you start a build in the install4j IDE, you will be asked for the Windows and macQOS key
store passwords as required. install4j does not store those passwords to disk, but they are cached
on a per-project level as long as the install4j IDE remains open.

g Enter Password S
‘.f;\ Enter the password for the Windows key store. It will not be stored on disk.
8 Help Cancel

When you do a command line build, the install4j command line compiler will ask you for the
required passwords. If you want to fully automate a build with code signing, you can pass
passwords on the command line by setting the - - wi n- keyst or e- passwor d=[passwor d] and
- - mac- keyst or e- passwor d=[passwor d] command line parameters. The install4j ant task
offers the corresponding "winKeystorePassword" and "macKeystorePassword" attributes. Please
note that adding these passwords to shell scripts or ant build files constitutes a security risk.

In a setup where only a restricted number of people can build signed executables, you can use
the - - di sabl e- si gni ng command line parameter, the "disableSigning" ant task attribute or
the corresponding build option in the "Build" step of the install4j IDE to temporarily disable code
signing. In that way, other developers can build fully functional, unsigned installers without
modifying the project file.

HTTP connections during code signing

Code signing certificates issued by certificate providers expire after a certain time. For Windows
code signing, the expiry time is usually one or two years, after which you have to purchase a
renewal from your certificate provider. Executables that were signed while the certificate was
still valid are trusted indefinitely unless the certificate is revoked.

A computer that validates an executable compares the signing time and the expiry time of your
certificate. Certificate providers want to prevent you from turning back the clock of your computer
to circumvent the expiry of your certificate. This is why the signing time has to be counter-signed
by a certificate provider. Certificate providers offer free web services that will confirm that a
signature has been performed at a particular time. This counter-signature is not related to a
particular certificate - so one can use the web service of any certificate provider, regardless of
where the certificate came from. install4j uses the VeriSign time stamp service.

The consequence of this scheme is that you need an internet connection at build time in order
to get a trusted time-stamp counter signature. Many build servers are behind fire walls and you

50

http://developer.apple.com
http://developer.apple.com/library/mac/documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html

might need to set up a proxy to get internet connectivity. install4j will try to auto-detect the proxy
information. If that fails, the IDE will ask you for proxy information, but the command line builds
will not ask for user-input in order to avoid hanging builds due to temporary internet connectivity
problems.

For command line builds, you can pass the following VM parameters to the command line
compiler:

+ -DproxySet=true

+ -DproxyHost=[host name]

+ -DproxyPort=1234

+ -DproxyAuth=true

+ -DproxyAuthUser=[user name]

+ -DproxyAuthPassword=[password]

The authentication parameters are optional, only the first 3 parameters are required to set up
a proxy.

If you pass these parameters to the command line compiler, you have to prefix them with "-J"
(such as -J-DproxySet=true) to mark them as VM parameters. In the ant task [p. 331], use nested
"vmParameter" elements to pass the above parameters (without the "-J" prefix).

51

A.1.14 Styling Of DMGs On MacOS

Introduction

On macOSs, software is usually delivered as a DMG. DMG stands for "Disk image" and contains
a file system that can be mounted, rather than an archive that can be extracted. When the user
double-clicks on a DMG file in the Finder, it is mounted to / Vol unes/ [vol ume nane] and a
new Finder window is opened for the mount point.

The Finder can by styled on a per-directory basis and the information about that styling is saved
to a file named . DS_St or e in every directory. This means that you can ship styling information
with a DMG file. Styling includes setting a background image for the Finder window and that
image file can be added to the DMG as well.

For single bundle GUI applications, a styled DMG generally includes a symbolic link to
/ Appl i cati ons in the top-level folder of the DMG, so that user can drag the application bundle
into the default installation directory with minimum effort.

install4j allows you to add any number of files and symbolic links to the DMG. All macOS media
file types have a step named "Additional files in DMG" as a sub-step of the "Installer options"
step. Here, you can add the top-level . DS_St or e files, a background image and the symlink to
/ Appl i cati ons.

Step-By-Step Instructions

To create your . DS_St or e file, please follow the steps below. You will need a Mac with macOS
10.7+ and an installation of install4j on that machine.

1. Compile DMG

The first step is to compile your macOS media file from install4j - without any custom styling.
This DMG will be the template for which we will define the style. You cannot use just any other
DMG, because each media file has a unique ID. When using background images, the . DS_St or e
file must have been created for a DMG with the same ID, otherwise the image will not be
found reliably.

When you recompile the media file in install4j, this ID remains the same, so you can add the
. DS_St or e file from a previously compiled DMG to the additional DMG files in the media
wizard.

2. Convert the read-only DMG to a writable DMG

The generated DMG is a read-only image. In order to make any modifications at all, we have
to convert the DMG to a writable format.

First, make sure that the DMG is not mounted. In a terminal, cd to the directory where the
DMG was created and execute

hdiutil convert hello.dng -format UDRW-o0 hell o_rw dng

where "hello" has to be replaced by the actual name af your media file. Note that the last
argument has "_rw" appended at the end, because the output DMG must be different from
the input DMG.

3. Enlarge the writable DMG

By default, a DMG generated by install4j is full. It is not possible to add any more files simply
because the file system in it has no more available space. To enlarge the DMG, we first
determine its current size by executing

hdiutil resize hello_4_0_rw. dng

52

The "cur" column of the output shows the number 512-byte sectors. To add about 10 MB, we
add 20000 to that number and execute

hdiutil resize -sectors [new nunber of sectors] hello_4_0_rw dng
To check the new size, run
hdiutil resize hello_4 0 _rw dng
again.
. Mount DMG
We now mount the read/write DMG by executing
hdiutil attach hello_4 0 _rw dng

and note the mount point /Volumes/[volume name] that is given by the output of the above
command.

. Copy background image to DMG

To add a background image, we first have to copy the image to the DMG. We do not want the
image file to show up in the finder, so we create a hidden directory in the DMG. To do that,
we execute

cd / Vol unes/ [vol une nane]
nmkdi r . background

To open this hidden directory in the Finder, we execute

cd . background
open

Now, we open another Finder window, locate our background image and copy it to the hidden
directory that is visible in the original Finder window.

. Select background image for DMG top-level folder

Since we need the Finder with the hidden directory in a minute, we leave it as it is, and
double-click on the mounted volume on the desktop to open the default Finder window for
the DMG. We position the new Finder window side-by side with the Finder window that shows
the hidden directory.

To start changing styles, we invoke Vi ew >Show Vi ew Opt i ons. This will show a tool window
with styling controls. In the "Background" section, we choose "Picture" and notice the drop
target for a picture file.

53

+| Always open In icon view
¥ Browse in icon view

Arrange By: | None

1<
Sort By: None | <]

lcon size: 128 = 128
2 M
Grid spacing:

i . H

Text size: | 12 |]

Label position:
= Bottom Right

Show item info
+| Show icon preview

Background:
White
Color
*) Picture Drag image here

Use as Defaults

Now we have to perform a somewhat tricky operation. From the Finder window that shows
the hidden directory, we drag the image to the mentioned drop target in the view options
dialog without activating that Finder window (otherwise the view options dialog would change
its target folder).

Finally, we see can see the background image applied to our read/write DMG.
7. Adjust DMG finder window

Two properties of the Finder window should be adjusted: Invoke Vi ew >Hi de Tool bar and
resize the window so that it fits the size of the background image.

8. Add link to /Applications for single-bundle archives

If you have a single-bundle archive media file type, you probably want to add a drop-target
for the installation. In the terminal, we execute

cd / Vol umes/ [vol une nane]
In -s /Applications " '

This creates a link with an empty name that immediately shows up in the Finder window. The
empty name is a good strategy to get around localization issues. The Applications folder has
a special icon and is easily recognizable, so a name is not necessary.

9. Adjust icons

Now you can position the icons as needed and adjust the "lIcon size" property in the view
options dialog until they fit with your background image.

10 Extract .DS_Store file

The result of your work above is the . DS_St or e file in the top-level folder of the DMG. Go to
the terminal and copy it to your project folder so that you can reference it in the install4j IDE:

cp .DS _Store [project folder]/DS Store

Note that we have omitted the leading dot before DS_Store in the target path. This makes it
easier to work with the file and prevents confusion with the Finder.

54

At this point, our work with the read/write DMG is finished. We should now delete it and also
remove it from the Trash. If we don't do this, subsequent tests will automatically mount this
DMG again. This is due to the "alias" feature in macOS. The .DS_Store contains an alias to the
configured background image and as long as the original DMG still exists somewhere, it will open
it from the template DMG instead of from the newly generated DMG.

Configuring The Media File

In the media file wizard of the install4j project, we can now use the generated . DS_St or e file.
On the 'Installer Options->Additional files in DMG" step we enter the [project
f ol der]/ DS_St or e and give it the name . DS_St or e in the DMG.

The background image is added with the name . backgr ound/ [i mage nanme wi t h ext ensi on]
where the image name must be the same as on the read/write DMG. The . backgr ound folder
will be created automatically.

If you have added a symbolic link to / Appl i cati ons, you can add a corresponding symbolic
link entry here, the name should also be set to the same name as in the read/write DMG. An
empty name is entered as " " (with the quotes).

o0 e Media Wizard - Mac OS X single bundle archive
1. Media file type Configure additional files and symlinks in the DMG
2. Launcher
3. Installer options The files below will be added to the DMG. For example, you can add a README file
Advanced options: or files that customize the appearance of the finder window.
- Additional files in DMG
. DMG options If you want to display a bacl_(ground image in the DMCG, see this help topic to learn
how to create the required files.
4. JRE
5. Customize project defaults | ps_store [source ./DS_Store] dk
6. Finished

“ .background /background.png [source ./background.png]
2" " [target jApplications]

®

Help Back Next Cancel Finish

With the above files and symbolic links the DMG, a newly generated DMG will look the same as
the read/write DMG where the styling was added. When you tweak your styling in the future,
you don't start from zero but with the styles that are already present in the generated DMG.

55

A.2 Generated Installers
A.2.1 Installer Modes

Introduction

Installers generated by install4j can be run in three modes:

+ GUI mode

The default mode for installer and uninstaller executables is to display a GUI installer or
uninstaller.

+ Console mode

If the installer is invoked with the - ¢ argument, the interaction with the user is performed in
the terminal from which the installer was invoked. The same applies to the uninstaller.

* Unattended mode

If the installer is invoked with the - g argument, there is no interaction with the user, the
installation is performed automatically with the default values. The same applies to the
uninstaller.

The screen flow and the action sequence is executed in the same way for all three modes. If
some actions or screens should not be traversed for console or unattended installations, you
can use the methods cont ext . i sConsol e() andcont ext . i sUnatt ended() intheir"Condition
expression" properties.

Also see the command line options [p. 58] reference for installers.

GUI mode

In GUI mode the keyboard shortcut CTRL- SHI FT- L shows the log file in the Explorer on Windows,
in the Finder on macOS and in the file manager on Linux/Unix. This shortcut is not advertised
to the user, but you can communicate it to the user for debug purposes.

Console mode

Installers generated by install4j can perform console installations, unless this feature has been
disabled in the application configuration [p. 138] of the Installer step [p. 134] . In order to start a
console installation, the installer has to be invoked with the - ¢ argument.

All standard screens in install4j present their information on the console and allow the user to
enter all information as in the GUI installer. Not all messages in the GUI installer are displayed
to the console installer, for each screen the subtitle is displayed as the first message. All standard
screens in install4j have a question as their subtitle, if you add customizable screens to the screen
sequence [p. 135], you should phrase their subtitles as questions in order to create a consistent
user experience for the console installer.

Also, form screens [p. 242] are fully mapped to console installers, each form component is
displayed on the console, form components that expect user input will allow the users to modify
or enter values.

On Microsoft Windows the information of whether an executable is a GUI executable or a console
executable has to be statically compiled into the executable. Installers are GUI executables,
otherwise a console would be displayed when starting the installer from the explorer. This is
also the reason why the JRE supplies both the j ava. exe (console) and the j avaw. exe (GUI) on
Windows.

56

A GUI executable can attach to a console from which it was started, though. GUI executables are
started in the background by default, therefore you have to use the start command like this to
start it in the foreground and be able to enter information:

start /wait installer.exe -c
On older Windows versions a new console is opened.
If you develop new screens or form components, you have to override the method
bool ean handl eConsol e(Consol e consol e) throws User Cancel edExcepti on
Displaying default data on the console and requesting user input is made easy with the Consol e
class that is passed as a parameter.

Unattended mode

Installers generated by install4j can perform unattended installations, unless this feature has
been disabled on the application configuration [p. 138] of the Installer step [p. 134] . In order to
start an unattended installation, the installer has to be invoked with the - g argument. The installer
will perform the installation as if the user had accepted all default settings.

There is no user interaction on the terminal. In all cases, where the installer would have asked
the user whether to overwrite an existing file, the installer will not overwrite it. You can change
this behavior by passing - overwri t e as a parameter to the installer. In this case, the installer
will overwrite such files. For the standard case, it is recommended to fine-tune the overwrite
policy [p. 101] in the distribution tree instead, so that this situation never arises.

The installer will install the application to the default installation directory, unless you pass the
-di r parameter to the installer. The parameter after - di r must be the desired installation
directory. Example:

installer.exe -q -dir "d:\myapps\ M Application”

For the unattended mode of an installer, response files [p. 62] are an important instrument to
pre-define user input.

On Windows, the output of the installer is not printed to the command line for unattended
installation. If you pass the - consol e parameter after the - g parameter, a console will be
allocated the displays the output to the user. This is useful for debugging purposes.

If the installation was successful, the exit code of the installer will be 0, if no suitable JRE could
be found it will be 83, for other types of failure it will be 1.

If you develop new screens or form components, you have to override the method

bool ean handl eUnat t ended()

in order to support unattended installations.

57

A.2.2 Command Line Options For Generated Installers

Installers generated by install4j recognize the following command line parameters:

Name

Explanation

-h or -help or /?

Show help for common command line parameters. This

will be shown in a message box, regardless of the default
execution mode. If the GUI display fails, it will be printed
on the console.

-manual

This option applies to Microsoft Windows only. The default
JRE search sequence [p. 64] will not be performed and
bundled JREs will not be used either. The installer will act
as if no JRE has been found at all and display the dialog
that lets you choose a JRE or download one if a JRE has
been bundled dynamically. If you locate a JRE, it will be
used for the installed application.

On Unix, you can define the environment variable
INSTALL4J_JAVA_HOME_OVERRIDE instead to override the
default JRE search sequence.

Executes the installer in the console mode [p. 56] .

Executes the installer in the unattended mode [p. 56] .

Forces the installer to be executed in GUI mode [p. 56] .
This is only useful if the default execution mode [p. 138]
of the installer has been configured as console mode or
unattended mode.

-console

If the installer is executed in unattended installation mode
[p. 56] and -console is passed as a second parameter,
status messages will be printed on the console from which
the installer was invoked.

-overwrite

Only valid if - q is set. In the unattended installation mode
[p. 56], the installer will not overwrite files where the
overwrite policy [p. 101] would require it to ask the user.
If-overwriteisset, all such files will be overwritten.

-wait [timeout in seconds]

Only valid if - q is set. In the unattended installation mode
[p. 56], the installer will perform the installation
immediately. On Windows, this can lead to locking errors
if the installer is called by an updater or by a launcher. If
-wait is specified, the installer application will wait until all
installed launchers and installer applications (including
the updater) have shut down. If this does not happen until
the specified timeout, the installer application exits with
an error message.

58

Name

Explanation

-dir [directory]

Only valid if - g is set. Sets a different installation directory
for the unattended installation mode [p. 56] . The next
parameter must be the desired installation directory.

The directory can be absolute or relative. If it is relative, it
will be resolved relative to the media file.

-splash [title]

Only valid if - g is set. Instead of being completely quiet in
unattended installation mode [p. 56], a small window with
a progress bar and the specified title will be shown to
inform the user about the progress of the installer
application. This is useful if you start the installer
application programmatically and do not require user
input.

-Dinstall4j.nolaf=true

Do not set the native look and feel but use the default. In
some very rare cases, the Windows look and feel with the
classic theme (Windows 2000-like appearance) is broken
and prevents the use of the installer or any other Java GUI
application. Switching to the default Windows theme solves
this problem. Alternatively, passing this parameter to the
installer will prevent the native look from being set.

-Dinstall4j.debug=true

By default, install4j catches all exceptions, creates a "crash
log" and informs the user about the location of that log
file. This might be inconvenient when debugging an
installer, so this system property switches off the default
mechanism and exceptions are printed to stderr.

-Dinstall4j.keepLog=true or
-Dinstall4j.alternativeLogfile=[path]

install4j creates a log file prefixed i 4j _| og for all
installations and uninstallation in your temp directory.
This log file can be helpful for debugging purposes. If your
installer contains an "Install files" action and terminates
successfully the log file is copied to [i nst al | ati on
dir]/.install4j/installation.!| og,otherwiseitwill
be deleted after the installer or uninstaller terminates by
default. With the - Di nst al | 4j . keepLog=t r ue option,
the log file won't be deleted in this case. With the
-Dinstall4j.alternativelLogfil e=[path] thelog
file will be copied to the file specified with [pat h] . This
should be an absolute path name.

Note that both options have no effect if the log file has
already been copied to the installation directory.

-Dinstall4j.logToStderr=true

In addition to the log file created by the installer or
uninstaller, you can duplicate all log messages to stderr
with this argument.

-Dinstall4j.logEncoding=[character set
name]

By default, the installer will write the log file in the default
encoding of the system where the installer is running.
Should you wish to choose a different encoding you can

59

Name

Explanation

pass this VM parameter to the installer. Some common
character set names are

* UTF-8

+ 1SO-8859-1
+ US-ASClI

* UTF-16LE

+ UTF-16

Most JREs support a large number of char sets. You can
execute

java. ni 0. charset. Charset. avai | abl eCharset s()
to check the names of supported character sets for your
JRE.

-Dinstall4j.suppressStdout=true

In unattended mode, status messages of actions that are
displayed in the installer are printed on stdout. To suppress
those messages, you can set this VM parameter.

-Dinstall4j.detailStdout=true

In unattended mode, detailed messages regarding file
installations are not printed on stdout. To enable those
messages, you can set this VM parameter.

-Dinstall4j.suppressUnattendedReboot=true

In unattended mode, a reboot may be undesirable. To
prevent reboots, you can set this VM parameter.

-Dinstall4j.showProxyConfig=true

If an action that downloads afile is present in the installer,
show the proxy configuration dialog for the first such
action before the connection is attempted. This can be
useful to edit cached proxy information that is working
but should be changed for testing purposes. If the
connection fails, the proxy dialog will be displayed in any
case regardless of this option.

-Dinstall4j.clearProxyCache=true

Clear the proxy information cached by install4j. This can
be useful for testing purposes. On Windows, the proxy
information by the default browser may be loaded again
automatically after the cache is cleared.

-Dinstall4j.noProxyAutoDetect=true

Do not try to automatically detect proxy information from
browser configurations.

-Dinstall4j.language=[ISO code]

Overrides the language selection for a multi-language
installer. The language selection dialog will not be displayed
in this case, unless the specified language is not included
in the installer.

-Dsun.locale.formatasdefault=false

Forces the installer locale to be detected from the Display
language setting set in Windows Region and Language
Control Panel. If this option isn't specified, the locale will
be detected from the Format setting.

60

Name

Explanation

-Dpr oper t yName=val ue

You can set further arbitrary system properties with the
standard command line parameter.

-J[VM par anet er]

Specifies a VM parameter (e.g. - J- Xnx512n). Can be cited
more than once.

-Vvari abl eNane=val ue

You can set arbitrary installer variables with the -V
parameter. The variable name should be used without
prefix, so if you have a variable called
${installer:variableName} in the GUI the parameter would
be -VvariableName=value. The variable will be a String
object.

-varfile [fileName]

Alternatively, you can specify a property file containing the
variables you want to set. The variable names should be
used without prefix, too, so if you have a variable called
${installer:variableName} in the GUI the entry would be
variableName=value. The variables will be String objects.
This option shares the same mechanism with response
files [p. 62].

On macQOS, you can use the INSTALL4)_ARGUMENTS environment variable to pass arguments

to the installer.

On Unix, the environment variable INSTALL4J_TEMP determines the base directory for
self-extraction. If the environment variable is not set, the parent directory of the installer media

file is used.

61

A.2.3 Response Files

Introduction

With a response file you can change the default user selection in all screens. A response file is
a text file with name value pairs that represent certain installer variables. All screens provided
by install4j ensure that they write all user selections to appropriate installer variables and bind
their user interface components to these variables. This includes form screens [p. 242] .

Installer variable values are of the general type j ava. | ang. Obj ect . In a response file, only
variables with values of certain types are included: The default type is j ava. | ang. Stri ng. In
addition the types java.lang.Bool ean, java.lang.Integer, java.util.Date,
java.lang. String[] andint[] are supported. In order to let the installer runtime know
about these non-default types, the variable name in the response file is followed by a '$' sign
and an encoding specifier like 'Integer' or 'Boolean'.

Response file variables are variables that have been registered with
cont ext . regi ster ResponseFi | eVari abl e(. ..) intheinstaller. Allvariables that are bound
to form components are automatically registered as response file variables. Also, system screens
register response file variables as needed to capture user input.

Allinstaller variables live in the same name space. If you use an installer variable more than once
for different user inputs, the response file only captures the last user input and may lead to
erroneous behavior when the installer is run with a response file. If you would like to optimize
your installers for use with a response file, you have to make sure that the relevant variable
names are unique within your installer.

A response file can be used to

+ Configure the installer for unattended execution mode
+ Change the default settings in the GUI and console installer
+ Get additional debugging information for an installation

When applying a response file to an installer, all variable definitions are translated into installer
variables [p. 21] . The response file shares the same mechanism with the variable file offered by
the -varfile [p. 58] installer option. You can add the contents of a response file to a variable file
and vice versa.

Generating response files

There are two ways to generate a response file:

+ A response file is generated automatically after an installation is finished. The generated
response file is found in the . i nstal | 4j directory inside the installation directory and is
named response. varfil e. When you request debugging information from a user, you
should request this file in addition to the installer log file.

+ install4j offers a "Create a response file" action [p. 173] that allows you to save the reponse
file to a different file in addition to the automatically generated response file. Here, you can
also specify variables that you would not like to be included in the reponse file. Together with
an appropriate form component on the "Additional confimations" screen you can query the
user whether to create such a response file or not.

Applying response files

When an installer is executed, it checks whether a file with the same name and the extension
.varfile can be found in the same directory and loads that file as the response file. For example,

62

if an installer is called hel | o_set up. exe on Windows, the response file next to it has to be
named hel | o_setup. varfile.

You can also specify a response file explicitly with the -varfile [p. 58] installer option.

Response files work with all three installer modes [p. 56], GUI, console and unattended.

Response file variables

The variables that you see in the response file exist at runtime independently of the response
file. You can use these installer variables to access or change user selections on system screens.
For example, the "Create program group" screen on Windows binds the user selection for the
check box that asks the user whether to create the program group for all users to the variable
sys.programGroup.allUsers. To access the current user selection from somewhere else, you
can use the expression

cont ext . get Bool eanVari abl e("sys. progranG oup. al | Users")

To change that selection, you can invoke
cont ext. set Vari abl e("sys. progrant oup. al | Users", Bool ean. FALSE)

63

A.2.4 How Installers Find A JRE

Installers generated by install4j are native and can start running without a JRE. However, the
installer itself requires a JRE in order to perform its work and so the first action of the installer
is to locate a JRE that is suitable for both the installer and your application. In this process it
performs the following steps:

+ Look for a statically bundled JRE. If a statically bundled JRE is included with the installer, it
will unpack it and use it. First, this JRE is unpacked to a temporary directory, later it is copied
to a location that depends on whether the bundled JRE is configured as shared or not.

Not shared

It is copied to the j r e directory in the installation directory of your application. No other
installer generated by install4j will find this JRE. It will not be made publicly available (e.g.
in the Windows registry).

Shared

Itis copied tothei 4j _j r es directory in a common folder which depends on the operating
system:

* C\Program Fil es\ Conmon Fi | es on Microsoft Windows with an English locale.
« /opt ifit exists, otherwise / usr/ 1 ocal on Unix.

If the above folder is not writable, the i 4j _j r es directory will be created in the use home
directory and the shared JRE will only be shared for the current user.

Other installers generated by install4j will find this JRE. It will not be made publicly available
(e.g. in the Windows registry). For each Java version, only one such JRE can be installed.
Shared JREs are never uninstalled.

Your application will also use the JRE selected by the installer.

Look for a suitable JRE in the configured search sequence. The installer uses the same
search sequence and Java version constraints as your launchers which are configured for the
entire project [p. 80] . The most important search sequence element in this respect is the
"Search Windows registry and standard locations" entry. On Microsoft Windows the registry
contains information on installed JREs, on Unix platforms there is a number of standard
locations which are checked, on macOS the location of installed JREs is always the same.

If no JRE has been found, the installer notifies the user

install4j Wizard

% The install4j wizard could not Find & Java(TM) Runtime

Environment on your system. You can locate or
download a suitable JRE. (minimum version: 1.4.1,
maximum version; 1.6)

[Dowrload] [Locate] [Cancel

and offers the following options:

Download a dynamically bundled JRE

64

™ install4j Wizard A=

JProfiler is downloading the Java(TH) Runtime
% Enwiranment. Flease wait,

3.52 MB of 8.84 MB (39.8%) at 211.8 kb/s

(ERTETARRRY 1

as configured in the Bundled JRE [p. 310] step of the media wizard [p. 303] .
+ Manually locate a JRE
« Cancel the installation

You can force the installer to skip the first two steps and show this dialog immediately with
the - manual command line parameter [p. 58] .

65

A.2.5 File Downloads

Actions that perform file downloads

Several actions can perform a file download, including

+ the "Install files" action as it downloads installation components that have been marked as
"Downloadable" provided that the data files option has been set to "Downloadable" as well
in the media file wizard

+ the "Check for updates" action as it downloads the update descriptor "updates.xml" from the
specified web server in order to check if there is a new version available

+ the "Download file" action as it downloads the specified file from the web server

Both HTTP and HTTPS connections are supported. HTTPS requires that at least a 1.4 JRE is used
for the installer.

When creating an HTTP connection to the requested resource there are three different concerns
that may require user interaction: Proxy selection, proxy authentication and server authentication.

Proxy selection and authentication

On Windows, the installer will try to obtain the proxy settings of the default browsers and use
them for the HTTP connection. If no such proxy information is available, a direct connection will
be made. If the direct connection fails, a proxy dialog will be opened that allows the user to enter
the proxy or edit the cached information.

If the proxy requires credentials, the user can enter the credentials in the same dialog. All user
input on this dialog will be cached, except for the password. The password has to be re-entered
every time the installer is run. If there are several download actions in the same installer, the
password has to be entered just once.

% Internet connection - Hello World Suite @

Could not connect to the download server.
Please enter your internet connection parameters:

(O Ihave a direct connection to the internet
(3 I connect to the internet through a proxy
Proxy settings
Proxy host: proxy.corp.internal
Proxy port: 3038
Proxy authentication required
User name: |bob

Password: | eessss

|| Cancel

This proxy information will be cached globally for all installers created by install4j. If the proxy
requires a password, the above proxy dialog will be displayed the first time a connection is made
in the installer. To clear the cached proxy information for testing purposes, you can start the
installer with the argument - Di nst al | 4j . cl ear ProxyCache=t r ue. If the proxy information
can be taken from the default browser, that data is applied again after the previously cached
information has been cleared. Also, you can force the proxy dialog to be shown for testing
purposes by passing the argument i nst al | 4j . showPr oxyConf i g=t r ue. This allows you to
specify a proxy even if the direct connection succeeds.

If a selected proxy is not available, the installer will fall back to a direct connection. If the proxy
is available and the password is wrong, the proxy dialog will be shown again.

66

Entering proxy data is supported in console mode as well. In unattended mode there is no user
interaction, so the proxy information has to be given as arguments to the installer. The standard
Java properties for proxy configuration have to be used for that case: - Dpr oxySet =t r ue,
- DproxyHost =[host nane] and - DproxyPort=[port nunber]. If the proxy requires
credentials, you have to specify - Dpr oxyAut h=t r ue, - Dpr oxyAut hUser =[user nane] and
- Dpr oxyAut hPasswor d=[passwor d] as well.

Server authentication

The download URL can be password protected. In this case, the user has to supply a user name
and password.

e Enter Credentials

- ﬁ—\ User Name: | bob]|
Password: (esessss

Please enter your credentials for the download site

WWW.mycorp.com

Neither the user name nor the password is cached by install4j. In unattended mode you have
to pass the arguments - Dserver Aut hUser =[user name] and
- Dserver Aut hPasswor d=[password]. You can set these system properties via
System set Property("server Aut hUser", "[user nane] ") and
System set Property("server Aut hPassword", "[password]") if youwantto hard-code
the credentials or if you have another source for obtaining the credentials.

67

A.2.6 Updates

Introduction

Installers generated by install4j actively handle updates. On the Update Options [p. 289] tab in
the installer section, you can configure how an installer should behave in the event of an update.
An update occurs when the user installs an application into a directory where an installation
with the same application id already exists.

** install4j Multi-Platform Edition [hello_enterprise]
Project Steps Buld Help

PNEHLD 8 20 @
Configure the installer @ $

@eneral Settings

In this step, vou can choose how the generated installers should perform during an update.
Different installer bypes allow you ta handle different update scenarios.

Application 1D

The application I is used to recognize a previous installation of the same project. Please change the
application ID only if you have to, e.g. to make it different from another project,

Application ID: |0804-2950-8354-4050 3 Regenerate ID

[Manualy edit 10

Installer Type

(%) Regular installer
=l Suggest previous installation directory
Suggest previous prograrm group

() add-on installer
"Lﬁ For application with 10 »

Screens | Ackions | Custom Code | Update Options | Installer Options

| |52 1die A

Typically, minor upgrades of an application should be installed into the same directory as earlier
installations. The default behavior of install4j is to suggest the previous installation directory and
program group, so that the user is guided into installing the application into the same directory.
If this behavior is not desired, you can switch off these suggestions or change the application id
[p. 289].

Updates into the same installation directory

The following points are of interest with respect to updates into the same installation directory:

+ Generated installers will refuse to install on top of installations with a different application ID
by default. You can change this behavior on the "Installation location" screen.

Note: installers generated with install4j <= 3.0.x do not have an application ID, it is always
possible to install on top of such an installation.

+ Generated installers will detect if any of the previously installed launchers are still running
and will ask the user to shutdown these applications. This happens when the "Install files"
action is executed.

+ Deployed services will be stopped and uninstalled before the installation. This happens when
the "Install files" action is executed. You can optionally stop your services earlier with the "Stop
a service" action if your update process requires it.

« During an update, the installation databases will be merged, so that files, menu entries, file
associations, etc. of old installations can still be uninstalled when the uninstaller is executed.

68

+ After an update, only the (optional) uninstall actions of the newer installation will be executed
when the uninstaller is executed. However, the auto-uninstall actions from previous installations
will be executed, too (for example the uninstallation of a service that is automatically registered
by an "Install service" action during installation).

If you would like to uninstall the previous installation before installing any new files, you can add
the "Uninstall previous installation" action before the "Install files" action. In this context, the
uninstallation policies [p. 101] that exclude updates are of interest. With these uninstallation
policies you can preserve certain files for updates, but uninstall them when the user manually
invokes the uninstaller. The uninstaller invoked by the "Uninstall previous installation" action is
running in unattended mode. You can use cont ext . i sUni nst al | For Upgr ade() to exclude
certain actions for an update uninstaller.

Add-on installers

For distributing enhancements and patches, install4j offers the add-on installer type that can be
configured on the Update Options [p. 289] tab in the installer section.

An add-on installer will only install on top of an installation of a specified application id. It does
not have a separate uninstaller.

69

A.2.7 Error Handling

Damaged JREs

If the JRE search sequence [p. 64] of the installer selects a damaged JRE, the installer might fail
to start up correctly. The next time the installer is executed, the installer will ask the user whether
the automatic search should be performed again or if a JRE should be manually located or
downloaded.

install4j Wizard

The installer did not. start up correctly on the last run,
This is probably caused by a corrupted Java WM,

= Do you want ta download ar manually select the M7

If the user chooses manual location or download, the same dialog will be displayed as for in the
failure to find a JRE [p. 64] .

install4j Wizard

The install4j wizard could not Find & JavalTM) Runtime

’g Environment on your system, You can locate or
download a suitable JRE. (minimum version: 1.4.1,
maximum version: 1.6}

[Download][Locate][Cancel]

The download option is only available if a JRE has been dynamically bundled in the Bundled JRE
[p.310] step of the media file wizard [p. 303] . A JRE that has been located or downloaded in this
way will also be used by your installed application.

Debugging on Windows

On Windows, when an installer is executed it always generates a log file in the temp directory
that contains information about the JRE search sequence and can be used for debugging purposes.
The name of the log file starts with i 4j _nl og_. If you have a problem with JRE detection or the
installer startup, please send this log file along with your support request.

It is also possible to generate this log for the JRE detection of the generated Windows launchers.
In order to switch on logging, please define the environment variable | NSTALL4J_LOG=yes and
look for the newest text file whose name starts with i 4j _nl og_ in the temp directory. This is
done silently, without notifying the user and is also suitable for situations where launchers are
called automatically or repeatedly.

An easier way for a user to create a log file is to start the launcher with the / creat e-i 4j -1 og
argument. The launcher will notify the user where the log is created and will offer to open an
explorer window with the log file selected. After the message box, the launcher will continue to
start up.

Debugging on macOS

Similar to Windows, macOS launchers also support the | NSTALL4J_LOG=yes environment
variable definition for debug logging. Rather than writing a log file, they write to the system log.
You can display the system log by starting the "Console" application which is located in
[/ Applications/UWilities.

Setting the environment variable can be done by opening a terminal and executing
launchct| setenv | NSTALL4J_LOG=yes

70

Then all newly started applications in the Finder will have this environment variable set. The
current terminal will not have it set until you quit the Terminal application and start it again.

Rather than setting the environment variable for all install4j launchers, you can set it for a
particular invocation only. To do that, call the Cont ent s/ MacCS/ JavaAppl i cati onSt ubinside
the application bundle and prefix the call with the definition of the environment variable. For an
application bundle "MyApp.app", the call looks like this:

| NSTALL4J_LOG=yes MyApp. app/ Cont ent s/ MacOS/ JavaAppl i cati onSt ub

In this case, the log output will also be written to the terminal. Using / usr/ bi n/ open will not
work with this technique, since the latter gets the environment variables from the Finder.

Note that logging only works for GUI launchers and not for command line and service launchers
which are implemented as Unix shell scripts. Also, launchers for the Apple JRE (Java 6) do not
support logging. There is no command line argument that activates logging, like on Windows.

Error logs

If an exception is thrown in the installer, it prepares an error log and informs the user about its
location

install4j

An error occurred:
java.lang.RuntimeException
Error log: C:iDocuments and SettingsiboblLocal Settings\templinstall4iErrarS1675.log

You can force the installer to print exceptions to stderr for debugging purposes with the
- Di nst al | 4j . debug=t r ue command line option [p. 58] .

Installation log

Additionally, all installers and uninstaller generate an installation log that can be used for
debugging purposes. After a successful installation it is located in [installation
dir]/.install4j/installation.log. For uninstallation or if the end of the installation
cannot be reached, you can find it in your temp directory if you pass
-Di nstal | 4j . keepLog=t r ue to the installer or uninstaller. The file is prefixed i 4j _I og. If you
would like the installer to log to stderr as well, you can pass- Di nst al | 4j . | ogToSt derr=true
to the installer. Both arguments can also be useful for debug installers and uninstallers, where
they have to be passed as VM parameters.

Error handling of Actions

You can define the error handling for every installation or uninstallation action separately. Please
find more information in the Screens and Actions help topic [p. 11].

Return values

The process of an installer returns 0 if the installation was completed successfully, 1 if the
installation fails and 83 if the installer could not find a suitable JVM to run. These exit codes are
especially useful to check the result of an unattended installer run [p. 56] .

71

A.3 Extending Install4j
A.3.1 Developing With The Install4j API

Introduction

There are two different circumstances where you might want to use the install4j API: Within
expression/script properties [p. 294] in the configuration GUI and for the development of custom
elements in install4j. The development of custom elements in install4j is rarely necessary for
typical installers, most simple custom actions can be performed with a "Run script" action and
most custom forms can be realized with a "Customizable form" screen.

If you would not like to miss your IDE while writing more complex custom code, you can put a
single call to custom code into expression/script properties. The location of your custom code
classes must be configured [p. 288], so install4j will package it with the installer and put in into
the class path. In this way you can completely avoid the use of the interfaces required to extend
install4j.

When you want to wuse install4j classes within your |IDE, you <can add
$I NSTALL4J_HOMVE/ resour ce/ i 4j runti ne. j ar toyour classpath (in your IDE). Do not distribute
this jar file with your application, install4j will handle this for you.

Expression/script properties

Using expression/script properties in install4j is required for wiring together screens and actions
[p. 111 as well as for the conditional execution of screens and actions. The most important
element in this respect is the context which is an instance of

+ com.api.install4j.context.InstallerContext
in an installer

+ com.api.install4j.context.UninstallerContext
in an uninstaller

The context allows you to query the environment and the configuration of the installer as well
as to perform some common tasks.

Please see the documentation of the com.install4j.api.context package for the complete
documentation of all methods in the context. Some common applications include:

+ Setting the installation directory

By usingcontext.setlnstallationDirectory(File installationDi rectory) inthe
installer context, you can change the default installation directory for the installer. Typically,
this call is placed into a "Run script" action on the "Startup" screen.

+ Getting and setting installer variables

The get Vari abl e(String vari abl eName) and set Vari abl e(String vari abl eNane,
Obj ect val ue) methods allow you to query and modify installer variables. Note that besides
the "Run script" action, there is also a "Set a variable action" where you don't have to call
set Vari abl e yourself.

+ Conditionally executing screens or actions

Often, condition expressions for screens and actions check the values of variables. In addition,
the context provides a number of boolean getters that you can use for conditionally executing
screens and actions depending on the installer mode and environment. These methods include
i sConsol e(),isUnattended() and others.

72

* Navigating between screens

Depending on the user selection on a screen, you might want to skip a number of screens.
The goForward(...), goBack(...) and goBackl nHi story(...) methods provide the
easiest way to achieve this.

Many other context methods are only useful if you develop custom elements for install4j.

Also have alookatthecom instal | 4j . api. Uil classwhich offers a number of utility methods
that are useful in expression/script properties.

Developing custom elements for install4j

For a general overview on how to start developing with the install4j API, how to set up your IDE
and how to debug your custom elements, please see the APl overview in the javadoc.

install4j provides three extension points:

+ Actions [p. 173]

Please see the documentation of the com.install4j.api.actions package for the complete
documentation on how to develop actions.

+ Screens [p. 154]

Please see the documentation of the com.install4j.api.screens package for the complete
documentation on how to develop screens.

+ Form components [p. 242]

Please see the documentation of the com.install4j.api.formcomponents package for the
complete documentation on how to develop form components.

All actions, screens and form components in install4j use this APl themselves. To make your
custom elements selectable in the install4j IDE, you first have to configure the custom code
locations [p. 288]. When you add an action, screen or form component, the first popup gives you
the choice on whether to add a standard element or search for suitable elements in your custom
code [p. 292].

If you use your custom code in multiple projects, consider packaging an install4j extension [p.
751, which displays your custom elements alongside the standard elements that are provided
by install4j and allows you to ship them easily to third parties.

Serialization

install4j serializes all instances of screens, actions and form components with the default
serialization mechanism for JavaBeans that is present in Java since version 1.4 (the minimum
Java version for installers).

To learn more about JavaBeans serialization, please visit

+ http://java.sun.com/j2se/1.4.2/docs/api/java/beans/XMLEncoder.html for APl documentation
on the long-term persistence mechanism for JavaBeans.

+ http://java.sun.com/products/jfc/tsc/articles/persistence3/ for information on the format of
the XML serialization.

* http://java.sun.com/products/jfc/tsc/articles/persistence4/ for information on how to write
your own persistence delegates. In your bean infos for screens, actions and form components
you can specify a list of additional persistence delegates for non-default types.

73

http://java.sun.com/j2se/1.4.2/docs/api/java/beans/XMLEncoder.html
http://java.sun.com/products/jfc/tsc/articles/persistence3/
http://java.sun.com/products/jfc/tsc/articles/persistence4/

Compiler variables are replaced in the serialized representation of a bean. In this way, compiler
variable replacement is automatically available for all properties of type j ava. | ang. Stri ng.
The values of installer variables and localization keys are determined at runtime, so you have to
call the utility methods in com i nstal | 4j . api . beans. Abstr act Bean before you use the
values in the installer or uninstaller. For more information on variables, please see the separate

help topic [p. 21].

74

A.3.2 Extensions

Introduction

All standard actions [p. 173], screens [p. 154] and form components [p. 242] in install4j use the
installer API [p. 72] themselves. With this APl you can create new elements that are displayed
in the standard registries [p. 293] by packaging a JAR file with a few special manifest entries and
putting that JAR file into the ext ensi ons directory of your install4j installation.

Configurability

An extension to install4j will likely need to be configurable by the user. install4j uses the JavaBean
specification to control the user presentation of properties in the install4j IDE. Screens, actions,
and form components correspond to beans in this context.

Optionally, you can add Beaninfo classes. In essence, a BeanInfo class next to the bean itself
describes which properties are editable and optionally gives details on how they should be
presented. Please see the documentation of the com.install4j.api.beaninfo package for the
complete documentation on how to develop Beaninfo classes. Also, the
$1 NSTALL4J_HOME/ sanpl es/ cust onCode/ sr ¢ directory contains a sample action with the
associated Beanlinfo class.

JAR manifest

In order to tell install4j which classes are screens, actions or form components, you have to use
the following manifest keys:

+ Install-Action
for actions implementingcom i nstal | 4] . api . acti ons. Instal | Acti on
* Uninstall-Action
for actions implementingcom i nstal | 4] . api . acti ons. Uni nstal | Acti on
* Installer-Screen
for screens implementing com i nst al | 4j . api . screens. I nstal | er Scr een
* Uninstaller-Screen
for screens implementing com i nst al | 4j . api . screens. Uni nstal | er Scr een
* Form-Component
for screens implementing com i nst al | 4j . api . f or ntonponent s. For nConponent

Please note that usually you do not implement these interfaces yourself, but rather extend one
of the abstract base classes.

A typical manifest with one action and one screen looks like this:

Depends-On: driver.jar conmon.jar

Nare: coni mycor p/ acti ons/ MyActi on. cl ass
Install-Action: true

Nare: coni mycor p/ screens/ MyScr een. cl ass
Installer-Screen: true
Uninstal l er-Screen: true

Note: If you only have named sections and no global section in your manifest file, the first line
must be an empty line since it separates the global keys from the named sections.

75

http://www.oracle.com/technetwork/articles/javaee/spec-136004.html
http://www.oracle.com/technetwork/articles/javaee/spec-136004.html

The Depends- On manifest key can specify a number of relative JAR files separated by spaces
that must be included when the extension is deployed. That key can also occur separately for
each named section.

As you see in the example for the screen, each class can have multiple keys if the appropriate
interfaces are implemented.

Localization

Extensions can provide localized messages. During development, you can keep these messages
in the custom localization file of the project that you use for testing purposes. When packaging
the extensions, these custom localization files have to be given special names and be putinto a
particular location in the extension JAR file.

The names of the extension localization files have to be the same as those of the system
localization files in the $I NSTALL4J_HOVE/ r esour ce/ messages directory, i.e.
nmessages_en. ut f 8 and similarly for other languages. The java.util.Properties file encoding is
also supported if the file name has a .properties extension, like ressages_en. properti es.

When creating the extension JAR file, all extension localization files have to be put into the
directory nessages. No special directives in the manifest are required. Dependencies included
with the Depends- On manifest key are not scanned for extension localization files.

Extension deployment

On startup, install4j will scan the manifests of all JAR files that it finds in the
$I NSTALL4J_HOVE/ ext ensi ons directory. Any screens, actions or form components that are
found in the manifests are added to the standard registries [p. 293] . If a bean cannot be
instantiated, the exception is printed to stderr which is captured in
$I NSTALL4J_HQVE/ bi n/ error. | og and no further error is displayed.

If any of those screens, actions or form components are selected by the user, the required JAR
files are deployed with the generated installers. This means that installing extensions does not
create an overhead for installers that do not use them.

76

B Reference

B.1 Steps For Configuring An Install4j Project

To learn more about install4j projects, please see the corresponding help topic [p. 7] or other
help topics about concepts in install4j [p. 7] .

install4j's main window is organized into 6 steps that are required to build a set of media files.
The side bar on the left as well as the forward and back buttons in the top right corner let you
navigate between these steps:

Step 1: General Settings [p. 78]

Zl (CTRL- 1) In the General Settings step, you provide important information about your
application and the build preferences, such as the name of your application, the JRE search
sequence and the directory where the media files should be placed.

Step 2: Files [p. 94]

! (CTRL- 2) In the Files step, you define your distribution tree, that means you collect files
from different places to be distributed in the generated media files. You can optionally define
installation components.

Step 3: Launchers [p. 111]

(CTRL- 3) In the Launchers step, you define the properties of the native launchers that
will enable your users to start your application.

Step 4: Installer [p. 134]

" (CTRL- 4) In the Installer step, you configure the installer screens and actions.
Step 5: Media [p. 300]

Ed (CTRL- 5) In the Media step, you define the media files that will be created to distribute
your application to your end users.

Step 6: Build [p. 320]
(CTRL- 6) In the Build step, you start the actual generation of the media files.

77

B.2 Step 1: General Settings

B.2.1 Step 1: Enter General Project Settings

In the General Settings step, you provide important information about your application and
specify project-wide build settings.

There are several tabs in this section:

+ Application Info [p. 79]
On this tab you enter information about your application, such as name and version.
*+ Java Version [p. 80]

On this tab define the version requirements for the JRE that your application launchers should
use as well as the detailed JRE search sequence.

+ Languages [p. 82]
On this tab define the principal language as well as other languages supported by the installer.
* Media File Options [p. 84]

On this tab you enter general options regarding media file generation such as the output
directory for media files and compression settings.

+ Code Signing [p. 86]
On this tab you configure code signing for Windows and macOS media files.
+ Compiler Variables [p. 88]
On this tab you can define compiler variables for your project.
* Merged Projects [p. 87]
On this tab you can choose other projects that should be merged into the main project.
+ Project Options [p. 89]
On this tab you you can adjust options regarding your install4j project.

78

B.2.2 General Settings - Application Info

On this tab of the General Settings step [p. 78] you enter general information about your
application.

Only options with bold labels have to be filled in. The available options are:

Full name

(required) the long name used in situations where there is plenty of space for displaying a
name.

Short name

(required) the alternative short name for situations where there is limited space for displaying
a name or where a name should be as short as possible. The short name is used to create
suggestions for installation directories in the Media step [p. 300] . It may not contain spaces.

Version

(required) the version number of your application. This value can be overriden from the
command line [p. 327] or the ant task [p. 331].

Publisher

the name of your company or your own name (e.g. used for the support information dialog
in the Windows control panel)

Publisher URL

the web address of your company (e.g. used for the support information dialog in the Windows
control panel)

A build will not be possible until all required fields have been completed. If a required field is
missing when starting a build [p. 320], this tab will be displayed with a warning message.

79

B.2.3 General Settings - Java Version

On this tab of the General Settings step [p. 78] you enter the version requirements and the
search sequence for the JRE or JDK that apply to your installers [p. 134] and application launchers
[p. 111].

Inthe Java ver si on section, you can constrain the version of the Java VM.

+ The minimum Java version must be specified. For example, enter a value of 1. 4,
+ The maximum Java version can optionally be specified. For example, enter a value of 1. 6.

The maximum Java version can be entered with less numeric detail than the minimum Java
version to prevent the use of a higher major or minor release. For example, a minimum version
of 1.4.1 and a maximum version of 1.4 ensures that the highest available 1.4.x >= 1.4.1 JRE is
used, but not a 1.5 JRE. Similarly, a minimum version of 1.4.1_03 and a maximum version of 1.4.1
ensures that the highest available 1.4.1 >=1.4.1_03 JRE is used, but not a 1.4.2 JRE.

By default, JREs with a beta version number or JREs from an early access release cycle will not
be used by the launcher. If you would like to enable the use of these JREs, please check the option
allow JREs with a beta version nunber.

The JRE search sequence determines how install4j searches for a JRE on the target system. New
configurations get a pre-defined default search sequence. install4j has a special mechanism
which allows you to bundle JREs with your media files. If you choose a particular JRE for bundling
[p.310] in one of the media file wizards [p. 303], this JRE will always be used first and you do not
need to adjust the search sequence yourself.

If you have problems with JRE detection at runtime, please see the help topic on error handling
[p. 70] for a description on how to get diagnostic information.

The following types of search sequence entries [p. 90] are available:

* B Search registry

Directory

24 Environment variable

The control buttons on the right allow you to modify the contents of the search sequence list:

== Add search sequence entry (key | NS)

Invokes the search sequence entry dialog [p. 90] . Upon closing the search sequence entry
dialog with the [OK] button, a new search sequence entry will be appended to the bottom of
the search sequence list.

¥ Remove search sequence entry (key DEL)

Removes the currently selected search sequence entry without further confirmation.

% Move search sequence entry up (key ALT- UP)

Moves the selected search sequence entry up one position in the class path list.

Move search sequence entry down (key ALT- DOAN)

Moves the selected search sequence entry down one position in the class path list.

80

The design time JDK determines which JDK or JRE is used for the following purposes:

+ Code compilation

install4j uses a bundled eclipse compiler, so it does not need this functionality from a JDK.
However it needs a runtime library against which scripts entered in the installer configuration
[p. 134] are compiled. The version of that JDK should correspond to the minimum Java version
for the project configured above.

By default, thert. j ar runtime library of the JRE that is is used to run the install4j IDE is used
for code compilation. If your minimum Java version is lower than the Java version used to run
install4j, runtime errors can occur if you accidentally use newer classes and method.

+ Context-sensitive Javadoc help

If you configure a separate design-time JDK or JRE, you can enter a Javadoc directory to get
context-sensitive Javadoc help for the runtime library in the Java code editor [p. 294] . By default,
context-sensitive Javadoc help is only available for the install4j API.

+ Enhanced code completion functionality

If you configure a separate design-time JDK (and not a JRE), the Java code editor [p. 294] will
show completion proposals for methods in the runtime library with parameter names. By
default, parameter names for methods in the runtime library are not available.

The drop-down list next to the JDK option shows the name of all configured JDKs together with
their Java versions. In order to configure a new design time JDK, select the JDK option, and click
on [Configure JDKs]. This shows the Configure JDKs dialog [p. 92] .

The list of available design time JDK is saved globally for your entire install4j installation and not
for the current project. The only information saved in your project is the name of the JDK
configuration. In this way, you can bind a suitable JDK on another installation and on other
platforms. If the JDK name saved in the project cannot be found in your install4j installation, the
name will be displayed in red color with a "[not configured]" message attached. In that case,
when clicking on [Configure JDKs], you will be asked if you would like to configure this JDK.

A build will not be possible until all required fields have been completed. If a required field is
missing when starting a build [p. 3207, this tab will be displayed with a warning message.

81

B.2.4 General Settings - Languages

On this tab of the General Settings step [p. 78] you define the principal language as well as
additional languages supported by your installers [p. 134] .

The following options are available:

* Principal language

The principal language is the language that your installer defaults to if no other supported
languages match the locale at runtime.

+ Custom localization file
A custom localization file is text file with key-message pairs in the format of

+ a)ava properties file

aJava properties file has ISO 8859-1 encoding, all other characters must be represented as
Unicode escape sequences, like \ u0823.

+ a properties file with UTF-8 encoding

A properties file with UTF-8 encoding has the advantage that you do not have to use escape
sequences. However it might not be supported by i18n tools.

A custom localization file can be used to

+ override system messages

If any of the default messages in the installer is not appropriate for your use-case, you can
change it by looking up the corresponding keys in the appropriate
$I NSTALL4J_HOVE/ r esour ce/ nessages/ messages_*. ut f 8 file and define the same
key in your custom localization file to override that message.

+ localize your installer

Anywhere in the install4j IDE where you can enter text that is used at runtime, you can use
custom localization keys [p. 211, i.e. variables of the form ${i 18n: nyKey} . Those keys are
read from your custom localization file and offered by the variable selection dialog [p. 90]

If required, you can use parameters for your messages by using the usual { n} syntaxin the
value and listing the parameters in function-like manner after the key name in the variable
instance. For example, if your key name is nyKey and your message value is

Create {0} entries of type {1}
you can use a variable
${i 18n: nyKey("5", "foo")}
in order to fill the parameters, so that the actual message becomes
Create 5 entries of type foo
However, in the context of localizing an installer this is rarely necessary.
+ Additional languages

With install4j, you can build multi-language installers that offer the user a choice between a

number of languages. If you # add languages to the additional languages table, the installer
becomes a multi-language installer, otherwise is is a fixed-language installer. When you add
a new language, the language selection dialog [p. 90] is displayed. A new entry is then added

82

to the table and you can configure the custom localization file by double-clicking on the
appropriate cell.

+ Skip language selection dialog if auto-detected locale matches a supported language

This check box ensures that the language selection is only displayed if the installer cannot
find a match between a supported language (either principal or additional language) and the
auto-detected locale at runtime. By default this option is not selected and the language selection
dialog is always displayed.

The principal language and the associated custom localization file can be overridden for each
media file [p. 312] . In this way you can build multiple fixed-language installers each with a
different language.

83

B.2.5 General Settings - Media File Options

On this tab of the General Settings step [p. 78] you enter general options regarding media file
generation.

Only options with bold labels have to be filled in. The available options are:

Media file output directory

(required) the directory where the generated media files should be placed. If the project has
already been saved, a relative directory will be interpreted as relative to the project file.

Media file name pattern

(required) the default rule for naming your media files. This text field should contain system
compiler variables [p. 21] in order to be unique for each media file. If two media file names
are equal, the build will fail. If the desired name for the media file cannot be obtained through
the use of variables, you can override the media file [p. 312] name in the media wizard.

Convert dots to underscores

By default, dots ('.") will be converted to underscores ('_") when the media file name is evaluated.
If you would like to keep all dots in your media file name, please de-select this option.

Compression level

The desired level of compression for your media files, chosen from a range of 1-9. "1" means
least compressed and "9" means most compressed. Please note that extracting the media
files will take longer for higher compression levels.

Use LZMA compression

LZMA compression achieves much better results, but is considerably slower, especially for
compilation. LZMA compression is only used for installers and not for archives.

Use Pack200 JAR compression

Pack200 compression is a compression algorithm that's designed for JAR files and achieves
exceptional results, especially for large JAR files. Since the Pack200 deflater is only included
since JRE 1.5, this compression is only used if the minimum Java version requirement [p. 80]
for your projectis 1.5.

If you have signed JAR files or JAR files that create a digest, please apply the
$JDK_HOVE/ bi n/ pack200 executable in your build process like

pack200 --repack my.jar

before signing the JAR files. Pack200 rearranges JAR files but the reordering is idempotent, so
this pack/unpack sequence creates a stable JAR file.

Pack200 compression can be quite slow, Pack200 decompression is relatively fast. Pack200
compression is only used for installers and not for archives.

To avoid problems with external JAR files, you can check the "Exclude signed JARs or JARs
creating digests" option. If you would like to exclude selected JAR files only, you can place an
empty *. nopack file next to it. For example, if the jar file is named app. j ar, then a file
app. j ar. nopack in the same directory will disable Pack200 compression for that file.

To pass options to the packer, create afile *. packopt i ons next to the file and add one option
per line. Currently, only - Pand - - pass-fi | e are supported.
Shrink runtime

If selected, the runtime JAR file i 4j runti me. j ar that contains the support classes for the
installer and the API will be shrunk, meaning that all unused classed will be removed. Usages
from custom code and classes in generated launchers are considered during the shrinking

84

http://en.wikipedia.org/wiki/LZMA
http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/pack200.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/pack200.html

process. If you have Java code in external launchers that uses the API, then shrinking might
lead to O assNot FoundExcept i ons atruntime. In this case, please disable runtime shrinking.

Note that if you have configured merged projects [p. 871, and one of the projects in the project
tree has disabled runtime shrinking, then runtime shrinking will be disabled for the main
project as well.

+ Create common data files where possible

If you use the "external" or "downloadable" data file settings in the Data Files [p. 308] step of
the media wizard, you might want to generate common data files for different media files in
order to save disk space. If this option is selected, a directory conrmon_fi | es. dat will be
created in the media output directory during the compilation that holds the data files that can
be used by all media files. This only works for installation components that have the same
content for different media files.

* Create files with MD5 sums for checking the integrity of data files

If you want to verify the integrity of downloaded data files, this option enables the generation
of MD5 checksum files next to the data files. The installer will try to download the MDS5 files
first and check the downloaded data files against it.

A build will not be possible until all required fields have been completed. If a required field is
missing when starting a build [p. 320], this tab will be displayed with a warning message.

85

B.2.6 General Settings - Code Signing

On this tab of the General Settings step [p. 78] you configure code signing for Windows and
macOS media files. Please read the help topic on code signing [p. 49] for detailed information
on how code signing works in install4j.

The code signing settings apply to all media files [p. 301] .

If you enable code signing for Windows media files, you either have to specify .pvk and .spc files
or a single .p12 (PKCS #12) file.

If you enable code signing for macOS, you have to specify a single .p12 (PKCS #12) file. You can
export the private key with Apple's keychain tool as PKCS #12 file. This will include your developer
certificate. install4j will add the required certificate chain automatically.

A build will not be possible until all required fields have been completed. If a required field is
missing when starting a build [p. 320], this tab will be displayed with a warning message.

86

B.2.7 General Settings - Merged Projects

On this tab of the General Settings step [p. 78] you can configure other projects that are merged
into the main project. Please read the help topic on merged projects [p. 42] for more information.

The control buttons on the right allow you to modify the merged projects:

* = Add a merged project (key | NS)

Invokes the merged projects edit dialog [p. 93] . If you have chosen to merge files and the
merged project contains file sets that are not present in the current project, you will be asked
whether you want to create the missing file sets (see below) after you close the merged projects
edit dialog with the [OK] button.

* 7 Edit a merged project (key ENTER)

Invokes the merged projects edit dialog [p. 93] for the selected item, so that you change
merge settings.

¥ Remove a merged project (key DEL)

Removes the currently selected merged projects. If you have added links into the merged

projects on the screens & actions tab [p. 135], these links will be broken and the project will
not be able to compile until you remove those broken links.

* Enable or disable merged projects (keys ALT+Pl us and ALT+M nus)

You can temporarily disable merged projects when developing your main project. If you have
added links into the merged projects on the screens & actions tab [p. 135], these links will
simply be omitted.

@ Synchronize file sets

Inspects the selected file sets and suggests that missing file sets be added to the main project.
This is also done when you add a merged project, but if file sets in merged projects change
later on, you might want to synchronize the file sets again. File sets are displayed in the
definition of the distribution tree [p. 95] . This action only checks merged projects for which
you have chosen to merge files.

* #» Move up (key ALT- UP)
Move down (key ALT- DOWN)
Changes the order in the list of merged projects. The order can be significant if several projects
contribute files with the same paths. Later merged projects overwrite files from earlier merged

projects, so you have to move a merged project down in order to give it a higher priority. The
main project always has the highest priority.

87

B.2.8 General Settings - Compiler Variables

On this tab of the General Settings step [p. 78] you enter compiler variables for your project.

Defining compiler variables is optional and not required for a working project. For an explanation
of compiler variables, please see the help topic on variables [p. 21] .

The control buttons on the right allow you to modify the contents of the compiler variables list:

== Add variable (key | NS)

Adds a new variable. The variable name must be unique and must not be the name of a system
variable.

X Remove variable (key DEL)

Removes the currently selected variable.
% Move variable up (key ALT- UP)

Moves the selected variable up one position in the variables list.
Move variable down (key ALT- DOWN)

Moves the selected variable down one position in the variables list.

In order to edit any column, please double-click on it.

88

B.2.9 General Settings - Project Options

On this tab of the General Settings step [p. 78] you can adjust options regarding your install4j
project.

The following options are available:

+ Make all paths relative when saving the project file

If this option is checked, install4j will try to convert all absolute paths to relative paths when
saving the project file. Relative paths are always interpreted relative to the project file.

If you save your project under a different path, all relative paths will be adjusted accordingly.

Note: for cross platform usage of a single project file enabling this option is highly
recommended, since file system roots are inherently incompatible across platforms.

+ Create backup files when saving

If this option is checked, install4j will create a backup copy of existing project files by appending
"~"to the file name.

+ Auto save every 5 minutes

If this option is checked, install4j will save your project file every 5 minutes. Note that if the
project has never been saved before, no auto save operation will be attempted.

89

B.2.10 Dialogs
B.2.10.1 Search Sequence Entry Dialog

The search sequence entry dialog is shown when clicking on the # add button in the Java Version
tab [p. 80] of the General settings step [p. 78] . Upon closing this dialog with the [OK] button, a
new search sequence entry will be appended to the bottom of the search sequence list on that
tab.

To define a search sequence entry, you select the entry type and fill out the Det ai | section of
the dialog which is dependent on the selected entry type. The following entry types are available:

* B search registry

Search the Windows registry and well-known standard locations for installed JREs and JDKs
by Sun Microsystems.

* Directory

Look in the specified directory. This is useful if you distribute your own JRE (not one provided
by install4j) along with your application. In that case, be sure to supply a relative path. Note
that relative directories will be interpreted as relative to the installation root directory.

* 4 Environment variable

Look for a JRE of JDK in a location that is defined by an environment variable like JAVA_HOVE
or MYAPP_JAVA HOME.

B.2.10.2 Language Selection Dialog

The variable selection dialog is displayed when you click on the %= [Add Language] button on
the Languages tab [p. 82]

Select one of the supported languages with a double-click or the [OK] button. You may also select
more than a language at a time before pressing on the [OK] button. Next to each language the
ISO code is displayed that is required if you override the principal language from the command
line with the sys.languageld variable [p. 328] .

B.2.10.3 Variable Selection Dialogs

When you click on the P variable selector which can be found next to most text fields in install4j,
you can choose variables from a number of variable systems [p. 21] . If there is more than one
variable system applicable for the text field, a popup menu will be displayed that lets you select
the desired variable system first.

A dialog is then brought up that shows you all known variables of the selected type. The variable
will be inserted at the current cursor position, if you close the variable selection dialog with the
[OK] button or of you double-click on a variable. In text fields, the appropriate variable syntax
will be used (like ${i nst al | er: nyVari abl e}), in code editors, an appropriate API call will be
inserted (like cont ext . get Vari abl e(" nyVari abl e").

Please see the help topic on variables [p. 21] more information on variables.
The following variable systems are available:
* W Installer variables
Installer variables are only available for text properties of screens [p. 154], actions [p. 173] and

form components [p. 242] .

90

The variable selection dialog shows both predefined variables as well as all bound variables.
Installer variables are shown for the currently edited installer application. The drop-down list
at the top allows to you change the installer application.

The Edi t link in the top right corner allows you to add pre-defined installer variables on the
fly.
% Compiler variables

Compiler variables [p. 88] are available for all text fields. The Edi t link in the top right corner
allows you to add compiler variables on the fly.

P 118N messages

118N messages are available for text properties of screens [p. 154], actions [p. 173] and form
components [p. 242] and selected other text fields in the install4j IDE.

The variable selector shows both system messages as well as custom localization keys from
the file that has been defined for the principal language on the Languages tab [p. 82] .

The Edi t link in the top right corner allows you to add custom localization keys on the fly.

Launcher variables

Runtime variables are system variables that are evaluated at runtime of the launcher or
installer. They are only shown in the variable selector next to the VM parameter text field in
the Java invocation step [p. 117] of the launcher wizard [p. 113].

B.2.10.4 Variable Edit Dialogs

The variables edit dialogs are displayed when you click the Edi t link in the variable selection
dialogs [p. 90] for compiler and installer variables. For installer variables this dialog can also be
accessed from the "Installer Variables" tab of the configuration of an installer application on the
Screens & Actions [p. 135] tab.

The dialog contains the same controls as the Compiler Variables tab [p. 88] in the General
Settings step [p. 78] . Upon closing the dialog with the [OK] button, the contents of the tree in
the variable selection dialog will be updated.

Unlike compiler variables, installer variables do not have to be strings. In order to support variable
types that are commonly used by form components, the installer variable edit dialog offers
several value types:

Undefined

If you just wish to document and categorize an installer variable, leave the type as "Undefined".
The variable value will be set at runtime when the variable is first bound or assigned to.

String

An instance of j ava. | ang. Stri ng
Integer

An instance of j ava. | ang. | nt eger
Long

An instance of j ava. | ang. Long
Boolean

An instance of j ava. | ang. Bool ean

91

+ String array

An instance of java. |l ang. String[]. Enter the array entries surrounded by quotes and
separated by commas. Use the backslash to quote quotes and backslashes.

+ Int array
Aninstance of i nt [] . Enter the array entries surrounded separated by commas.

B.2.10.5 Input Dialog

The input dialog allows you to enter a simple string value. Depending on the context, you can

use compiler variables [p. 21] in the value. To select a variable, you can click on the ¥ variable
selector [p. 90] .

For entities that have a unique ID, you can specify your own custom ID. Setting a custom code
only provides a benefit if you plan to reference an entity in a script. In scripts, you can then use
that verbose custom ID which is more readable than using the generated numeric ID. Custom
IDs must not start with a number. The numeric internal ID is never discarded and continues to
work. If you disable the custom ID at a later point, the ID will be reverted to the numeric ID.

Custom IDs are inserted into scripts instead of the numeric IDs by the ID selection dialog [p. 298]
.Allget ... Byl d() methods in the APl accept both the custom ID and the internal numeric ID.
This means that you can set a custom ID without breaking anything in the project. However, if
you use the custom IDs in scripts and change the custom ID or revert to the numeric ID, those
scripts will break.

B.2.10.6 Configure |DKs Dialog

The DK configuration dialog is displayed when you click the [Configure JDKs] button on the Java
version [p. 80] tab or in the Java editor settings dialog [p. 297] .

In this dialog, you can add one or more JDKs that will be available for the purposes outlined on
the Java version [p. 80] help page. The JDK configurations are not saved in the project, they
are saved globally for your install4j installation.

When you add a new JDK, you are asked for the home directory of the JDK that you want to enter.
Instead of a JDK, you can also select a JRE, in which case no parameter names will be available
in the code completion proposals of JDK methods. After you select the home directory, install4j
will check whether the directory contains a JDK or JRE and runs j ava - ver si on to determine
the version of the selected JDK or JRE.

The table that shows the configured JDKs has several columns:

* Name

This is a symbolic name that describes the JDK, like "JDK 1.6" When you select a design time
JDKon the Java version [p. 80] tab orin the Java editor settings dialog [p. 297], only this symbolic
name will be saved in the project file. When users on other computers and other platforms
configure a JDK with the same symbolic name in their install4j installation, it will be used
automatically for code compilation and code completion.

When you add a JDK, the name "|DK [major version].[minor version]" will be suggested by
default. If the selection is a JRE, "JRE [major version].[minor version]" will be suggested instead.
The name of the JDK configuration must be unique.

+ Java Home Directory

This is the Java home directory that you selected when you added the configuration. You can
change the Java home directory by editing this column. The Java version check will be performed
again and the version displayed in the "Java Version" column will be updated. The symbolic
name of the configuration will not be changed.

92

+ Javadoc Directory

In this column, you can enter the location of the Javadoc that should be associated with this
JDK configuration. The Javadoc directory can remain empty in which case no context-sensitive
Javadoc help will be available for classes from the runtime library.

+ Java Version
This uneditable column shows the version of the selected JDK configuration.

When you delete the JDK configuration that is currently used by the project, the project will still
reference the same configured symbolic name for the JDK. It will then be shown in red color with
a [not configured] message attached.

Changing the order of JDK configuration changes the order in the drop-down list on the Java
version [p. 80] tab or in the Java editor settings dialog [p. 297] .

B.2.10.7 Merged Projects Edit Dialog

The merged projects edit dialog is shown when adding or editing a merged project on the Merged
Projects tab [p. 87] of the General settings step [p. 78] . Please read help topic on merged projects
[p. 42] for more information.

You can select a project file with the [...] button. Relative path names are interpreted relative to
the main project file. The full name of the project as configured on the Application Info [p. 79]
tab is extracted and displayed in the text field below. That name is displayed in the list of merged
projects and it can be changed for documentation purposes. The name is not used at runtime.

In the Merge Settings section of the dialog, you can configure which entities should be merged
into the main project:

* Files

If selected, all files [p. 95] from the default file set of the merged project will be merged into
the default file set of the main project. Files from other file sets in the merged project will be
merged to file sets with the same name in the main project.

* Launchers
If selected, all launchers [p. 111] in the merged project will be added to the main project.
« Custom installer applications

If selected, all custom installer applications [p. 135] in the merged project will be added to the
main project.

All selections are transitive for nested merged projects. For example, if the merged project
contains another merged project for which merging of files is enabled, those files are only merged
if file merging is enabled in the main project.

Screens and actions are not merged automatically. On the Screens & Actions tab [p. 135] you can
merge single elements from merged projects such as screen groups or action groups at any
point.

93

B.3 Step 2: Files

B.3.1 Step 2: Configure Distributed Files

In the Files step, you define your distribution tree. This means that you collect files from
different places to be distributed in the generated media files. In addition, you can optionally
define installation components.

There are three tabs in this section:

+ Define distribution tree [p. 95]

On the definition tab, you can add and edit the structural elements that make up the
distribution tree. You can create your own directory structure and "mount" directories from
your hard disk or add single files in arbitrary directories.

+ View results [p. 104]

On the results tab, you see the actual file tree as it will be collected and distributed by the
generated media files [p. 300] . Go to this tab to check whether your actions on the definition
tab have actually produced the desired results.

+ Installation components [p. 108]

On the components tab, you can optionally define parts of the distribution tree as installation
components to allow users to customize the installation of your application.

94

B.3.2 Defining The Distribution Tree

B.3.2.1 Files - Defining The Distribution Tree

The distribution tree shows your file selections and the distribution directory structure created
by you. The distribution tree is drag-and drop enabled.

To check whether your definition actually produces the desired results, please go to the View
Results tab [p. 104] of the Files steps [p. 94] .

The top-level nodes in the distribution tree are called file sets. There is one "Default file set" that
cannot be deleted or renamed. The relative paths of all files that are added to a file set must be
unique. Please see the help topic on file sets and installation components [p. 9] for more
information on how to use file sets.

Within a single file set, it causes an error if the installation paths for two files collide. For example,
if you have added the contents of two different directories into the same folder in the distribution
tree and both directories contain afilefi | e. t xt, building the project will fail with a corresponding
error message. In this case, you have to exclude the file in one of the directory entries. This is
only valid for files, sub-directory hierarchies on the other hand are merged and can overlap
between multiple directory entries and explicitly added folders.

You can create new file sets with the @ [New File Set] action in the ¥ add menu on the right
side. Each file set has its own "Installation directory" root. If you define custom roots that should
be present in multiple file sets, you have to duplicate them.

When using the install4j API, you reference file sets with IDs. You can show IDs in the distribution
tree by activating the il [Show IDs] button on the lower right side of the distribution tree. The
automatically generated numerical IDs are then shown in brackets. The selection will be
remembered across restarts of install4j.

The child nodes of a file set are called installation roots. Their location is resolved when the
installer runs. There are two types of roots:

* The default root of the distribution tree is labeled as "Installation directory" and has a /**
special icon. This is the directory where your application will be installed on the target system.
The directory is dependent on user actions at the time of installation. In regular installers a
user can select an arbitrary directory where the application should be installed. For RPM media
files, a user can override the default directory with command line parameters. For archives,
the files are simply extracted into a commmon top-level directory.

The installation directory will only be created if you execute an "Install files" action in the
installer configuration [p. 135] . By default, the "Install files" action is placed on the "Installation"
screen. If your installer should not create an installation directory, you can ignore this root
and remove the "Install files" action.

To learn more on the various installer modes, please see the corresponding help topic [p. 56]

+ Ifyour application needs to install files into directories outside the main installation directory,
you can add custom roots to the distribution tree. This is done with the /* [New Root] action

in the = add menu on the right side or in the context menu. The actual location of this root
is defined by its name and has to resolve to a valid directory at runtime. There are several
possibilities for using custom roots. The name of a custom root can be

95

+ a fixed absolute path known at compile-time

This works for custom environments where there's a fixed policy for certain locations. For
example, if you have to install some files to D: \ apps\ nyapp, you can enter that path as
the name for your custom root.

If you build installers for different platforms, that root is likely to be different for each
platform. In that case, you can use a compiler variable [p. 88] for the name of the custom
root and override its value for each media file [p. 312] .

+ aninstaller variable that you resolve at runtime

If you would like to install files into the directory of an already installed application, such
as a plugin for your own application, you can use an installer variable that you resolve at
runtime. Installer variables have ani nst al | er: prefix,suchas${installer:rootDr},
and can be set in a variety of ways [p. 21].

The most common case would be to add a "Directory selection" screen to the screen
sequence [p. 135] and set its variable name property to the variable that you've used as the
name of the custom root. For the above example, that would be "rootDir" (without the
${installer:...} variable syntax).

Alternatively, you could use a "Set a variable" action to determine the location
programmatically.

+ a pre-defined installer variable

install4j offers several variables for "magic folders" that point to common directories, such
as ${installer:sys.userHone} which resolves to the user home directory or
${install er:sys. systenB2Di r} whichresolvestothe syst enB2 directory on Windows.

If a custom installation root is not bound at runtime or if it points to an invalid directory, the
contained files will not be installed. There will be no error messages, if you require error
handling, you can use a "Run a script" action before the "Install files" action with the appropriate
error message and failure strategy.

Note: For archive media file types [p. 301], custom installation roots are not installed. If you
require these custom roots for your installation, you cannot use archives.

An alternative way to redirect installed files to different directories is to use the "Directory
resolver" property of the "Install files" actions. Also, the "File filter" property of that action can
be used to conditionally install files. The use of these properties is only recommended if you
require their full flexibility. Otherwise, using custom installation roots and installation
components [p. 108] is a better approach.

Beneath an installation root, you can add files or create folders:

To create a folder, use the I [New folder] action in the %= add menu on the right side or in
the context menu. A folder named "New Folder" will be created below the selected directory.
If no directory or installation root is selected, it will be created below the "Installation directory"
root node. Right after its creation, the default name is editable and you can enter the intended
name of the folder. Confirm your entry with Ent er. To configure further properties of the
folder, you can edit the folder node (see below) to show the folder property dialog [p. 110] .

To add files, use the ' [Add files and directories] action in the = add menu on the right
side or in the context menu. The file wizard [p. 98] will be displayed.

In the distribution tree you can

96

* Move entries

Entries are moved by dragging them with the mouse to the desired location. Both directories,
file entries and directory content entries can be moved. To select a target directory inside a
closed directory while dragging, hover with the mouse over the closed directory and it will
open after a short delay. While dragging, the insertion bar shows you where the entry would
be dropped.

* Delete entries

Entries can be deleted by hitting the DEL key or using the corresponding tool bar button or
menu entry.

*« Rename entries

Some types of entries can be renamed by using the “* [Rename] action on the right side of
the tree or from the context menu. The name of the entry can then be edited in-place.

Renaming entries is possible for:

+ File sets
* Roots
+ Folders

+ Edit the contents of entries

The contents of some types of entries can be edited by using the . [Edit] action on the right
side of the tree or hitting the ENTER key while the entry is selected.

Editing entries is possible for:

* Folders
Editing a folder means opens the folder property dialog [p. 110] .
+ Single file entries

Editing a single file entry will bring up the file wizard [p. 98] . Only the selected file will be
shown in the "Select files" step, even if you initially selected multiple files with the wizard.
If you add additional files in this step, they will be added below the selected file in the
distribution tree. If you delete the selected file in this step, it will also be deleted in the
distribution tree.

+ Directory content and compiler variable entries

Editing a directory content entry or a compiler variable entry will bring up the file wizard
[p. 98].

Using compiler variables [p. 21] in the distribution tree allows you to make compile-time
conditional includes:

« if a directory node resolves to the empty string after variable replacement, the directory and
any contained entries will not be included in the distribution.

+ if the source directory of a "contents of directory" node resolves to the empty string after
variable replacement, no files will be included through that entry.

+ if the file name of a single file node resolves to the empty string after variable replacement,
no file will be included.

97

For conditions that are evaluated at runtime or for adding platform dependent files, you should
use files sets [p. 9] instead.

B.3.2.2 File Wizard

The file wizard is displayed when you invoke the ' [Add files and directories] action in the

%= add menu on the right side of the file definition tree. To get more information about the
distribution tree and related concepts, please see the overview [p. 95] .

In the first step of the file wizard you choose whether you want to add

+ the contents of a directory and its subdirectories

Choose this wizard type if you want to recursively add the contents of a directory. You will
have the possibility of excluding certain files and subdirectories and exclude files based on
their file suffix. If you would like to specify different settings for one or several files in the
included directory, you have to exclude them and add them as single files in the appropriate
directory.

The subsequent steps in the wizard for this selection are:

+ Select directory [p. 100]
Choose the directory that should be distributed.
* Installation options [p. 101]
Select installation options like access rights as well as overwrite and uninstallation policies.
+ Exclude files and directories [p. 103]
Select files or directories that should not be distributed.
+ Exclude suffixes [p. 103]
Enter a list of file suffixes that should be ignored,

+ a number of single files

Choose this wizard type if you collect a small number of files (possibly from different locations)
into a single directory. Example: a number of support libraries from different directories are
added into the top level directory | i b.

The subsequent steps in the wizard for this selection are:

+ Select files [p. 100]
Choose the files that should be distributed.
* Installation options [p. 101]
Select installation options like access rights as well as overwrite and uninstallation policies.

+ files that are passed with a compiler variable

Choose this wizard type if you collect lists of files in your build tool and want to use that
information to dynamically build the distribution tree.

The subsequent steps in the wizard for this selection are:

+ Compiler variable [p. 100]
Choose the compiler variable that should be read.

98

* Installation options [p. 101]
Select installation options like access rights as well as overwrite and uninstallation policies.

99

B.3.2.3 Wizard Steps
B.3.2.3.1 File Wizard: Select Directory

In this step of the file wizard [p. 98], you select the directory whose contents should be recursively
added to the distribution tree. This step is only shown if you select "Directory" in the first step.

You can either enter the directory manually or use the chooser button [...] to the right of the text
field to select a directory from your file system.

By default, the files that are contained in the selected directory are added directory to the currently
selected node in the distribution tree. Alternatively, you can suggest a subdirectory that should
be created below the currently selected node as a parent directory for the included files. This
must be a simple directory name and not a path name with multiple components.

B.3.2.3.2 File Wizard: Select Files

In this step of the file wizard [p. 98], you select the files that should be added to the distribution
tree. This step is only shown if you select "Single files" in the first step.

To edit the list of files you can

* add a new entry by clicking % on the right side of the window. If you choose "Browse for file"
in the popup menu, you can select one or multiple files in a file chooser. If you choose "Manual
entry", you can also use compiler variables.

* copy afile list from the system clipboard by clicking " on the right side of the window. The
file list must consist of

+ asingle file entry

+ multiple file entries separated by the standard path separator (";" on Windows, ":" on Unix)
or by line breaks.

Each file entry can be

+ absolute
The file entry is added as it is.
* relative

On the first occurrence of a relative path, install4j brings up a directory chooser and asks
for the root directory against which relative paths should be interpreted. All subsequent
relative paths will be interpreted against this root directory.

Only unique file entries will be added to the list. If no new file entry could be found, a
corresponding error message is displayed.

* remove an existing file entry by using the # [Remove] action while the file is selected.

* change the position of an existing entry by using the ¥~ [Move Up] and *¥ [Move Down]
actions.

B.3.2.3.3 File Wizard: Compiler Variable

In this step of the file wizard [p. 98], you specify the compiler variable whose value will be used
for adding more files to the distribution tree. This step is only shown if you select "Compiler
variable" in the first step.

100

The selected compiler variable must exist and will be read at compile time. Its value will be split
with the configured path list separator. Note that the compiler variable must be defined, otherwise
the build will fail and you have to specify the plain name of the compiler variable, without any
surrounding variable replacement syntax.

For each file that does not exist, a warning will be printed during the build.

For the separator, the compiler variable ${ conpi | er : sys. pat hl i st Separ at or} can be used
to separate path lists with; on Windows and : on Unix. The separator is interpreted as a regular
expression, so you can use \ n for separating files with new lines, for example.

B.3.2.3.4 File Wizard: Install Options

In this step of the file wizard [p. 98], you select options regarding the installation of the selected
files and directories.

Except for the "Shared file" option, all configuration options have default settings that are defined
on the File Options [p. 105] tab. To override the default settings, select the check boxes in front
of each configuration option.

The following install options are available:

+ Shared file (Windows only)

Microsoft Windows has a concept of "shared files" where a usage counter is monitored for
each file or directory. When the usage counter reaches zero the installer will delete the file or
directory. This is especially useful if you install DLLs into the system32 directory that are shared
by multiple applications.

+ Overwrite policy

This setting determines what the installer will do if the file is already present. It does not apply
for archives (including RPM archives). The overwrite policy can be one of:

+ Always ask, except for update

If the file is already present, the installer asks the user whether to overwrite it, regardless
of the file modification dates. However, files that have been proviously installed by install4j
will be overwritten.

+ Always ask

If the file is already present, the installer asks the user whether to overwrite it, regardless
of the file modification dates and whether install4j has previously installed this file.

* If newer, otherwise ask

If the file is already present, the installer silently overwrites the file if the installed file is
newer, otherwise is asks the user.

s If newer

If the file is already present, the installer silently overwrites the file if the installed file is
newer, otherwise it does not install it.

* Always

The installer silently overwrites the file in all cases.
* never

The installer does not install the file.

+ Uninstallation policy
This setting determines how the uninstaller decides whether an installed file should be

uninstalled or not. The uninstallation policy can be one of:

101

If created
If the file or directory was created by the installer, it will be deleted.
Always

The file or directory will always be deleted regardless of whether it was created by the
installer. Please be careful when choosing this option, since deleting directories that were
not created by the installer can have severe unintended consequences.

Never
The file or directory will not be deleted ny the uninstaller.
If created, but not for update

If the file or directory was created by the installer, it will be deleted. However, if the
uninstaller is running as part of the update (invoked by an "Uninstall previous installation"
action), the file or directory will not be deleted.

Always, but not for update

The file or directory will always be deleted regardless of whether it was created by the
installer. However, if the uninstaller is running as part of the update (invoked by an "Uninstall
previous installation" action), the file or directory will not be deleted. Please be careful when
choosing this option, since deleting directories that were not created by the installer can
have severe unintended consequences.

Unix file and directory mode

On Unix-like platforms (including Linux and macQS), the file mode governs the access rights
to the installed files. The access mode is composed of three octal numbers (0-7) and each
number completely expresses the access rights for a particular group of users:

First number
The first octal number contains the access rights for the owner of the file.
Second number

The first octal number contains the access rights for the user group that the file is attached
to.

Third number
The third octal number contains the access rights for all other users.

For a desired combination of access rights, the octal number is calculated by adding:

1

For the right to execute the file or to browse the directory. Only set this flag for directories,
executables and shell scripts.

2

For the right to write to the file or directory.

4

For the right to read from the file or directory.

For example, read/write rights are calculated as 2 (for writing) + 4 (for reading) = 6, read-only
rights are just 4, and the rights to read/execute a file are calculated as 1 (for executing) + 4
(for reading) = 5.

102

The default access rights for files are 644, i.e. the owner can read and write the file and all
others can only read it. Since usually applications on Unix-like systems are installed by the
administrator (usually called root), this means that users will only be able to read files but not
to write to them. For launchers, the installer sets access rights for files to 755, which is
equivalent to 644 only that everyone can execute the launchers. If you have files that your
users should be able to write to, you have to add these files to the distribution tree with a
different access mode. For example, 666 would be appropriate in that case. You can reset the
default mode with the [Reset to default] button.

The default access rights for directories are 755, i.e. the owner can read and write and
browse the directory and all others can only read and browse it. Just as for files, this means
that except for root, users will only be able to browse directories and read from them but they
will not be able to create files in them. If you have directories that your users should be able
to create files in, you have to add these directories to the distribution tree with a different
access mode. For example, 777 would be appropriate in that case. You can reset the default
mode with the [Reset to default] button.

B.3.2.3.5 File Wizard: Excluded Files And Directories

In this step of the file wizard [p. 98] , you can select files and subdirectories that should be
excluded from distribution. This step is only shown if you select "Directory" in the first step.

The tree labeled "Excluded files and subdirectories" shows the tree of all files in the directory
selected in the previous step [p. 100] . Each file and subdirectory has a check box attached. If you
select that check box, the entry will not be distributed. Selections of subdirectories are recursive.
If you select a subdirectory, its contents are hidden from the tree since they will be excluded
anyway.

B.3.2.3.6 File Wizard: Excluded Suffixes

In this step of the file wizard [p. 98], you can enter file name suffixes that should be excluded
from distribution. This step is only shown if you select "Directory" in the first step.

In addition to the explicit selections of excluded files and subdirectories in the previous step [p.
103], a list of file name suffixes separated by commas can be entered here to exclude them from
the distribution. For example, entering*. j ava, *.j ava~ will prevent files with these extensions
from being distributed.

The suffixes entered on this screen are combined with the global excludes that are defined in
the Files Options [p. 105] .

103

B.3.3 Files - Viewing The Results
On this tab you can check the results of your definition of the distribution tree [p. 95] .
The tree shows all files that will be distributed in the generated media files [p. 300] .

You cannot remove files from this tree or add them to it. If you would like to remove a file that
has been added with a directory entry, you have to use the excluded files and directories step
[p. 103] or the excluded suffixes step [p. 103] in the files directory wizard. To exclude files and
directories on a per-media set basis, please see the customize project defaults [p. 312] step in
the media file wizard [p. 303].

On activating this tab, the file tree is re-read if the definition of the distribution tree [p. 95] has
changed since the last time the file tree was shown. This background process can take a short
while and is indicated by a" Pl ease wait ..." entryin the result tree.

Should the contents of your hard disk have been modified in the meantime, you can use the €2
[Refresh] button to re-read the displayed file tree.

104

B.3.4 Files - File Options

On this tab you can set global options that apply to all files and directories that are included by
the definition of the distribution tree [p. 95] .

In the Global excludes section, you can define patterns to exclude files and subdirectories from
directory entries in the definition of the distribution tree. If you do not want to distribute file or
directories that have certain suffixes, please specify them in the text field as a comma separated
list of wildcard entries.

For example, if you want to exclude files from the selected directory that end in .txt and .java,
as well as .svn directories, please enter *. t xt , *. j ava, . svn in the text field.

You can add further suffixes to this default for each entry in the definition of the distribution
tree [p. 103]

In the Installation Options section, the following settings are available:

+ Shared file (Windows only)

Microsoft Windows has a concept of "shared files" where a usage counter is monitored for
each file or directory. When the usage counter reaches zero the installer will delete the file or
directory. This is especially useful if you install DLLs into the system32 directory that are shared
by multiple applications.

+ Overwrite policy

This setting determines what the installer will do if the file is already present. It does not apply
for archives (including RPM archives). The overwrite policy can be one of;

+ Always ask, except for update

If the file is already present, the installer asks the user whether to overwrite it, regardless
of the file modification dates. However, files that have been proviously installed by install4j
will be overwritten.

+ Always ask

If the file is already present, the installer asks the user whether to overwrite it, regardless
of the file modification dates and whether install4j has previously installed this file.

* If newer, otherwise ask

If the file is already present, the installer silently overwrites the file if the installed file is
newer, otherwise is asks the user.

* If newer

If the file is already present, the installer silently overwrites the file if the installed file is
newer, otherwise it does not install it.

+ Always

The installer silently overwrites the file in all cases.
* never

The installer does not install the file.

+ Uninstallation policy

This setting determines how the uninstaller decides whether an installed file should be
uninstalled or not. The uninstallation policy can be one of:

+ If created
If the file or directory was created by the installer, it will be deleted.

105

+ Always

The file or directory will always be deleted regardless of whether it was created by the
installer. Please be careful when choosing this option, since deleting directories that were
not created by the installer can have severe unintended consequences.

* Never
The file or directory will not be deleted ny the uninstaller.
+ If created, but not for update

If the file or directory was created by the installer, it will be deleted. However, if the
uninstaller is running as part of the update (invoked by an "Uninstall previous installation"
action), the file or directory will not be deleted.

+ Always, but not for update

The file or directory will always be deleted regardless of whether it was created by the
installer. However, if the uninstaller is running as part of the update (invoked by an "Uninstall
previous installation" action), the file or directory will not be deleted. Please be careful when
choosing this option, since deleting directories that were not created by the installer can
have severe unintended consequences.

Unix file and directory mode

On Unix-like platforms (including Linux and macOS), the file mode governs the access rights
to the installed files. The access mode is composed of three octal numbers (0-7) and each
number completely expresses the access rights for a particular group of users:

* First number
The first octal number contains the access rights for the owner of the file.
+ Second number

The first octal number contains the access rights for the user group that the file is attached
to.

* Third number
The third octal number contains the access rights for all other users.

For a desired combination of access rights, the octal number is calculated by adding:

-1
For the right to execute the file or to browse the directory. Only set this flag for directories,
executables and shell scripts.
. 2
For the right to write to the file or directory.
« 4
For the right to read from the file or directory.

For example, read/write rights are calculated as 2 (for writing) + 4 (for reading) = 6, read-only
rights are just 4, and the rights to read/execute a file are calculated as 1 (for executing) + 4
(for reading) = 5.

The default access rights for files are 644, i.e. the owner can read and write the file and all
others can only read it. Since usually applications on Unix-like systems are installed by the
administrator (usually called root), this means that users will only be able to read files but not
to write to them. For launchers, the installer sets access rights for files to 755, which is

106

equivalent to 644 only that everyone can execute the launchers. If you have files that your
users should be able to write to, you have to add these files to the distribution tree with a
different access mode. For example, 666 would be appropriate in that case. You can reset the
default mode with the [Reset to default] button.

The default access rights for directories are 755, i.e. the owner can read and write and
browse the directory and all others can only read and browse it. Just as for files, this means
that except for root, users will only be able to browse directories and read from them but they
will not be able to create files in them. If you have directories that your users should be able
to create files in, you have to add these directories to the distribution tree with a different
access mode. For example, 777 would be appropriate in that case. You can reset the default
mode with the [Reset to default] button.

These defaults can be customized for each entry in the definition of the distribution tree [p. 101]

In the Modification Times section, you can choose between two ways to set the modification
times of installed files:

Keep original file modification times

The original modification times are kept for the installed files. This is the default mode.
Use build timestamp

All installed files have the build time as the same modification time.

In the Build Options section, you can define the behavior if some files or directories in the
definition of the distribution tree are missing while the project is being compiled. install4j can
then take one of the following actions:

Ignore

Do not print any warnings and ignore. This setting is suitable if you intentionally add files or
directories to your distribution tree that are no present for all builds. If the Enabl e extra
ver bose out put option is selected on the Build step [p. 320], the warning is still printed.

Print a warning and continue
This is the default setting.
Raise an error and abort

If missing files are not acceptable in your project, you should choose this option. If a missing
file is encountered, the build will fail with a corresponding error message.

107

B.3.5 Files - Defining Installation Components
On this tab you can optionally define installation components.

Installation components can be used to allow the user to customize the installation. GUl installers
will present a step that lists all available installation components in a tree with check boxes and
lets the user choose which components to install. Console installers will also present a list of
installation components to the user for selection. If no installation components are defined, that
step will be omitted and the entire distribution tree is installed.

On the left side you configure a tree of 4 installation components and I component folders.
To every component folder you can add installation components and component folders as child
nodes. The component tree is drag-and drop enabled.

In the component tree you can

* Move entries

Components or component folders are moved by dragging them with the mouse to the desired
location. To select a target folder inside a closed component folder while dragging, hover with
the mouse over the closed component folder and it will open after a short delay. While dragging,
the insertion bar shows you where the entry would be dropped.

+ Add installation components

With the == [Add Installation Component] action, a new installation component is added to
the currently selected component folder, or at the top-level if no component folder is selected.
The name of the installation component can be edited in-place immediately.

+ Add component folders

With the " | [Add Component Folder] action, a new component folder is added to the currently
selected component folder, or at the top-level if no component folder is selected. The name
of the component folder can be edited in-place immediately.

* Delete entries

With the 3 [Delete] action or the DEL key, you can remove the currently selected installation
component or component folder. All child nodes of component folders are removed as well.

« Rename entries

With the =¥ [Rename] action, you can rename an installation component or a component
folder.

To internationalize the name of the component for different media files, please use custom
localization keys [p. 21].

When using the install4j AP, you reference installation components with IDs. You can show IDs

in the component tree by activating the Ll [Show IDs] button on the lower right side of the
component tree. The automatically generated numerical IDs are then shown in brackets. The
selection will be remembered across restarts of install4j.

This ID can be used in expressions, scripts and custom code when you want to check if the
installation component has been selected for installation. A typical condition expression for an
action would be cont ext . get I nst al | ati onConponent Byl d("123").i sSel ect ed() if the
ID of the component is "123". In this way you can conditionally execute actions depending on
whether a component is selected or not.

The right pane displays the properties of the selected element in the component tree. The options
are organized into several tabs. There are different configuration options, depending on whether
you've selected an installation component or a component folder:

108

+ Installation component
Installation components have the following specific tabs:

* Files

To choose the contents of an installation component, you first have to decide whether the
component contains all files or just a selection of files or directories. For a selection of files
and directories, you then choose the desired contents in the tree. Installation components
are not mutually exclusive and you can include the same files in multiple installation
components.

+ Options
The available options are:

+ Initially selected for installation

Whether the check box for the currently selected installation component is selected or
not.

« Mandatory component

Whether the currently selected component must be installed or not. If the component
is mandatory, the user cannot deselect it and the check box in the installer is grayed out.

+ Downloadable component

Whether the currently selected component should be externalized for installers whose
data file type [p. 308] is set to "Downloadable". These components can then be placed
on a web server and are downloaded on demand if the users selects them.

+ Dependencies

If the currently selected installation component only works if a number of other components
are installed as well, you can select those components on the "Dependencies" tab. When
this installation component is selected, the dependencies become automatically selected
and mandatory. When this installation component is deselected again, the previous selection
state of the dependencies is restored. The list of components in the "Dependencies” tab
only shows components that will not lead to circular dependencies.

+ Component folder

Component folders have an "Options" tab where you can configure whether the component
folder should be initially expanded or not.

Both installation components and component folders also have a Description tab. You can
optionally display a description below each component in the installer. Any component or
component folder with a description will have a toggle button with help icon on the right side.
This toggle button controls whether the description is displayed below the element. You can also
use the F1 key to toggle the visibility of the description. The Expand description automatically
check box allows you to show descriptions by default.

Note: The user can only select which installation components should be installed if the "Installation
components" screen or the "Installation type" screen is part of the screen sequence [p. 135] .

The "Installation type" screen offers a selection between sets of installation components, such
as "Full", "Standard" and "Custom", while the "Installation components" screen shows the tree
of components that you define on this tab with check boxes in front of each node. The "Installation
components" screen has a number of properties that let you customize the appearance of the
descriptions. If both are present, the "Installation components" screen will only be shown if the
selected installation type was configured to be customizable.

109

B.3.6 Dialogs

B.3.6.1 Distribution Tree File Chooser Dialog

The distribution file chooser dialog shows files or directories in the distribution tree. This tree
does not necessarily correspond to a portion of the filesystem of your hard disk, since a virtual
folder hierarchy with arbitrarily mounted directories from your hard disk can be defined on the
Definition tab [p. 95] of the Files step [p. 94] .

The shown files or directories are a subset of the result tree [p. 104] in the Files step [p. 94] . The
actual filter depends on the particular context of your action and is displayed in the title bar of
the dialog.

Should the contents of your hard disk have been modified in the meantime, you can use the €@
[Refresh] button to re-read the displayed file tree.

B.3.6.2 Folder Properties Dialog
The folder properties dialog is displayed when you edit a folder in the distribution tree [p. 95] .

In the folder properties dialog you can set the access rights for the selected folder. On Unix-like
platforms (including Linux and macQS), the file mode governs the access rights to the installed
directories. The access mode is composed of three octal numbers (0-7) and each number
completely expresses the access rights for a particular group of users:

* First number
The first octal number contains the access rights for the owner of the file.
+ Second number

The first octal number contains the access rights for the user group that the file is attached
to.

* Third number
The third octal number contains the access rights for all other users.

For a desired combination of access rights, the octal number is calculated by adding:

1
For the right to browse the directory.
. 2
For the right to write to the directory.
- 4
For the right to read from the directory.

The default access rights for directories are 755, i.e. the owner can read and write and browse
the directory and all others can only read and browse it. Since usually applications on Unix-like
systems are installed by the administrator (usually called root), this means that except for root,
users will only be able to browse directories and read from them but they will not be able to
create files in them. If you have directories that your users should be able to create files in, you
have to set a different access mode for them. For example, 777 would allow all users to create,
read, write and delete files in the directory. You can reset the default mode with the [Reset to
default] button.

110

B.4 Step 3: Launchers

B.4.1 Step 3: Configure Launchers

Launchers are responsible for starting your application. There are two types of launchers:

Generated launchers

install4j can generate native launchers that start your application. For example, on Windows,
a. exe file will be created that among other things takes care of finding a suitable JRE, displaying
appropriate error messages in case of need and then starts your application. Using launchers
generated by install4j has numerous advantages as compared to using home-grown batch
files and shell scripts.

Each launcher definition is compiled separately for each defined media set [p. 300] . Therefore,
for the majority of all cases, a single launcher definition will be sufficient to start your
application. If, for example, your distribution contains two GUI applications and a command
line application, you have to define 3 launchers, regardless of how many media files [p. 300]
you define.

When your application is started with a launcher generated by install4j, you can query the
system property install4j.appDir to get the installation directory and and install4j.exeDir to
get the directory where the launcher resides. Use
System. get Property("install 4j.appDir") and
System get Property("install4j.exeDir") toaccess these values.

External launchers

If you already have an external launcher for your application, you can let install4j use that
launcher instead of generating one. Since external launchers are most likely platform
dependent, you will have to add external launchers for each platform that is targeted by your
media files [p. 300] . Make sure to exclude the irrelevant launchers [p. 312] in your media file
definitions in this case.

To define a new launcher, you double-click on the % new launcher entry in the list of defined
launchers or choose Launcher->New | auncher from install4j's main menu. The launcher
wizard [p. 113] will then be displayed. Once you have completed all steps of the launcher wizard,
a new launcher entry will be displayed in the list of launchers. The icon of a launcher indicates
ifitisa

GUI application launcher
& Console application launcher
i Service application launcher

External launcher

In the list of launchers you you can

Reorder launcher definitions

Launcher definitions are reordered by dragging them with the mouse to the desired location.
While dragging, the insertion bar shows you where the launcher definition would be dropped.
The order of launchers is not relevant for install4j, reordering is provided only for the purpose
of letting you arrange the launcher definitions according to your personal preferences.

111

Copy launcher definitions
Launcher definitions are copied by copy-dragging them (e.g. on Windows, press CTRL while
dragging) or using the " [Copy Launcher] action while the source launcher is selected.

The name of the copied launcher definition will be prefixed with "Copy of". You can change
this default name by renaming the launcher definition (see below).

Rename launcher definitions

Launcher definitions can be renamed by selecting Renane Launcher from the context menu
or Launcher - >Renane | auncher from install4j's main menu.

An input dialog will be displayed where the current name can be edited. Please note that the
name of the launcher is for your own information only and is not used in the distribution.

Delete launcher definitions

Launcher definitions can be deleted by using the 3 [Delete Launcher] action or by hitting
the DEL key while the launcher definition is selected.

Edit a launcher definition

Launcher definitions can be edited by using the .~ [Edit Launcher] action or by hitting the
ENTER key while the launcher definition is selected.

The launcher wizard [p. 113] will be displayed for the selected launcher definition. Please note
that you can directly access any step in the wizard by clicking on it in the index.

112

B.4.2 Launcher Wizard

The launcher wizard is displayed when you add a new launcher or when you edit an exiting
launcher. To learn more information about the launchers, please see the overview [p. 111].

In the first step of the launcher wizard you choose whether you want to create

+ agenerated launcher

The subsequent steps with the associated advanced options [p. 114] capture all information
required to start your Java application.

« an external launcher

The external launcher wizard queries the following data:

* Launcher executable

Enter the path to the executable in the distribution tree. You can select a file from the
distribution tree by clicking the [...] chooser button.

* Menu integration
The menu integration options are the same as for the generated launcher [p. 127].

113

B.4.3 Wizard Steps

B.4.3.1 Launcher Wizard: Configure Executable

In this step of the launcher wizard [p. 113], you enter the properties of the executable that is to
be generated.

The following properties of the executable can be edited in the Execut abl e section of this step:

+ Executable type

Executables created by install4j can be either GUI applications, console applications or service
applications

* GUI application

There is no terminal window associated with a GUI application. If stdout and stderr are not
redirected (see the redirection advanced step [p. 121]), both streams are inaccessible for
the user. This corresponds to the behavior of j avaw(. exe) .

On Windows, if you launch the executable from a console window, a GUI application can
neither write to or read from that console window. Sometimes it might be useful to use the
console, for example for seeing debug output or for simulating a console mode with the
same executable. In this case you can select the Allow -console parameter check box. If
the user supplies the -console parameter when starting the launcher from a console window,
the launcher will try to acquire the console window and redirect stdout and stderr to it. If
you redirect stderr and stdout in the redirection settings [p. 121], that output will not be
written to the console.

If your GUI application uses SWT or QT Jambi instead of Swing, please select the uses
SWI or QT check box below this radio button. This is mainly important for correct behavior
on macOS where the application must be started differently in this case.

+ Console application

A console application has an associated terminal window. If a console application is opened
from the Windows explorer, a new terminal window is opened. If stdout and stderr are not
redirected (see the redirection advanced step [p. 121]), both streams are printed on the
terminal window. This corresponds to the behavior of j ava(. exe).

+ Service application

A service runs independently of logged-on users and can be run even if no user is logged
on. Aservice cannot rely on the presence of a console, nor can it open windows. On Microsoft
Windows, a service executable will be compiled by install4, on macOS a startup item will
be created and on Unix-like platforms a start/stop script will be generated.

When you develop a service please note the following requirement: The mai n method will
be called when the service is started.

To handle the shutdown of your service, you can use the Runt i me. addShut downHook()
method to register a thread that will be executed before the JVM is terminated.

For information on how services are installed or uninstalled, please see the help on help
topic on services [p. 36] .

* Executable name
Enter the desired name of the executable without any trailing . exe or. sh.

114

File set

Choose the file set to which the launcher should be added. File sets are defined in the
distribution tree [p. 95] . If you do not use different file sets, "Default file set" will be the only
option which is activated by default.

Directory

Enter the directory in the distribution tree where the executable should be generated. If you
leave this field empty, the executable will be generated in the installation root directory. You
can select a directory from the distribution tree by clicking the [...] chooser button.

Allow only a single running instance of the application

If you select this check box, the generated executable can only be started once. Subsequent
user invocations will bring the application to the front. In the St art upNoti fi cati on class
of the install4j launcher client API you can register a startup handler to receive the command
line parameters. In this way, you can handle file associations with a single application instance.
This feature is only available on Microsoft Windows, on macOS, single bundle media files
always behave this way.

Fail if an exception in the main thread is thrown

Executables created by install4j can monitor whether the main method throws an exception
and show an error dialog in that case. This provides a generic startup error notification facility
for the developer that handles a range of errors that would otherwise not be notified correctly.
For example, if an uncaught exception is thrown during application startup, a GUI application
might simply hang, leaving the user in the dark about the reasons for the malfunction. With
the error message provided by the install4j executable, reasons for startup errors are found
much more easily.

Working directory

For some applications (especially GUI applications) you might want to change the working
directory to a specific directory relative to the executable, for example to read config files that
are in a fixed location. To do so, please select the Change working directory to check
box and enter a directory relative to the executable in the adjacent text field. To change the
current directory to the same directory where the executable is located, please enter a single
dot.

115

B.4.3.2 Launcher Wizard: Define Launcher Icon
In this step of the launcher wizard [p. 113], you define the icon for the generated launcher.

If you would like to associate a custom icon with your launcher, select the "add icon to launcher"
check box.

* IntheCross pl at f or msection you can choose icon files in the PNG image format (extension
*. png) in various sizes. It is recommend to add at least the formats 16x16, 32x32, 48x48 and
128x128. On Microsoft Windows and macOS, the generated executable will have an icon with
these images, on other platforms, these image files will be used for desktop integration. It is
recommended to use 32-bit images with an alpha channel, 8 bit-palette images will be
generated where required. Generated Windows icons contain traditional 256 color images
and 32-bitimages with an alpha channel. However, it is also possible to use 8 bit-palette images
with a transparency color for the input image files.

+ Ifyou have an external icon file for Microsoft Windows, you can selectthe Use 1CO file
option in the W ndows section and choose an icon file (extension *. i co)in the text field below.
With the Generate from PNG fil es option, the icon will be generated as described in the
Cross pl at f or msection.

+ Ifyou have an external icon file for macOS, you can selectthe Use I CNS fi | einthe nacCS
section and choose a macQOS icon file (extension *. i cns) in the text field below. With the
Generate from PNG fil es option, the icon will be generated as described in the Cr oss
pl at f or m section. macOS icons can be generated on macOS with the lcon Composer
application located in/ Devel oper/ Appl i cati ons. Other possibilities are the free IMG2ICNS
and png2icns applications.

Note: If the project has already been saved, relative file paths will be interpreted as relative to
the project file.

116

http://www.img2icnsapp.com
http://icns.sourceforge.net

B.4.3.3 Launcher Wizard: Configure Java Invocation

In this step of the launcher wizard [p. 113], you enter the information required to start your
application.

The following properties of the Java invocation can be edited in the Gener al section of this step:

Main class

Enter the fully qualified main class of your application. Next to the text field is a [...] chooser
button that brings up a dialog with a list of all public main classes [p. 131] in the class path. To
use this facility, you have to set up your classpath first (see below).

VM parameters
If there are any VM parameters you would like to specify for the invocation of your Java
application, you can enter them here (e.g. - Dryapp. nypr opert y=t r ue or - Xmx256m).

Note: You must quote parameters that contain spaces. Please quote the entire parameter
like" - Dapp. home=${1 auncher: sys. | auncher Di rect ory}" and notjustthe value. Incorrect
quoting will lead to failure of the launcher.

Please read the help topic on VM parameters [p. 30] for more information on how install4j
can help you with adjusting the VM parameters at runtime.

Arguments

If you need to specify arguments for your main class, you can enter them here. Arguments
passed to the executable will be appended to these arguments.

Allow VM passthrough parameters

If you would like to allow the user to specify VM parameters with the syntax -J[VM
paraneter] (e.g. -J- Xmx512nm), select the Al | ow VM passt hrough paraneters check
box.

Note: This setting applies only to Windows launchers. On Unix platforms you can use the
| NSTALL4J_ADD VM PARAMS environment variables to add VM parameters to the launcher.
On macOS, you can edit the | nf 0. pl i st file to change the VM parameters.

Inthe ass pat h section of this step you can configure the class path and the error handling
for missing class path entries. The class path list shows all class path entries that have been
added so far. The following types of class path entries [p. 131] are available:

4 Scan directory
Directory
J Archive
4 Environment variable

= Compiler variable

The symbol ® prepended to an entry indicates that an error with that entry will lead to a startup
failure with an error message displayed to the user.

The control buttons on the right allow you to modify the contents of the class path list:

== Add class path entry (key | NS)

Invokes the class path entry dialog [p. 131] . Upon closing the class path entry dialog with the
[OK] button, a new class path entry will be appended to the bottom of the class path list.

117

* ¥ Remove class path entry (key DEL)

Removes the currently selected class path entry.

“ Move class path entry up (key ALT- UP)

Moves the selected class path entry up one position in the class path list.

Move class path entry down (key ALT- DON)

Moves the selected class path entry down one position in the class path list.

To change the error handling mode of a class path entry [p. 131], select the class path entry and
press [Toggle 'fail on error'] right below the class path list or choose the corresponding menu
item from the context menu.

118

B.4.3.4 Launcher Wizard: VM Options File
In this step of the launcher wizard [p. 113], you can configure a VM options file for the launcher.

For detailed information on VM options files, please see the help topic on VM parameters [p. 30]

If you select the Copy tenplate file with explanations for user or the Generate
with the follow ng contents options, a VM options file is placed next to the launcher with
the same file name and a . vropt i ons extension. It contains one VM parameter per line for
the launcher.

It is also possible to add a VM options file directly to the distribution tree [p. 95], in this case,
please select the Do not generate a vroptions file option, otherwise the file in the
distribution tree takes precedence over the generated file and a warning is printed.

VM options files are not supported for Java 6 on macOS. Any VM options that you specify on
this screen and that are not already contained in the fixed VM parameters configured in the Java
invocation [p. 117] will be merged into the Info.plist file of the application bundle. To navigate to
the Info.plist file inside the bundle, select the launcher bundle file choose in a finder window on
macOS, choose Act i on- >Show Package Cont ents from the menu and open the Content s
directory. The Info.plist file is an XML file and can be edited by the user.

For Java 7 on macQS, VM options file are fully supported.

119

http://developer.apple.com/mac/library/documentation/MacOSX/Conceptual/BPRuntimeConfig/Articles/ConfigFiles.html

B.4.3.5 Launcher Wizard: Configure Splash Screen
In this step of the launcher wizard [p. 113], you can configure a splash screen for your application.

If the "Show splash screen" check box is selected, the Java splash screen is shown with the
specified image file. If you decide to display a splash screen, you have to enter an image file. The
file format can be PNG or GIF.

Please note that you cannot specify the - spl ash: VM parameter in the "Java Invocation" step
[p. 1171, since this VM parameter is parsed by the default Java launchers (j ava. exe and
j avaw. exe) which are not used by install4j.

If you select the "Native splash screen on Windows" option, Windows launchers will use its own
implementation of a splash screen that can be shown extremely quickly. The native splash screen
does not support translucentimages. In that case, you cannot use thej ava. awt . Spl ashScr een
API to modify the splash screen. However, the text lines [p. 117] on the splash screen work with
the native splash screen as well.

120

B.4.3.6 Advanced Options

B.4.3.6.1 Launcher Wizard: Configure Redirection

In this step of the launcher wizard [p. 113], you can configure the redirection settings for stderr
and stdout.

Note: this advanced option screen is reachable by selecting the "Executable" step [p. 114] and
choosing "Redirection" from the [Advanced options] popup menu or by clicking directly on the
index.

The following redirection settings can be edited:

« Redirection of stderr

To redirect stderr to a file, select the Redi rect stderr check box and enter a file name in
the adjacent text field.

* Redirection of stdout

To redirect stdout to a file, select the Redi r ect st dout check box and enter a file name in
the adjacent text field.

File name are interpreted relative to the executable. Enter / dev/ nul | if you want to suppress
output completely for all platforms. You can choose whether the redirection file is overwritten
each time the launcher is started or if output should be appended to an existing redirection file.

Note that redirection files are created lazily. This means that if nothing is written to the redirected
stream, the file file will not be created or overwritten.

121

B.4.3.6.2 Launcher Wizard: Configure Windows Version Info Resource

In this step of the launcher wizard [p. 113], you can configure whether a version info resource
should be generated for the Microsoft Windows executable and what values the version info
fields should take. This step is only relevant for Microsoft Windows and is important if your
application wants to obtain the "Designed for Windows" logo.

Note: this advanced option screen is reachable by selecting the "Executable" step [p. 114] and
choosing "Windows version info" from the [Advanced options] popup menu or by clicking
directly on the index.

Aversion info resource will enable the Windows operating system to determine meta information
about your executable. This information is displayed in various locations. For example, when
opening the property dialog for the executable in the Windows explorer, a "Version" tab will be
present in the property dialog if you have chosen to generate the version info resource.

The version info resource consists of several pieces of information. If you check Gener at e
versi on info resource, there are several fields whose values must be entered in the text
fields on this step. Note that the "original file name", the "company name", the "product name"
and the "product version" fields in the version info resource are filled in automatically by install4j.

* Product name

By default, the full name configured in the general settings is used by this value. If you want
to use another value, you can enter it here.

* File version

If you want to specify a version for the file which is a different from the product version, you
can do it here. If this field is left empty, the product version entered on the Application Info
tab [p. 79] of the General Settings step [p. 78] will be used for the file version.

* Internal name

Choose a short internal name for identifying your application.
* File description

Enter a description of the application.
+ Legal copyright

Enter a copyright statement for your application.

122

B.4.3.6.3 Launcher Wizard: Windows Manifest Options

In this step of the launcher wizard [p. 113], you can configure manifest options for your Windows
executables. The manifest of a Windows executable is a resource entry that can enable or disable
certain features provided by the operating system.

Note: this advanced option screen is reachable by selecting the "Executable" step [p. 114] and
choosing "Windows manifest options" from the [Advanced options] popup menu or by clicking
directly on the index.

The execution level can be one of

* As invoker

This is the default setting. The executable will be executed with the rights of the current token.
If the user is an Administrator, this will be a filtered token so the executable will not have all
administration rights.

+ Highest available

This level will raise the rights of the executable to the maximum extend available for the
current user. This applies to Administrators that usually run with a filtered token. Windows
Vista and higher will show a question to the user if he wants to elevate the rights of this
application. For a standard user this is the same as "As invoker".

* Require administrator

This is the same as "Highest available" when the user is an Administrator running with a filtered
token. If the user is a standard user, Windows Vista and higher will ask for the credentials of
an Administrator account.

The user can set the Windows DPI setting to a value that is larger than 100%. This is particularly
relevant for high-resolution screens.

If your application can deal with different DPI settings, you can tell install4j to add the manifest
entry to the executable that enables DPl-awareness. If this option is not selected, the GUI will
be scaled up automatically and may look somewhat blurry.

123

B.4.3.6.4 Launcher Wizard: Unix Options

In this step of the launcher wizard [p. 113], you can configure an optional settings for Unix
launchers.

Note: this advanced option screen is reachable by selecting the "Executable" step [p. 114] and
choosing "Unix options" from the [Advanced options] popup menu or by clicking directly on
the index.

In the "Executable options" section, you can change the default Unix mode for launchers. By
default, the Unix mode is set to 755, allowing everyone to execute the launcher, but only the
owner to delete it.

For RPM and DEB Linux archives, service executables are enabled and started automatically if
systemd is present. You can deactivate this behavior in this section. In that case, only the link in
/etc/init.dwill be created and you can enable the service manually.

In the "Custom script fragment" section, you can configure an optional script that is executed
before the Java invocation.

If you specify a Bourne shell custom script, the entered script fragment will be inserted into the
launcher script immediately before the Java invocation of your launcher takes place. This is a
hook for experienced users to make custom changes in the environment.

You can select one of:

* No custom fragment
No custom script fragment will be inserted.
+ Custom fragment from file

Specify a file from which the custom script will be read. If you enter a relative file, the file will
be interpreted relative to the project file.

+ Direct entry
Enter your custom script fragment in the text area below.

124

B.4.3.6.5 Launcher Wizard: MacOS Options

There are two steps in the launcher wizard [p. 113], where you can configure optional settings
for macOS launchers.

Note: these advanced option screens are reachable by selecting the "Executable" step [p. 114]
and choosing "macOS Info.plist file" or "macOS options" from the [Advanced options] popup
menu or by clicking directly on the index.

In the "Info.plist fragment" section, you can configure an optional XML fragment that is inserted
into the Info.plist file of the generated application bundle. This can be useful to customize the
behavior of your launcher in ways that are not directly supported by install4j.

You can select one of:

* No custom fragment
No custom XML fragment will be inserted.
* Custom fragment from file

Specify a file from which the custom XML fragment will be read. If you enter a relative file, the
file will be interpreted relative to the project file.

+ Direct entry
Enter your custom XML fragment in the text area below.

You can specify a custom Mac bundle identifier for the launcher.The bundle identifier string
identifies your application to the system. Explicit control over this string can can be useful if you
need to refer to the launcher from outside install4j. The identifier will be written to the
CFBundl el denti fi er key in in the Info.plist file. If this option is not set explicitly, install4j will
generate a bundle identifier for you.

This string must be a uniform type identifier (UTI) that contains only alphanumeric (A-Z,a-z,0-9),
hyphen (-), and period (.) characters.

If you have configured code signing [p. 86] for macOS media files, it may make sense to specify
an entitlements file on the "macOS options" step.

Entitlements confer specific capabilities or security permissions to your app. If your media file
is a single bundle archive, you can publish it to the App Store only if the launcher and the bundled
JRE are sandboxed. Without entitlements, the launcher will not be able to perform a lot of
operations.

For installers, entitlements can be used to enable certain features on macOS, such as iCloud
storage or push notifications. If your application uses these features and you create an installer,
you have to select the "Sign installed launchers" check box on the "Installer Options" [p. 305] step
of the media wizard.

By default, the generated application bundle for a GUI application uses the "Executable name"
property from the Executable info [p. 114] step of the launcher wizard. If you choose compact
names as appropriate for Windows and Unix, you may not be happy with the appearance in the
Finder on macOS.

Here, you can specify a different application bundle name that should be used for macOS media
files. macOS application bundle names are localizable. If you specify an i18n variable as the
application bundle name, such as ${i 18n: nyLauncher Nane}, install4j will name the application
bundle directory with the value for the principal language [p. 90] of your project. In addition, it
will take the values for all additional configured languages and set up the appropriate localization
in the application bundle.

125

http://developer.apple.com/library/mac/#documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/AboutEntitlements.html

For example, if your prinicipal language is English and you have French as an additional language,
the application bundle name on the disk will always be the English version, regardless of the
locale. On a French locale, the French name will be displayed to the user in the finder. In a
terminal, the user would still see the English name for the application bundle.

Note that i18n messages can take parameters in j ava. t ext . MessageFor mat style, so if your
i18n message is My launcher for {0}, you can specify {i 18n: nyLauncher Nanme(My
application} or even wuse compiler variables for the arguments, like in
{i 18n: nyLauncher Name(${ conpi |l er: sys. ful | Name})}.

This setting only has an effect if the launcher is a GUI launcher.

126

B.4.3.6.6 Launcher Wizard: Configure Menu Integration

In this step of the launcher wizard [p. 113] you customize the start menu integration of the
launcher.

Note: this advanced option screen is reachable by selecting the "Executable" step [p. 114] and
choosing "Menu name" from the [Advanced options] popup menu or by clicking directly on the
index.

The "Create standard program group" action [p. 173] optionally adds menu entries for launchers
on Microsoft Windows and creates links for launchers in a suitable directory on Unix. Please
choose one of three possibilities:

+ Integrate into menus with standard name

By default, the name of the launcher configuration in the list of launchers [p. 111] will be used
for any desktop integration of the launcher, such as the start menu entry in Windows.

+ Integrate into menus with custom name

To use a different name for the menu integration, choose this option and enter the desired
name in the text field below. To put the launcher in a sub-folder in the Windows program
group, just enter a path (like d i ent\ Launcher) here or use a compiler variables [p. 21] to
make this change for the Windows media file definitions only.

* Exclude from menu integration

To entirely exclude this launcher from any menu integration, choose this option. If this option
is chosen, no links will be generated for this launcher on Unix by the "Create standard program
group" action.

127

B.4.3.6.7 Launcher Wizard: Configure Native Library Directories

In this step of the launcher wizard [p. 113], you can configure directories that contain native
libraries.

Note: this advanced option screen is reachable by selecting the "Java invocation" step [p. 117]
and choosing "Native libraries" from the [Advanced options] popup menu or by clicking directly
on the index.

If your application uses native libraries that you would lke to load with a Syst em | oadLi brary()
call, the directory where the native library is located must be included in a system-dependent
environment variable. You can add such directories in the path list of this step.

* = Add native library directory (key | NS)

Lets you add a new directory to the end of the list. The native libraries entry dialog [p. 132] will
be displayed. You can use compiler variables [p. 21] to change native library directories for
different media files. For this purpose, you can define one variable and override it in each
media file definition.

X Remove native library directory (key DEL)

Removes the currently selected native library directory entry.

* /» Move entry up (key ALT- UP)

Moves the selected native library directory entry up one position in the path list.
* % Move entry down (key ALT- DOWN)

Moves the selected native library directory entry down one position in the path list.

128

B.4.3.6.8 Launcher Wizard: Choose Preferred VM

In this step of the launcher wizard [p. 113], you can configure the preferred VM that install4j will
choose to invoke your application. This setting only influences the choice of the VM type after a
JRE has been selected according to the search sequence. The search sequence for the JRE is
specified on the Java Version tab [p. 80] of the General Settings step [p. 78] .

Note: this advanced option screen is reachable by selecting the "Java invocation" step [p. 117]
and choosing "Preferred VM" from the [Advanced options] popup menu or by clicking directly
on the index.

After install4j finds a suitable JRE or DK, it tries to honor the setting you make in this step. You
can select one of the following;:

+ Default VM
install4j will use the default VM for the found JRE.
+ Client hotspot VM

install4j will try to use the client hotspot VM for the found JRE. This is equivalent to using the
- cl i ent switch when invoking j ava from the command line.

+ Server hotspot VM

install4j will try to use the server hotspot VM for the found JRE. This is equivalent to using the
- server switch when invoking j ava from the command line.

Please note that it is not an error if the selected JVM is not present for the found JRE. install4j
will simply use another JVM to launch your application in that case.

129

B.4.3.6.9 Launcher Wizard: Text Lines On Splash Screen
In this step of the launcher wizard [p. 113], you can configure text lines on the splash screen.

Note: this advanced option screen is reachable by selecting the "Splash screen" step [p. 120] and
choosing "Text lines" from the [Advanced options] popup menu or by clicking directly on the
index.

If you would like to overlay lines of text for status and version information on the splash screen,
you can select the check box at the top.

The Status |ineandVersion |inesections allowyou to position the text lines on the splash
screen and configure their font. The status line is dynamically updatable with install4j's splash
screen client APl while the text of the version line may be overridden with a command line option
[p. 328] of the install4j compiler.

You can configure the following properties of a text line

+ Text
The (initial) text displayed in the text line.
+ Position

The x and y-coordinates of the text line on the splash screen. The origin of the coordinate
system is the top left corner of the splash screen window.

+ Font
The font used for drawing the text line:

+ Size
The size of the font in points.
* Bold
Whether the font weight should be bold or not.
+ Color
The color of the font. By clicking on [...], a color chooser dialog is brought up.

In both text lines, you can use the %WERSI ON%variable to substitute the version entered on the
Application Info tab [p. 79] of the General Settings step [p. 78] .

To visually position the text lines with mouse and keyboard on the actual splash screen image,
please click on the [Position text lines visually] button. The visual positioning dialog [p. 132]
will then be displayed. On exiting the dialog with the [OK] button, the X/Y coordinate text fields
(see above) will be updated for both text lines.

130

B.4.3.7 Dialogs

B.4.3.7.1 Main Class Selection Dialog

The main class selection dialog is shown when clicking on the [...] chooser button next to the
main class text field in the Java invocation step [p. 117] . It shows all classes with a public main
method.

Please choose a main class from the list and confirm with [OK] or double-click on the selected
class.

B.4.3.7.2 Classpath Entry Dialog

The class path entry dialog is shown when clicking on the == add button in the "Configure Java
Invocation" step [p. 117] of the launcher wizard [p. 113] . Upon closing this dialog with the [OK]
button, a new class path entry will be appended to the bottom of the class path list of that step.

To define a class path entry, you first select the entry type, then checkthefail if an error
occurs with this class path entry check box in case you want the startup to be
terminated if this class path entry is faulty and finally fill out the Det ai | section of the dialog
which is dependent on the selected entry type. The following entry types are available:

2 Scan directory

Scan a directory for archives with the extensions *. j ar and *. zi p to be added to the class
path. In the Det ai | section of the dialog you must choose a directory either by entering the
path in the text field or by clicking [...] and choosing it with a file chooser.

Error handling:

Iffail if an error occurs with this class path entry ischecked, the application
will terminate with an error message if this directory does not exist.

Directory

Add a directory to the class path. In the Det ai | section of the dialog you must choose a
directory either by entering the path in the text field or by clicking [...] and choosing it with a
file chooser.

Error handling:

Iffail if an error occurs with this class path entry ischecked, the application
will terminate with an error message if this directory does not exist.

~ Archive

Add an archive with the extension *. j ar or *. zi p to the class path. In the Det ai | section
of the dialog you must choose an archive either by entering the path in the text field or by
clicking [...] and choosing it with a file chooser.

The last path component can include a * as a placeholder for a frequently changing version
number. This is not a wildcard for processing multiple matching paths, rather it is intended
for systems like maven where the version number on dependencies is part of the file name
and is frequently changed. An example is bi n/ commons-i o-*. j ar which will match a file
like bin/commons-io-1.0.jar at compile time. This replacement is performed at
compile-time and not a runtime.

Error handling:

131

Iffail if an error occurs with this class path entry ischecked, the application
will terminate with an error message if this archive does not exist.

24 Environment variable

Add the contents of an environment variable to the class path. In the Det ai | section of the
dialog you must enter the name of an environment variable.

Error handling:

Iffail if an error occurs with this class path entry ischecked, the application
will terminate with an error message if this environment variable is not defined.

= Compiler variable

Reads the value of a compiler variable, splits it with the configured path separator and adds
that list of JAR files to the class path. Note that the compiler variable must be defined, otherwise
the build will fail and you have to specify the plain name of the compiler variable, without any
surrounding variable replacement syntax.

For the separator, the compiler variable ${ conpi | er: sys. pat hl i st Separat or} can be
used to separate path lists with ; on Windows and : on Unix. The separator is interpreted as
a regular expression, so you can use \ n for separating files with new lines, for example.

The JAR files in the compiler variable must already be present in the distribution tree, they
are not added automatically. To change the directory where files should be resolved within
the distribution tree, select the Rel ati ve pat h prefi x check box and enter a relative path.
The relative path can be empty in which case the JAR files must be located directly in the
installation directory. If you pass a list of absolute files in the compiler variable, you must
selectthe Rel ati ve path prefix check box, otherwise the build will fail.

Error handling:

Iffail if an error occurs with this class path entry ischecked, the application
will terminate with an error message if any of the archives that are referenced in the compiler
variable are not found.

Except for the "Environment variable" and "Compiler variable" classpath types, you can use
environmentvariables in the text field with the following syntax: ${ VARl ABLE_NAME} where you
replace VARIABLE_NAME with the desired environment variable.

Note that for path selections by means of a file chooser ([...] buttons), install4j will try to convert
the path to be relative to the distribution source directory.

B.4.3.7.3 Native Libraries Entry Dialog

The native libraries entry dialog is shown when clicking on the == Add button in the Native libraries
[p. 128] advanced options step below Java invocation step [p. 117] .

Please enter a directory that contains native libraries by entering the relative path to the
distribution tree root directly or choosing it with the [...] chooser button next to the text field.
You can use compiler variables [p. 21] to change native library directories for different media
files. For this purpose, you can define one variable and override it in each media file definition
[p.312].

B.4.3.7.4 Visual Positioning Of Text Lines

The visual positioning dialog is shown when clicking on the [Position text lines visually] button
in the "configure splash screen" step [p. 120] of the launcher wizard [p. 113]. Upon closing this

132

dialog with the [OK] button, the X/Y coordinate text fields will be updated for status and version
text lines in that step.

The visual positioning dialog displays the selected image with overlaid status and text line
placeholders that are surrounded on the left and bottom by lines. These lines flash for the
selected text line. You can position the selected text line on the image by dragging it with the
mouse or using the cursor keys. Pressing CTRL with the cursor keys moves the text line in larger
steps.

Please note that only the font color is reflected in the font of the text line placeholders. Font
weight, font size and font name are only used in the runtime version of the splash screen.

133

B.5 Step 4: Installer

B.5.1 Step 4: Configure The Installer

In the Installer step, you configure all aspects of your installer, most importantly the screens
and actions representing the user input and the actual installation.

The Installer step is divided into several tabs which are located at the bottom of install4j's main
window:

+ Screens & actions [p. 135]

On this tab you configure the screens and actions in your installer and uninstaller as well as
custom installer applications.

+ Custom Code & Resources [p. 288]

On this tab you configure the location of your custom code for additional libraries to be used
in scripts as well as your own implementations of actions, screens and form components.

+ Update Options [p. 289]

On this tab you configure how your installers handle installations when an earlier version has
already been installed.

+ Auto-Update Options [p. 290]

On this tab you configure settings for the auto-update descriptor file updat es. xm that is
generated by a build.

134

B.5.2 Installer - Screens And Actions

For more information on screens and related concepts, please see the corresponding help topic
[p. 11].

The screens and actions tab shows a tree representation of the installer, the uninstaller and
other installer applications, such as updaters. The nodes in the tree are of the following types:

* & Applications [p. 138]

An application consist of a series of screens.

¥ Screens [p. 154]

Ascreens displays information to the user, optionally gathers user input and optionally executes
a series of actions when the user moves to the next screen.

* 1 Actions [p. 173]

An action usually makes a modification to the installation.

The == [Add] button shows a popup window where you can select whether to add

* anaction [p. 173], a screen [p. 154] or an application [p. 138] . Actions and screens are made
available by install4j or are contributed by an installed extension [p. 75] . A registry dialog [p.
293] will be shown where you can select the desired screen or action. When adding an
application, the application template dialog [p. 293] is displayed.

*+ an action or a screen that is contained in your custom code. New types of reusable actions or
screens can be developed with the install4j APl [p. 72] . In your custom code configuration [p.
288] you can specify code locations that are scanned for suitable classes. A class selector [p.
292] will be shown where you can select the desired class.

* anaction group or a screen group [p. 238] . The new group is initially empty. Note that you can
also create groups directly from a selection in the tree of installer elements (see below).

Installer elements can only be added to appropriate parent elements. If no appropriate parent
element is selected, install4j tries to find one by moving in the ancestor hierarchy from the current
selection. If no appropriate parent element can be found, an error message is displayed.

+ Applications

are added at the top level.
+ Screens and screen groups

can be added to applications or screen groups.
+ Actions and action groups

can be added to screens or action groups.

If you select a single installer element in the tree of installer elements, you can edit its properties
on the right side. Selecting multiple installer elements is possible on the same tree level, i.e. all
selected elements have to be siblings in the tree.

When the configuration area is focused, you can transfer the focus back to the tree of installer
elements with the keyboard by pressing ALT- F1.

135

The tree of installer elements provides the following actions in the toolbar on the right that
operate on the current selection. You can also access these actions from the context menu or
use the associated keyboard shortcuts.

Delete

All selected installer elements will be deleted after a confirmation dialog when invoking the
x [Delete] action. The deleted installer elements cannot be restored.

Rename

After you add a installer element, the tree of installer elements shows it with its default name.
This is often enough, however, if you have multiple instances of the same installer element
alongside, a custom name makes it easier to distinguish these instances. You can assign a

custom name to each installer element with the =¥ [Rename] action. The default name is still
displayed in brackets after the custom name. To revert to the default, just enter an empty
custom name in the rename dialog.

Comment

By default, installer elements have no comments associated with them. You can add comments
to selected installer elements with the . ' [Add Comments] action. When a commentis added,
the affected installer elements will receive a "Comments" tab. After adding a comment to a
single installer element, the comment area is focused automatically. Likewise, you can remove
comments from one or more installer elements with the [Remove Comments] action.

In order to visit all comments, you can use the [Show next comment] and [Show previous
comment] actions. These actions will focus the comment area automatically and wrap around
if no further comments can be found.

Disable

In order to "comment out" installer elements, you can use the [Disable] action. The
configuration of the disabled installer elements will not be displayed, their entries in the tree
of installer elements will be shown in gray and they will not be checked for errors when the
project is built.

Copy and paste

install4j offers an inter-process clipboard for installer elements. You can & [Cut] or "' [Copy]

installer elements to the clipboard and E [Paste] them in the same or a different instance of
install4j. Note that references to launchers or references to files in the distribution tree might
not be valid after pasting to a different project.

Pasted installer elements are appended to the end of the same level that would be chosen if
you added installer elements of that type. Sequence restrictions with respect to the already
present installer elements may force a different order.

Reorder

If your selection is a single contiguous interval, you can move the entire block #» up or * down
in the list. The selection can only be moved on the same level with the reorder actions. To
move the selection to a different parent, you can cut and paste it (see above).

Group

You can create a screen group or an action group [p. 238] from the selected installer elements

with the "a [Create Group] action. The new group will be inserted in place of the selected
installer elements.

136

You can dissolve a group with the [Dissolve Group] action. This action is only enabled if the
selection consists of a single screen group or action group. The elements contained in the
group will be inserted in place of the group. Nested groups will not be dissolved.

« Link

You can reuse screens and actions by linking to a single definition. This is particularly useful
if you define a installer maintenance application [p. 138] that should repeat parts of the installer,
such as a number of forms that query the user for initial values to set up your application.
Also, links are the only way to integrate screens and actions from the installer or uninstaller
merged project [p. 87] into the main project.

In order to link to a screen, action, screen group or action group, you click on the add button
and select Add Link Into from the popup menu. The first entry in that popup menu is
always "This project” for links into the current project. If you have set up merged projects [p.
87], then you get an entry for each merged project. The configuration area of a link will only
contain a button that selects the original definition in the tree of installer elements. For merged
projects, the merged project is opened in a new window, unless it is already open.

Another way to add a link into the same project is to select the installer element and invoke

the ¢” [Copy Link] action. Then you navigate to the installer element where the link should
be inserted and invoke the [Paste Link] action.

For links into the same project, install4j ensures that there are no broken links in the tree of
installer elements. When you delete an installer element, all links to it will be deleted as well.
If that is the case, the deletion message will tell you how many links are about to be deleted.
Links into merged projects may be broken, this condition is shown in in the configuration
pane.

When using the install4j API, you reference installer elements with IDs. You can show IDs in the
tree of installer elements by activating the Ll [Show IDs] button on the lower right side of the
tree of installer elements. The automatically generated numerical IDs are then shown in brackets.
The selection will be remembered across restarts of install4j.

In order to adjust the information density in the tree of installer elements, you can change the
icon size by choosing large or smalliconsinthel con Si ze sub-menu in the context menu. The
default setting is to show large icons. The selection will be remembered across restarts of install4j.

137

B.5.3 Installer - Configuring Applications
Applications are configured on the screens & and actions tab [p. 135] .

The top-level nodes represent the different applications that can be configured for the project.
There are 3 types of applications:

' Installer

The installer is the application that is executed when the media file is invoked by the user, for
example, when the user double-clicks on the installer executable in the Windows explorer.
The installer cannot be deleted from the tree of installer elements.

¥ Uninstaller

The uninstaller is a special application for uninstalling an installation. It is used in various
contexts:

+ Directly invoked by the user
+ Invoked from the Windows software registry
*+ Invoked by the "Uninstall previous installation" action

The uninstaller cannot be deleted from the tree of installer elements. If you do not wish to
generate an uninstaller, you can disable it [p. 135] .

£ Custom installer application

You can add any number of custom installer applications that can be invoked after the
installation. install4j comes with several templates for auto-updaters [p. 45] . Custom
applications can also be used for writing maintenance applications for your installation.

You can add new custom installer application by clicking on the == [Add] button on the right
side of the list and choosing Add Appl i cati on from the popup. The application templates
dialog [p. 293] will be displayed and lets you choose a starting point for your custom installer
application. Application templates are entirely made up of existing screens, actions and form
components. You can modify the selected application template after adding it.

Unlike the installer and uninstaller above, custom applications are also created for archive
media files [p. 301] . Please see the help topic on screens and actions [p. 11] for more
information on how to create first-run installers for archives.

Custom installer applications with a non-empty '"executable directory" property are
automatically added to the "Default file set". Unlike launchers, they cannot be assigned to
specific file sets. If your installation components do no include the root of the default file set,
you have to select the custom installer applications explicitly in the installation component
configuration. If the custom installer application is added to the . i nstal | 4j directory by
leaving the executable directory empty, they will always be included.

Each installer application has a startup sequence of actions [p. 173] . Those actions are executed
before the installer application presents a user interface. If any of these actions fails and has a
"Quit on failure" failure strategy, the installer application will not be shown.

The configurable properties of the three types of applications are listed below:

' Installer

138

The installer is the sequence of screens and actions that are executed when the user
invokes the media file.

Properties:

Action elevation type [Privileges]

If any contained actions should run in the elevated helper process, if their "Action
elevation type" property is set to "Inherit from parent".An elevated helper process is
available on Windows and macOS if the process has been started without admin
privileges and the "Request privileges" action has been configured to require full
privileges.

macOS entitlements file [macOS]

If you have configured code signing for macQOS, an entitlements file can unlock certain
features on macOS, such as iCloud storage or push notifications.

Executable icon [Executable]

By default, a standard installer icon is used for the executable. To customize the icon,
press the customizer button in the configuration pane.

Allow unattended mode [Execution Modes]

If selected, the user can pass <tt>-q</tt> as an argument to run the installer application
without a GUI. No user input is required, the installer applications works with the
default values. Please see the corresponding help topic on installer modes for more
information. All standard actions and standard screens support unattended
installations. If your policy forbids unattended installations or if you include custom
code that cannot handle unattended installations, you can disable them by deselecting
this property.

Progress interface creation script

If you would like to implement your own way of displaying progress information for
unattended installations, you can do so by returning a custom implementation of
<tt>com.install4j.api.context.UnattendedProgressinterface</tt> from this script. If you
return <tt>null</tt>, no progress information will be shown just as if this script had
not been set. There is a default implementation
<tt>com.install4j.api.context.DefaultUnattendedProgressinterface</tt> that does
nothing for all its operations. You can derive from that class if you just need to
implement a few particular methods in the progress interface.<p>If you just need a
simple dialog that shows progress information in unattended mode, please choose
the "Unattended mode with progress dialog" execution mode instead.

Note: This property is only visible if "Allow unattended mode" is selected.
Allow console installations [Execution Modes]

If selected, the user can pass <tt>-c</tt>as an argument to run the installer application
on the console. The installer asks for user input on the console in that mode. Please
see the corresponding help topic on installer modes for more information. All standard
actions and standard screens support console installations, form screens are also fully
mapped to console installers. If your policy forbids console installations or if you include
custom code that cannot handle console installations, you can disable them by
deselecting this property.

Fall back to console mode on Unix

On Unix, users often operate in environments where no X11 server is available and
no GUI can be displayed. The installer will fallback to console mode if console mode

139

execution is allowed and this option is selected. Otherwise an error message will be
displayed that tells the user how to invoke the installer in console mode.

Note: This property is only visible if "Allow console installations" is selected.
Disable console mode on Windows
Offer console mode only on non-Windows platforms.

Note: This property is only visible if "Allow console installations" is selected.
Console screen change handler

By default, a screen in console mode does not show any particular separation. You
insert your own custom display with this script. The title parameter gives you access
to the title of the screen. In console mode, screens display their subtitle only, so the
title string will not be displayed again.

Note: This property is only visible if "Allow console installations" is selected.
Default execution mode [Execution Modes]

The default execution mode for the installer application. By default, a GUI wizard will
be shown, butitis also possible to run in console mode or unattended mode by default.

Title for progress dialog

The title for the progress dialog, for example "Updating installation".This title and the
unattended mode with a progress window can also be set by passing <tt>-splash
[title]</tt> as an argument from the command line.

Note: This property is only visible if "Default execution mode" is set to "Unattended
mode with progress dialog".

Windows console executable [Execution Modes]

If selected, a console executable will be created on Windows. A non-hideable console
will be shown when the installer is double-clicked in the explorer. This improves the
user experience for a console-only installer (default execution mode set to console)
and allows execution through <tt>rsh</tt>.

VM parameters [Execution Options]

If you need to pass special VM parameters to the installer application, you can enter
them here.A common case would be to raise the maximum heap size with a different
-Xmx parameter if your installers require a lot of memory.

Arguments [Execution Options]

If you need to pass fixed default arguments to the installer application, you can enter
them here. For example, if you want to display a splash screen in unattended mode
by default, you can set the arguments to <tt>-splash "Installing ..."</tt>. Please note
that command line arguments will be appended to this list, so it is not possible to
"override" a fixed argument from the command line.

Rollback on failure [Execution Options]

If selected, the installer application will try to restore the state before the last rollback
barrier by rolling back all actions that were executed since the last barrier. Any screen
or action can be selected as a rollback barrier with the property "Rollback barrier". If
no rollback barrier was encountered, all executed actions will be rolled back.

Suppress initial progress dialog [Execution Options]
If selected, the initial native progress dialog of the installer is not displayed.

140

Custom image for title bar [GUI Options]

You can optionally choose a different image for the top right corner of the installer
wizard. The recommended size for this image is 60 x 60 pixels. Clear to reset to the
default image.<p>To add a high-resolution image for retina displays, create a file with
an additional <tt>@2x</tt> after the name (e.g. <tt>image.png</tt> and
<tt>image@2x.png</tt>) and the duplicate resolution next to the selected image.

Icon can overlap text

If selected, the icon can overlap the title and subtitle text. In this case, the icon should
be suitable as a background upon which black text can be read. If not selected, the
image will be aligned at the right side of the screen, otherwise the anchor property
below will be used.

Icon anchor
The anchor where the icon will be fixed in the title bar area.

Note: This property is only visible if "lcon can overlap text" is selected.
Background color for title bar [GUI Options]

With this property, you can adjust the background color of the title bar, the default
value is suitable for the standard icon. Set to "None" in order to reset to the default
value.

Foreground color for title bar [GUI Options]

With this property, you can adjust the foreground color of the title bar used for text,
the default value is suitable for the standard background color. Set to "None" in order
to reset to the default value.

Window width [GUI Options]

The width of the window displayed by the installer application. The default value is
500. If the "Size client area" property is selected, this does not include the size of the
window frame border.

Window height [GUI Options]

The height of the window displayed by the installer application. The default value is
390.If the "Size client area" property is selected, this does not include the size of the
window frame border.

Size client area [GUI Options]

If selected, the supplied size for the window will not be applied to the outer dimensions
of the window, but to the actually usable area inside the window. Unusually large
window frame borders can occur due to user settings (accessibility, window themes,
etc.) and may interfere with banner images or introduce unwanted scroll bars to form
screens.

Resizable [GUI Options]
If selected, the window displayed by the installer application is resizable.
Add install4j watermark to installer screens [GUI Options]

If selected, install4j watermarks will be added to the divider that separates the
navigation buttons on every screen of the installer application.

Custom watermark text

By default, the watermark text is "install4j". If you would like to display a different text
instead, you can enter it here.

141

Note: This property is only visible if "Add install4j watermark to installer screens" is
selected.

Help customizer script [General Customization Options]

If the user starts the installer application with one of the arguments <tt>-h -help /?</tt>,
help regarding the available command line options will be displayed. If you have your
own command line options you can customize this help with this script. The script
receives a <tt>List</tt> containing <tt>String</tt> arrays of length 2 with the options
and explanations. You can add options like this: <tt>options.add(new String[]
{"/mySwitch", "Explanation of mySwitch"}}</tt>. You can also delete default options in
the list.Attention: The context parameter has not been initialized at that point.<p>In
order to get extra command line arguments in the installer, call
<tt>context.getExtraCommandLineArguments()</tt> in any script.

Replacement script for language code [General Customization Options]

With this script you can replace the language that the installer will run with.
<p>Parameters: The parameter <tt>languageCode</tt> contains the 2-letter
ISO 639 code of the auto-detected language. If auto-detection has not been enabled
on the languages step of the general settings, the parameter will be <tt>null</tt>.
<p>Return value: If you return <tt>null</tt>, the language selection dialog will
be shown, if you return a language code, the language selection dialog will not be
shown and the returned language will be used. If the returned language code is a
language that is not configured for this installer, the language selection dialog will be
shown.

Customize version info [Windows]

If selected, you can customize the fields of the Windows version info in the nested
properties. Awindows version info is always generated for the executable with default
values for product name and file version taken from the general settings.

Product name

The product name field in the version resource. If empty, the full name from the general
settings is used.

Note: This property is only visible if "Customize version info" is selected.
File version

The file version field in the version resource. If empty, the version from the general
settings is used. The file version must consist of 4 numbers separated by spaces,
commas or dots.

Note: This property is only visible if "Customize version info" is selected.
Internal name

The internal name field in the version resource. If empty, the short name from the
general settings is used.

Note: This property is only visible if "Customize version info" is selected.
File description

The file description field in the version resource. If empty, the full name from the
general settings is used.

Note: This property is only visible if "Customize version info" is selected.

142

Copyright
The copyright field in the version resource. If empty, the publisher name from the
general settings is used.

Note: This property is only visible if "Customize version info" is selected.
Create log file for stderr output [Windows]

If selected, and output on stderr is detected, an file named error.log will be created
next to the installer and all output to stderr will be redirected to that file.

¥ Uninstaller

The uninstaller removes the installed application. If you do not wish to provide an
uninstaller, you can disable it.

Properties:

Action elevation type [Privileges]

If any contained actions should run in the elevated helper process, if their "Action
elevation type" property is set to "Inherit from parent".An elevated helper process is
available on Windows and macOS if the process has been started without admin
privileges and the "Request privileges" action has been configured to require full
privileges.

macOS entitlements file [macOS]

If you have configured code signing for macQOS, an entitlements file can unlock certain
features on macQOS, such as iCloud storage or push notifications.

Executable icon [Executable]

By default, a standard installer icon is used for the executable. To customize the icon,
press the customizer button in the configuration pane.

Executable name [Executable]

The name of the executable for the uninstaller. Please enter a name without any path
components and without a file extension.

Executable directory [Executable]

The directory to which the executable of the uninstaller will be written. If empty, it will
be placed in the <tt>.install4j</tt> directory.

Allow unattended mode [Execution Modes]

If selected, the user can pass <tt>-q</tt> as an argument to run the installer application
without a GUI. No user input is required, the installer applications works with the
default values. Please see the corresponding help topic on installer modes for more
information. All standard actions and standard screens support unattended
installations. If your policy forbids unattended installations or if you include custom
code that cannot handle unattended installations, you can disable them by deselecting
this property.

Progress interface creation script

If you would like to implement your own way of displaying progress information for
unattended installations, you can do so by returning a custom implementation of
<tt>com.install4j.api.context.UnattendedProgressinterface</tt> from this script. If you

143

return <tt>null</tt>, no progress information will be shown just as if this script had
not been set. There is a default implementation
<tt>com.install4j.api.context.DefaultUnattendedProgressinterface</tt> that does
nothing for all its operations. You can derive from that class if you just need to
implement a few particular methods in the progress interface.<p>If you just need a
simple dialog that shows progress information in unattended mode, please choose
the "Unattended mode with progress dialog" execution mode instead.

Note: This property is only visible if "Allow unattended mode" is selected.
Allow console installations [Execution Modes]

If selected, the user can pass <tt>-c</tt>as an argument to run the installer application
on the console. The installer asks for user input on the console in that mode. Please
see the corresponding help topic on installer modes for more information. All standard
actions and standard screens support console installations, form screens are also fully
mapped to console installers. If your policy forbids console installations or if you include
custom code that cannot handle console installations, you can disable them by
deselecting this property.

Fall back to console mode on Unix

On Unix, users often operate in environments where no X11 server is available and
no GUI can be displayed. The installer will fallback to console mode if console mode
execution is allowed and this option is selected. Otherwise an error message will be
displayed that tells the user how to invoke the installer in console mode.

Note: This property is only visible if "Allow console installations" is selected.
Disable console mode on Windows
Offer console mode only on non-Windows platforms.

Note: This property is only visible if "Allow console installations" is selected.
Console screen change handler

By default, a screen in console mode does not show any particular separation. You
insert your own custom display with this script. The title parameter gives you access
to the title of the screen. In console mode, screens display their subtitle only, so the
title string will not be displayed again.

Note: This property is only visible if "Allow console installations" is selected.
Default execution mode [Execution Modes]

The default execution mode for the installer application. By default, a GUI wizard will
be shown, but itis also possible to run in console mode or unattended mode by default.

Title for progress dialog

The title for the progress dialog, for example "Updating installation".This title and the
unattended mode with a progress window can also be set by passing <tt>-splash
[title]</tt> as an argument from the command line.

Note: This property is only visible if "Default execution mode" is set to "Unattended
mode with progress dialog".

Windows console executable [Execution Modes]

If selected, a console executable will be created on Windows. A non-hideable console
will be shown when the installer is double-clicked in the explorer. This improves the
user experience for a console-only installer (default execution mode set to console)
and allows execution through <tt>rsh</tt>.

144

VM parameters [Execution Options]

If you need to pass special VM parameters to the installer application, you can enter
them here.A common case would be to raise the maximum heap size with a different
-Xmx parameter if your installers require a lot of memory.

Arguments [Execution Options]

If you need to pass fixed default arguments to the installer application, you can enter
them here. For example, if you want to display a splash screen in unattended mode
by default, you can set the arguments to <tt>-splash "Installing ..."</tt>. Please note
that command line arguments will be appended to this list, so it is not possible to
"override" a fixed argument from the command line.

Rollback on failure [Execution Options]

If selected, the installer application will try to restore the state before the last rollback
barrier by rolling back all actions that were executed since the last barrier. Any screen
or action can be selected as a rollback barrier with the property "Rollback barrier". If
no rollback barrier was encountered, all executed actions will be rolled back.

Custom image for title bar [GUI Options]

You can optionally choose a different image for the top right corner of the installer
wizard. The recommended size for this image is 60 x 60 pixels. Clear to reset to the
default image.<p>To add a high-resolution image for retina displays, create a file with
an additional <tt>@2x</tt> after the name (e.g. <tt>image.png</tt> and
<tt>image@2x.png</tt>) and the duplicate resolution next to the selected image.

Icon can overlap text

If selected, the icon can overlap the title and subtitle text. In this case, the icon should
be suitable as a background upon which black text can be read. If not selected, the
image will be aligned at the right side of the screen, otherwise the anchor property
below will be used.

Icon anchor
The anchor where the icon will be fixed in the title bar area.

Note: This property is only visible if "lcon can overlap text" is selected.
Background color for title bar [GUI Options]

With this property, you can adjust the background color of the title bar, the default
value is suitable for the standard icon. Set to "None" in order to reset to the default
value.

Foreground color for title bar [GUI Options]

With this property, you can adjust the foreground color of the title bar used for text,
the default value is suitable for the standard background color. Set to "None" in order
to reset to the default value.

Window width [GUI Options]

The width of the window displayed by the installer application. The default value is
500. If the "Size client area" property is selected, this does not include the size of the
window frame border.

Window height [GUI Options]

The height of the window displayed by the installer application. The default value is
390.If the "Size client area" property is selected, this does not include the size of the
window frame border.

145

Size client area [GUI Options]

If selected, the supplied size for the window will not be applied to the outer dimensions
of the window, but to the actually usable area inside the window. Unusually large
window frame borders can occur due to user settings (accessibility, window themes,
etc.) and may interfere with banner images or introduce unwanted scroll bars to form
screens.

Resizable [GUI Options]
If selected, the window displayed by the installer application is resizable.
Add install4j watermark to installer screens [GUI Options]

If selected, install4j watermarks will be added to the divider that separates the
navigation buttons on every screen of the installer application.

Custom watermark text

By default, the watermark text is "install4j". If you would like to display a different text
instead, you can enter it here.

Note: This property is only visible if "Add install4j watermark to installer screens" is
selected.

Help customizer script [General Customization Options]

If the user starts the installer application with one of the arguments <tt>-h -help /?</tt>,
help regarding the available command line options will be displayed. If you have your
own command line options you can customize this help with this script. The script
receives a <tt>List</tt> containing <tt>String</tt> arrays of length 2 with the options
and explanations. You can add options like this: <tt>options.add(new String[]
{"/mySwitch", "Explanation of mySwitch"}}</tt>. You can also delete default options in
the list.Attention: The context parameter has not been initialized at that point.<p>In
order to get extra command line arguments in the installer, call
<tt>context.getExtraCommandLineArguments()</tt> in any script.

Unix mode [Unix]
The executable mode for the uninstaller on Unix.
Customize version info [Windows]

If selected, you can customize the fields of the Windows version info in the nested
properties. Awindows version info is always generated for the executable with default
values for product name and file version taken from the general settings.

Product name

The product name field in the version resource. If empty, the full name from the general
settings is used.

Note: This property is only visible if "Customize version info" is selected.
File version

The file version field in the version resource. If empty, the version from the general
settings is used. The file version must consist of 4 numbers separated by spaces,
commas or dots.

Note: This property is only visible if "Customize version info" is selected.
Internal name

The internal name field in the version resource. If empty, the short name from the
general settings is used.

146

Note: This property is only visible if "Customize version info" is selected.
+ File description
The file description field in the version resource. If empty, the full name from the
general settings is used.
Note: This property is only visible if "Customize version info" is selected.
+ Copyright

The copyright field in the version resource. If empty, the publisher name from the
general settings is used.

Note: This property is only visible if "Customize version info" is selected.
+ Use custom application bundle name [macOS]

If selected, a different application bundle name is used on macOS. Executable names
on macOS are localizable. Otherwise, the value of the "Executable name" property is
used for the application bundle name.

+ Custom application bundle name

The application bundle name to be used for macOS media files. Bundle names on
macOS are shown in the Finder and are localizable. For example, the executable name
could be set to <tt>${i18n:myLauncherName(${compiler:sys.fullName})}</tt> where
<tt>myLauncherName</tt> is an i18n message with value "Launcher for {0}".

Note: This property is only visible if "Use custom application bundle name" is selected.

£ Custom application

A custom installer application is installed by the installer. Users can start it manually or
it can be executed programmatically from your own code via the API.

Properties:

+ Action elevation type [Privileges]

If any contained actions should run in the elevated helper process, if their "Action
elevation type" property is set to "Inherit from parent".An elevated helper process is
available on Windows and macOS if the process has been started without admin
privileges and the "Request privileges" action has been configured to require full
privileges.

* macOS entitlements file [macOS]

If you have configured code signing for macQOS, an entitlements file can unlock certain
features on macQOS, such as iCloud storage or push notifications.

+ Executable icon [Executable]

By default, a standard installer icon is used for the executable. To customize the icon,
press the customizer button in the configuration pane.

* File set [Executable]

Choose the file set to which the installer application is added. File sets can be defined
on the Files->Define Distribution Tree step.

147

Executable name [Executable]

The name of the executable for the custom application. Please enter a name without
any path components and without a file extension.

Executable directory [Executable]

The directory to which the executable of the custom application will be written. If
empty, it will be placed in the <tt>.install4j</tt> directory.

Allow unattended mode [Execution Modes]

If selected, the user can pass <tt>-q</tt> as an argument to run the installer application
without a GUI. No user input is required, the installer applications works with the
default values. Please see the corresponding help topic on installer modes for more
information. All standard actions and standard screens support unattended
installations. If your policy forbids unattended installations or if you include custom
code that cannot handle unattended installations, you can disable them by deselecting
this property.

Progress interface creation script

If you would like to implement your own way of displaying progress information for
unattended installations, you can do so by returning a custom implementation of
<tt>com.install4j.api.context.UnattendedProgressinterface</tt> from this script. If you
return <tt>null</tt>, no progress information will be shown just as if this script had
not been set. There is a default implementation
<tt>com.install4j.api.context.DefaultUnattendedProgressinterface</tt> that does
nothing for all its operations. You can derive from that class if you just need to
implement a few particular methods in the progress interface.<p>If you just need a
simple dialog that shows progress information in unattended mode, please choose
the "Unattended mode with progress dialog" execution mode instead.

Note: This property is only visible if "Allow unattended mode" is selected.
Allow console installations [Execution Modes]

If selected, the user can pass <tt>-c</tt>as an argument to run the installer application
on the console. The installer asks for user input on the console in that mode. Please
see the corresponding help topic on installer modes for more information. All standard
actions and standard screens support console installations, form screens are also fully
mapped to console installers. If your policy forbids console installations or if you include
custom code that cannot handle console installations, you can disable them by
deselecting this property.

Fall back to console mode on Unix

On Unix, users often operate in environments where no X11 server is available and
no GUI can be displayed. The installer will fallback to console mode if console mode
execution is allowed and this option is selected. Otherwise an error message will be
displayed that tells the user how to invoke the installer in console mode.

Note: This property is only visible if "Allow console installations" is selected.
Disable console mode on Windows

Offer console mode only on non-Windows platforms.

Note: This property is only visible if "Allow console installations" is selected.
Console screen change handler

By default, a screen in console mode does not show any particular separation. You
insert your own custom display with this script. The title parameter gives you access

148

to the title of the screen. In console mode, screens display their subtitle only, so the
title string will not be displayed again.

Note: This property is only visible if "Allow console installations" is selected.
Default execution mode [Execution Modes]

The default execution mode for the installer application. By default, a GUI wizard will
be shown, butitis also possible to run in console mode or unattended mode by default.

Title for progress dialog

The title for the progress dialog, for example "Updating installation".This title and the
unattended mode with a progress window can also be set by passing <tt>-splash
[title]</tt> as an argument from the command line.

Note: This property is only visible if "Default execution mode" is set to "Unattended
mode with progress dialog".

Windows console executable [Execution Modes]

If selected, a console executable will be created on Windows. A non-hideable console
will be shown when the installer is double-clicked in the explorer. This improves the
user experience for a console-only installer (default execution mode set to console)
and allows execution through <tt>rsh</tt>.

Change working directory [Execution Options]

If selected the working directory will be changed to the value in 'Working directory' at
startup.

Working directory
The working directory to be used when 'Change working directory' is selected.

Note: This property is only visible if "Change working directory" is selected.
VM parameters [Execution Options]

If you need to pass special VM parameters to the installer application, you can enter
them here.A common case would be to raise the maximum heap size with a different
-Xmx parameter if your installers require a lot of memory.

Arguments [Execution Options]

If you need to pass fixed default arguments to the installer application, you can enter
them here. For example, if you want to display a splash screen in unattended mode
by default, you can set the arguments to <tt>-splash "Installing ..."</tt>. Please note
that command line arguments will be appended to this list, so it is not possible to
"override" a fixed argument from the command line.

Rollback on failure [Execution Options]

If selected, the installer application will try to restore the state before the last rollback
barrier by rolling back all actions that were executed since the last barrier. Any screen
or action can be selected as a rollback barrier with the property "Rollback barrier". If
no rollback barrier was encountered, all executed actions will be rolled back.

Window title [GUI Options]
The title of the application window.
Show message when user cancels [GUI Options]

If selected, a message will be shown when the user cancels the installer application by
clicking on the "Cancel" button or closing the application frame.

149

Cancel message

The message that is shown if the user cancels the installer application by clicking on
the "Cancel" button or closing the application frame. The options that are presented
to the user are "Cancel" or "Continue".

Note: This property is only visible if "Show message when user cancels" is selected.
Custom image for title bar [GUI Options]

You can optionally choose a different image for the top right corner of the installer
wizard. The recommended size for this image is 60 x 60 pixels. Clear to reset to the
default image.<p>To add a high-resolution image for retina displays, create a file with
an additional <tt>@2x</tt> after the name (e.g. <tt>image.png</tt> and
<tt>image@2x.png</tt>) and the duplicate resolution next to the selected image.

Icon can overlap text

If selected, the icon can overlap the title and subtitle text. In this case, the icon should
be suitable as a background upon which black text can be read. If not selected, the
image will be aligned at the right side of the screen, otherwise the anchor property
below will be used.

Icon anchor
The anchor where the icon will be fixed in the title bar area.

Note: This property is only visible if "lcon can overlap text" is selected.
Background color for title bar [GUI Options]

With this property, you can adjust the background color of the title bar, the default
value is suitable for the standard icon. Set to "None" in order to reset to the default
value.

Foreground color for title bar [GUI Options]

With this property, you can adjust the foreground color of the title bar used for text,
the default value is suitable for the standard background color. Set to "None" in order
to reset to the default value.

Window width [GUI Options]

The width of the window displayed by the installer application. The default value is
500. If the "Size client area" property is selected, this does not include the size of the
window frame border.

Window height [GUI Options]

The height of the window displayed by the installer application. The default value is
390.If the "Size client area" property is selected, this does not include the size of the
window frame border.

Size client area [GUI Options]

If selected, the supplied size for the window will not be applied to the outer dimensions
of the window, but to the actually usable area inside the window. Unusually large
window frame borders can occur due to user settings (accessibility, window themes,
etc.) and may interfere with banner images or introduce unwanted scroll bars to form
screens.

Resizable [GUI Options]
If selected, the window displayed by the installer application is resizable.

150

Add install4j watermark to installer screens [GUI Options]

If selected, install4j watermarks will be added to the divider that separates the
navigation buttons on every screen of the installer application.

Custom watermark text

By default, the watermark text is "install4j". If you would like to display a different text
instead, you can enter it here.

Note: This property is only visible if "Add install4j watermark to installer screens" is
selected.

Help customizer script [General Customization Options]

If the user starts the installer application with one of the arguments <tt>-h -help /?</tt>,
help regarding the available command line options will be displayed. If you have your
own command line options you can customize this help with this script. The script
receives a <tt>List</tt> containing <tt>String</tt> arrays of length 2 with the options
and explanations. You can add options like this: <tt>options.add(new String[]
{"/mySwitch", "Explanation of mySwitch"}}</tt>. You can also delete default options in
the list.Attention: The context parameter has not been initialized at that point.<p>In
order to get extra command line arguments in the installer, call
<tt>context.getExtraCommandLineArguments()</tt> in any script.

Unix mode [Unix]
The executable mode for the custom application on Unix.
Execution level [Windows]

The execution level for this application. If you want to modify files in the installation
direction, you most likely need administrator rights. This is only relevant for Windows
Vista and higher.

Customize version info [Windows]

If selected, you can customize the fields of the Windows version info in the nested
properties. Awindows version info is always generated for the executable with default
values for product name and file version taken from the general settings.

Product name

The product name field in the version resource. If empty, the full name from the general
settings is used.

Note: This property is only visible if "Customize version info" is selected.
File version

The file version field in the version resource. If empty, the version from the general
settings is used. The file version must consist of 4 numbers separated by spaces,
commas or dots.

Note: This property is only visible if "Customize version info" is selected.
Internal name

The internal name field in the version resource. If empty, the short name from the
general settings is used.

Note: This property is only visible if "Customize version info" is selected.
File description

The file description field in the version resource. If empty, the full name from the
general settings is used.

151

Note: This property is only visible if "Customize version info" is selected.
+ Copyright

The copyright field in the version resource. If empty, the publisher name from the
general settings is used.

Note: This property is only visible if "Customize version info" is selected.
+ Use custom application bundle name [macOS]

If selected, a different application bundle name is used on macOS. Executable names
on macOS are localizable. Otherwise, the value of the "Executable name" property is
used for the application bundle name.

+ Custom application bundle name

The application bundle name to be used for macOS media files. Bundle names on
macOS are shown in the Finder and are localizable. For example, the executable name
could be set to <tt>${i18n:myLauncherName(${compiler:sys.fullName})}</tt> where
<tt>myLauncherName</tt> is an i18n message with value "Launcher for {0}".

Note: This property is only visible if "Use custom application bundle name" is selected.

The second tab in the configuration area for installer applications is the Installer variables tab.
Here, you can check the bindings for all detected installer variables and pre-define installer
variables. For more information, please see the help topic on variables [p. 21] and the help on
the variable selection dialog [p. 90] .

An additional feature with respect to the variable selection dialog is that you can navigate to a
binding by selecting an element in the binding tree at the bottom and click on the [Go To
Selection] button.

Custom installer applications have a Launcher integrations tab in the configuration area that
helps you to start them when launchers are executed.

The first way to start an installer application is programmatically, by using the APl contained in
[install 4] installation directory]/resource/i4jruntine.jar. To get the code
snippet for starting the selected installer application, click on the [Start integration wizard]
button. The integration wizard will present a number of options that control the condition and
possible call backs from the installer application. Note that you do not have to distribute
i 4j runti me. j ar, since it is automatically available for installed applications.

The second way to start an installer application is automatically, by defining a launch schedule
and a launch mode. The launch schedule is one of

+ Always
Every time you start the launcher, the installer application will be started as well.
* According to update schedule

install4j provides a built-in update schedule registry that can be configured by the user on a
form screen with an "Update schedule selector" form component. Also, you can programatically
modify the update schedule through the class
cominstall4j.api.update. Updat eSchedul eRegi st ry inthe APl. The selected installer
application will be started only if the update schedule requires an update check.

+ First run of any launcher in archive media file

For archive media files (such as a Windows ZIP file), no installer is available. To execute a
sequence of screens and actions when a launcher is started for the first time after the archive

152

has been extracted, use this launch schedule. It may be convenient to link to screen groups
in the installer in order to avoid duplicating configuration in your custom installer application.

In your launcher, you <can <check for this condition with
Bool ean. get Bool ean("i nstal | 4j.firstRun") incaseyouwantto perform some actions
outside of a custom installer application.

The launch mode is one of

+ Blocking at start up

When the launcher is started, the selected installer application will be started first. When the
installer application terminates, the launcher will then start up (unless a "Shut down calling
launcher" action has been executed).

* Non-blocking at start up

When the launcher is started, the selected installer application will be started immediately.
The launcher continues to start up in parallel.

¢ When first window is shown

The selected installer application will be started when the first window is shown. This works
for AWT, Swing and SWT applications. If you have a SWT application, the "Uses SWT" check
box in the executable info [p. 114] step of the launcher wizard [p. 113] must be selected.

Just like with the API, the installer application can be started in the launcher process itself or in
a new process. By default, the installer application is started in the same process. If the "Blocking
at start up" or "Non-blocking at start up" launch modes are selected, the look and feel it set to
the system look and feel. For the "When first window is shown" launch mode, the look and feel
is not changed, so your own look and feel will be used. When the installer application is executed
in the same process, the "Shutdown calling launcher" action has a different effect: The whole
process will be terminated when the installer application exits.

By default, the selected installer application is started for all launchers in your project. If this is
not desired, you can restrict the integration to selected launchers. Note that if "All launchers" is
selected and the project is merged into another project, the integration will be performed for
all launchers in the main project as well.

153

B.5.4 Installer - Configuring Screens

Screens are configured on the screens & and actions tab [p. 135] .
Please see the list of available screens [p. 157] that come with install4j.

A screen is a single step in an installer application. It displays information to the user or
gathers user input.

If a screen has attached actions [p. 173], there will be an expand control to the left of the screen
icon that allows you to show the associated actions.

Common properties of screens are:

Action elevation type [Privileges]

If any contained actions should run in the elevated helper process, if their "Action elevation
type" property is set to "Inherit from parent".An elevated helper process is available on Windows
and macOS if the process has been started without admin privileges and the "Request
privileges" action has been configured to require full privileges.

Condition expression [Control Flow]

This expression is evaluated to decide whether the screen is displayed. If the expression or
script returns false, the current screen will be skipped. This expression or script should not
have any side-effects, it will be called while another screen is still being displayed.

Rollback barrier [Control Flow]

If the screen should be a rollback barrier. When a rollback barrier is completed, none of the
preceding actions will be rolled back. You can use this property to prevent an incomplete
rollback of complex changes or to protect actions from rollback when the user hits "Cancel"
in the post-install phase.

Validation expression [Control Flow]

This expression or script is called when the user clicks the next button. If it returns false, the
current screen will be displayed again. You can use this to validate user input. Error messages
are not displayed automatically, you can use the Util.showErrorMessage(String errorMessage)
method in your script.

Quit after screen [Control Flow]

If the screen should have a "Finish" button instead of a "Next" button. The installer or uninstaller
will quit after this screen. The "Cancel" button will not be visible if this option is checked.

Back button [Control Flow]

Allowing the user to go back to previous screens can be problematic if the previous screen
has actions attached that cannot be executed multiple times. By default, every action is just
executed once, all actions have a property to allow multiple execution. The default behavior
is the "Safe back button", where the back button is hidden if the previous screen has actions
attached that cannot be executed multiple times.

Wizard index [Screen activation]

Every screen can set or change the current wizard index. The wizard index is an optional panel
on the left side of the wizard that shows overall installation progress. You can leave the index
unchanged as it was set by a previous screen, change the step in the current wizard index,
removed the current wizard index ot configure a new wizard index. For conditional construction
of a wizard index, please use the <tt>com.install4j.api.context.WizardIndex</tt> class in the
"Pre-activation" script.

Step key

The key for the step in the wizard index that should be activated.

Note: This property is only visible if "Wizard index" is set to "Activate another step".

154

Steps

The steps that are displayed by the wizard index. Each step has a key that you can use to
switch to that step later on by setting the wizard index property to "Activate another step"
and specifying that key.

Note: This property is only visible if "Wizard index" is set to "Set a new wizard index".

Initial key

The key of the step in the wizard index that should be initially selected. Leave empty to select
the first step.

Note: This property is only visible if "Wizard index" is set to "Set a new wizard index".
Partially defined

If selected, the list of wizard index steps will be partially defined. This means thata "..." entry
will be appended at the bottom.

Note: This property is only visible if "Wizard index" is set to "Set a new wizard index".
Numbered

If selected, the steps in the wizard index are numbered.

Note: This property is only visible if "Wizard index" is set to "Set a new wizard index".
Maximum width

The maximum width of the wizard index in pixels. The preferred with is determined by the
longest step name, the maximum width is an upper bound for the actual width.

Note: This property is only visible if "Wizard index" is set to "Set a new wizard index".
Minimum width

The minimum width of the wizard index in pixels. The preferred with is determined by the
longest step name, the minimum width is a lower bound for the actual width.

Note: This property is only visible if "Wizard index" is set to "Set a new wizard index".
Background color

The background color for the index panel. Set to "None" to restore the default color.
Note: This property is only visible if "Wizard index" is set to "Set a new wizard index".
Foreground color

The foreground color for the index panel. Set to "None" to restore the default color.
Note: This property is only visible if "Wizard index" is set to "Set a new wizard index".
Background image

The image file for the background of the wizard index panel. Leave empty if no background
image is required.

Note: This property is only visible if "Wizard index" is set to "Set a new wizard index".
Image anchor

The anchor for the background image. The default value is "North".

Pre-activation script [Screen activation]

This script is called each time just before the screen is displayed.

Post-activation script [Screen activation]

This script is called each time just after the screen has been displayed. It is not invoked in
console or unattended mode.

155

Some screens only make sense when corresponding actions are used later on in the installer or
uninstaller. For example, the "Services" screen will only be displayed at runtime if there are
"Install a service" actions present on a subsequent screen. If such a dependency is not fulfilled
after adding a screen, a corresponding notification is displayed.

156

B.5.5 Installer - Available Screens

Category: Customizable screens

" Banner screen

A screen that has a banner on the left side and some text on white background on the
right side. Banner screens are suitable for start and finish screens.

Applies to: Installer, Uninstaller

Properties:

Background color for banner

If you specify a custom banner, you might want to adjust the background color of the
banner panel, the default value is suitable for the standard banner. Set to "None" in
order to reset to the default value.

Image for banner

Specify a PNG or GIF image file for your custom banner. Clear to reset to the default
banner.<p>To add a high-resolution image for retina displays, create a file with an
additional <tt>@2x</tt> after the name (e.g. <tt>image.png</tt> and
<tt>image@2x.png</tt>) and the duplicate resolution next to the selected image.

Image anchor
The anchor where the image will be fixed in the banner panel.
Screen title [Messages]

The title of the screen, shown in a bold and larger font. Should be a concise subject.
This question is also used by the console installer for presenting the screen.

Info text [Messages]

A paragraph that explains to the user what this screen is about. This message is shown
in the body of the screen.

" Directory selection

A screen that asks the user to select a directory. All displayed messages are configurable.

Applies to: Installer, Uninstaller

Properties:

Allow new folder creation [Chooser Dialog]

If selected, the directory chooser that is displayed with the chooser button will feature
a button to create new directories.

Manual entry allowed [Chooser Dialog]

If selected, the user can enter the directory manually in the text field. Otherwise, the
text field is disabled.

Initial directory
The initially selected directory. Can be empty if no directory should be initially selected.

157

+ Standard directory

A directory name that should be appended to the user selection in the directory
browser. Should be empty if an existing directory has to be selected.

+ Screen title [Messages]
The title of the screen, shown in a bold and larger font. Should be a concise subject.
+ Screen subtitle [Messages]

The subtitle of the screen, shown below the title in a normal font. Should be a short
question. This question is also used by the console installer for presenting the screen.

* Info text [Messages]

A paragraph that explains to the user what this screen is about. This message is shown
in the body of the screen.

+ Directory description [Messages]

The description of the kind of directory that the user should select, in a few words, e.g.
"ABC directory". This will be shown in the border around the text field.

+ Allow spaces in directory name [Unix]

If selected, spaces are valid characters in the installation directory name for Unix/Linux
installers, otherwise an error message is displayed if the user chooses a directory with
spaces in it. Some JREs do not work on Unix if installed to a path that contains spaces,
so spaces are disallowed by default.

+ Variable name for selection [User input]

The name of the variable to which the selected directory is saved when the user
advances to the next screen.

+ Validation script [User input]

The script that is executed when the directory is selected with the chooser button and
when the user clicks on the Next button of the screen. If the script returns <tt>true</tt>,
the selection is accepted, if it returns <tt>false</tt>, the selection is discarded.

+ Standard validation [User input]

If selected, the standard validation for well-formed directory names will be performed.
This validation is performed before the validation script and will canonicalize the
directory name before passing it to the validation script.

* Allow empty input [User input]

If selected, the user can leave the directory empty or clear the initial directory (if manual
entry is allowed) and there will be no validation error.

* Only accept writable directories [User input]
If selected, non-writable directories will be rejected.

¥ Display PDF file

Display a PDF file in an embedded cross-platform PDF viewer.
Applies to: Installer, Uninstaller

Properties:

158

PDF file

The PDF file that should be displayed.

Screen title [Messages]

The title of the screen, shown in a bold and larger font. Should be a concise subject.
Screen subtitle [Messages]

The subtitle of the screen, shown below the title in a normal font. Should be a short
question.

" Display progress

Ascreen that displays a progress bar with a status line capturing the progress information
of associated actions. The associated actions are executed immediately when the screen
is activated. All displayed messages are configurable.

Applies to: Installer, Uninstaller

Properties:

Cancel enabled

If the cancel button should be enabled.

Screen title [Messages]

The title of the screen, shown in a bold and larger font. Should be a concise subject.
Screen subtitle [Messages]

The subtitle of the screen, shown below the title in a normal font. Should be a short
question. This question is also used by the console installer for presenting the screen.

Initial status message [Messages]

The initial status message displayed by the progress screen. You can change this
message with "Set messages" actions or by invoking
<tt>Context.getProgressinterface().setStatusMessage("...")</tt>.

" Display text

A screen that displays text to the user, either plain text or HTML. All displayed messages
are configurable.

Applies to: Installer, Uninstaller

Properties:

Text source

The source from which the text is loaded. For multi-language installers, the "File" source
is recommended since it is more easily localizable than the direct entry.

Text file
The file from which the text is loaded.

159

Note: This property is only visible if "Text source" is set to "File".
Text

The text that is displayed in the screen, either plain text or HTML. For HTML, the value
should start with <tt><html></tt>, otherwise the plain text will be displayed. The
text is displayed in a scrollable text area.

Note: This property is only visible if "Text source" is set to "Direct".

Variable name

Optionally, you can save the actually displayed text to a variable. Enter the variable
name without the installer prefix and the dollar sign. This is useful if you have a localized
license text and want to save the actually displayed text with a "Write text to a file"
action later on.

Screen title [Messages]
The title of the screen, shown in a bold and larger font. Should be a concise subject.
Screen subtitle [Messages]

The subtitle of the screen, shown below the title in a normal font. Should be a short
question. This question is also used by the console installer for presenting the screen.

Info text [Messages]

A paragraph that explains to the user what this screen is about. This message is shown
in the body of the screen.

"7 Program group selection

A screen that allows the user to select a program group on Microsoft Windows. All
displayed messages are configurable.

Applies to: Installer, Uninstaller

Properties:

Variable name for selection

The name of the variable to which the selected program group is saved when the user
advances to the next screen.

Initial program group

The initially selected program group. Can be empty if no program group should be
initially selected.

Program groups for all users

If selected, the program groups for all users are shown, otherwise the program groups
for the current user are shown.

Show warning if program group exists

If selected, a warning will be shown if the selected program group already exists.
Screen title [Messages]

The title of the screen, shown in a bold and larger font. Should be a concise subject.

160

Screen subtitle [Messages]

The subtitle of the screen, shown below the title in a normal font. Should be a short
question. This question is also used by the console installer for presenting the screen.

Info text [Messages]

A paragraph that explains to the user what this screen is about. This message is shown
in the body of the screen.

Category: Free forms

H Configurable banner form

A screen where form elements can be configured along the vertical axis. Most types of
information that you would like to query from a user during the installation can be easily
expressed with this screen. The screen has a banner on the left side and a white
background on the right side. Banner screens are suitable for start and finish screens.

Applies to: Installer, Uninstaller

Properties:

Background color for banner

If you specify a custom banner, you might want to adjust the background color of the
banner panel, the default value is suitable for the standard banner. Set to "None" in
order to reset to the default value.

Image for banner

Specify a PNG or GIF image file for your custom banner. Clear to reset to the default
banner.<p>To add a high-resolution image for retina displays, create a file with an
additional <tt>@2x</tt> after the name (e.g. <tt>image.png</tt> and
<tt>image@2x.png</tt>) and the duplicate resolution next to the selected image.

Image anchor
The anchor where the image will be fixed in the banner panel.
Fill horizontally [Form]

If set, the form will fill the entire horizontal extent of the screen. Otherwise, it will be
centered horizontally and all form components will not be wider than their preferred
widths.

Fill vertically [Form]

If set, the form will fill the entire vertical extent of the screen. Otherwise, it will be
centered vertically. Note that form components always have their preferred heights
when the "Scrollable" property is selected. If "Fill vertically" is selected, the form starts
at the top and any remaining space is empty.

Scrollable [Form]

If set, the form will be wrapped in a scroll pane. If not set, certain form components
which can grow in the vertical direction (like the text area form component) can claim
remaining vertical space. Please note that those components have to be configured
accordingly.

161

+ Screen title [Messages]

The title of the screen, shown in a bold and larger font. Should be a concise subject.
This question is also used by the console installer for presenting the screen.

* Info text [Messages]

A paragraph that explains to the user what this screen is about. This message is shown
in the body of the screen.

= configurable form

A screen where form elements can be configured along the vertical axis. Most types of
information that you would like to query from a user during the installation can be easily
expressed with this screen.

Applies to: Installer, Uninstaller
Properties:

* Fill horizontally [Form]

If set, the form will fill the entire horizontal extent of the screen. Otherwise, it will be
centered horizontally and all form components will not be wider than their preferred
widths.

+ Fill vertically [Form]

If set, the form will fill the entire vertical extent of the screen. Otherwise, it will be
centered vertically. Note that form components always have their preferred heights
when the "Scrollable" property is selected. If "Fill vertically" is selected, the form starts
at the top and any remaining space is empty.

* Scrollable [Form]

If set, the form will be wrapped in a scroll pane. If not set, certain form components
which can grow in the vertical direction (like the text area form component) can claim
remaining vertical space. Please note that those components have to be configured
accordingly.

+ Screen title [Messages]
The title of the screen, shown in a bold and larger font. Should be a concise subject.
+ Screen subtitle [Messages]
The subtitle of the screen, shown below the title in a normal font. Should be a short

question. This question is also used by the console installer for presenting the screen.
Category: Standard screens

Welcome

A screen that welcomes the user to the installation of your application. This screen should
be placed at the beginning of the installation

Applies to: Installer

162

Properties:

Background color for banner

If you specify a custom banner, you might want to adjust the background color of the
banner panel, the default value is suitable for the standard banner. Set to "None" in
order to reset to the default value.

Image for banner

Specify a PNG or GIF image file for your custom banner. Clear to reset to the default
banner.<p>To add a high-resolution image for retina displays, create a file with an
additional <tt>@2x</tt> after the name (e.g. <tt>image.png</tt> and
<tt>image@2x.png</tt>) and the duplicate resolution next to the selected image.

Image anchor
The anchor where the image will be fixed in the banner panel.
Alert for update installation

If selected, the installer will check if a previous installation can be found by calling
<tt>context.isUpdatelnstallation()</tt>. In this case, the user will be presented with the
choice to update the existing installation or select a new installation directory. If the
update is selected, the installer variable <tt>sys.confirmedUpdatelnstallation</tt> will
be set to <tt>Boolean.TRUE</tt>. The default condition expressions on the "Installation
location" screen and the "Create program group" screen are set so that the screen is
skipped in that case.

Note that this only works if "Detect previous installation
directory" is selected on the "Installer->Update Options" tab.

¥ Display license agreement

A screen that displays a license agreement to the user, either plain text or HTML. The
license agreement must be accepted before the installation continues.

Applies to: Installer

Properties:

Text source

The source from which the license is loaded. For multi-language installers, the "File"
source is recommended since it is more easily localizable than the direct entry.

License file

The file from which the license is loaded.

Note: This property is only visible if "Text source" is set to "File".
License

The license that is displayed in the screen, either plain text or HTML. For HTML, the
value should start with <tt>&It;htmI></tt>, otherwise the plain text will be displayed.
The text is displayed in a scrollable text area.

Note: This property is only visible if "Text source" is set to "Direct".
Initially accepted
If selected, the "Accept" radio button is initially selected.

163

User must scroll to bottom

If selected, the user can only accept the license if the text area with the license text
has been previously scrolled to the bottom. Has no effect if the "Initially selected"
property is selected.

Variable name

Optionally, you can save the actually displayed text to a variable. Enter the variable
name without the installer prefix and the dollar sign. This is useful if you have a localized
license text and want to save the actually displayed text with a "Write text to a file"
action later on.

" Installation location

The screen that asks the user where to install the application. This determines the principal
installation directory.

Applies to: Installer

Properties:

Suggest application directory [Application ID]

When the user chooses a directory, always append the default application directory
configured in the media file wizard. You should only switch this off if you substitute a
different installation directory in the screen validation.

Existing directory warning [Application ID]

Ask the user whether to install the application in the selected directory if it already
exists and the installation is not an update.

Check if directory is writable [Application ID]

Check if the directory is writable with the currently available privileges and show a
warning message if itis not. If you deselect this option, and the directory is not writable,
you should execute a "Request privileges" action before installing files to the installation
directory.

Allow new folder creation [Chooser Dialog]

If selected, the directory chooser that is displayed with the chooser button will feature
a button to create new directories.

Manual entry allowed [Chooser Dialog]

If selected, the user can enter the installation directory manually in the text field.
Otherwise, the text field is disabled.

Insufficient disk space warning [Disk Space]

Show a warning message if there is not sufficient disk space for the installation on the
selected target drive.

Show required disk space [Disk Space]

Show the disk space that is required for the installation. You should switch this off if
your installation includes other data sources.

164

+ Show free disk space [Disk Space]

Show the disk space that is available on the selected drive or partition. This setting is
only effective for Windows, macOS and Linux.

+ Allow spaces in directory name [Unix]

If selected, spaces are valid characters in the installation directory name for Unix/Linux
installers, otherwise an error message is displayed if the user chooses a directory with
spaces in it. Some JREs do not work on Unix if installed to a path that contains spaces,
so spaces are disallowed by default.

+ Validation script [User input]

The script that is executed when the installation directory is selected with the chooser
button and when the user clicks on the Next button of the screen. If the script returns
<tt>true</tt>, the selection is accepted, if it returns <tt>false</tt>, the selection is
discarded.

+ Standard validation [User input]

If selected, the standard validation for well-formed directory names will be performed.
This validation is performed before the validation script and will canonicalize the
directory name before passing it to the validation script.

¥ Installation type

A screen that displays a list of installation types that correspond to configurable
component sets. The default types "Full","Standard" and "Customize" are provided by
default. The "Installation components" screen may be hidden by this screen, depending
on the installation type selected by the user. This screen will not be shown if no installation
components are defined.

Applies to: Installer
Properties:

+ Installation types

<p>Installation types are principally defined by a configurable set of components. The
first installation type is selected by default in the installer. </p><p>Each installation
type has the following configurable properties:</p><list><item>A name for the
installation type. This name is presented to the user</item><item>An optional
description of the installation type. This description is displayed below the name and
can be shown or hidden by the user</item><item>If the description is displayed by
default or not</item><item>If the installation type is customizable or not. If the
user-selected installation type is customizable, the "Installation components" screen
will be shown if present, otherwise that screen will be skipped.</item><item>A set of
installation components. Installation components are configured in the install4j IDE
on the Files->Installation Components tab.You can choose between the options of
installing all defined components, the default selected components as configured on
the Files->Installation Components tab, or directly select a number of installation
components in a check tree.</item></list><p>By default, 3 universally usable installation
types are added whose names and descriptions are internationalized. You can change
or delete the default installation types as well as add new ones.</p>

165

Bold font [Description]

Use a bold font for the descriptions
Italic font [Description]

Use an italic font for the descriptions
Smaller font [Description]

Use a smaller font for the descriptions

¥ Installation components

A screen that displays all installation components and asks the user which components
should be installed. This screen will not be shown if no installation components are
defined.

Applies to: Installer

Properties:

Show installation directory chooser
Show the installation directory chooser below the component selector.
Show required disk space [Disk Space]

Show the disk space that is required for the installation. You should switch this off if
your installation includes other data sources.

Note: This property is only visible if "Show installation directory chooser" is selected.
Show free disk space [Disk Space]

Show the disk space that is available on the selected drive or partition. This setting is
only effective for Windows, macOS and Linux.

Note: This property is only visible if "Show installation directory chooser" is selected.
Suggest application directory [Application ID]

When the user chooses a directory, always append the default application directory
configured in the media file wizard. You should only switch this off if you substitute a
different installation directory in the screen validation.

Note: This property is only visible if "Show installation directory chooser" is selected.
Existing directory warning [Application ID]

Ask the user whether to install the application in the selected directory if it already
exists and the installation is not an update.

Note: This property is only visible if "Show installation directory chooser" is selected.
Check if directory is writable [Application ID]

Check if the directory is writable with the currently available privileges and show a
warning message if itis not. If you deselect this option, and the directory is not writable,
you should execute a "Request privileges" action before installing files to the installation
directory.

Note: This property is only visible if "Show installation directory chooser" is selected.

166

Allow spaces in directory name [Unix]

If selected, spaces are valid characters in the installation directory name for Unix/Linux
installers, otherwise an error message is displayed if the user chooses a directory with
spaces in it. Some JREs do not work on Unix if installed to a path that contains spaces,
so spaces are disallowed by default.

Note: This property is only visible if "Show installation directory chooser" is selected.
Allow new folder creation [Chooser Dialog]

If selected, the directory chooser that is displayed with the chooser button will feature
a button to create new directories.

Note: This property is only visible if "Show installation directory chooser" is selected.
Manual entry allowed [Chooser Dialog]

If selected, the user can enter the installation directory manually in the text field.
Otherwise, the text field is disabled.

Note: This property is only visible if "Show installation directory chooser" is selected.
Validation script [User input]

The script that is executed when the installation directory is selected with the chooser
button and when the user clicks on the Next button of the screen. If the script returns
<tt>true</tt>, the selection is accepted, if it returns <tt>false</tt>, the selection is
discarded.

Note: This property is only visible if "Show installation directory chooser" is selected.
Standard validation [User input]

If selected, the standard validation for well-formed directory names will be performed.
This validation is performed before the validation script and will canonicalize the
directory name before passing it to the validation script.

Note: This property is only visible if "Show installation directory chooser" is selected.
Selection change script

A script that is invoked each time the selection state of a component is changed. If a
component has dependencies that are changed as well, or if entire folders are toggled,
this script will be called repeatedly, once for each installation component whose
selection state is changed. If the <tt>dependency</tt> parameter is <tt>false</tt>, this
tells you that the corresponding installation component belongs to the node that the
user has actually toggled. If a folder is toggled, <tt>dependency</tt> will be <tt>true</tt>
for all installation components.

Bold font [Description]

Use a bold font for the descriptions

Italic font [Description]

Use an italic font for the descriptions

Smaller font [Description]

Use a smaller font for the descriptions
Insufficient disk space warning [Disk Space]

Show a warning message if there is not sufficient disk space for the installation on the
selected target drive.

167

W Create program group

A screen that allows the user to select the default program group. Under Windows, this
screen sets installer variables that influence "Create program group" and "Create start
menu entry" entry actions. Under Unix, the screen asks the user whether and where
symbolic links to launchers should to be created. Under macQS, the screen is not shown.

Applies to: Installer

Properties:

User can disable creation [General]

If the user can disable all program group actions that rely on a default program group,
such as the "Create standard program group action". If the user disables program
group creation, the variable <tt>sys.programGroupDisabled</tt> will be set to
<tt>Boolean.TRUE</tt>.

Initially enabled

If the check box for enabling program group or launcher link creation should be selected
by default.

Note: This property is only visible if "User can disable creation" is selected.
Create symlinks [Unix]

If symbolic links for all relevant launchers (those with "menu integration" enabled)
should be created on UNIX. If this property is deselected, the variable
<tt>sys.programGroupDisabled</tt> will be set to <tt>Boolean. TRUE</tt> in Linux/Unix
installers.

Directory for links

The default value for the directory in which links for all relevant launchers (those with
"menu integration" enabled) will be created on UNIX. The user selection will be saved
to the variable <tt>sys.symlinkDir</tt>.

Note: This property is only visible if "Create symlinks" is selected.
Program group name [Windows]

The defaultvalue for the program group where entries for all relevant launchers (those
with "menu integration" enabled) will be created. If the "Create program group" screen
is present, the user can change this selection. If you leave this property empty, the
links will be created at the top level. The user selection will be saved to the variable
<tt>sys.programGroupName</tt>.

User can change "all users" [Windows]

If the user can override the default value of the "Create for all users" property in the
"Create standard program group" action. The user selection will be saved to the variable
<tt>sys.programGroupAllUsers</tt>.

Initially selected
If the "Create for all users" check box be selected by default.

Note: This property is only visible if "User can change "all users"" is selected.
Show warning if program group exists [Windows]
If selected, a warning will be shown if the selected program group already exists.

168

% File associations

A screen that displays a list of all subsequent file association actions and asks the user
which associations should be made. This screen will not be shown if there are no
corresponding file association actions after this screen.

Applies to: Installer
Properties:

+ Show selection buttons
If selected, the screen will show buttons for selecting and deselecting all file associations.

% Additional confirmations

A screen that displays a list of confirmations as check boxes whose results can be used
in condition expressions for actions. While other types of form components can be added
to this screen, only check boxes and other simple elements are consistent with the
displayed text. For arbitrary forms, use the "Configurable form" screen instead.

Applies to: Installer, Uninstaller
“ Installation

The screen that displays displays the installation progress. Where possible, installation
actions should be added to this screen.

Applies to: Installer
Properties:

* Cancel enabled
If the cancel button should be enabled.

¥ Display information

Ascreen that displays text to the user, either plain text or HTML. In contrast to the "Display
text" screen, all messages on this screen are pre-defined and localized.

Applies to: Installer, Uninstaller
Properties:

* Text source

The source from which the text is loaded. For multi-language installers, the "File" source
is recommended since it is more easily localizable than the direct entry.

+ Text file
The file from which the text is loaded.

169

Note: This property is only visible if "Text source" is set to "File".
Text

The text that is displayed in the screen, either plain text or HTML. For HTML, the value
should start with <tt><html></tt>, otherwise the plain text will be displayed. The
text is displayed in a scrollable text area.

Note: This property is only visible if "Text source" is set to "Direct".
Variable name

Optionally, you can save the actually displayed text to a variable. Enter the variable
name without the installer prefix and the dollar sign. This is useful if you have a localized
license text and want to save the actually displayed text with a "Write text to a file"
action later on.

& Finish

A screen that tells the user that the installation is finished. This screen should be placed
at the end of the installation.

Applies to: Installer

Properties:

Background color for banner

If you specify a custom banner, you might want to adjust the background color of the
banner panel, the default value is suitable for the standard banner. Set to "None" in
order to reset to the default value.

Image for banner

Specify a PNG or GIF image file for your custom banner. Clear to reset to the default
banner.<p>To add a high-resolution image for retina displays, create a file with an
additional <tt>@2x</tt> after the name (e.g. <tt>image.png</tt> and
<tt>image@2x.png</tt>) and the duplicate resolution next to the selected image.

Image anchor
The anchor where the image will be fixed in the banner panel.

% Uninstall Welcome

A screen that welcomes the user to the uninstallation of your application. This screen
should be placed at the beginning of the uninstallation.

Applies to: Uninstaller

Properties:

Background color for banner

If you specify a custom banner, you might want to adjust the background color of the
banner panel, the default value is suitable for the standard banner. Set to "None" in
order to reset to the default value.

170

* Image for banner

Specify a PNG or GIF image file for your custom banner. Clear to reset to the default
banner.<p>To add a high-resolution image for retina displays, create a file with an
additional <tt>@2x</tt> after the name (e.g. <tt>image.png</tt> and
<tt>image@2x.png</tt>) and the duplicate resolution next to the selected image.

+ Image anchor
The anchor where the image will be fixed in the banner panel.

* Uninstallation

The screen that displays displays the uninstallation progress. Where possible, uninstallation
actions should be added to this screen.

Applies to: Uninstaller

% Uninstallation failure

The screen that is displayed if the uninstallation was not completed successfully. Further
information regarding the uninstallation problems is displayed to the user. This screen
is not shown if the uninstallation was completed successfully or if it is placed before the
uninstallation screen. The uninstaller will terminate after showing this screen in case of
failure.

Applies to: Uninstaller
Properties:

* Show directories [General]

Also show initially created directories that could not be deleted. If unchecked, only
undeleted files will be shown.

i Uninstallation success

The screen that is displayed if the uninstallation was completed successfully.
Applies to: Uninstaller
Properties:

+ Background color for banner

If you specify a custom banner, you might want to adjust the background color of the
banner panel, the default value is suitable for the standard banner. Set to "None" in
order to reset to the default value.

* Image for banner

Specify a PNG or GIF image file for your custom banner. Clear to reset to the default
banner.<p>To add a high-resolution image for retina displays, create a file with an

171

additional <tt>@2x</tt> after the name (e.g. <tt>image.png</tt> and
<tt>image@2x.png</tt>) and the duplicate resolution next to the selected image.

* Image anchor
The anchor where the image will be fixed in the banner panel.

172

B.5.6 Installer - Configuring Actions

Actions are configured on the screens & and actions tab [p. 135] .

Please see the list of available actions [p. 175] that come with install4j.

An action performs a configurable unit of work of the installer application.

Actions are attached to screens [p. 154] or they are part of the startup sequence that allows
you to perform actions before the installer or uninstaller is displayed. If any of these actions fails
and has a "Quit on failure" failure strategy, the installer application will not be shown.

Common properties of actions are:

Action elevation type [Privileges]

If the action should run in the elevated helper process.An elevated helper process is available
on Windows and macOS if the process has been started without admin privileges and the
"Request privileges" action has been configured to require full privileges.

Condition expression [Control Flow]

This expression is evaluated to decide whether the action is executed. If the expression or
script returns false, the current action will be skipped. This expression or script should not
have any side-effects, it will be called while another screen is still being displayed.

Rollback barrier [Control Flow]

If the action should be a rollback barrier. When a rollback barrier is completed, none of the
preceding actions will be rolled back. You can use this property to prevent an incomplete
rollback of complex changes or to protect actions from rollback when the user hits "Cancel"
in the post-install phase.

Can be executed multiple times [Control Flow]

If the action can be executed multiple times. If unselected, the action will only be executed
once and do nothing for subsequentinvocations of the containing screen. The default settings
for screens ensure that a screen with actions that cannot be executed multiple times is only
shown once. However, if the "Back button" property is changed of if you skip screens
programmatically, a screen might be shown multiple times.

Failure strategy [Error Handling]

If an action fails (i.e. returns <tt>false</tt>), the installer or uninstaller can continue, quit, or
ask the user what to do. If you select something other than "Continue on failure", you should
enter an error message in the "Error message" property unless the action displays the error
itself.<p>For "Return to the parent screen", no further actions will be executed and the previous
screen will be displayed again. If the action is contained in the "Startup" node, the first screen
will be shown and in unattended mode the application will quit.

Error message [Error Handling]
If the action fails, this error message is displayed to the user, otherwise the action fails silently.

Most often, actions are added to the "Installation" or "Uninstallation" screens. The advantage of
those screens is that they have a progress and status bar that is utilized by actions. If a screen
does not expose a progress interface, the status and progress messages of attached actions are
lost. This is no problem for near-instantaneous actions such as setting an environment variable,
but for time-consuming operations the user should be informed about progress, even if itis only
an indeterminate progress bar. As an alternative to the "Installation” or "Uninstallation" screens,
you can use "Display progress" screens to create additional installation phases.

173

Some actions have an "affinity" to a particular screen and will suggest to add themselves to
that screen, such as the actions in the "Final options" category which would like to go to the
"Finish" screen. However, this is only a suggestion to guide you for the most common use case.

Some actions have an associated screen that allows the user to modify the behavior of the
action. For example, the "Install a service" action has a corresponding "Services" screen that
allows the user to decide whether the service should be installed and started on bootup. If such
a relationship exists, a corresponding notification is displayed after adding an action.

174

B.5.7 Installer - Available Actions

Category: Control

¥ Change cancel button state

Changes the visibility and the enabled state of the cancel button. This action works in
GUI mode as well as in unattended mode when the <tt>-splash</tt> option has been
passed on the command line and the simple unattended progress dialog with a cancel
button is shown.

Applies to: Installation, Uninstallation
Properties:

* Button state
The new button state for the cancel button.

% Run script

Runs a custom script. The script must return a boolean value. If it returns false, the
installation will be canceled.

Applies to: Installation, Uninstallation
Properties:

+ Script [General]

The script that will be executed. The script must return a boolean value. If it returns
false, the installation will be canceled.

+ Optional Rollback Script [General]
The script that will be executed in case of a rollback. The return type is void.

i set a variable

Sets a variable by running a custom script. The script can return any
<tt>java.lang.Object</tt>.

Applies to: Installation, Uninstallation
Properties:

+ Script [General]
The script that will be executed. The script can return any <tt>java.lang.Object</tt>.
* Variable name [General]

The name of the variable that will be set. Enter the variable without the installer prefix
and the dollar sign.

175

Only if undefined [General]

The variable will only be set if it was previously undefined. This is useful for variables
that your user can pass via <tt>-V</tt> or <tt>-varfile</tt> at the command line.

Fail if value is null [General]
If selected, the action will fail if a null value is returned from the script.
Register for response file [General]

If selected, the variable will be saved to the response file
<tt>.install4j/response.varfile</tt> that is created automatically when the installer
exits.This is equivalent to calling
<tt>context.registerResponseFileVariable(variableName)</tt> in a script.<p>If the
variable is present in the response file, the "Load response file" action in the startup
node of the uninstaller will make this variable available in the uninstaller.

¥ Set messages

Sets the messages in the progress interface.

Applies to: Installation, Uninstallation

Properties:

Use status [General]

If the status message should be set.
Status message

The status message.

Note: This property is only visible if "Use status" is
selected.

Use detail [General]

If the detail message should be set.
Detail message

The detail message.

Note: This property is only visible if "Use detail" is
selected.

¥ set the progress bar

Change the value of the progress bar or set it to indeterminate mode.

Applies to: Installation, Uninstallation

Properties:

176

Type of change

Change the progress bar either to a percentage value, add progress, set it to
indeterminate mode, start a timer, or return from indeterminate mode and show the
last percentage value.

Percent value

The progress value from 0 to 100. This property is only used when a percentage value
is set or added.

Note: This property is only visible if "Type of change" is set to "Set percentage value".
Timer period

The time in milliseconds for one percent. This property is only used when the timer is
started.

Note: This property is only visible if "Type of change" is set to "Start a timer".
Timer maximum value

The maximum progress value to be set by the timer. This property is only used when
the timer is started.

Note: This property is only visible if "Type of change" is set to "Start a timer™".

i Sleep

Sleep a specified number of milliseconds. This is useful to ensure that a progress screen
is displayed for at least a certain period of time.

Applies to: Installation, Uninstallation

Properties:

Sleep time
The sleep time in milliseconds.

Category: Desktop integration

T Add a desktop link

Create a link on the desktop to an installed executable or file. This action will be
automatically reverted by the 'Uninstall files' action.

Applies to: Installation

Properties:

Target file

The installed file or executable for which a link will be created on the desktop
Name

The name of the desktop icon

177

+ Arguments
Optional arguments to the executable for Windows and Unix.
* lcon file [Unix]

An optional image file (*.png) for the entry. If empty, no icon will be written to the
desktop file.

* Create for all users [Windows]

If the desktop link should be created for all users. If unselected, the link will be created
for the current user only. If a "Create program group" screen is present, the "Create
shortcuts for all users" check box will override this property.

* Icon file [Windows]
An optional different icon (*.ico) for the link on Windows.
* Tooltip description [Windows]
An optional description for Windows that will be displayed in the tooltip.
+ Start in [Windows]
An optional working directory for the started executable.
* Run as administrator [Windows]
If the desktop link should be always run as administrator.
+ Target is Single Bundle [macOS]

If selected and the media set is a single bundle installer, the desktop icon will point to
the bundle instead.

% Add a startup executable on Windows and macOS

Add an installed executable to the startup folder on Windows or to the login items on
macOS so that it will be started automatically when the user logs in. This action will be
automatically reverted by the 'Uninstall files' action.

Applies to: Installation
Properties:

+ Startup executable

The executable that should be started when the user logs in
* Entry name [Windows]

The name of the entry in the startup folder
* Create for all users [Windows]

If the startup item should be created for all users. If unselected, the link will be created
for the current user only.

+ Set the hide flag [macOS]
If the hide flag should be set for the login item.

i Add an executable to the dock

178

Add an installed executable to the dock on macOS. This action will be automatically
reverted by the 'Uninstall files' action.

Applies to: Installation
Properties:

+ Executable
The executable that should be added to the dock.

i Create a Windows URL link

Create a URL link on Windows. This is a special text file with a .url link that is supported
by the Windows desktop, start menu and explorer. To create links in the start menu, the
"Create program group" action can be used as well. This action will be automatically
reverted by the 'Uninstall files' action.

Applies to: Installation
Properties:

+ URL

The URL that should be linked to. If no protocol is given, <tt>http://</tt> is assumed.
+ Target file

The path of the URL link, including the name of the link, but without the <tt>.url</tt>

extension. To «create a link on the desktop, prefix with
<tt>${installer:sys.desktopDir}</tt>
+ lcon file

An optional icon file (*.ico) for the URL link. If empty, the default icon will be used.
+ Use favicon

If the favicon file of the URL domain should be used. This only works if the icon has
been cached by Internet Explorer.

i Create a file association

Create an association between a file extension and a launcher, so that the launcher is
invoked when the user double-clicks a file with the selected extension. <p>0On Windows,
if the application has not yet been started, the arguments to the main method will contain
the file name. Subsequent invocations and all invocations on macOS can be intercepted
with the <tt>com.install4j.api.launcher.StartupNotification</tt> class. Only effective on
Windows and macOS. This action will be automatically reverted by the 'Uninstall files'
action.

Applies to: Installation

Properties:

179

* File extension [General]

The file extension for which the file association should be created. Must not include
the leading dot.

+ Description [General]

A description that is presented to the user as the text next to the corresponding
checkbox in the "File associations" screen.

* Launcher [General]
The launcher that will be invoked when the file association is invoked by the user.
+ Selected [General]
If the file association is selected in the "File associations" screen.
+ Execute on Windows [Windows]
If the file association should be performed on Windows.
* Icon file for Windows [Windows]

An optional icon file (*.ico) for the file association on Windows. If empty, a defaulticon
will be used.

+ Additional parameters [Windows]

Optional additional parameters that will be passed to the executable in front of the
file to be opened.

* Execute on macOS [macOS]
If the file association should be performed on macOS.
* Icon file for macOS [macOS]

An optional icon file (*.icns) for the file association on macOS. If empty, a default icon
will be used.

* Role [macOS]
The role the application can take for this file type.
* Restart Finder [macOS]

If true the Finder should be restarted at the end of the installation. This might be
necessary for the icon (and sometimes the association itself) to be picked up
immediately. Note that users might find this restart disruptive. Additionally, if you
launch an application at the end of the installation, it can be hidden by Finder windows.

¥ Create a quick launch icon

Create a link in the quick launch section of the Windows task bar to an installed executable
or file. This action will be automatically reverted by the 'Uninstall files' action.

Applies to: Installation
Properties:

+ Target file
The installed file or executable for which a link will be created on the quick launch bar

180

+ Description
The description that will be displayed in the tool tip
* lIcon file

An optional icon file (*.ico) for the quick launch link. If empty, the default icon will be
used.

* Arguments

Optional arguments that should be passed to the executable when started with the
quick launch link.

* Create program group

Create standard program group entries on Windows and freedesktop.org compatible
UNIX desktops. This action will be automatically reverted by the 'Uninstall files' action.

Applies to: Installation
Properties:

« Add default launcher links

If generated launchers are placed into the program group automatically with their
default menu integration properties. You can rename and move the default menu
integrations in the program group entries tree. If you delete them, the default menu
integration can be enabled again on the "Executable info->Menu integration" step of
the launcher wizard.

+ Program group entries

<p>0On Windows, the entries in the program group tree will be created in the start
menu by the installer. </p><p>The control buttons allow you to modify the contents
of the list of program group entries. You can add new sub-folders and new file links.In
the edit dialog, you have to fill in the <emph>display name</emph> of the program
group entry.as wellas the <emph>target file</emph> for the of the program group
link. This has to be a file or directory relative to the distribution root directory. Please
note thatif you select a directory as the target, it will not "fly out" in the program group,
but a separate explorer window will be opened if the user clicks on it. To display all
files in a directory, please add all of them as separate program group
entries.</p><p>0Optionally, you can specify an <emph>icon</emph> that is used for
this program group entry. The icon file must point to an <screen>*.ico</screen> file.
If the file name is relative, it is interpreted as relative to the project file. If you do not
specify an icon, the default icon is determined by the system.</p>

* Create symlinks [Unix]

If symbolic links for all relevant launchers (those with "menu integration" enabled)
should be created on UNIX.

+ Directory for links

The directory in which links for all relevant launchers (those with "menu integration”
enabled) will be created on UNIX.

Note: This property is only visible if "Create symlinks" is selected.

181

Fail if symlinks are not created

If selected, the action will fail if the symlinks cannot be created. Usually this is due to
missing write permissions which is a common condition, so that the action does not
fail by default.

Note: This property is only visible if "Create symlinks" is selected.

Create menu entries [Unix]

If menu entries should be created on freedesktop.org (KDE, GNOME) systems.
Application categories

The freedesktop.org (KDE, GNOME) application categories used to determine the best
place in the applications menu. Multiple categories can be separated by semicolons.

Note: This property is only visible if "Create menu entries" is selected.
Program group name [Windows]

The default value for the program group where the links will be created. If you leave
this property empty, the links will be created at the top level.

Create for all users [Windows]

If the program group is created for all users or only for the current user. If the
<tt>sys.programGroupAllUsers</tt> is set (typically by the "Create program group"
screen), the variable value will override this property.

Add uninstaller [Windows]

If the uninstaller should be added to the program group.
Uninstaller menu name

The name in the program group that will be used for the uninstaller.

Note: This property is only visible if "Add uninstaller" is selected.

¥ Create start menu entry

Create a single start menu entry on Windows and Unix. For creating multiple program
group entries, please see the "Create program group" action. This action will be
automatically reverted by the 'Uninstall files' action.

Applies to: Installation

Properties:

Entry name

The entry name in the start menu. On Windows, the name can contain sub-folders
with backslashes.

Target file
The installed file or executable for which a start menu entry will be created
Arguments

Optional arguments that should be passed to the executable when started with this
entry.

182

+ Application categories [Unix]

The freedesktop.org (KDE, GNOME) application categories used to determine the best
place in the applications menu. Multiple categories can be separated by semicolons.

* Icon file [Unix]

An optional image file (*.png) for the entry. If empty, no icon will be written to the
desktop file.

* Icon file [Windows]

An optional icon file (*.ico) for the entry. If empty, the default icon will be used.
* Create for all users [Windows]

If the program group is created for all users or only for the current user.
* Program group name [Windows]

The default value for the program group where the link will be created. If you leave
this property empty, the link will be created at the top level.

+ Start in [Windows]

An optional working directory for the started executable.
* Run as administrator [Windows]

If the executable should be always run as administrator.

¥ Register Add/Remove item

Register an Add/Remove item in the Windows software registry. This action will be
automatically reverted by the 'Uninstall files' action.

Applies to: Installation
Properties:

* Item name
The name of the item that is displayed in the Windows software registry.
* lcon source

The source of the icon in in Windows software registry. You can use the icon of the
installer or specify a custom .ico file.

* Icon file
An optional icon file (*.ico).

Note: This property is only visible if "lcon source" is set to "Custom icon".

Category: File operations

% Add Windows file rights

Adds access rights to files and directories on Windows.<p>If a helper process with elevated
privileges has been created by the "Request privileges" action, this action is pushed to

183

the helper process. Please see the help topic on "Elevation Of Privileges" for more
information.

Applies to: Installation, Uninstallation

Properties:

Files and directories

The files and directories whose rights should be modified. In the edit dialog you can
choose files from the distribution tree or enter them manually. Files and directories
that are installer variables with array values (e.g. String[], Object[] or File[]) are expanded
as separate files and directories, this allows you to build a variable length list of files
and directories at runtime. The rights for a directory will be inherited by all
subdirectories and their contained files.

Trustee [Rights]

The trustee for which the access right should be granted.

SID or Account Name

The SID in String form or the account name for which the access right should be granted.
Note: This property is only visible if "Trustee" is set to "SID or Account Name".
Read [Rights]

The right to read the object.

Write [Rights]

The right to write to the object.

Execute [Rights]

The right to execute the object.

All [Rights]

All available rights.

1 Copy files and directories

Copy files and directories. This action will be automatically reverted by the 'Uninstall files'
action.

Applies to: Installation, Uninstallation

Properties:

Destination directory

The destination directory. If you have selected a single source file, this can also be a
file rather than a directory. The destination directory will not be created, it must exist
before this action is executed, otherwise it will be treated as a destination file.

Source files or directories

The files and directories to be copied. In the edit dialog you can choose files from the
distribution tree or enter them manually. Files and directories that are installer variables
with array values (e.g. String[], Object[] or File[]) are expanded as separate files and

184

directories, this allows you to build a variable length list of files and directories at
runtime.

+ File filter script

The file filter script is invoked for each file that is about to be processed by this action.
The script is not invoked for directories. You can return <tt>true</tt> if the file should
be processed or <tt>false</tt> if it should be excluded from processing.

+ Directory filter script

The directory filter script is invoked for each directory that is about to be processed
by this action. The script is not invoked for files. You can return <tt>true</tt> if the
directory should be processed or <tt>false</tt> if it should be excluded from processing.

+ Show progress

If selected, and a progress bar is available on the current screen, the action will show
its progress in the progress bar.

+ Show file names

If selected, the names of the files that are processed will be shown during the
installation.

Note: This property is only visible if "Show progress" is selected.
+ Resolve relative file in

A relative destination file can be resolved against the installation directory or against
the root of the temporarily extracted archive.

+ Resolve relative files in

Relative files can be resolved against the installation directory or against the root of
the temporarily extracted archive.

+ Overwrite mode

How to handle an existing destination file.
* Uninstall mode

The mode how the uninstaller should handle the files created with this action.
* Access mode [Unix]

The UNIX access mode for files.
+ Directory access mode [Unix]

The UNIX access mode for directories.
+ Shared file [Windows]

If created files should be registered as a shared files.
+ Delay if necessary [Windows]

If selected and a destination file cannot be replaced, the operation will be scheduled
for the next reboot. The context method <tt>isRebootRequired()</tt> will return
<tt>true</tt>in this case.

+ Trigger reboot if required [Windows]

If selected and the operation is delayed until reboot, the user will be asked for a reboot
automatically at the end of installation.

¥ Create a symbolic link

185

Creates a symbolic link. This action has no effect on Windows.

Applies to: Installation, Uninstallation

Properties:

File
The file or directory that the symbolic link should point to.
Link file

The link file that should be created. Relative files will be resolved relative to the
installation directory.

Remove on uninstall
If the link should be deleted by the 'Uninstall files' action in the uninstaller.

i Delete files and directories

Deletes files and directory. Directories can be deleted recursively.

Applies to: Installation, Uninstallation

Properties:

Files and directories

The files and directories to be deleted. In the edit dialog you can choose files from the
distribution tree or enter them manually. Files and directories that are installer variables
with array values (e.g. String[], Object[] or File[]) are expanded as separate files and
directories, this allows you to build a variable length list of files and directories at
runtime.

File filter script

The file filter script is invoked for each file that is about to be processed by this action.
The script is not invoked for directories. You can return <tt>true</tt> if the file should
be processed or <tt>false</tt> if it should be excluded from processing.

Directory filter script

The directory filter script is invoked for each directory that is about to be processed
by this action. The script is not invoked for files. You can return <tt>true</tt> if the
directory should be processed or <tt>false</tt> if it should be excluded from processing.

Recursive
If selected, the operation will be performed recursively on directories.
Backup for rollback

If selected, a backup of the files to be deleted will be made and restored in case of
rollback.

i Move files and directories

186

Moves files and directories. The newly created files are subject to removal by the 'Uninstall
files' action.

Applies to: Installation, Uninstallation

Properties:

Destination directory

The destination directory. If you have selected a single source file, this can also be a
file rather than a directory. The destination directory will not be created, it must exist
before this action is executed, otherwise it will be treated as a destination file.

Source files or directories

The files and directories to be moved. In the edit dialog you can choose files from the
distribution tree or enter them manually. Files and directories that are installer variables
with array values (e.g. String[], Object[] or File[]) are expanded as separate files and
directories, this allows you to build a variable length list of files and directories at
runtime.

File filter script

The file filter script is invoked for each file that is about to be processed by this action.
The script is not invoked for directories. You can return <tt>true</tt> if the file should
be processed or <tt>false</tt> if it should be excluded from processing.

Directory filter script

The directory filter script is invoked for each directory that is about to be processed
by this action. The script is not invoked for files. You can return <tt>true</tt> if the
directory should be processed or <tt>false</tt> if it should be excluded from processing.

Show progress

If selected, and a progress bar is available on the current screen, the action will show
its progress in the progress bar.

Show file names

If selected, the names of the files that are processed will be shown during the
installation.

Note: This property is only visible if "Show progress" is selected.
Resolve relative file in

A relative destination file can be resolved against the installation directory or against
the root of the temporarily extracted archive.

Resolve relative files in

Relative files can be resolved against the installation directory or against the root of
the temporarily extracted archive.

Overwrite mode

How to handle an existing destination file.

Uninstall mode

The mode how the uninstaller should handle the files created with this action.
Access mode [Unix]

The UNIX access mode for files.

187

Directory access mode [Unix]

The UNIX access mode for directories.

Shared file [Windows]

If created files should be registered as a shared files.
Delay if necessary [Windows]

If selected and a destination file cannot be replaced, the operation will be scheduled
for the next reboot. The context method <tt>isRebootRequired()</tt> will return
<tt>true</tt> in this case.

Trigger reboot if required [Windows]

If selected and the operation is delayed until reboot, the user will be asked for a reboot
automatically at the end of installation.

i set the UNIX access mode of files and directories

Sets the UNIX access mode of files and directories. This action has no effect on Windows.

Applies to: Installation, Uninstallation

Properties:

Files and directories

The files and directories that the access mode should be set for. In the edit dialog you
can choose files from the distribution tree or enter them manually. Files and directories
that are installer variables with array values (e.g. String[], Object[] or File[]) are expanded
as separate files and directories, this allows you to build a variable length list of files
and directories at runtime.

File filter script

The file filter script is invoked for each file that is about to be processed by this action.
The script is not invoked for directories. You can return <tt>true</tt> if the file should
be processed or <tt>false</tt> if it should be excluded from processing.

Directory filter script

The directory filter script is invoked for each directory that is about to be processed
by this action. The script is not invoked for files. You can return <tt>true</tt> if the
directory should be processed or <tt>false</tt> if it should be excluded from processing.

Recursive
If selected, the operation will be performed recursively on directories.
Mode

The mode to be set. This can be an octal mode like <tt>750</tt> or a symbolic mode
that can be used with <tt>chmod</tt>, like <tt>u+x</tt>. For the permission flags in
the symbolic mode, only <tt>rwxugo</tt> are supported.

Perform on
The type of file this action should be performed on.

i set the modification time of files

188

Sets the modification time of files.

Applies to: Installation, Uninstallation

Properties:

Files and directories

The files and directories that the modification time should be set for. In the edit dialog
you can choose files from the distribution tree or enter them manually. Files and
directories that are installer variables with array values (e.g. String[], Object[] or File[])
are expanded as separate files and directories, this allows you to build a variable length
list of files and directories at runtime.

File filter script

The file filter script is invoked for each file that is about to be processed by this action.
The script is not invoked for directories. You can return <tt>true</tt> if the file should
be processed or <tt>false</tt> if it should be excluded from processing.

Directory filter script

The directory filter script is invoked for each directory that is about to be processed
by this action. The script is not invoked for files. You can return <tt>true</tt> if the
directory should be processed or <tt>false</tt> if it should be excluded from processing.

Recursive

If selected, the operation will be performed recursively on directories.
Time

The new modification time.

i set the owner of files and directories

Sets the owner and optionally the group of files and directories. This action has no effect
on Windows.

Applies to: Installation, Uninstallation

Properties:

Files and directories

The files and directories that the owner should be set for. In the edit dialog you can
choose files from the distribution tree or enter them manually. Files and directories
that are installer variables with array values (e.g. String[], Object[] or File[]) are expanded
as separate files and directories, this allows you to build a variable length list of files
and directories at runtime.

File filter script

The file filter script is invoked for each file that is about to be processed by this action.
The script is not invoked for directories. You can return <tt>true</tt> if the file should
be processed or <tt>false</tt> if it should be excluded from processing.

189

Directory filter script

The directory filter script is invoked for each directory that is about to be processed
by this action. The script is not invoked for files. You can return <tt>true</tt> if the
directory should be processed or <tt>false</tt> if it should be excluded from processing.
Recursive

If selected, the operation will be performed recursively on directories.

Owner

The owner to be set. If you want to set the group, too, please add it with a colon
(example: <tt>user:group</tt>). To only change the group, prefix the group name with
a colon (example: <tt>:group</tt>).

Category: Final options

i Execute launcher

Execute an installed launcher and return immediately. This action is intended to be placed
on the "Finish" screen. A confirmation can be added automatically to the "Finish"
screen.<p>If the main installation process has been elevated by the "Request privileges"
action, this action is pushed to the original process with limited rights. Please see the
help topic on "Elevation Of Privileges" for more information.

Applies to: Installation

Properties:

Launcher
The launcher that will be executed. Service launchers are not shown.
Arguments

The arguments passed to the launcher. Please note that in the edit dialog, each
argument starts on a new line. Arguments that are installer variables with array
values (e.g. String[], Object[] or File[]) are expanded as separate arguments, this allows
you to build a variable length list of arguments at runtime.

% Open PDF viewer

Displays a PDFfile in a cross-platform PDF viewer. A separate window will be opened.

Applies to: Installation

Properties:

PDF file

The PDF file that should be displayed.
Dialog title

The title of the PDF viewer dialog.

190

% Reboot computer

Reboot the computer on Windows and macOS. This action will trigger a reboot that takes
place at the end of installation or uninstallation. By default, the user will be asked whether
to reboot or not.

Applies to: Installation, Uninstallation
Properties:

+ Ask user
Ask the user whether the reboot should be performed or not.

1 Show URL

Show a URL in the default browser. This action is intended to be placed on the "Finish"
or the "Uninstallation success" screen.<p>If the main installation process has been
elevated by the "Request privileges" action, this action is pushed to the original process
with limited rights. Please see the help topic on "Elevation Of Privileges" for more
information.

Applies to: Installation, Uninstallation
Properties:

« URL
The URL that will be shown.

1 Show file

Show a file with the associated application. Usually, a text file or an HTML file is
appropriate. This action is intended to be placed on the "Finish" screen. A confirmation
can be added automatically to the "Finish" screen.<p>If the main installation process has
been elevated by the "Request privileges" action, this action is pushed to the original
process with limited rights. Please see the help topic on "Elevation Of Privileges" for more
information.

Applies to: Installation
Properties:

* File
The file that will be shown.

Category: HTTP and network

i Download file

191

Download a URL and save it to a file

Applies to: Installation, Uninstallation

Properties:

URL

The URL from which the file should be downloaded. The URL must start with
<tt>http://</tt> or <tt>https://</tt>. If you add a query string, it must already be URL
encoded.

Target file
The file to which the downloaded URL will be saved.
Request headers

A list of name-value pairs that should be set as additional headers for the request.<p>
Request headers that are installer variables with array values (e.g. String[], Object[] or
File[]) are expanded as separate request headers, this allows you to build a variable
length list of request headers at runtime.

Retry if interrupted
If selected, ask the user to retry if a successfully started download is interrupted.
Check for md5sums

If selected, the action will try to download a file named <tt>md5sums</tt> from either
the directory of the above URL or from the optional URL given below. If the download
is successful and the file contains an entry for the target file name, it will be checked.
If the MD5 checksums do not match and the "Silent failure" option is not selected, a
dialog will be shown that offers the possibility to retry the download.

Optional md5sums URL
An optional URL for the <tt>md5ums</tt> file. If specified, only this URL will be used.

Note: This property is only visible if "Check for md5sums" is selected.
Silent failure

If selected, the action will failimmediately if a mismatch in the MD5 checksums occurs.
Otherwise the user will be presented with a dialog box that explains the failure and
offers the possibility to retry the download.

Note: This property is only visible if "Check for md5sums" is selected.
Show progress

If selected, and a progress bar is available on the current screen, the action will show
its progress in the progress bar.

Show file name

If selected, the name of the downloaded file and the target directory will be displayed.
This setting has no effect if "Show progress" is not selected.

Note: This property is only visible if "Show progress" is selected.

Delete downloaded file on exit

If selected, the downloaded file will be deleted when the installer application terminates.
Ask for proxy if necessary [Error Handling]

At first, the connection is attempted with the proxy information that is set for the
default browser. If that fails, and this property is selected, a proxy dialog will be shown

192

where the user can configure the proxy that should be used to connect to the web
server.

* Network failure script [Error Handling]

Ascriptthatis executed if the HTTP connection fails in such a way, that the proxy dialog
would have to be shown. If you return <tt>ErrorHandlingMode.IGNORE</tt>, the regular
proxy or failure handling will proceed, if you return
<tt>ErrorHandlingMode.CANCEL</tt>, the action will fail immediately. If you can take
corrective action in the script, you can return <tt>ErrorHandlingMode.RETRY</tt> to
make the same HTTP request again. However, you have to take special care not to
enter an infinite loop. Typically, there should be user input before you retry and the
user should be given the option to cancel.<p>The script is only executed for actual
network failures, and not if the server or the proxy connection require authentication.

* Accept all SSL certificates [Error Handling]

If the protocol of the URL starts with "https" and this property is selected, the SSL
certificate will not be checked for validity. This is only recommended for testing purposes
when working with self-signed certificates.

+ Connect timeout [Error Handling]

The timeout for establishing the socket connection in milliseconds. A timeout of zero
is interpreted as an infinite timeout.

+ Read timeout [Error Handling]

The timeout for reading data from the socket connection in milliseconds. A timeout
of zero is interpreted as an infinite timeout.

+ Show error message [Error Handling]
Show a default error message if the download fails.

L HTTP request

Make an HTTP request to a specified URL. All common HTTP request methods are
supported for REST calls. For mime types starting with <tt>text</tt> or containing "charset"
information, the response body can be saved to an installer variable. To download large
files, use the "Download file" action instead.<p>The action will succeed if a HTTP response
code in the 2xx range is received, otherwise it will fail. You can save the response code
to a variable to inspect it in a later action.

Applies to: Installation, Uninstallation
Properties:

+ Ask for proxy if necessary [Error Handling]

At first, the connection is attempted with the proxy information that is set for the
default browser. If that fails, and this property is selected, a proxy dialog will be shown
where the user can configure the proxy that should be used to connect to the web
server.

* Network failure script [Error Handling]

Ascriptthatis executed if the HTTP connection fails in such a way, that the proxy dialog
would have to be shown. If you return <tt>ErrorHandlingMode.IGNORE</tt>, the regular
proxy or failure handling will proceed, if you return

193

<tt>ErrorHandlingMode.CANCEL</tt>, the action will fail immediately. If you can take
corrective action in the script, you can return <tt>ErrorHandlingMode.RETRY</tt> to
make the same HTTP request again. However, you have to take special care not to
enter an infinite loop. Typically, there should be user input before you retry and the
user should be given the option to cancel.<p>The script is only executed for actual
network failures, and not if the server or the proxy connection require authentication.

Accept all SSL certificates [Error Handling]

If the protocol of the URL starts with "https" and this property is selected, the SSL
certificate will not be checked for validity. This is only recommended for testing purposes
when working with self-signed certificates.

Connect timeout [Error Handling]

The timeout for establishing the socket connection in milliseconds. A timeout of zero
is interpreted as an infinite timeout.

Read timeout [Error Handling]

The timeout for reading data from the socket connection in milliseconds. A timeout
of zero is interpreted as an infinite timeout.

URL [Request]

The URL for the HTTP request. The URL must start with <tt>http://</tt> or
<tt>https://</tt>. If you add a query string, it must already be URL encoded.<p>To post
a query string with URL-encoded key-value pairs, use the "Form data" property instead
of adding the query string here.

HTTP request method [Request]

The request method for the HTTP protocol can be one of GET, POST, HEAD, OPTIONS,
PUT, DELETE, TRACE. For POST and PUT, the values entered in the "Form data" property
are transmitted in the HTTP message body with the mime type
"application/x-www-form-urlencoded". For other request methods, the data is appended
as a query string to the URL.

Custom request body

If selected, a custom request body is sent. For form data, use the "Form data" property
instead. If both form data and a custom request body are present, the form data is
appended to the URL.

Note: This property is only visible if "HTTP request method" is set to "POST".
Content type
The content type of the request body. For JSON, use <tt>application/json</tt>.

Note: This property is only visible if "Custom request body" is selected.
Request body
The request body as a string.

Note: This property is only visible if "Custom request body" is selected.
Form data [Request]

A list of key-value pairs that should be transmitted with this request. Depending on
the request method, they are either appended as a query string to the URL or
transmitted in the HTTP message body.<p> Key-value pairs that are installer variables
with array values (e.g. String[], Object[] or File[]) are expanded as separate key-value
pairs, this allows you to build a variable length list of key-value pairs at runtime.

194

Request headers [Request]

Alist of name-value pairs that should be set as additional headers for the request.<p>
Request headers that are installer variables with array values (e.g. String[], Object[] or
File[]) are expanded as separate request headers, this allows you to build a variable
length list of request headers at runtime.

Perform rollback request [Request]

If selected, a request is performed in case of a rollback. You can configure the rollback
request with the child properties. All other properties, such as error handling are
shared with the regular request.

Rollback URL

The URL for the rollback request. The URL must start with <tt>http://</tt> or
<tt>https://</tt>. If you add a query string, it must already be URL encoded.

Note: This property is only visible if "Perform rollback request" is selected.
Rollback HTTP request method

The request method for the HTTP protocol can be one of GET, POST, HEAD, OPTIONS,
PUT, DELETE, TRACE. For POST and PUT, the values entered in the "Form data" property
are transmitted in the HTTP message body with the mime type
"application/x-www-form-urlencoded". For other request methods, the data is appended
as a query string to the URL.

Note: This property is only visible if "Perform rollback request" is selected.
Custom request body

If selected, a custom request body is sent. For form data, use the "Form data" property
instead. If both form data and a custom request body are present, the form data is
appended to the URL.

Note: This property is only visible if "Rollback HTTP request method" is set to "POST".
Content type
The content type of the request body. For JSON, use <tt>application/json</tt>.

Note: This property is only visible if "Custom request body" is selected.
Request body
The request body as a string.

Note: This property is only visible if "Custom request body" is selected.
Rollback form data

A list of key-value pairs that should be transmitted with this request. Depending on
the request method, they are either appended as a query string to the URL or
transmitted in the HTTP message body.<p> Key-value pairs that are installer variables
with array values (e.g. String[], Object[] or File[]) are expanded as separate key-value
pairs, this allows you to build a variable length list of key-value pairs at runtime.

Note: This property is only visible if "Perform rollback request" is selected.
Variable name for response body [Response]

Optionally, you can enter a variable name that will be set with the text of the response
body as an instance of <tt>java.lang.String</tt>. The variable value will not be written
to the log file.Enter the variable without the installer prefix and the dollar sign.<p>The
variable will not be set if the mime type does not start with <tt>text/</tt> or contain
"charset" information.

195

Variable name for response code [Response]

Optionally, you can enter a variable name that will be set with the response code as
aninstance of <tt>java.lang.Integer</tt>. Enter the variable without the installer prefix
and the dollar sign.

Variable name for response headers [Response]

Optionally, you can enter a variable name that will be set with the response headers
as an instance of <tt>java.util.Map</tt>. The keys in the map are the header names,
and the values are instances of <tt>java.util.List&It;String></tt> with the header
values. The variable value will not be written to the log file.Enter the variable without
the installer prefix and the dollar sign.

% Upload file

Upload a file to an HTTP server with a POST request.

Applies to: Installation, Uninstallation

Properties:

File
The file that will be uploaded.
URL

The URL to which the file should be uploaded. The URL must start with <tt>http://</tt>
or <tt>https://</tt>. If you add a query string, it must already be URL encoded.

Request headers

Alist of name-value pairs that should be set as additional headers for the request.<p>
Request headers that are installer variables with array values (e.g. String[], Object[] or
File[]) are expanded as separate request headers, this allows you to build a variable
length list of request headers at runtime.

Retry if interrupted
If selected, ask the user to retry if a successfully started upload is interrupted.
Show progress

If selected, and a progress bar is available on the current screen, the action will show
its progress in the progress bar.

Show file name

If selected, the name of the uploaded file and the target directory will be displayed.
This setting has no effect if "Show progress" is not selected.

Note: This property is only visible if "Show progress" is selected.
Ask for proxy if necessary [Error Handling]

At first, the connection is attempted with the proxy information that is set for the
default browser. If that fails, and this property is selected, a proxy dialog will be shown
where the user can configure the proxy that should be used to connect to the web
server.

196

Network failure script [Error Handling]

Ascriptthatis executed if the HTTP connection fails in such a way, that the proxy dialog
would have to be shown. If you return <tt>ErrorHandlingMode.IGNORE</tt>, the regular
proxy or failure handling will proceed, if you return
<tt>ErrorHandlingMode.CANCEL</tt>, the action will fail immediately. If you can take
corrective action in the script, you can return <tt>ErrorHandlingMode.RETRY</tt> to
make the same HTTP request again. However, you have to take special care not to
enter an infinite loop. Typically, there should be user input before you retry and the
user should be given the option to cancel.<p>The script is only executed for actual
network failures, and not if the server or the proxy connection require authentication.

Accept all SSL certificates [Error Handling]

If the protocol of the URL starts with "https" and this property is selected, the SSL
certificate will not be checked for validity. This is only recommended for testing purposes
when working with self-signed certificates.

Connect timeout [Error Handling]

The timeout for establishing the socket connection in milliseconds. A timeout of zero
is interpreted as an infinite timeout.

Read timeout [Error Handling]

The timeout for reading data from the socket connection in milliseconds. A timeout
of zero is interpreted as an infinite timeout.

3 Wait for HTTP server

Wait until an HTTP or HTTPS port becomes available. This is useful if you start a server,
for example with a "Start a service" action, and need to wait until the server is operational
before proceeding with the installation.

Applies to: Installation, Uninstallation

Properties:

URL

The URL that should be checked. The URL must start with <tt>http://</tt> or
<tt>https://</tt>. If you add a query string, it must already be URL encoded.

Timeout

The timeout in seconds. After this timeout, the action will give up waiting for the HTTP
port and fail. A timeout of 0 or a negative value means that the action will wait
indefinitely for the HTTP port.

Set indeterminate progress

If selected, the progress bar will be set to indeterminate mode while the action is
running. Note that this only has an effect if a progress bar is available on the current
screen.

Accept all response codes

If selected, all response codes returned by the HTTP server will by accepted for the
action to succeed. Otherwise, the action will continue to wait for a 2xx response code.

197

Variable name for response code

If set, the response code will be saved to this installer variable. The variable will only
be set in case of success. If the action fails, it always fails due to the timeout and there
is no associated response code.

1 wait for Socket

Wait until a socket can be connected to. This is useful if you start a non-HTTP server. For
HTTP and HTTPS, use the "Wait for HTTP server" action instead.

Applies to: Installation, Uninstallation

Properties:

URL

The host on which the server socket should be checked. Can be a host name or an IP
address.

Port
The port on which the server socket should be checked.
Timeout

The timeout in seconds. After this timeout, the action will give up waiting for the HTTP
port and fail. A timeout of 0 or a negative value means that the action will wait
indefinitely for the HTTP port.

Set indeterminate progress

If selected, the progress bar will be set to indeterminate mode while the action is
running. Note that this only has an effect if a progress bar is available on the current
screen.

Category: JDBC

¥ Check JDBC connection

Check if a connection can be made to the configured JDBC database. If no connection
can be made, the action will fail. If the action is attached to a form screen that queries a
database location, set its "Error message" property to an appropriate error message and
the "Failure strategy" property to "Return to the parent screen".

Applies to: Installation, Uninstallation

Properties:

Use a custom SQL query

By default, the action executes "select 1 from dual" for Oracle databases and "select
1" for other database. If you would like to use another statement, select this property.

198

+ Custom SQL query

An SQL query that returns at least one row. If the statement fails or of it returns zero
rows, the action will fail.

Note: This property is only visible if "Use a custom SQL query" is selected.
+ JDBC Driver class name [Connection]

The class name of the JDBC driver. The JDBC driver JAR file must be added to the
"Installer->Custom code & Resources" step.

+ JDBC URL [Connection]

The JDBC URL that will be used to connect to the database. For example, to connect
to a MySQL database named "test" and installed locally, the connection string is
<tt>jdbc:mysql://localhost/test</tt>.

* User [Connection]

The user name for connecting to the database. Can be empty if no user name is
required.

+ Password [Connection]
The password for connecting to the database. Can be empty if no password is required.
+ Additional JDBC properties [Connection]

Additional properties for configuring the JDBC driver. Property definitions that are
installer variables with array values (e.g. String[], Object[] or File[]) are expanded as
separate property definitions, this allows you to build a variable length list of property
definitions at runtime.

+ Variable name for error messages [Connection]

The name of the variable that will be set with the error messages that were logged
during the execution of the action. There may be multiple error messages in the order
of occurrence, each error message starts on a new line. If no error occurred, the variable
will be set to the empty string.<p>Enter the variable without the installer prefix and
the dollar sign.

T Execute SQL query

Execute a single SQL query and store the result in an installer variable. If only the first
row is taken, the row value is stored directly, otherwise the variable will contain an instance
of <tt>java.util.List</tt> with the row values. If the query is for a single column, the row
value is the Java object representation of the return type, e.g. <tt>java.lang.String</tt>
for <tt>VARCHAR</tt> or <tt>java.lang.Long</tt> for <tt>INT</tt>.

Applies to: Installation, Uninstallation
Properties:

+ JDBC Driver class name [Connection]

The class name of the JDBC driver. The JDBC driver JAR file must be added to the
"Installer->Custom code & Resources" step.

199

JDBC URL [Connection]

The JDBC URL that will be used to connect to the database. For example, to connect
to a MySQL database named "test" and installed locally, the connection string is
<tt>jdbc:mysql://localhost/test</tt>.

User [Connection]

The user name for connecting to the database. Can be empty if no user name is
required.

Password [Connection]
The password for connecting to the database. Can be empty if no password is required.
Additional JDBC properties [Connection]

Additional properties for configuring the JDBC driver. Property definitions that are
installer variables with array values (e.g. String[], Object[] or File[]) are expanded as
separate property definitions, this allows you to build a variable length list of property
definitions at runtime.

SQL query [SQL execution]

The SQL query. For example, <tt>select count(*) from customers</tt> will return a
single row with a single column. To get the integer result directly in the installer variable,
you also have to select the "Take first row only" property, otherwise a
<tt>List&It;Object></Object></tt> with one element will be stored in the
variable.<p>For queries that return multiple rows, like <tt>select first_name, last_name
from customer</tt>, each row is stored as an instance of <tt>List&It;Object></tt>.
If "Take first row only" is selected, the variable will contain that list, otherwise it will
contain an instance of <tt>List<List&It;Object> ></tt> with the entire table of
the result set.

Take first row only [SQL execution]

If selected, the result will at most consist of a single row. If the result has only one
column, the cell value will be stored directly in the installer variable, otherwise a
<tt>List<Object></Object></tt> with all column values will be stored. Also, if no
row is returned, the installer variable will be set to <tt>null</tt>.<p>If not selected, the
result will be a <tt>List<Object></tt> for a single column and a
<tt>List<List&lIt;Object> ></tt> for multiple columns.

Fail if zero rows returned [SQL execution]

If selected, and zero rows are returned, the action will fail, and the installer variable
will not be changed.

Variable name for result [SQL execution]

The name of the variable that will be set with the result of the query as explained in
the descriptions of the "SQL query" and the "Take first row only" properties. Enter the
variable without the installer prefix and the dollar sign, or leave empty if the error
message should not be saved.

Variable name for error messages [SQL execution]

The name of the variable that will be set with the error messages that were logged
during the execution of the action. There may be multiple error messages in the order
of occurrence, each error message starts on a new line. If no error occurred, the variable
will be set to the empty string.<p>Enter the variable without the installer prefix and
the dollar sign.

200

% Execute SQL script

Execute a single SQL statement or a script of SQL statements.

Applies to: Installation, Uninstallation

Properties:

JDBC Driver class name [Connection]

The class name of the JDBC driver. The JDBC driver JAR file must be added to the
"Installer->Custom code & Resources" step.

JDBC URL [Connection]

The JDBC URL that will be used to connect to the database. For example, to connect
to a MySQL database named "test" and installed locally, the connection string is
<tt>jdbc:mysql://localhost/test</tt>.

User [Connection]

The user name for connecting to the database. Can be empty if no user name is
required.

Password [Connection]
The password for connecting to the database. Can be empty if no password is required.
Additional JDBC properties [Connection]

Additional properties for configuring the JDBC driver. Property definitions that are
installer variables with array values (e.g. String[], Object[] or File[]) are expanded as
separate property definitions, this allows you to build a variable length list of property
definitions at runtime.

Script source [Script Execution]

You can either enter the SQL statements directly in the install4j IDE, or read a file that
contains the SQL script. In both cases, installer variables will be replaced.

SQL script

Either a single SQL statement or a sequence of statements separated by the configured
delimiter. Installer variables will be replaced before the execution. If no delimiter is
found, the entire input is treated as a single SQL statement.

Note: This property is only visible if "Script source" is set to "Direct entry".
SQL script file

A file containing the SQL script, either a single SQL statement or a sequence of
statements separated by the configured delimiter. Installer variables will be replaced
before the execution.The file may also be gzipped (with the Unix gzip command line
utility), the action will then automatically decompress the file on the fly.

Note: This property is only visible if "Script source" is set to "Read from file".
Encoding

The encoding of the file. If you leave this empty the system default will be used.
Common encodings are UTF-8, UTF-16, ISO-8859-1.

Note: This property is only visible if "Script source" is set to "Read from file".

201

Statement delimiter [Script Execution]

A regular expression that separates SQL statements. To match line breaks, enter
<tt>\n</tt>. If the delimited contains characters that have a special meaning in regular
expressions, you have to quote them, like in <tt>\.</tt> for a literal dot.

Commit each statement [Script Execution]

If selected, each SQL statement will be committed separately. Otherwise, the entire
script will be committed at the end. If the script contains a single statement, the setting
has no effect.

Ignore errors [Script Execution]

If selected, errors from single SQL statements will be ignored, and processing will not
be stopped. Otherwise, processing stops at the first error and a database rollback will
be performed unless "Commit each statement" is selected.

Variable name for error messages [Script Execution]

The name of the variable that will be set with the error messages that were logged
during the execution of the action. There may be multiple error messages in the order
of occurrence, each error message starts on a new line. If no error occurred, the variable
will be set to the empty string.<p>Enter the variable without the installer prefix and
the dollar sign.

% JDBC container action

This action allows you to configure connection properties just once and then execute a
list of JDBC actions with the same connection.

Applies to: Installation, Uninstallation

Properties:

JDBC actions
The JDBC actions that should be executed run with the same connection.
JDBC Driver class name [Connection]

The class name of the JDBC driver. The JDBC driver JAR file must be added to the
"Installer->Custom code & Resources" step.

JDBC URL [Connection]

The JDBC URL that will be used to connect to the database. For example, to connect
to a MySQL database named "test" and installed locally, the connection string is
<tt>jdbc:mysql://localhost/test</tt>.

User [Connection]

The user name for connecting to the database. Can be empty if no user name is
required.

Password [Connection]
The password for connecting to the database. Can be empty if no password is required.
Additional JDBC properties [Connection]

Additional properties for configuring the JDBC driver. Property definitions that are
installer variables with array values (e.g. String[], Object[] or File[]) are expanded as

202

separate property definitions, this allows you to build a variable length list of property
definitions at runtime.

Category: Java preference store

¥ Delete a node or key in the Java preference store

Delete an entire package node or a key-value pair in the Java preference store.

Applies to: Installation, Uninstallation

Properties:

Package name

The name of the package node in the preference store that should be deleted or
contains the key-value pair to be deleted. The action does not return an error if this
package node does not exist.<p>For your convenience, install4j replaces "." with "/"
and "_"with "-"in package names to make it possible to use the package syntax rather
than the path syntax. If you do not want these characters to be replaced, you have to
prefix them with a backslash, like "\."

Key

The key that should be deleted. If you leave this empty, the entire package node will
be deleted instead. The action does not return an error if this key does not exist.

Preference root

If you want to delete the node or key-value pair for the current user, all users, or both.
Only if empty

If a node should only be deleted when it contains no sub-nodes or keys.

% Load installer variables from the Java preference store

Load installer variables from the Java preference store that have been previously saved
by the "Save installer variables to the Java preference store" action.

Applies to: Installation, Uninstallation

Properties:

Package name

The name of the package node in the preference store where the installer variables
should be loaded from. By default, this is set to the application ID.<p>For your
convenience, install4j replaces "." with "/" and "_" with "-" in package names to make
it possible to use the package syntax rather than the path syntax. If you do not want
these characters to be replaced, you have to prefix them with a backslash, like "\."

Preference root

If you want to load the installer variables for the current user, all users, or first read
the settings for all users and then override with the user-specific settings.

203

¥ Read a key from the Java preference store

Read the value of a key from the Java preference store and save it to an installer variable.
Only string values can be read.

Applies to: Installation, Uninstallation

Properties:

Package name

The name of the package node in the preference store where the key is located.<p>For
your convenience, install4j replaces "." with "/" and "_" with "-" in package names to
make it possible to use the package syntax rather than the path syntax. If you do not
want these characters to be replaced, you have to prefix them with a backslash, like
Il\.ll

Key
The key whose value should be read.
Use a default value

If selected, a default value will be saved to the variable if the key cannot be found in
the preference store. Otherwise a missing key will result in the failure of the action
and the variable will not be set.

Default value
The default value that will be used if the key cannot be found in the preference store.

Note: This property is only visible if "Use a default value" is selected.
Preference root

If you want to read the value of the key for the current user, all users, or first read the
settings for all users and then override with the user-specific settings.

Variable name

The name of the variable that will be set with the string value. Enter the variable without
the installer prefix and the dollar sign. If the key cannot be found in the preference
store, the variable value will not be set.

¥ save installer variables to the Java preference store

Save installer variables to the Java preference store. This can be used to communicate
installer variables to the uninstaller or to installers with different application IDs.

Applies to: Installation, Uninstallation

Properties:

Package name

The name of the package node in the preference store where the installer variables
should be set. By default, this is set to the application ID.<p>For your convenience,
install4j replaces "." with "/" and "_" with "-" in package names to make it possible to
use the package syntax rather than the path syntax. If you do not want these characters
to be replaced, you have to prefix them with a backslash, like "\."

204

Preference root

If you want to save the installer variables for the current user only or for all users. Due
to access rights it can happen that the system preference registry is not writable, in
that case a fallback to the user specific registry can be tried.

Installer variable names

A list of installer variable names. Just enter the names of the installer variables, not
including the surrounding <tt>${installer:...}</tt> syntax used for variable substitution
in text fields. Variables with value null will be ignored. In the edit dialog, you have to
enter one item per line. Entries that are installer variables with array values (e.g. String[],
Object[] or File[]) are expanded as separate entries, this allows you to build a variable
length list of entries at runtime.

¥ Set a key in the Java preference store

Set a key-value pair in the Java preference store. The package node is created if necessary.
This is the most convenient way to communicate settings to related installers. Only string
values can be set.

Applies to: Installation, Uninstallation

Properties:

Package name

The name of the package node in the preference store where the key-value pair should
be set.<p>For your convenience, install4j replaces "." with "/" and "_" with "-" in package
names to make it possible to use the package syntax rather than the path syntax. If
you do not want these characters to be replaced, you have to prefix them with a
backslash, like "\."

Key

The key for which a value should be set.
Value

The string value that should be set for the key.
Preference root

If you want to set the key for the current user only or for all users. Due to access rights
it can happen that the system preference registry is not writable, in that case a fallback
to the user specific registry can be tried.

Category: Miscellaneous

¥ Add VM options

Adds VM options for a launcher by modifying or creating a <tt>.vmoptions</tt> file or by
changing the Info.plist file. This action will be automatically reverted by the 'Uninstall files'
action.

Applies to: Installation

205

Properties:

Launcher
The launcher that the VM options should be added for.
VM options

The unquoted options that should be added. Note that system property definitions
must be prefixed with -D just as on the command line, e.g. -Dkey=value. In the edit
dialog, you have to enter one item per line. VM options that are installer variables with
array values (e.g. String[], Object[] or File[]) are expanded as separate VM options, this
allows you to build a variable length list of VM options at runtime.

Target file on macOS [macOS]

For application bundles on macOS, there are two locations for .vmoptions files. One
in the "Contents" directory inside the application bundle, and the other next to the
application bundle. Both files are read by the launcher, but the contained file takes
precedence. If the launcher is signed, you should choose the location next to the
application bundle, otherwise the signature will be broken.

% Check for running processes

Check for installed launchers and additional running processes on Windows and macOS.

Applies to: Installation, Uninstallation

Properties:

Include launchers

If selected, the operation will check for running launchers in the current installation
directory.

Additional executables

The additional executables that should be checked. In the edit dialog you can choose
files from the distribution tree or enter them manually. Additional executables that
are installer variables with array values (e.g. String[], Object[] or File[]) are expanded
as separate additional executables, this allows you to build a variable length list of
additional executables at runtime. From relative files, only the file name is used for
comparison. This enables checking for executables with an unknown location. To
reference executables relative to your installation directory, please prefix them with
${installer:sys.installationDir}/. This is an optional property.

Close strategy
The strategy used when processes are running.
Ignore button

Add an ignore button to the dialog. The action will return successfully if the user clicks
this button.

Time out for close

The time out for the soft close strategy in milliseconds.
Message

The message to be displayed at the top of the dialog.

206

% Modify an environment variable on Windows

Sets, appends to, or prepends to an environment variable on Windows. This action can
be automatically reverted by the 'Uninstall files' action.

Applies to: Installation, Uninstallation

Properties:

Modification type

Modification type

Variable name

The name of the variable that should be modified.
Value

The value to be set, appended or prepended.
User specific

If the variable is user specific or system wide.
Revert on uninstallation [Uninstallation]
Revert the change automatically on uninstallation if this action is used for an installer.
Only if not modified

Revert the change only if the environment variable hss not been modified in the mean
time. This is mainly useful for the 'set' modification type.

Note: This property is only visible if "Revert on uninstallation" is selected.

& Modify classpath

Changes the classpath of a launcher by modifying or creating a <tt>.vmoptions</tt> file
or by changing the Info.plist file. This action will be automatically reverted by the 'Uninstall
files' action.

Applies to: Installation

Properties:

Launcher
The launcher that the classpath should be changed for.
Classpath entries

The classpath entries. In the edit dialog, you have to enter one item per line. Entries
that are installer variables with array values (e.g. String[], Object[] or File[]) are expanded
as separate entries, this allows you to build a variable length list of entries at runtime.

Modification type
Modification type
Target file on macOS [macOS]

For application bundles on macOS, there are two locations for .vmoptions files. One
in the "Contents" directory inside the application bundle, and the other next to the

207

application bundle. Both files are read by the launcher, but the contained file takes
precedence. If the launcher is signed, you should choose the location next to the
application bundle, otherwise the signature will be broken.

3 Request privileges

Requests configurable administrator privileges. On Windows Vista and higher and on
macOS, the installer will be restarted with the requested privileges or a helper process
will be created that can perform certain actions in a privileged context. When you restart
the installer, you should not install files before this action.<p>Please see the help topic
on "Elevation Of Privileges" for a detailed discussion of this action.

Applies to: Installation, Uninstallation

Properties:

Show failure if current user is not root [Unix]

If set and the current user is not root a failure message will be shown and the
installation will be canceled. This property overrides the "Failure strategy" property of
the action. A separate property is necessary since the behavior can be configured
differently for Windows, macOS and Unix.

Try to obtain full privileges if admin user [Windows]

If set and the user is an admin user with limited privileges on Vista and higher, the
action will try to start a new process with full privileges.

Try to obtain full privileges if normal user [Windows]

If set and the user is a non-admin user, the action will either try to start a new process
with full privileges on Vista and higher or fail on previous versions of Windows.

Show failure if requested privileges cannot be obtained [Windows]

If set and the privileges required above could not be obtained a failure message will
be shown and the installation will be canceled. This property overrides the "Failure
strategy" property of the action. A separate property is necessary since the behavior
can be configured differently for Windows, macOS and Unix.

Try to obtain root privileges if admin user [macOS]

If set and the user is an admin user, the action will try to start a new process with root
privileges. The user will have to enter his password.

Try to obtain root privileges if normal user [macOS]

If set and the user is a non-admin user, the action will try to start a new process with
root privileges. The user will have to enter the password of an admin account.

Show failure if requested privileges cannot be obtained [macOS]

If set and the privileges required above could not be obtained a failure message will
be shown and the installation will be canceled. This property overrides the "Failure
strategy" property of the action. A separate property is necessary since the behavior
can be configured differently for Windows, macOS and Unix.

% Require installer privileges

208

Require the same privileges as the ones that were obtained during the installation. On
Windows Vista and higher and on macOS, the uninstaller or custom installer application
will be restarted with the requested privileges if necessary. This action only has an effect
if a "Load response file" action is executed previously.<p>Please see the help topic on
"Elevation Of Privileges" for a detailed discussion of this action.

Applies to: Installation, Uninstallation
Properties:

+ Show failure if required privileges cannot be obtained [General]

If set and the privileges that were obtained in the installer could not be obtained by
this action, a failure message will be shown and the installer application will be canceled.

i Run executable or batch file

Runs an executable or a Windows batch file. The action can optionally wait for termination
of the executable.

Applies to: Installation, Uninstallation
Properties:

+ Executable

The file that should be executed. Please do not add arguments here, there is a separate
"Arguments" property.

+ Working directory
The working directory for the execution.
* Arguments

The arguments passed to the executable. Please note that in the edit dialog, each
argument starts on a new line. Arguments that are installer variables with array
values (e.g. String[], Object[] or File[]) are expanded as separate arguments, this allows
you to build a variable length list of arguments at runtime.

* Use rollback executable

If selected, an executable is invoked in the case of rollback. You can configure the
executable with the child properties. All other properties, such as redirection and
environment variables are shared with the regular executable.

* Rollback executable

The file that should be executed in the case of rollback. Please do not add arguments
here, there is a separate "Arguments" property.

Note: This property is only visible if "Use rollback executable" is selected.
+ Rollback working directory
The working directory for the execution of the rollback executable.

Note: This property is only visible if "Use rollback executable" is selected.

209

Rollback arguments

The arguments passed to the rollback executable. Please note that in the edit dialog,
each argument starts on a new line. Arguments that are installer variables
with array values (e.g. String[], Object[] or File[]) are expanded as separate arguments,
this allows you to build a variable length list of arguments at runtime.

Note: This property is only visible if "Use rollback executable" is selected.
Wait for termination

If the action should wait for termination of the process and check if the return value
is 0.

Variable name for return code

If set, the return code will be saved to this installer variable. The type of the variable
will be <tt>java.lang.Integer</tt>. Under Windows, this variable will always be equal to
0 if the "Show console window" option below is selected.If a timeout has been set and
the process is killed after the timeout, the return value will be -10000.

Note: This property is only visible if "Wait for termination” is selected.
Timeout in seconds

If set to a value greater than 0, the executable will be killed after that number of seconds
if it does not return earlier.In that case, the return value will be -10000.

Note: This property is only visible if "Wait for termination" is selected.
Wait for output streams

If selected, the action will wait until the output streams of the process are fully written.
If the process has launched child processes, this can mean that the action will wait
until those child processes have terminated. If that is not desired, please deselect this
option.

Note: This property is only visible if "Wait for termination" is selected.

Log arguments

If the arguments should be written into the log file or not. Disabled by default due to
security reasons.

Include parent environment variables [Environment Variables]

If selected, the environment variables of the parent process (the installer) will be set.
Otherwise, only the environment variables in the "Specific environment variables" will
be set. This option is ignored on macOS.

Specific environment variables [Environment Variables]

Specify additional or modified environment variables that should be set for the executed
process.<p>Use previous values with the syntax <tt>${PATH};additional</tt>.

Redirect stdout [Redirection]
Redirection mode for stdout
Installer variable name

An installer variable name to which the stdout output of the executed process is saved.
The contents of the variable will not be displayed in the log file.

Note: This property is only visible if "Redirect stdout" is set to "To installer variable".

210

Redirection file

A file to which the stdout output of the executed process is saved. If you specify
<tt>/dev/stdout</tt>, the output will be printed to the default <tt>stdout</tt> stream
of the installer application. Relative paths are relative to the working directory of the
installer application. In order to use a file in the installation directory, enter a path like
<tt>${installer:sys.installationDir}/log.txt</tt>.

Note: This property is only visible if "Redirect stdout" is set to "To file".
Fail on error

If selected, the action fails if the redirection file cannot be written. Otherwise, errors
are silently ignored.

Note: This property is only visible if "Redirect stdout" is set to "To file".
Redirect stderr [Redirection]

Redirection mode for stderr

Installer variable name

An installer variable name to which the stderr output of the executed process is saved.
The contents of the variable will not be displayed in the log file.

Note: This property is only visible if "Redirect stderr" is set to "To installer variable".
Redirection file

A file to which the stderr output of the executed process is saved. If you specify
<tt>/dev/stderr</tt>, the output will be printed to the default <tt>stderr</tt> stream
of the installer application. Relative paths are relative to the working directory of the
installer application. In order to use a file in the installation directory, enter a path like
<tt>${installer:sys.installationDir}/log.txt</tt>.

Note: This property is only visible if "Redirect stderr" is set to "To file".
Fail on error

If selected, the action fails if the redirection file cannot be written. Otherwise, errors
are silently ignored.

Note: This property is only visible if "Redirect stderr" is set to "To file".
Redirect stdin [Redirection]

Redirection mode for stdin

Input string

A string that should be fed to the input stream of the executed process.

Note: This property is only visible if "Redirect stdin" is set to "From string".
Redirection file

A file which should be fed to the input stream of the executed process. If you specify
<tt>/dev/stdin</tt>, the input from the default <tt>stdin</tt> stream of the installer
application will be used. Relative paths are relative to the working directory of the
installer application. In order to use a file in the installation directory, enter a path like
<tt>${installer:sys.installationDir}/log.txt</tt>.

Note: This property is only visible if "Redirect stdin" is set to "From file".
Fail on error

If selected, the action fails if the redirection file cannot be written. Otherwise, errors
are silently ignored.

211

Note: This property is only visible if "Redirect stdin" is set to "From file".
Show console window [Windows]

Show a console window with the console output of the executable. This makes only
sense if a command line executable is called.

Keep console window

If selected, the console window will not be closed when the executable has finished.
The user has to close the console window manually. This can be useful for debugging
purposes. If the "Wait for termination" property is selected, the action will not terminate
until the user has closed the console window.

Note: This property is only visible if "Show console window" is selected.

Category: Persistence of installer variables

% Create a response file

Create a response file at an arbitrary location to save user input for subsequent
installations. This file can be used with the <tt>-varfile</tt> command line option.

Applies to: Installation, Uninstallation

Properties:

File

The response file that should be created. If it already exists, it will be overwritten.
Variable selection mode

Determines which response file variables are written to the response file.
Excluded variables

The variable that should be excluded from the response file. If empty all variables will
be used. In the edit dialog, you have to enter one item per line. Entries that are installer
variables with array values (e.g. String[], Object[] or File[]) are expanded as separate
entries, this allows you to build a variable length list of entries at runtime.

Note: This property is only visible if "Variable selection mode" is set to "All except
specified response file variables".

Included variables

The variable that should be included in the response file. If empty, no variables will be
used. In the edit dialog, you have to enter one item per line. Entries that are installer
variables with array values (e.g. String[], Object[] or File[]) are expanded as separate
entries, this allows you to build a variable length list of entries at runtime.

Note: This property is only visible if "Variable selection mode" is set to "Only specified
response file variables".

i Load a response file

212

Load a response file that has previously been saved with the "Create a response file"
action.

Applies to: Installation, Uninstallation
Properties:

* File

The response file that should be loaded. If empty, the action will try to load the
automatically created response file named <tt>response.varfile</tt> that has been
saved by a previous installer in the installation directory.

* Excluded variables

The variables in the response file that should be ignored. If empty, all variables will be
loaded. In the edit dialog, you have to enter one item per line. Entries that are installer
variables with array values (e.g. String[], Object[] or File[]) are expanded as separate
entries, this allows you to build a variable length list of entries at runtime.

+ Overwrite strategy

If "Overwrite existing" is selected, already defined installer variables will be overwritten
by variable definitions in the response file. With "Do not overwrite command line", you
can give priority to command line variable definitions of the form
<tt>-Vname=value</tt>, but still overwrite previous variable definitions for other
variables.

+ Register variables for response file

If selected, all variables in the response file will be registered as response file variables,
except forvariables that are excluded or system variables (starting with "sys."). Response
file created by subsequent "Create a response file" actions and the automatically
created response file by the installer will contain these variables. <p>Note that form
screens register bound variables for response files only when they are displayed, so
if this option is deselected, the response file created by an update installation may not
contain all variables from the original installation.

¥ Modify a response file

Update all variables in an existing response file. The action does not delete variables in
the response file for which no installer variables are defined, but keeps them as they
are.<p>This action is useful for updating a response file from a custom installer application,
where not all installer variables are available.

Applies to: Installation, Uninstallation
Properties:

*+ File

The response file that should be created. If it already exists, it will be overwritten.
+ Variable selection mode

Determines which response file variables are written to the response file.

Note: This property is only visible if "Add response file variables" is selected.

213

Excluded variables

The variable that should be excluded from the response file. If empty all variables will
be used. In the edit dialog, you have to enter one item per line. Entries that are installer
variables with array values (e.g. String[], Object[] or File[]) are expanded as separate
entries, this allows you to build a variable length list of entries at runtime.

Note: This property is only visible if "Variable selection mode" is set to "All except
specified response file variables".

Included variables

The variable that should be included in the response file. If empty, no variables will be
used. In the edit dialog, you have to enter one item per line. Entries that are installer
variables with array values (e.g. String[], Object[] or File[]) are expanded as separate
entries, this allows you to build a variable length list of entries at runtime.

Note: This property is only visible if "Variable selection mode" is set to "Only specified
response file variables".
Add response file variables

If selected, the specified response file variables are added to the response file.
Otherwise only the existing definitions in the response file are updated with their
current values.

Category: Properties files

¥ Read a properties file

Read a properties file and save a <tt>java.util. Map</tt> object with the properties to an
installer variable. If you use a "Write properties to file" action to write the variable back
to disk, the comments on the existing property definitions will be preserved.

Applies to: Installation, Uninstallation

Properties:

Properties file
The properties file that will be read.
Encoding

Encoding for the properties file. If "java.util.Properties" is selected, the format of
<tt>java.util.Properties</tt> will be emulated. For other encodings, the escaping for
property values will be less aggressive.

Character set name

The character set name as recognized by <tt>java.nio.Charset.forName(...)</tt>. Values
supported by all JREs include "US-ASCII" "ISO-8859-1" and "UTF-16".<p>Specifying
ISO-8859-1 is not the same as selecting "java.util.Properties" for the "Encoding" property,
because - except for comments - that format only writes characters from the US-ASCII
character set and escapes more basic characters in property values.

Note: This property is only visible if "Encoding" is set to "Other".

214

* Variable name

The name of the variable that will be set with an instance of <tt>java.util.Map</tt>.
Enter the variable without the installer prefix and the dollar sign.

+ Merge into existing variable

If the variable already contains a value of type <tt>java.util. Map</tt>, the properties
will be merged with the entries in that map. The actual map object after the action has
run may be different, since install4j supplies a special map that can retain comments
on property definitions.

¥ Remove keys from properties file

Remove selected keys from a properties file. The line separator of the properties file is
conserved.

Applies to: Installation, Uninstallation
Properties:

* Properties file
The properties file that will modified.
+ Encoding

Encoding for the properties file. If "java.util.Properties" is selected, the format of
<tt>java.util.Properties</tt> will be emulated. For other encodings, the escaping for
property values will be less aggressive.

* Character set name

The character set name as recognized by <tt>java.nio.Charset.forName(...)</tt>. Values
supported by all JREs include "US-ASCII" "ISO-8859-1" and "UTF-16".<p>Specifying
ISO-8859-1 is not the same as selecting "java.util.Properties" for the "Encoding" property,
because - except for comments - that format only writes characters from the US-ASCII
character set and escapes more basic characters in property values.

Note: This property is only visible if "Encoding" is set to "Other".
* Remove keys

The names of the keys that should be removed. In the edit dialog, you have to enter
one item per line. Keys that are installer variables with array values (e.g. String[], Object[]
or File[]) are expanded as separate keys, this allows you to build a variable length list
of keys at runtime.

% Write properties to file

Write property definitions to a properties file. The properties can come from an installer
variable with a <tt>java.util. Map</tt> object, another properties file or from direct
entry.<p>If the "Merge into existing file" property is selected, the new property definitions
will be added to the existing ones.

Applies to: Installation, Uninstallation

215

Properties:

Properties file
The properties file that will be written or modified.
Encoding

Encoding for the properties file. If "java.util.Properties" is selected, the format of
<tt>java.util.Properties</tt> will be emulated. For other encodings, the escaping for
property values will be less aggressive.

Character set name

The character set name as recognized by <tt>java.nio.Charset.forName(...)</tt>. Values
supported by all JREs include "US-ASCII" "ISO-8859-1" and "UTF-16".<p>Specifying
ISO-8859-1 is not the same as selecting "java.util.Properties" for the "Encoding" property,
because - except for comments - that format only writes characters from the US-ASCII
character set and escapes more basic characters in property values.

Note: This property is only visible if "Encoding" is set to "Other".
Line separator

The line separator that should be used for writing the properties file.
Merge into existing file

If selected, and the properties file already exists, the file will be read first and the new
property definitions will be added to the existing ones.

Update existing keys

If selected, the values of existing keys will be updated with the new values.
Note: This property is only visible if "Merge into existing file" is selected.
Update existing comments

If selected, the comments of existing keys will be updated with the new comments.
An existing comment will not be deleted if the new comment is empty.

Note: This property is only visible if "Merge into existing file" is selected.
Source of property definitions

The source of the new property definitions that should be written to the properties
file.

Property definitions

The new property definitions that should be written to the properties file. Comment
lines starting with # and empty lines can be interspersed with the property definitions.

Note: This property is only visible if "Source of property definitions" is set to "Direct
entry".

Source properties file

The source file with the new property definitions that should be written to the target
properties file. The encoding must be the same as that of the target properties file.

Note: This property is only visible if "Source of property definitions" is set to "Properties
file",

216

Source variable name

The variable name with a <tt>java.util.Map</tt> object containing the new property
definitions that should be written to the properties file. If the map was read by a "Read
a properties file" action, the original comments will be used.

Note: This property is only visible if "Source of property definitions" is set to "Installer
variable".
Replace installer variables

If selected, installer variables written in the syntax <tt>${installer:variableName}</tt>
will be replaced with their current values for all property values. If an installer variable
does not exist, an error message will be inserted.

Sort properties

This property determines where new properties should be inserted with respect to
existing properties. If the keys are sorted, then existing and new properties are sorted
together.

Category: Services

1 Install a service

Installs a service. On Windows, this is done by executing the service launcher with the
appropriate arguments. On Unix, a link will be placed in <tt>/etc/init.d</tt>. On macQOS,
a LaunchDaemon will be created. This action will be automatically reverted by the 'Uninstall
files' action.<p>If a helper process with elevated privileges has been created by the
"Request privileges" action, this action is pushed to the helper process. Please see the
help topic on "Elevation Of Privileges" for more information.

Applies to: Installation

Properties:

Service [General]

The service launcher that will be installed.
Executable

The service executable.

Name

The name of the service.

Auto Start [General]

If the service should be started automatically at boot time.
Description [General]

An optional description for the service.
Account Name or SID

The account name or a SID in String form.

Note: This property is only visible if "Account" is set to "Other™".

217

+ Password
The password for the specified account.

Note: This property is only visible if "Account" is set to "Other™".
* Windows Arguments [Windows]

Optional arguments passed to the main function of the service executable.
+ Windows Dependencies [Windows]

Optional dependencies for Windows. Specify as a comma-separated list of the names
of the services that must be started before this service. You do not have to enter core
OS services these services will always be initialized before your service is launched.

* Windows Custom Display Name [Windows]

Optional display name for the service. If empty, the service name is used.
* Windows Priority [Windows]

The base priority class for the service. This only applies to services generated by install4;.
* Account [Windows]

The account the service should run under. Use Local System if you are not sure what
you need.

+ Keep Current Account [Windows]

If the service was already installed, use the currently specified account instead of the
values above.

* Restart on Failure [Windows]

If the service should be automatically restarted if it doesn't exit with exit code 0 or if
it crashes.

* Interactive [Windows]

If the service can interact with the desktop. Not recommended for Windows Vista and
higher.

*+ macOS Identifier [macOS]

The launch daemon identifier for macOS. Typically, this is something like
com.mycorp.myService.

i Start a service

Starts a service by executing the service launcher with the appropriate arguments.<p>If
a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges" for more information.

Applies to: Installation
Properties:

« Service [General]
The service launcher that will be started.

218

+ Executable
The service executable.
* Name
The name of the service.
+ For "Auto start installations" only [General]

If selected, the service will only be started when it is installed as an "Auto start" service
on Windows and macOS. This is a property on the "Install a service" action.

3 Stop a service

Stops a service by executing the service launcher with the appropriate arguments.<p>If
a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges" for more information.

Applies to: Installation, Uninstallation
Properties:

+ Service [General]

The service launcher that will be stopped.
+ Executable

The service executable.
* Name

The name of the service.

Category: Text files

i Fix line feeds

Changes the line feeds of text files to the platform specific type.
Applies to: Installation, Uninstallation
Properties:

+ Text files

The text files that should be fixed. In the edit dialog you can choose files from the
distribution tree or enter them manually. Text files that are installer variables with
array values (e.g. String[], Object[] or File[]) are expanded as separate text files, this
allows you to build a variable length list of text files at runtime. You can add directories
aswell. Inthis case, all files in the selected directories that satisfy the "Suffixes" property
will be fixed.

219

Suffixes

The suffixes with a leading dot of the files to be fixed if the "File" property is a directory.
If empty, all files will be used. In the edit dialog, you have to enter one item per line.
Suffixes that are installer variables with array values (e.g. String[], Object[] or File[]) are
expanded as separate suffixes, this allows you to build a variable length list of suffixes
at runtime.

Recursive

If selected, the operation will be performed recursively on directories. If no selected,
all files in directories will be fixed, but subdirectories will not be touched.

% Modify text files

Modify installed text files by replacing a search value in the selected files. This action does
not read the entire file into memory and can work on arbitrarily large text files.

Applies to: Installation, Uninstallation

Properties:

Text files

The text files that should be modified. In the edit dialog you can choose files from the
distribution tree or enter them manually. Text files that are installer variables with
array values (e.g. String[], Object[] or File[]) are expanded as separate text files, this
allows you to build a variable length list of text files at runtime.

Search value

The value that should be searched
Replace value

The value that should be used instead
Log replacement

If the replacement text should be written into the log file or not. If the modified file
has different security settings than the log file, you might want to disable this property
for security reasons.

Fail if no replacement occurred

If selected, the action will fail if no replacement was performed by the action. Note
that you have to set the error message property in order to display the error to the
user.

Escape for property file
If set, the replaced values will be escaped for use in a Java property file.
Encoding

The encoding of the file. If you leave this empty the system default will be used.
Common encodings are UTF-8, UTF-16, ISO-8859-1.

% Modify text files with regular expressions

220

Modify installed text files by applying a regular expression.
Applies to: Installation, Uninstallation
Properties:

* Text files

The text files that should be modified. In the edit dialog you can choose files from the
distribution tree or enter them manually. Text files that are installer variables with
array values (e.g. String[], Object[] or File[]) are expanded as separate text files, this
allows you to build a variable length list of text files at runtime.

+ Match expression

The match expression, which is applied to the entire contents of the file. If you wish
to use the characters <tt>A</tt> and <tt>$</tt> for matching line start and line end,
please prefix the expression with <tt>(?m)</tt>. This switches on multi-line mode. For
case-insensitive expressions, prefix with <tt>(?i)</tt>.

+ Replacement

The replacement.
+ Replace all

If all occurrences should be replaced or only the first one.
* Quote variables

If values of installer variables in the match and replacement expressions should be
quoted. This means that the characters of replaced installer variables will be treated
literally instead of modifying the search or replace expressions with special characters
such as\or $.

* Log replacement

If the replacement text should be written into the log file or not. If the modified file
has different security settings than the log file, you might want to disable this property
for security reasons.

+ Fail if no replacement occurred

If selected, the action will fail if no replacement was performed by the action. Note
that you have to set the error message property in order to display the error to the
user.

+ Escape for property file
If set, the replaced values will be escaped for use in a Java property file.
+ Encoding
The encoding of the file. If you leave this empty the system default will be used.

Common encodings are UTF-8, UTF-16, ISO-8859-1.
% Read text from file

Read the content of a text file and save it to an installer variable. The variable value will
be of type <tt>String</tt>.

Applies to: Installation, Uninstallation

221

Properties:

File

The file from which the text should be read. If the file does not exist, the variable value
will not be set.

File encoding

The encoding of the text file. If empty, the native encoding of the operating system
will be used.

Variable name

The name of the variable whose value will be set to the text content of the file. If the
file cannot be found, the variable value will not be set.

¥ Replace installer variables in text files

Modify installed text files by replacing all occurrences of installer variables of the form
<tt>${installer:myVariable}</tt> with their current values. The action also replaces i18n
variables like ${i18n;myKey} and compiler variables like
<tt>${compiler:myCompilerVariable}</tt>

Applies to: Installation, Uninstallation

Properties:

Text files

The text files that should be modified. In the edit dialog you can choose files from the
distribution tree or enter them manually. Text files that are installer variables with
array values (e.g. String[], Object[] or File[]) are expanded as separate text files, this
allows you to build a variable length list of text files at runtime.

Ignore missing variables

If selected, all missing occurrences of variables will be left as they are. If unselected, a
missing variable will be a fatal error leading to the termination of the installer.

Fail if no replacement occurred

If selected, the action will fail if no replacement was performed by the action. Note
that you have to set the error message property in order to display the error to the
user.

Escape for property file
If set, the replaced values will be escaped for use in a Java property file.
Encoding

The encoding of the file. If you leave this empty the system default will be used.
Common encodings are UTF-8, UTF-16, ISO-8859-1.

13 Write text to a file

Write text to a new file or append text to an existing file.

222

Applies to: Installation, Uninstallation

Properties:

File

The file that the text should be appended to. If it doesn't exist it will be created.

Text

The text that should be appended.

Encoding

The encoding of the file. If you leave this empty the system default will be used.
Escaped text

If selected, escape sequences like \n,\t or \u1234 in the text property will be replaced.
Append

If selected, and the file exists, the text will be appended to the existing file. If the file
does not exist, it will be created in any case.

Log text

If the text should be written into the log file or not. If the written file has different
security settings than the log file, you might want to disable this property for security
reasons.

Category: Update

% Check for update

Load the update descriptor from the a URL and save it to the a variable. If successful, the
variable will contain an instance of <tt>com.install4j.api.UpdateDescriptor</tt>

Applies to: Installation, Uninstallation

Properties:

Update descriptor URL

The URL from which the update descriptor for this project can be downloaded. The
update descriptor file is automatically created when compiling the project and can be
found in the media output directory. The URL must start with <tt>http://</tt> or
<tt>https://</tt>. If you add a query string, it must already be URL encoded.<p>For
testing purposes, you can also use a file URL like <tt>file:/c:/test/updates.xml</tt>,

Request headers

Alist of name-value pairs that should be set as additional headers for the request.<p>
Request headers that are installer variables with array values (e.g. String[], Object[] or
File[]) are expanded as separate request headers, this allows you to build a variable
length list of request headers at runtime.

Variable

The installer wvariable to which an instance of «class
<tt>com.install4j.api.UpdateDescriptor</tt> will be saved if the action is successful.

223

+ Ask for proxy if necessary [Error Handling]

At first, the connection is attempted with the proxy information that is set for the
default browser. If that fails, and this property is selected, a proxy dialog will be shown
where the user can configure the proxy that should be used to connect to the web
server.

* Network failure script [Error Handling]

Ascriptthatis executed if the HTTP connection fails in such a way, that the proxy dialog
would have to be shown. If you return <tt>ErrorHandlingMode.IGNORE</tt>, the regular
proxy or failure handling will proceed, if you return
<tt>ErrorHandlingMode.CANCEL</tt>, the action will fail immediately. If you can take
corrective action in the script, you can return <tt>ErrorHandlingMode.RETRY</tt> to
make the same HTTP request again. However, you have to take special care not to
enter an infinite loop. Typically, there should be user input before you retry and the
user should be given the option to cancel.<p>The script is only executed for actual
network failures, and not if the server or the proxy connection require authentication.

+ Accept all SSL certificates [Error Handling]

If the protocol of the URL starts with "https" and this property is selected, the SSL
certificate will not be checked for validity. This is only recommended for testing purposes
when working with self-signed certificates.

+ Connect timeout [Error Handling]

The timeout for establishing the socket connection in milliseconds. A timeout of zero
is interpreted as an infinite timeout.

* Read timeout [Error Handling]

The timeout for reading data from the socket connection in milliseconds. A timeout
of zero is interpreted as an infinite timeout.

+ Show error message [Error Handling]
Show a default error message if the download fails.

% Shut down calling launcher

Shut down the launcher that called this application if it was started with the
<tt>com.install4j.api.launcher.ApplicationLauncher</tt> API.

Applies to: Installation, Uninstallation
Properties:

+ Wait
If selected the action will wait for the calling launcher to exit.
+ Timeout

The timeout in seconds this action will wait if the 'Wait' property is true. If set to 0 there
will be no timeout.

Category: Windows registry

224

% Add access rights for a key in the Windows registry

Add access rights for a key in the Windows registry.<p>If a helper process with elevated
privileges has been created by the "Request privileges" action, this action is pushed to
the helper process. Please see the help topic on "Elevation Of Privileges" for more
information.

Applies to: Installation, Uninstallation
Properties:

* Registry root
The Windows registry root where the key is located.
* Key name
The name of the registry key without a leading backslash.
* Trustee [Rights]
The trustee for which the access right should be granted.
* SID or Account Name
The SID in String form or the account name for which the access right should be granted.
Note: This property is only visible if "Trustee" is set to "SID or Account Name".
+ Read [Rights]
The right to read the object.
* Write [Rights]
The right to write to the object.
+ Execute [Rights]
The right to execute the object.
+ All [Rights]
All available rights.

1t Delete a key or value in the Windows registry

Delete a key or value in the Windows registry.
Applies to: Installation, Uninstallation
Properties:

+ Registry root
The Windows registry root where the key or value should be deleted.
* Key name

The name of the registry key that should be deleted or contains the value to be deleted
without a leading backslash.

225

Value name

The name of the registry value that should be deleted. If you leave this empty, the key
will be deleted instead.

Only if empty
If a key should only be deleted when it contains no sub-keys or values.

¥ Read a value from the Windows registry

Read a value from the Windows registry and save it to an installer variable. The type of
the value depends on the type in the registry, it will be an instance of one of the following
classes: <tt>String, Integer, String[], byte[], WinRegistry.ExpandString</tt>.

Applies to: Installation, Uninstallation

Properties:

Registry root

The Windows registry root where the key is located.

Key name

The name of the registry key where the value is located without a leading backslash.
Value name

The name of the registry value whose string content should be read.

Use a default value

If selected, a default value will be saved to the variable if the key cannot be found in
the registry. Otherwise a missing registry value will result in the failure of the action
and the variable will not be set.

Default value
The default value that will be used if the value cannot be found in the registry.

Note: This property is only visible if "Use a default value" is selected.
Variable name

The name of the variable that will be set with the value. Enter the variable without the
installer prefix and the dollar sign. If the value cannot be found in the registry, the
variable value will not be set.

¥ Set a value in the Windows registry

Set a value in the Windows registry. This action can also create the appropriate key if
necessary.

Applies to: Installation, Uninstallation

Properties:

226

Registry root
The Windows registry root where the key should be created
Key name

The name of the registry key that contains the value or that should be created without
a leading backslash.

Value name

The name of the registry value.

Value

The value that should be written into the registry.
Create key

If set the key will be created if it doesn't exist.

Category: XML files

3 Apply an XSLT transform

Transform an installed file by applying an XSLT stylesheet.

Applies to: Installation, Uninstallation

Properties:

Source file

The source for the transformation. This can be the same file as the destination.
Destination file

The output of the transformation. This can be the same file as the source.
Stylesheet

The XSLT stylesheet to apply.

Download external entities [XML parser]

If selected, a DTD referenced with an HTTP system ID will be downloaded as the
document is parsed. The success of the action requires a direct internet connection
in that case.

Validate XML file [XML parser]

If selected, the XML parser will validate the document according to a associated DTD
or XML schema. If the validation is unsuccessful, the action will fail.

1 Count nodes in XML file

Count the occurrences of an XPath expression in an XML file and save the result to an
installer variable.

Applies to: Installation, Uninstallation

227

Properties:

XML file

The XML file that should be read. It will not be validated, and no external entities will
be downloaded.

XPath expression

The XPath expression whose occurrences should be counted. Example for counting
attributes: <tt>/myRootNode/myChildNode/@myAttribute</tt>. Example for counting
regular nodes: <tt>/myRootNode/myChildNode</tt>

Variable name

The name of the variable that will be set to the result of the count as a
<tt>java.lang.Integer</tt>. Enter the variable without the installer prefix and the dollar
sign?. If the XPath expression cannot be found, the variable value will be zero.

% Insert XML fragment into XML files

Insert an XML fragment into the position defined by an XPath expression. The fragment
can replace an existing element node, or it can be inserted as a child or a sibling.

Applies to: Installation, Uninstallation

Properties:

XML files

The XML files that should be modified. In the edit dialog you can choose files from the
distribution tree or enter them manually. XML files that are installer variables with
array values (e.g. String[], Object[] or File[]) are expanded as separate XML files, this
allows you to build a variable length list of XML files at runtime.

XPath expression

The XPath expression to the DOM nodes for which the insertion or replacement should
be performed. The result of the XPath expression should consist of one or more
element nodes and not of attribute or text nodes.<p> Example for selecting nodes by
position: <tt>/levelOne[2]/levelTwo[4]</tt>.
Example for selecting nodes by
attribute: <tt>/myRootNode/myChildNode[id="123"]</tt>.<p>If no match can be found,
the action will fail.

XML fragment source

The XML fragment that is inserted can either be entered directly in a text editor or be
read from a file.

XML fragment text

The XML fragment that should be inserted. The fragment must not include an XML
declaration and can contain multiple top-level elements.<p>Example:
<tt><insert> 1</insert> <insert> 2</insert> <tt>

Note: This property is only visible if "XML fragment source" is set to "Direct entry".

228

+ XML fragment file

The source file with the XML fragment that should be inserted. The file has to contain
a well-formed XML file. The root element is discarded and the XML fragment is formed
from its immediate children.

Note: This property is only visible if "XML fragment source" is set to "Fragment file".
* Insert mode

For each result of the XPath expression, the selected action is performed. You can
replace the matched element, insert the fragment as a sibling or as a child.<p>To insert
as the n-th child, enter a positional XPath expression like <tt>/root/nested[3]</tt>, and
choose "Insert before".

+ Download external entities [XML parser]

If selected, a DTD referenced with an HTTP system ID will be downloaded as the
document is parsed. The success of the action requires a direct internet connection
in that case.

+ Validate XML file [XML parser]

If selected, the XML parser will validate the document according to a associated DTD
or XML schema. If the validation is unsuccessful, the action will fail.

i Read value from XML file

Read a string value from an XML file specified by an XPath expression and save the result
to an installer variable.

Applies to: Installation, Uninstallation
Properties:

+ XML file

The XML file that should be read. It will not be validated, and no external entities will
be downloaded.

+ XPath expression

The XPath expression to the DOM node whose string value should be read. Example
for reading text from an attribute: <tt>/myRootNode/myChildNode/@myAttribute</tt>.
Example for reading text from an element: <tt>/myRootNode/myChildNode/text()</tt>

+ Variable name for string value

The name of the variable that will be set with the string value of the matched node.
Enter the variable without the installer prefix and the dollar sign. If the XPath expression
cannot be found, the variable value will not be set. If the XPath expression matches a
node with a null node value, such as en element, the variable will be set to <tt>null</tt>.

* Variable name for node

The name of the variable that will be set with the node as an <tt>org.w3c.dom.Node</tt>
instance. Enter the variable without the installer prefix and the dollar sign. If the XPath
expression cannot be found, the variable value will not be set.

i Remove nodes from XML files

229

Remove selected nodes from XML files by specifying an XPath expression.

Applies to: Installation, Uninstallation

Properties:

XML files

The XML files that should be modified. In the edit dialog you can choose files from the
distribution tree or enter them manually. XML files that are installer variables with
array values (e.g. String[], Object[] or File[]) are expanded as separate XML files, this
allows you to build a variable length list of XML files at runtime.

XPath expression

The XPath expression to the DOM nodes that should be removed. The result of the
XPath expression can be or any node type.<p> Example for selecting element nodes:
<tt>/myRootNode/myChildNode[id="123"]</tt>.
Example for selecting attribute
nodes: <tt>//@removedAttribute</tt>.
Example for selecting text nodes:
<tt>//container/text()</tt>.<p>If no match can be found, the action will fail.

Download external entities [XML parser]

If selected, a DTD referenced with an HTTP system ID will be downloaded as the
document is parsed. The success of the action requires a direct internet connection
in that case.

Validate XML file [XML parser]

If selected, the XML parser will validate the document according to a associated DTD
or XML schema. If the validation is unsuccessful, the action will fail.

¥ Replace text in XML files

Modify installed XML files by selecting nodes with an XPath expression and applying a
regular expression on the selected values.

Applies to: Installation, Uninstallation

Properties:

XML files

The XML files that should be modified. In the edit dialog you can choose files from the
distribution tree or enter them manually. XML files that are installer variables with
array values (e.g. String[], Object[] or File[]) are expanded as separate XML files, this
allows you to build a variable length list of XML files at runtime.

XPath expression

The XPath expression to selected DOM nodes that have a value (this includes attributes
and text).<p>Example for replacing text in an attribute:
<tt>/myRootNode/myChildNode/@myAttribute</tt>.
 Example for replacing text
in an element: <tt>/myRootNode/myChildNode/text()</tt>. This will also work if
myChildNode is an empty node.<p> If you want to match line breaks with the dot as
well, prefix the regular expression with <tt>(?s)</tt>. If you want the comparison to be
case insensitive, prefix it with <tt>(?i)</tt>.

230

Match expression
The match expression. This is a regular expression.
Replacement

The replacement. The replacement string may contain references to subsequences,
see the javadoc for <tt>java.util.regex.Matcher#appendReplacement</tt> for more
details

Replace all
If all occurrences should be replaced or only the first one.
Quote variables

If values of installer variables in the match and replacement expressions should be
quoted. This means that the characters of replaced installer variables will be treated
literally instead of modifying the search or replace expressions with special characters
such as\or $.

Log replacement

If the replacement text should be written into the log file or not. If the modified file
has different security settings than the log file, you might want to disable this property
for security reasons.

Download external entities [XML parser]

If selected, a DTD referenced with an HTTP system ID will be downloaded as the
document is parsed. The success of the action requires a direct internet connection
in that case.

Validate XML file [XML parser]

If selected, the XML parser will validate the document according to a associated DTD
or XML schema. If the validation is unsuccessful, the action will fail.

Category: ZIP files

i Create a ZIP file

Create a ZIP file from the specified source files and directories.

Applies to: Installation, Uninstallation

Properties:

ZIP file
The ZIP file that should be created.
Source files or directories

The files and directories to be zipped. In the edit dialog you can choose files from the
distribution tree or enter them manually. Files and directories that are installer variables
with array values (e.g. String[], Object[] or File[]) are expanded as separate files and
directories, this allows you to build a variable length list of files and directories at
runtime.

231

+ File filter script

The file filter script is invoked for each file that is about to be processed by this action.
The script is not invoked for directories. You can return <tt>true</tt> if the file should
be processed or <tt>false</tt> if it should be excluded from processing.

+ Directory filter script

The directory filter script is invoked for each directory that is about to be processed
by this action. The script is not invoked for files. You can return <tt>true</tt> if the
directory should be processed or <tt>false</tt> if it should be excluded from processing.

+ Show progress

If selected, and a progress bar is available on the current screen, the action will show
its progress in the progress bar.

* Show file names

If selected, the names of the files that are processed will be shown during the
installation.

Note: This property is only visible if "Show progress" is selected.
* Resolve relative file in

A relative zip file can be resolved against the installation directory or against the root
of the temporarily extracted archive.

+ Add top level directories

If selected, all directories that you have added to the source files, will be added under
the name of the directory. Otherwise, the contents of the directories will be added
directly to the root of ZIP file.

i3 Extract a ZIP file

Extracts the content of a ZIP file to an arbitrary location.
Applies to: Installation, Uninstallation
Properties:

+ Zipfile
The zip file that contains the content to be installed.
+ File filter script

The file filter scriptis invoked for each entry in the ZIP file that is about to be processed
by this action. The script is invoked for both directories and files, which are passed as
relative files. You can return <tt>true</tt> if the file or directory should be
processed or <tt>false</tt> if it should be excluded from processing. If you leave the
script empty, all files and directories are processed.<p>Note that ZIP files have no
hierarchical directory structure, so it is not guaranteed that you are passed directory
entries before entries of contained files. This also means that by excluding a directory,
you do not automatically exclude its contents, you have to check and reject each
contained file as well.

232

+ Destination directory

The destination directory. Relative directory information in the zip file will be added
to this value. If the destination directory does not exist, it will be created.

+ Show progress
If the action should show its progress with the progress bar and the detail message.
+ File name encoding

The encoding for names of ZIP file entries. If you leave this property empty, UTF-8 will
be used. Only has an effect on Java 7+.

* Resolve relative file in

A relative destination directory can be resolved against the installation directory or
against the root of the temporarily extracted archive.

+ Resolve relative file in

A relative zip file can be resolved against the installation directory or against the root
of the temporarily extracted archive.

* File access mode [Unix]
The UNIX access mode of extracted files.
* Dir access mode [Unix]
The UNIX access mode of extracted directories.

i Install content of a ZIP file

Installs the content of an external ZIP file to an arbitrary location. This action will be
automatically reverted by the 'Uninstall files' action.

Applies to: Installation
Properties:

« Zipfile
The zip file that contains the content to be installed.
+ File filter script

The file filter script is invoked for each entry in the ZIP file that is about to be processed
by this action. The script is invoked for both directories and files, which are passed as
relative files. You can return <tt>true</tt> if the file or directory should be
processed or <tt>false</tt> if it should be excluded from processing. If you leave the
script empty, all files and directories are processed.<p>Note that ZIP files have no
hierarchical directory structure, so it is not guaranteed that you are passed directory
entries before entries of contained files. This also means that by excluding a directory,
you do not automatically exclude its contents, you have to check and reject each
contained file as well.

+ Destination directory

The destination directory. Relative directory information in the zip file will be added
to this value. If the destination directory does not exist, it will be created.

233

+ Show progress
If the action should show its progress with the progress bar and the detail message.
* File name encoding

The encoding for names of ZIP file entries. If you leave this property empty, UTF-8 will
be used. Only has an effect on Java 7+.

* Overwrite mode

How to handle an existing destination file.
* Uninstall mode

The mode how the uninstaller should handle files created with this action.
* File access mode [Unix]

The UNIX access mode of installed files.
* Dir access mode [Unix]

The UNIX access mode of installed directories.
+ Shared file [Windows]

If the file should be registered as a shared file.
+ Delay if necessary [Windows]

If selected and a destination file cannot be replaced, the operation will be scheduled
for the next reboot. The variable sys.rebootRequired will be set to Boolean.TRUE in
this case.

+ Trigger reboot if required [Windows]

If selected and an operation is delayed until reboot, the user will be asked for a reboot
automatically at the end of installation.

& Modify a ZIP file

Modify the contents of a ZIP file with a configurable list of actions.
Applies to: Installation, Uninstallation
Properties:

+ Zipfile
The zip file that should be modified.
* Modification actions

The actions that modify the contents of the ZIP file. All actions operate in the root
directory of the temporarily extracted ZIP file, except where configurable
otherwise.<p>The "Copy files and directories" action can be used to copy files into or
from the archive, the "Delete files and directories" action is used for removing files.
All actions for modifying text files, XML files, property files and ZIP files are also
supported.

+ Show progress
If the action should show its progress with the progress bar and the detail message.

234

4% Download and install component

Download a specified downloadable component and install it. This action only works for
installation components that have been marked as "downloadable" on the "Options" tab
of the installation component configuration.<p>Note: The "Install Files" action
already downloads and installs all selected downloadable installation components.This
action is intended for scenarios where an installation component has to be downloaded
after the "Install files" action has run. For example, you could use this in a custom installer
application to install optional files.

Applies to: Installation

Properties:

Installation component

The installation component to be downloaded. Only downloadable installation
components are displayed

Show progress

If selected, and a progress bar is available on the current screen, the action will show
its progress in the progress bar.

Show file names
If selected, the names of the files that are installed will be shown during the installation.
File filter [Handlers]

Expression or script that is invoked for each file to decide whether to install the file or
not.

Directory resolver [Handlers]

Expression or script that resolves the actual installation directory separately for each
installed file. Return <tt>null</tt>, if you would like to choose the standard installation
directory for a file.

Delay if necessary [Windows]

If selected and a destination file cannot be replaced, the operation will be scheduled
for the next reboot. The context method <tt>isRebootRequired()</tt> will return
<tt>true</tt> in this case.

Trigger reboot if required [Windows]

If selected and an operation is delayed until reboot, the user will be asked for a reboot
automatically at the end of installation.

Install in single bundle [macOS]

This option only applies to single bundle media types. If selected, files will be resolved
inside the bundle. In this case, the behavior is equivalent to the "Install files" action. If
unselected files will be resolved like specified in the distribution tree. A "Directory
resolver" script can be used to specify a useful installation location.

“ Install files

Install all files in the distribution tree that are contained in the selected installation
components.

235

Applies to: Installation

Properties:

Validate application id

Check if another application is installed in the selected directory or if the application
is not the correct target for an add-on installer. If you have an "installation location"
screen, you don't have to select this option.

Insufficient disk space warning

Show a warning message if there is not sufficient disk space for the installation on the
selected target drive.

Install runtime

Create the installation directory and install the install4j runtime. If your installer just
modifies some folders and does not need launchers, an uninstaller or custom installer
applications, you can deselect this option and use other installation roots in the
distribution tree to install files.

Update bundled JRE

Update a bundled JRE if it already exists. If your application uses the JRE outside the
generated launchers, an update of a bundled JRE might fail. In that case you can deselect
this property to keep the old JRE and skip the update.

Save downloaded files

If this property is set and the action downloads files it will try to place them next to
the media file. In this case, the installer won't have to download the files again if it is
invoked another time.

Show file names
If selected, the names of the files that are installed will be shown during the installation.
File filter [Handlers]

Expression or script that is invoked for each file to decide whether to install the file or
not.

Directory resolver [Handlers]

Expression or script that resolves the actual installation directory separately for each
installed file. Return <tt>null</tt>, if you would like to choose the standard installation
directory for a file.

Installation size calculator [Handlers]

Expression or script that calculates a custom installation size in bytes. The default size
in bytes is passed as a parameter.

Delay if necessary [Windows]

If selected and a destination file cannot be replaced, the operation will be scheduled
for the next reboot. The context method <tt>isRebootRequired()</tt> will return
<tt>true</tt> in this case.

Trigger reboot if required [Windows]

If selected and an operation is delayed until reboot, the user will be asked for a reboot
automatically at the end of installation.

* Uninstall files

236

Uninstall all installed
files.

Applies to:
Uninstallation

* Uninstall previous installation

Uninstalls the previous installation of this application in the selected installation directory.

Applies to: Installation

Properties:

Installation directory

The installation directory for which the uninstaller should be run. Leave empty for the
current installation directory.

Only if the same application ID is found

If selected, the action will only be performed if the application ID found in the installation
directory is the same as that of the currently executed installer.

Uninstall services

If selected, the uninstaller will auto-uninstall services. Deselect this option if you want
to retain previous service settings like the user account setting on Windows. Works
only with uninstallers built with install4j 6.1+.

Installer variables

Specify installer variables that should be passed to the uninstaller.<p>Use the button
on the right side to open a dialog for easy entry or enter a list of definitions separated
by semicolons like <tt>var1=valuel;var2=value2</tt>. Use installer variables from the
installer with the usual syntax <tt>var1=%{installer:otherVar}</tt>.<p>

237

B.5.8 Installer - Screens And Actions Groups

Screen and action groups can be configured on the screens & and actions tab [p. 135] .

Actions and screens can be grouped in the tree of installer elements. Groups of the same type
can be nested, meaning that you can put a screen group into a screen group or an action group
into an action group.

You can nest as many levels of groups as you wish. Next to the label of the screen or action group
in the tree of installer elements, the number of all contained screens or actions is shown in bold
font. Elements in nested groups are counted as well.

Grouping offers the following:

Organization

If you have many screens or actions, groups emphasize which elements belong together. You
can add a common comment to the group.

Common condition

Groups have a "Condition expression" property that allows you to skip the group with a
common condition instead of having to repeat the condition for each contained element.

Single link target

If you want to reuse a set of adjacent screens or actions in a different part of your project,
you can put them in a group and add a single link to that group instead of linking to each
element separately.

Looping

A group has a "Loop expression" property that allows you to execute the group repeatedly
until the loop expression returns f al se.

Jump targets (screen groups only)

When you jump to a screen programmatically (with cont ext . got oScreen(. . .)), itis more
maintainable to jump to a group instead of to a single screen. You can think of the group as
taking the function of a label in this case.

The configurable properties of screen and action groups are:

'Screen group

A screen group contains multiple screens that can be disabled with a single condition
expression on the group.

Properties:

+ Action elevation type [Privileges]

If any contained actions should run in the elevated helper process, if their "Action
elevation type" property is set to "Inherit from parent".An elevated helper process is
available on Windows and macOS if the process has been started without admin
privileges and the "Request privileges" action has been configured to require full
privileges.

+ Condition expression [Control Flow]

This expression is evaluated just before the screen is displayed. If the expression or
script returns <tt>false</tt>, the entire screen group will be skipped.

238

* Loop [Control Flow]

If selected, the screen group will be looped. With the child properties you can set an
expression that terminates the loop and configure a loop index that is available inside
the loop.

Note: If actions should be repeated in a loop, their "Can be
executed multiple times" property has to be selected. If form components in a screen
should be re-initialized on each loop, their "Reset initialization on previous" property
has to be selected.

* Loop index start value
The start value for the loop index variable that is passed to the "Loop expression"

Note: This property is only visible if "Loop" is selected.
* Loop index step

The step for the loop index variable that is passed to the "Loop expression". At the
end of each loop, this step is added to the loop index. It is added before the "Loop
expression" is evaluated. To decrement, specify a negative value.

Note: This property is only visible if "Loop" is selected.
* Loop expression

This expression is evaluated when the end of the screen group is reached. If it returns
<tt>true</tt>, all screens will be repeated. If you leave the expression empty, no loop
will be performed.

Note: This property is only visible if "Loop" is selected.
* Loop index variable name

If you want to use the loop index in a screen that is contained in the group, you can
optionally save the value to an installer variable. Specify the variable name to which
the value should be saved as a <tt>java.lang.Integer</tt>.

Note: This property is only visible if "Loop" is selected.

& Action group

An action group contains multiple actions that can be disabled with a single condition
expression on the group.

Properties:

+ Action elevation type [Privileges]

If any contained actions should run in the elevated helper process, if their "Action
elevation type" property is set to "Inherit from parent".An elevated helper process is
available on Windows and macOS if the process has been started without admin
privileges and the "Request privileges" action has been configured to require full
privileges.

+ Condition expression [Control Flow]

This expression is evaluated just before the action is executed. If the expression or
script returns <tt>false</tt>, the entire action group will be skipped.

239

Loop [Control Flow]

If selected, the action group will be looped. With the child properties you can set an
expression that terminates the loop and configure a loop index that is available inside
the loop.

Note: If actions should be repeated in a loop, their "Can be
executed multiple times" property has to be selected. If form components in a screen
should be re-initialized on each loop, their "Reset initialization on previous" property
has to be selected.

Loop index start value
The start value for the loop index variable that is passed to the "Loop expression"

Note: This property is only visible if "Loop" is selected.
Loop index step

The step for the loop index variable that is passed to the "Loop expression". At the
end of each loop, this step is added to the loop index. It is added before the "Loop
expression" is evaluated. To decrement, specify a negative value.

Note: This property is only visible if "Loop" is selected.
Loop expression

This expression is evaluated when the end of the action group is reached. If it returns
<tt>true</tt>, all actions will be repeated. If you leave the expression empty, no loop
will be performed.

Note: This property is only visible if "Loop" is selected.
Loop index variable name

If you want to use the loop index in a action that is contained in the group, you can
optionally save the value to an installer variable. Specify the variable name to which
the value should be saved as a <tt>java.lang.Integer</tt>.

Note: This property is only visible if "Loop" is selected.
On error break group [Error Handling]

If selected, and one of the contained actions returns with an error, the control flow
will step out of the action group and continue with the next element after the group.
This behavior only takes effect if the problematic action has its failure strategy set to
"Continue on failure".

Retry expression

If this expression is set and returns <tt>true</tt>, the action group is repeated. If the
action group is configured to loop, the loop index will not be incremented.

Note: This property is only visible if "On error break group" is selected.
Failure strategy

The failure strategy that should be chosen if the action group fails. The "Error message"
property will be used for the option dialog. If you also define a "Default error message",
you will get two option dialogs, the first one from the action that causes the failure.

Note: This property is only visible if "On error break group" is selected.
Error message

If the action group fails, this error message is displayed to the user, otherwise the
action group fails silently.

Note: This property is only visible if "On error break group" is selected.

240

+ Default error message [Error Handling]
A default error message used by all actions that have no dedicated error message.

241

B.5.9 Installer - Configuring Form Components

For more information on form screens and related concepts, please see the corresponding help
topic [p. 14].

Please see the list of available form components [p. 249] that come with install4j.

The == [Add] button shows a popup window where you can select whether to add

+ a form component. Form components are made available by install4j or are contributed by
an installed extension [p. 75] . A registry dialog [p. 293] will be shown where you can select
the desired form component.

+ a form component that is contained in your custom code. New types of reusable form
components can be developed with the install4j APl [p. 72] . In your custom code configuration
[p. 288] you can specify code locations that are scanned for suitable classes. A class selector
[p. 292] will be shown where you can select the desired class.

* alayout group [p. 244], either a vertical group or a horizontal group. The new layout group is
initially empty. Note that you can also create layout groups directly from a selection in the
tree of installer elements (see below).

If you select a single form component in the list of form components, you can edit its properties
on the right side.

When the configuration area is focused, you can transfer the focus back to the list of form
components with the keyboard by pressing ALT- F1.

The list of form components provides the following actions in the toolbar on the right that operate
on the current selection. You can also access these actions from the context menu or use the
associated keyboard shortcuts.

* Delete

All selected form components will be deleted after a confirmation dialog when invoking the
x [Delete] action. The deleted form components cannot be restored.

* Rename
After you add a form component, the list of form components shows it with its default name.

This is often enough, however, if you have multiple instances of the same form component
alongside, a custom name makes it easier to distinguish these instances. You can assign a

custom name to each form component with the “* [Rename] action. The default name is still
displayed in brackets after the custom name. To revert to the default, just enter an empty
custom name in the rename dialog.

+ Comment

By default, form components have no comments associated with them. You can add comments
to selected form components with the .~ [Add Comments] action. When a commentis added,
the affected form components will receive a "Comments" tab. After adding a comment to a
single form component, the comment area is focused automatically. Likewise, you can remove
comments from one or more form components with the [Remove Comments] action.

In order to visit all comments, you can use the [Show next comment] and [Show previous
comment] actions. These actions will focus the comment area automatically and wrap around
if no further comments can be found.

* Disable

In order to "comment out" form components, you can use the [Disable] action. The
configuration of the disabled form components will not be displayed, their entries in the list

242

of form components will be shown in gray and they will not be checked for errors when the
project is built.

Copy and paste

install4j offers an inter-process clipboard for form components. You can & [Cut] or " [Copy]
form components to the clipboard and e [Paste] them in the same or a different instance of
install4j. Note that references to launchers or references to files in the distribution tree might
not be valid after pasting to a different project.

Pasted form components are appended to the end of the list of form components.

Reorder

If your selection is a single contiguous interval, you can move the entire block #* up or ** down
in the list.

Group

You can create a layout group [p. 244] from the selected form components with the ™ [Create

Horizontal Group] and .I! [Create Vertical Group] actions. The new group will be inserted
in place of the selected elements.

You can dissolve a group with the [Dissolve Group] action. This action is only enabled if the
selection consists of a single layout group. The elements contained in the group will be inserted
in place of the group. Nested groups will not be dissolved.

Common properties of form components are:

Insets [Layout]

This insets around the form component. The format is top;left;bottom;right, use the drop-down
button at the right side to show the insets editor.

Initialization script [Initialization]

A script that initializes the form component. To configure the contained principal component,
such as a JCheckBox, use the configurationObject parameter (if available). This script will run
after the internal initialization of the form component, just before the component appears
on the screen. It will not be invoked in console mode.

Reset initialization on previous [Initialization]

If set, the component will be initialized each time the user enters in the forward direction.
Otherwise, the initialization will be performed only once. This setting affects both the internal
initialization as well as the initialization script.

Visibility script [Initialization]

A script that determines whether the form component will be visible or not. This works for
both GUI and console modes. In GUI mode, the script will be invoked each time just before
the form component is initialized.

You can preview a form screen with the @ [Preview] button which is also available on the
property page of a screen. The preview does not show the actual screen, it shows an installer
window with typical elements and a form that fills the entire content area of the screen. The
actual screen might have a different visual appearance and the form might be smaller. However,
the layout of the form itself will be the same at runtime.

243

B.5.10 Installer - Layout Groups

Layout groups can be configured on the form components [p. 242] configuration dialog.
For more information on layout groups, please see the corresponding help topic [p. 17].
Form components can be grouped in horizontal and vertical layout groups.

You can nest as many levels of groups as you wish. Next to the label of the layout group in the
tree of form components, the number of all contained form components is shown in bold font.
Form components in nested groups are counted as well.

Grouping offers the following benefits:

+ Custom layout

Instead of a simple sequence of form components on a form screen, you can use horizontal
layout groups to put form components side-by-side. Nesting vertical and horizontal form
components allows you to achieve virtually any layout.

Sometimes, enclosing groups and sibling groups span a cell that cannot be entirely filled with
a layout group. With the "Anchor" property you can determine where the layout should be
placed. By default, horizontal form components are anchored "West" and vertical form
components are anchored "North-West".

Layout groups have a configurable cell spacing. For vertical layout groups, this is the vertical
gap between two form components (0 pixels by default), for horizontal layout groups this is
the horizontal gap between two adjacent form components (5 pixels by default)

For each layout group, you can specify insets that are inserted around the entire layout group.
By default, the insets a zero in all directions.

By default, horizontal layout groups align a leading label of the first form component in the
group with other form components from a direct vertical parent group. This is usually
appropriate when horizontal groups are used to attach additional form components to the
right side. If this alignment is not desired, you can use the "Align first label" property of a
horizontal layout group to switch off the alignment.

Vertical layout groups always break alignment of leading labels. Within a vertical group, leading
labels are aligned, but between vertical groups, the width of leading labels is unrelated.

+ Organization

If you have many form components on a screen, vertical groups emphasize which form
components belong together. You can add a common comment to the group.

« Common visibility script

Groups have a "Visibility script" property that allows you to hide the entire group with a
common condition instead of having to repeat the condition for each contained form
component.

+ Single target for coupled form components

If a set of form components should be coupled to the selection state of a check box or a single
radio button, you can select the containing layout group as the target instead of selecting all
coupled form components separately.

The configurable properties of horizontal and vertical layout groups are:

= Horizontal group

244

A horizontal form component group contains one or more form components that are
distributed along the horizontal axis.

Properties:

+ Visibility script [Initialization]

A script that determines whether form components in the group (and all descendant
components in nested groups) will be visible or not. This works for both GUIl and console
modes. In GUI mode, the script will be invoked each time just before the form
components are initialized. Visibility scripts of nested form components can further
hide single form components, but they cannot show them if a parent layout group is
already hidden.

* Insets [Layout]

The insets around the entire group. The format is top;left;bottom;right, use the
drop-down button at the right side to show the insets editor.

* Anchor [Layout]

The position in the available space where the group is anchored in the layout. This is
only relevant if the group takes less space than the cell that is created by the
surroundings.

+ Cell spacing [Layout]

The cell spacing determines how many pixels are inserted between single components
in the layout group.

+ Align first label [Layout]

If the horizontal group is directly added to a vertical group or to the top-level of a form,
the leading label in the horizontal group is aligned with other leading labels in the
vertical parent group. If this alignment is not desired, you can deselect this property.

+ Make children same height [Layout]
If all contained elements should have the same height.

Il vertical group

A vertical form component group contains one or more form components that are
distributed along the vertical axis.

Properties:

+ Visibility script [Initialization]

A script that determines whether form components in the group (and all descendant
components in nested groups) will be visible or not. This works for both GUIl and console
modes. In GUI mode, the script will be invoked each time just before the form
components are initialized. Visibility scripts of nested form components can further
hide single form components, but they cannot show them if a parent layout group is
already hidden.

* Insets [Layout]

The insets around the entire group. The format is top;left;bottom;right, use the
drop-down button at the right side to show the insets editor.

245

Anchor [Layout]

The position in the available space where the group is anchored in the layout. This is
only relevant if the group takes less space than the cell that is created by the
surroundings.

Cell spacing [Layout]

The cell spacing determines how many pixels are inserted between single components
in the layout group.

Make children same width [Layout]
If all contained elements should have the same width.

In addition to the above layout groups, you can add tabbed panes to a form. A tabbed pane is
added by choosing Tabbed Panes->Add Tabbed Pane from the dropdown menu displayed

by the = [Add] button. Below the tabbed pane, you have to add one or more single tabs by

choosing Tabbed Panes->Add Single Tab For

Tabbed Pane. Each single tab can then

contain arbitrary form components or layout groups.

The configurable properties of tabbed panes and single tabs are:

71 Tabbed pane

Atabbed pane contains a number of single tabs, which in turn contain form components.

Properties:

Visibility script [Initialization]

A script that determines whether form components in the group (and all descendant
components in nested groups) will be visible or not. This works for both GUIl and console
modes. In GUI mode, the script will be invoked each time just before the form
components are initialized. Visibility scripts of nested form components can further
hide single form components, but they cannot show them if a parent layout group is
already hidden.

Insets [Layout]

The insets around the entire group. The format is top;left;bottom;right, use the
drop-down button at the right side to show the insets editor.

Anchor [Layout]

The position in the available space where the group is anchored in the layout. This is
only relevant if the group takes less space than the cell that is created by the
surroundings.

Tab placement [Tabbed Pane]
The location where the tabs will be displayed.
Tab layout policy [Tabbed Pane]

The layout policy for tabs determined what should be done if there is not enough
horizontal space to display all tabs. The default policy "Wrap" creates multiple lines of
tabs to accommodate all tabs, the policy "Scroll" shows a scroll button and keeps a
single line of tabs.

246

Fill horizontal space [Tabbed Pane]

If set, the tabbed will fill all the available horizontal space regardless of its content,
otherwise it will be as wide as required by the preferred size of the contained form
components.

Fill extra vertical space [Tabbed Pane]

If set, the tabbed pane will expand to fill remaining vertical space. Extra vertical space
is only available, if the form is not scrollable. Custom form screens have a "Scrollable"
property, which must be set to false.

" Single tab

A single tab can be added to a tabbed pane group. It can contain any kind of form
components

Properties:

Visibility script [Initialization]

A script that determines whether form components in the group (and all descendant
components in nested groups) will be visible or not. This works for both GUI and console
modes. In GUI mode, the script will be invoked each time just before the form
components are initialized. Visibility scripts of nested form components can further
hide single form components, but they cannot show them if a parent layout group is
already hidden.

Insets [Layout]

The insets around the entire group. The format is top;left;bottom;right, use the
drop-down button at the right side to show the insets editor.

Anchor [Layout]

The position in the available space where the group is anchored in the layout. This is
only relevant if the group takes less space than the cell that is created by the
surroundings.

Cell spacing [Layout]

The cell spacing determines how many pixels are inserted between single components
in the layout group.

Tab title [Tab]

The title that is displayed on the tab. To configure a keyboard shortcut, prefix the
mnemonic character in the title with &, e.g."&User". The prefixed character will be

underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this tab with the keyboard.

Tab icon [Tab]

An image file with an icon that is displayed on the tab. Can be empty.<p>To add a
high-resolution image for retina displays, create a file with an additional <tt>@2x</tt>
after the name (e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate
resolution next to the selected image.

Tooltip text [Tab]

An optional tooltip text that is displayed when the user hovers with the mouse over
the tab.

247

+ Activation script [Tab]
A script that is executed when the tab is activated.

248

B.5.11 Installer - Available Form Components

Category: Action components

Button

A standard button with an optional leading label. When the user clicks on the button, an
action script is executed.

Properties:

Button text [Button]
The text that is displayed on the button. Can be empty if the button icon is set.
Button icon [Button]

The icon displayed on the button. Can be empty if the button text is set.<p>To add a
high-resolution image for retina displays, create a file with an additional <tt>@2x</tt>
after the name (e.g. <tt>image.png</tt>and <tt>image@2x.png</tt>) and the duplicate
resolution next to the selected image.

Action type [Button]

The type of the action that should be executed by the button is clicked. You can either
choose to configure a single script or an entire list of actions.

Action script

The script that is executed when the button is clicked by the user. The return type is
<tt>void</tt>.

Note: This property is only visible if "Action type" is set to "Script".

Action list

A list of actions that is executed when the button is clicked by the user.

Note: This property is only visible if "Action type" is set to "Action list".
Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
two</tt> </htmli>.

Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]
The gap between the label icon and the label text in pixels.

249

Font color [Label]
The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.
Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

¥ Hyperlink URL label

A label that displays a hyperlink. When the user clicks on the hyperlink, the appropriate
action is performed, depending on the protocol of the URL.

Properties:

Hyperlink text

The text that is displayed on the hyperlink label.

URL

The URL for the hyperlink. For example <tt>http://www.ej-technologies.com</tt>
Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
two</tt> </html>.

Text [Label]
The text of the label. Can be empty.
Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

% Hyperlink action label

250

A label that displays a hyperlink. When the user clicks on the hyperlink, an action script
is executed

Properties:

* Hyperlink text
The text that is displayed on the hyperlink label.
+ Action type

The type of the action that should be executed by the button is clicked. You can either
choose to configure a single script or an entire list of actions.

+ Action script
The script that is executed when the button is clicked by the user. The return type is
<tt>void</tt>.
Note: This property is only visible if "Action type" is set to "Script".
+ Action list
A list of actions that is executed when the button is clicked by the user.

Note: This property is only visible if "Action type" is set to "Action list".
+ Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><html>This is line one
This is line
twol</tt> </htmi>.

* Text [Label]
The text of the label. Can be empty.
* lcon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

+ lcon-text gap [Label]

The gap between the label icon and the label text in pixels.
* Font color [Label]

The color of the label font. If empty, the default color will be used.
* Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

Category: Labels and spacers

#* Horizontal separator

A horizontal separator with an optional label.

251

Properties:

Text [Label]
The text of the label. Can be empty.
Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

Use special title font [Label]

If selected, a special font and color are used for the separator label. The actual font
depends on the look and feel. This setting overrides all other font settings for the label.

#* Key value pair label

A pair of labels. The first ('key') label aligns with other leading labels on the form, the
second ('value') label consumes the remaining horizontal space,

Properties:

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><html>This is line one
This is line
twol</tt> </htmi>.

Text [Key Label]
The text of the key label. Can be empty.
Icon [Key Label]

An image file with an icon for the key label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Key Label]

The gap between the key label icon and the key label text in pixels.
Font color [Key Label]

The color of the key label font. If empty, the default color will be used.

252

Font [Key Label]

The font of the key label. If empty, the default font is used. Use the font name "dialog"
for the default label font and a "0" size value for the default size.

Text [Value Label]
The text of the value label. Can be empty.
Icon [Value Label]

An image file with an icon for the value label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Value Label]

The gap between the value label icon and the value label text in pixels.
Font color [Value Label]

The color of the value label font. If empty, the default color will be used.
Font [Value Label]

The font of the value label. If empty, the default fontis used. Use the font name "dialog"
for the default label font and a "0" size value for the default size.

#* Label

A single label. It is left-aligned with leading labels from other form components and
extends beyond other leading labels.

Properties:

Text [Label]
The text of the label. Can be empty.
Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

Add empty leading label [Label]

If selected, the label will not be aligned at the very left, but it will start after the leading
labels of other form components in the same vertical group.

253

#* Leading label

Aform component that only has a leading label and no central component. This can also
be used to create standalone help tooltips.

Properties:

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
two</tt> </html>.

Text [Label]
The text of the label. Can be empty.
Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

Multi-line HTML label

A multi-line label that wraps text as needed and displays simple HTML. In particular you
can include HTML links that open a browser.

Properties:

HTML [Label]

The HTML for the label. The value should start with <html>, otherwise the plain
text will be displayed in the preview. You can include HTML links that open a browser
when clicked by the user. URLs in links should start with
<tt>http://</tt> or <tt>file://</tt>.

Multi-line label

A multi-line label that wraps text as needed.

254

Properties:

* Text [Label]

The text of the label.
* Font color [Label]

The color of the label font. If empty, the default color will be used.
* Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

% Spring

An invisible spring that can be used in horizontal and vertical layout groups to push
subsequent components to the right or to the bottom

Properties:

« Axis

The direction along which the spring will push subsequent components. In a horizontal
layout group, use the "Horizontal" setting, in a vertical layout group, use the "Vertical"
setting.

Vertical spacer

An invisible vertical spacer of configurable height.
Properties:

+ Spacer height

The height of the spacer in pixels. The spacer itself is
invisible.

Category: Option selectors

Check box

A check box with an optional leading label. The user selection (<tt>Boolean.TRUE</tt> or
<tt>Boolean.FALSE</tt>) is saved to a variable.

Properties:

* Text [Check box]
The text of the check box. Can be empty.

255

Initially selected [Check box]
If set, the check box is initially selected
Selection script [Check box]

The script that is executed when the selection state of the check box is changed by the
user. The return type is <tt>void</tt>.

Coupled components

You can select other components on the same form screen which are enabled only if
the check box is selected.

Inverse coupling

If set, the coupling of other form components will be inverted with respect to the
selection state of the check box.

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
twol</tt> </htmi>.

Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

Variable name [User input]

The name of the variable to which the user input is assigned. The variable value will
be one of <tt>Boolean.TRUE</tt> or <tt>Boolean.FALSE</tt>, depending on the user
selection.The type of the variable value is <tt>java.lang.Boolean</tt>

Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

256

Combo box

A combo box with an optional leading label. The user can enter arbitrary text into the
combo box. The user selection (the selected item as a string) is saved to a variable.

Properties:

+ Combo box entries [Combo box]

The items in the combo box. In the edit dialog, you have to enter one item per line.
Items that are installer variables with array values (e.g. String[], Object[] or File[]) are
expanded as separate items, this allows you to build a variable length list of items at
runtime.

+ Initially selected index [Combo box]

The zero-based index of the initially selected item in the combo box.If you would like
to compute this value at runtime, please set the bound variable to a
<tt>java.lang.Integer</tt> value before this screen is shown.

+ Fill horizontal space [Combo box]

If set, the combo box will fill all the available horizontal space, otherwise it will be as
wide as required for the widest item.

+ Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><html>This is line one
This is line
two</tt> </html>.

* Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

* lcon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

+ lcon-text gap [Label]

The gap between the label icon and the label text in pixels.
* Font color [Label]

The color of the label font. If empty, the default color will be used.
* Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

+ Variable name [User input]

The name of the variable to which the user input is assigned. The variable value will
be the selected item text.The type of the variable value is <tt>java.lang.String</tt>

257

Selection change script [User input]

A script that is executed when the selection is changed by the user. This script is only
required for advanced customizations of the form screen. The return type is
<tt>void</tt>.

Input validation expression [User input]

An expression or script that validates the user input when the combo box loses the
focus. If the expression returns false, the focus remains in the combo box. In that case
you should display an error message.

Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

¥ Drop-down list

A drop-down list with an optional leading label. The user selection (the selected index as
a <tt>java.lang.Integer</tt>) is saved to a variable.

Properties:

Drop-down list entries [Drop-down list]

The items in the drop-down list. In the edit dialog, you have to enter one item per line.
Items that are installer variables with array values (e.g. String[], Object[] or File[]) are
expanded as separate items, this allows you to build a variable length list of items at
runtime.

Initially selected index [Drop-down list]

The zero-based index of the initially selected item in the drop-down list.If you would
like to compute this value at runtime, please set the bound variable to a
<tt>java.lang.Integer</tt> value before this screen is shown.

Fill horizontal space [Drop-down list]

If set, the drop-down list will fill all the available horizontal space, otherwise it will be
as wide as required for the widest item.

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
two</tt> </htmli>.

Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

258

¥ List

Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

Variable name [User input]

The name of the variable to which the user input is assigned. The variable value will
be the index of the selected item.The type of the variable value s
<tt>java.lang.Integer</tt>

Selection change script [User input]

A script that is executed when the selection is changed by the user. This script is only
required for advanced customizations of the form screen. The return type is
<tt>void</tt>.

Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

A list with an optional leading label. The user selection (the selected indices) is saved to
a variable.

Properties:

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
twol</tt> </htmi>.

Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

259

Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

List entries [List]

The items in the list. In the edit dialog, you have to enter one item per line. Items that
are installer variables with array values (e.g. String[], Object[] or File[]) are expanded
as separate items, this allows you to build a variable length list of items at runtime.

Initially selected index [List]

The zero-based index of the initially selected item in the list.If you would like to compute
this value at runtime, please set the bound variable to a <tt>java.lang.Integer</tt>
value before this screen is shown.

Fill horizontal space [List]

If set, the list will fill all the available horizontal space, otherwise it will be as wide as
required for the widest item.

Visible rows [List]
If the list is scrollable, this property determines the height of the list.
Fill extra vertical space [List]

If set, the form component will expand to fill remaining vertical space. Extra vertical
space is only available, if the form is not scrollable. Custom form screens have a
"Scrollable" property, which must be set to false.

Scrollable [List]

If set, the list will be wrapped in a scroll pane.
Multi-selection [List]

If set, the user can select multiple entries at the same time.
Variable name [User input]

The name of the variable to which the user input is assigned. If multiple items can be
selected, the variable value will be an <tt>int[]</tt> array with the selected indices,
otherwise the variable value will be the index of the selected item as a
<tt>java.lang.Integer</tt>

Selection change script [User input]

A script that is executed when the selection is changed by the user. This script is only
required for advanced customizations of the form screen. The return type is
<tt>void</tt>.

260

Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

#* Radio button group

A number of radio buttons in a common button group with an optional leading label.
The user selection (the selected index as a <tt>java.lang.Integer</tt>) is saved to a variable.

Properties:

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><html>This is line one
This is line
two</tt> </html>.

Text [Label]
The text of the label. Can be empty.
Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

Radio button labels [Radio buttons]

The labels of all the radio buttons. In the edit dialog, you have to enter one item per
line. Labels that are installer variables with array values (e.g. String[], Object[] or File[])
are expanded as separate labels, this allows you to build a variable length list of labels
at runtime.

Initially selected index [Radio buttons]

The zero-based index of the initially selected radio button. If you would like to compute
this value at runtime, please set the bound variable to a <tt>java.lang.Integer</tt>
value before this screen is shown.

Axis [Radio buttons]
The direction along which the radio buttons will be laid out.

261

Selection script [Radio buttons]

The script that is executed when a radio button is selected by the user. The return type
is <tt>void</tt>.

Variable name [User input]

The name of the variable to which the user input is assigned. The variable value will

be the index of the selected radio button.The type of the variable value is
<tt>java.lang.Integer</tt>

% Single radio button

Asingle radio button with an optional leading label. If selected, a specified string is saved
to a variable. If you place multiple instances of this form component on a form screen
and give them the same variable name, they will form a radio button group.

Properties:

Coupled components

You can select other components on the same form screen which are enabled only if
the radio button is selected.

Inverse coupling

If set, the coupling of other form components will be inverted with respect to the
selection state of the radio button.

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
two</tt> </html>.

Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.

262

* Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

+ Radio button label [Radio button]

The text of the radio button.
+ Initially selected [Radio button]

If selected, the radio button will be initially selected.
+ Selection script [Radio button]

The script that is executed when the radio button is selected by the user. The return
type is <tt>void</tt>.

+ Variable name [User input]

The name of the variable to which the user input is assigned. The variable value will
be the string defined in the "Variable value" property.The type of the variable value is
<tt>java.lang.String</tt>

+ Variable value [User input]
The value that should be written to the variable if this radio button is selected.
+ Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

Category: Sliders and spinners

Slider

A slider with an optional leading label. The user input (a <tt>java.lang.Integer</tt>) is
saved to a variable.

Properties:

+ Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
two</tt> </htmli>.

* Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

* lcon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name

263

(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

Minimum value [Slider]

The minimum value on the left side of the slider.
Maximum value [Slider]

The maximum value on the right side of the slider.
Initial value [Slider]

The initial value of the slider.

Major tick spacing [Slider]

The spacing between major ticks expressed as a value.
Minor tick spacing [Slider]

The spacing between minor ticks expressed as a value.
Snap to ticks [Slider]

If set, the user selection is snapped to the closest tick value.
Variable name [User input]

The name of the variable to which the user input is assigned. The type of the variable
value is <tt>java.lang.Integer</tt>

Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

¥ Spinner of dates

A spinner with date and time values with an optional leading label. The user input is saved
to a variable.

Properties:

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
twol</tt> </htmli>.

264

* Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

* lcon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

+ lcon-text gap [Label]

The gap between the label icon and the label text in pixels.
* Font color [Label]

The color of the label font. If empty, the default color will be used.
* Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

+ Date format pattern [Spinner]

A pattern to format dates for display and input as described in the javadoc of
<tt>java.text.SimpleDateFormat</tt>. An example is <tt>yyyy.MM.dd 'at' HH:mm:ss
z</tt>. If empty, a locale-dependent default pattern with date and time components
will be used.

+ Initial value [Spinner]
The initial value of the spinner.
+ Variable name [User input]

The name of the variable to which the user input is assigned. The type of the variable
value is <tt>java.util.Date</tt>

+ Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

4 Spinner of enumerated values

A spinner with enumerated values with an optional leading label. The user input is saved
to a variable.

Properties:

+ Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line

265

labels, use HTML like this: <tt><htmlI>This is line one
This is line
twol</tt> </htmi>.

* Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

* Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

+ lcon-text gap [Label]

The gap between the label icon and the label text in pixels.
* Font color [Label]

The color of the label font. If empty, the default color will be used.
* Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

+ List entries [Spinner]

The items in the spinner. In the edit dialog, you have to enter one item per line. List
items that are installer variables with array values (e.g. String[], Object[] or File[]) are
expanded as separate list items, this allows you to build a variable length list of list
items at runtime.

+ Initially selected index [Spinner]
The zero-based index of the initially selected item in the spinner.
+ Variable name [User input]

The name of the variable to which the user input is assigned. The type of the variable
value is <tt>java.lang.String</tt>

+ Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

7 Spinner of integer values

A spinner with integer values with an optional leading label. The user input is saved to a
variable.

Properties:

+ Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user

266

hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
twol</tt> </htmli>.

* Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

* Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

+ lcon-text gap [Label]

The gap between the label icon and the label text in pixels.
* Font color [Label]

The color of the label font. If empty, the default color will be used.
* Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

* Minimum value [Spinner]
The minimum value on the left side of the spinner.
+ Maximum value [Spinner]
The maximum value on the right side of the spinner.
+ Initial value [Spinner]
The initial value of the spinner.
+ Step size [Spinner]
The step size for the spinner.
+ Variable name [User input]

The name of the variable to which the user input is assigned. The type of the variable
value is <tt>java.lang.Integer</tt>

+ Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

Category: Special selectors and displays

% Directory chooser

Adirectory chooser with an optional leading label. The user selection is saved to a variable.

267

Properties:

Allow new folder creation [Chooser Dialog]

If selected, the directory chooser that is displayed with the chooser button will feature
a button to create new directories.

Manual entry allowed [Chooser Dialog]

If selected, the user can enter the directory manually in the text field. Otherwise, the
text field is disabled.

Initial directory [Directory chooser]

The initially selected directory. The variable value takes precedence, so this value will
only be used if the variable value is undefined. Can be empty.

Initial browser directory [Directory chooser]

The initial directory that is shown in the browser if no directory is selected. If empty,
the browser will start in the user home directory. If a directory is entered in the text
field, the browser will use that path instead.

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line

labels, use HTML like this: <tt><htmlI>This is line one
This is line
two</tt> </htmli>.

Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

Allow spaces in directory name [Unix]

If selected, spaces are valid characters in the installation directory name for Unix/Linux
installers, otherwise an error message is displayed if the user chooses a directory with
spaces in it. Some JREs do not work on Unix if installed to a path that contains spaces,
so spaces are disallowed by default.

268

Variable name [User input]

The name of the variable to which the user input is assigned. The type of the variable
value is <tt>java.lang.String</tt>

Validation script [User input]

The script that is executed when the directory is selected with the chooser button and
when the user clicks on the Next button of the screen. If the script returns <tt>true</tt>,
the selection is accepted, if it returns <tt>false</tt>, the selection is discarded.

Standard validation [User input]

If selected, the standard validation for well-formed directory names will be performed.
This validation is performed before the validation script and will canonicalize the
directory name before passing it to the validation script.

Allow empty input [User input]

If selected, the user can leave the directory empty or clear the initial directory (if manual
entry is allowed) and there will be no validation error.

Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

¥ File chooser

A file chooser with an optional leading label. The user selection is saved to a variable.

Properties:

Manual entry allowed [Chooser Dialog]

If selected, the user can enter the file manually in the text field. Otherwise, the text
field is disabled.

Initial file [File chooser]

The initially selected file. The variable value takes precedence, so this value will only
be used if the variable value is undefined. Can be empty.

Initial browser directory [File chooser]

The initial directory that is shown in the browser if no file is selected. If empty, the
browser will start in the user home directory. If a file is entered in the text field, the
browser will use that path instead.

Use file filter [File chooser]

If a file filter should be used. Configure the file filter in the nested properties once you
enable this option.

File filter name

The name of the file filter which is displayed to the user in the drop-down filter list of
the file chooser.

Note: This property is only visible if "Use file filter" is selected.

269

* Filtered file extension

The list of the filtered file extension. A file extension may be written as <tt>*.xml</tt>,
<tt>.xml</tt> or <tt>xml</tt>, all three notations are equivalent. In the edit dialog, you
have to enter one item per line. File extensions that are installer variables with array
values (e.g. String[], Object[] or File[]) are expanded as separate file extensions, this
allows you to build a variable length list of file extensions at runtime.
Note: This property is only visible if "Use file filter" is selected.

+ Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
twol</tt> </htmli>.

* Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

* Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

+ lcon-text gap [Label]

The gap between the label icon and the label text in pixels.
* Font color [Label]

The color of the label font. If empty, the default color will be used.
* Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

+ Variable name [User input]

The name of the variable to which the user input is assigned. The type of the variable
value is <tt>java.lang.String</tt>

+ Validation script [User input]

The script that is executed when the file is selected with the chooser button and when
the user clicks on the Next button of the screen. If the script returns <tt>true</tt>, the
selection is accepted, if it returns <tt>false</tt>, the selection is discarded.

+ Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

HTML display

270

Ascroll panel that displays HTML text. The HTML is easily localizable since the file selection
allows you to enter separate files for all supported languages.

Properties:

Text source [HTML display]

The source from which the text is loaded. For multi-language installers, the "File" source
is recommended since it is more easily localizable than the direct entry.

Text file
The file from which the text is loaded.

Note: This property is only visible if "Text source" is set to "File".
Text

The text that is displayed in the screen, either plain text or HTML. For HTML, the value
should start with <tt><htmlI></tt>, otherwise the plain text will be displayed. The
text is displayed in a scrollable text area.

Note: This property is only visible if "Text source" is set to "Direct".
Height [HTML display]

The height of the HTML display in pixels.

Fill extra vertical space [HTML display]

If set, the form component will expand to fill remaining vertical space. Extra vertical
space is only available, if the form is not scrollable. Custom form screens have a
"Scrollable" property, which must be set to false.

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
two</tt> </htmli>.

Text [Label]
The text of the label. Can be empty.
Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

% Installation directory chooser

271

An installation directory chooser with an optional display of required and free space. The
user selection is set as the installation directory.

Properties:

Suggest application directory [Application ID]

When the user chooses a directory, always append the default application directory
configured in the media file wizard. You should only switch this off if you substitute a
different installation directory in the screen validation.

Existing directory warning [Application ID]

Ask the user whether to install the application in the selected directory if it already
exists and the installation is not an update.

Check if directory is writable [Application ID]

Check if the directory is writable with the currently available privileges and show a
warning message if itis not. If you deselect this option, and the directory is not writable,
you should execute a "Request privileges" action before installing files to the installation
directory.

Allow new folder creation [Chooser Dialog]

If selected, the directory chooser that is displayed with the chooser button will feature
a button to create new directories.

Manual entry allowed [Chooser Dialog]

If selected, the user can enter the installation directory manually in the text field.
Otherwise, the text field is disabled.

Insufficient disk space warning [Disk Space]

Show a warning message if there is not sufficient disk space for the installation on the
selected target drive.

Show required disk space [Disk Space]

Show the disk space that is required for the installation. You should switch this off if
your installation includes other data sources.

Show free disk space [Disk Space]

Show the disk space that is available on the selected drive or partition. This setting is
only effective for Windows, macOS and Linux.

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
two</tt> </html>.

Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>

on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

272

* Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

+ lcon-text gap [Label]

The gap between the label icon and the label text in pixels.
* Font color [Label]

The color of the label font. If empty, the default color will be used.
* Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

+ Allow spaces in directory name [Unix]

If selected, spaces are valid characters in the installation directory name for Unix/Linux
installers, otherwise an error message is displayed if the user chooses a directory with
spaces in it. Some JREs do not work on Unix if installed to a path that contains spaces,
so spaces are disallowed by default.

+ Validation script [User input]

The script that is executed when the installation directory is selected with the chooser
button and when the user clicks on the Next button of the screen. If the script returns
<tt>true</tt>, the selection is accepted, if it returns <tt>false</tt>, the selection is
discarded.

+ Standard validation [User input]

If selected, the standard validation for well-formed directory names will be performed.
This validation is performed before the validation script and will canonicalize the
directory name before passing it to the validation script.

+ Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

7 Progress display

An progress display that can show the progress of the actions attached to the containing
screen.

Properties:

+ Hide initially
If selected, the progress bar is hidden when the form is shown. When the actions
attached to the screen are executed, the progress bar is made visible.

+ Status line visible
If selected, the status line is visible.

273

Detail line visible
If selected, the detail line is visible.

¥ Update schedule selector

Drop-down box that lets the user select an update schedule for your application. You
can use the <tt>com.install4j.api.update.UpdateScheduleRegistry</tt> class in your
application to check if you should launch an updater. Please see the Javadoc for more
information. Please note that simply adding this form component does not automatically
launch an updater at regular intervals.

Properties:

Initial update schedule

The initially selected update schedule. If the user has already installed the application
before, the currently active selection by the user will be selected and this value will be
ignored.

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
two</tt> </html>.

Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

274

Windows user selector

A component for selecting Windows users or groups in the native Windows user dialog.
Optionally, you can display a button to create a new user. The selection is saved as a SID to a string variable. If
multiple selection is enabled, the result is a string array of SIDs.

This component
does not do anything in console mode, since it requires the native Windows dialog for
selecting users and groups.

Properties:

Show users

Show users in the native user selection dialog.
Show groups

Show users in the native user selection dialog.
Show well-known principals

Show well-known principals like "SYSTEM" or "SERVICE" in the native user selection
dialog.

Multiple selection

If selected, multiple users or groups can be selected. The variable type is a string array
of SIDs in that case, otherwise itis a string with the single selected SID. Multiple selection
cannot be combined with the "Create User" option.

Only local objects
If selected, only local users and groups will be displayed.
Show "Create User" button

If selected, a button to create a new user will be displayed next to the "Browse" button.
On clicking that button, a separate dialog will be shown where the new user can be
configured.

Note: This property is only visible if "Show users" is selected.
Variable for user creation flag

The name of the variable which will be set to <tt>Boolean.TRUE</tt> if the selected
user has been created by the user. If the selected user has not been created, the
variable value will be set to <tt>Boolean.FALSE</tt>. This is useful if you would like to
determine if the uninstaller should delete the user. Users can be deleted with the
install4j APl.<p>This variable name can be empty, in which case the creation status
will not be saved.

Note: This property is only visible if "Show "Create User" button" is selected.
Variable for local group

The name of the variable which will be set to the local group used for a newly created
user. This variable name can be empty, in which case the created local group name
will not be saved.

Note: This property is only visible if "Show "Create User" button" is selected.
Variable for group creation flag

The name of the variable which will be set to <tt>Boolean. TRUE</tt> if a group for the
selected user has been created by the user. If the selected user has not been created
or if an existing group was used, the variable value will be set to <tt>Boolean.FALSE</tt>.

275

This is useful if you would like to determine if the uninstaller should delete the local
group. Groups can be deleted with the install4j APl.<p>This variable name can be
empty, in which case the creation status will not be saved.

Note: This property is only visible if "Show "Create User" button" is selected.
+ Password form component

A text field or password field form component that should be updated with the
password that was chosen for the created user.If not selected, no such update will be
performed.

Note: This property is only visible if "Show "Create User" button" is selected.
+ Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
two</tt> </htmli>.

* Text [Label]
The text of the label. Can be empty.
* Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

* lcon-text gap [Label]

The gap between the label icon and the label text in pixels.
* Font color [Label]

The color of the label font. If empty, the default color will be used.
* Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

+ Variable name [User input]

The name of the variable to which the user input is assigned. The variable value will
be a string with the selected SID, or, if multiple selection
is enabled, a string array of SIDs.

Category: Text fields

Password field

A password text field with an optional leading label. The user input is displayed with '*'
characters. The user input is saved to a variable.

Properties:

276

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
two</tt> </htmli>.

Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

Initial text [Password field]

The initial text in the text field. The variable value takes precedence, so this value will
only be used if the variable value is undefined. Can be empty.

Prevent empty user input [Password field]

If selected, empty user input is not accepted and a default error message is shown in
that case. This is a quick validation option so that you do not have to validate user
input in the validation script of the form screen, as it would be necessary for more
complex validations.

Font [Password field]

The font of the text field. If empty, the default font is used. Use the font name "dialog"
for the default label font and a "0" size value for the default size.

Text field columns [Password field]

The width of the text field, expressed as a multiple of the width of the character 'm'.
If zero, the text field will fill the entire horizontal space.

Write encoded value to response file [Password field]

Write an encoded value of the entered password to the response file. Note that the
encoding only prevents casual observation of the password. Do not enable if you
require strict security for the password.

Show icon to toggle password visibility [Password field]

If selected, an icon will be shown inside the text field to toggle the visibility of the
password.

277

+ Variable name [User input]

The name of the variable to which the user input is assigned. The type of the variable
value is <tt>java.lang.String</tt>

+ Key validation expression [User input]

An expression or script that validates each key that is pressed in this component by
the user.<p>The <tt>text</tt> parameter does not contain> the modifications of this
key event.

+ Key listener script [User input]

A script that is executed each time that a key is pressed in this component by the
user.<p>The <tt>text</tt> parameter already contains the modification of this key
event.

+ Input validation expression [User input]

An expression or script that validates the user input when the password field loses
the focus. If the expression returns false, the focus remains in the password field. In
that case you should display an error message.

+ Enter goes to next screen [User input]

If selected, hitting the <i>ENTER</i> key while the text field is focused, will go to the
next screen, just as if the user had clicked on the "Next" button.

+ Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

Text area

A text area with an optional leading label. The user input is saved to a variable.
Properties:

+ Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
two</tt> </htmli>.

* Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

* lcon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

278

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

Initial text [Text area]

The initial text in the text field. The variable value takes precedence, so this value will
only be used if the variable value is undefined. Can be empty.

Prevent empty user input [Text area]

If selected, empty user input is not accepted and a default error message is shown in
that case. This is a quick validation option so that you do not have to validate user
input in the validation script of the form screen, as it would be necessary for more
complex validations.

Font [Text area]

The font of the text field. If empty, the default font is used. Use the font name "dialog"
for the default label font and a "0" size value for the default size.

Text area columns [Text area]

The width of the text area, expressed as a multiple of the width of the character 'm".
If zero, the text area will fill the entire horizontal space.

Text area rows [Text area]

The height of the text area, expressed as a multiple of line heights. Must be greater
than zero.

Fill extra vertical space [Text area]

If set, the form component will expand to fill remaining vertical space. Extra vertical
space is only available, if the form is not scrollable. Custom form screens have a
"Scrollable" property, which must be set to false.

Wrap lines [Text area]

If selected, lines will wrap at the end of the text area. Otherwise a horizontal scroll bar
will be show when needed.

Wrap entire words [Text area]

This property is only relevant when lines are wrapped. If set, lines will wrap on word
boundaries if possible.

Use label font [Text area]
If selected, the default label font is used and other font settings are ignored.
Variable name [User input]

The name of the variable to which the user input is assigned. The type of the variable
value is <tt>java.lang.String</tt>

Key validation expression [User input]

An expression or script that validates each key that is pressed in this component by
the user.<p>The <tt>text</tt> parameter does not contain> the modifications of this
key event.

279

Key listener script [User input]

A script that is executed each time that a key is pressed in this component by the
user.<p>The <tt>text</tt> parameter already contains the modification of this key
event.

Input validation expression [User input]

An expression or script that validates the user input when the text area loses the focus.
If the expression returns false, the focus remains in the text area. In that case you
should display an error message.

Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

% Text field

A text field with an optional leading label. The user input is saved to a variable.

Properties:

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
two</tt> </htmli>.

Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

280

* Initial text [Text field]

The initial text in the text field. The variable value takes precedence, so this value will
only be used if the variable value is undefined. Can be empty.

* Prevent empty user input [Text field]

If selected, empty user input is not accepted and a default error message is shown in
that case. This is a quick validation option so that you do not have to validate user
input in the validation script of the form screen, as it would be necessary for more
complex validations.

* Font [Text field]

The font of the text field. If empty, the default font is used. Use the font name "dialog"
for the default label font and a "0" size value for the default size.

* Text field columns [Text field]

The width of the text field, expressed as a multiple of the width of the character 'm".
If zero, the text field will fill the entire horizontal space.

+ Variable name [User input]

The name of the variable to which the user input is assigned. The type of the variable
value is <tt>java.lang.String</tt>

+ Key validation expression [User input]

An expression or script that validates each key that is pressed in this component by
the user.<p>The <tt>text</tt> parameter does not contain> the modifications of this
key event.

+ Key listener script [User input]

A script that is executed each time that a key is pressed in this component by the
user.<p>The <tt>text</tt> parameter already contains the modification of this key
event.

* Input validation expression [User input]

An expression or script that validates the user input when the text field loses the focus.
If the expression returns false, the focus remains in the text field. In that case you
should display an error message.

+ Enter goes to next screen [User input]

If selected, hitting the <i>ENTER</i> key while the text field is focused, will go to the
next screen, just as if the user had clicked on the "Next" button.

+ Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

Text field with date format

A text field with an optional leading label and a date format. The user input (a
<tt>java.util.Date</tt>) is saved to a variable.

Properties:

281

Date format [Format]

The date format specifies the components of the date that should be editable, i.e. date,
time or date and time.

Date display style [Format]

The date display style specifies the verbosity of the date component.
Time display style [Format]

The time display style specifies the verbosity of the time component.
Initial value [Format]

The initial date in the text field.

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
twol</tt> </htmli>.

Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

Font [Text field]

The font of the text field. If empty, the default font is used. Use the font name "dialog"
for the default label font and a "0" size value for the default size.

Text field columns [Text field]

The width of the text field, expressed as a multiple of the width of the character 'm'.
If zero, the text field will fill the entire horizontal space.

Variable name [User input]

The name of the variable to which the user input is assigned. The type of the variable
value is <tt>java.util.Date</tt>

282

Key validation expression [User input]

An expression or script that validates each key that is pressed in this component by
the user.<p>The <tt>text</tt> parameter does not contain> the modifications of this
key event.

Key listener script [User input]

A script that is executed each time that a key is pressed in this component by the
user.<p>The <tt>text</tt> parameter already contains the modification of this key
event.

Input validation expression [User input]

An expression or script that validates the user input when the text field loses the focus.
If the expression returns false, the focus remains in the text field. In that case you
should display an error message.

Enter goes to next screen [User input]

If selected, hitting the <i>ENTER</i> key while the text field is focused, will go to the
next screen, just as if the user had clicked on the "Next" button.

Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

¥ Text field with format mask

A text field with an optional leading label and an arbitrary format mask. The user input
is saved to a variable. The default mask is that of an SSN. For more information, please
see the javadoc of <tt>javax.swing.text.MaskFormatter</tt>.

Properties:

Input mask [Format]
The input mask as defined be the javadoc of <tt>javax.swing.text. MaskFormatter</tt>.
Placeholder character [Format]

The character that is displayed for empty characters of the input mask that still have
to be filled out by the user.

Valid characters [Format]

If not empty, this string defines the characters that are valid for user input.
Invalid characters [Format]

If not empty, this string defines the characters that are invalid for user input.
Allow invalid input [Format]

If set, invalid input will be allowed during editing. When the text field loses focus, invalid
input will not be accepted, so the final value is guaranteed to be valid in any case.

Return literal characters [Format]

If set, the value that is saved to the variable contains literal characters defined in the
input mask.

283

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt><htmlI>This is line one
This is line
two</tt> </htmli>.

Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>
on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

Initial text [Text field]

The initial text in the text field. The variable value takes precedence, so this value will
only be used if the variable value is undefined. Can be empty.

Prevent empty user input [Text field]

If selected, empty user input is not accepted and a default error message is shown in
that case. This is a quick validation option so that you do not have to validate user
input in the validation script of the form screen, as it would be necessary for more
complex validations.

Font [Text field]

The font of the text field. If empty, the default font is used. Use the font name "dialog"
for the default label font and a "0" size value for the default size.

Text field columns [Text field]

The width of the text field, expressed as a multiple of the width of the character 'm'.
If zero, the text field will fill the entire horizontal space.

Variable name [User input]

The name of the variable to which the user input is assigned. The type of the variable
value is <tt>java.lang.String</tt>

Key validation expression [User input]

An expression or script that validates each key that is pressed in this component by
the user.<p>The <tt>text</tt> parameter does not contain> the modifications of this
key event.

284

Key listener script [User input]

A script that is executed each time that a key is pressed in this component by the
user.<p>The <tt>text</tt> parameter already contains the modification of this key
event.

Input validation expression [User input]

An expression or script that validates the user input when the text field loses the focus.
If the expression returns false, the focus remains in the text field. In that case you
should display an error message.

Enter goes to next screen [User input]

If selected, hitting the <i>ENTER</i> key while the text field is focused, will go to the
next screen, just as if the user had clicked on the "Next" button.

Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

Text field with integer format

A text field with an optional leading label and an integer format. The user input is saved
to a variable with type <tt>java.lang.Long</tt>.

Properties:

Minimum number of digits [Format]

The minimum number of digits that are acceptable for user input.

Maximum number of digits [Format]

The maximum number of digits that are acceptable for user input. If zero, there is no
limit.

Use grouping separator [Format]

If set, a locale-dependent grouping separator is displayed.

Allow invalid input [Format]

If set, invalid input will be allowed during editing. When the text field loses focus, invalid
input will not be accepted, so the final value is guaranteed to be valid in any case.

Help text [Help]

If a text is entered into this property, a tooltip label with a help icon will be created on
the right side of the form component that will display the help text when the user
hovers with the mouse above the icon. The text can be plain text or HTML. For multi-line
labels, use HTML like this: <tt>&It;html>This is line one
This is line
twol</tt> </htmi>.

Text [Label]

The text of the label. Can be empty. To configure a keyboard shortcut, prefix the
mnemonic character in the label text with &, e.g."&User". The prefixed character will
be underlined and the platform-specific keyboard shortcut (e.g. <i>ALT+[character]</i>

on Windows) will allow the user to quickly navigate to this form component with the
keyboard.

285

Icon [Label]

An image file with an icon for the label. Can be empty.<p>To add a high-resolution
image for retina displays, create a file with an additional <tt>@2x</tt> after the name
(e.g. <tt>image.png</tt> and <tt>image@2x.png</tt>) and the duplicate resolution
next to the selected image.

Icon-text gap [Label]

The gap between the label icon and the label text in pixels.

Font color [Label]

The color of the label font. If empty, the default color will be used.
Font [Label]

The font of the label. If empty, the default font is used. Use the font name "dialog" for
the default label font and a "0" size value for the default size.

Initial text [Text field]

The initial text in the text field. The variable value takes precedence, so this value will
only be used if the variable value is undefined. Can be empty.

Prevent empty user input [Text field]

If selected, empty user input is not accepted and a default error message is shown in
that case. This is a quick validation option so that you do not have to validate user
input in the validation script of the form screen, as it would be necessary for more
complex validations.

Font [Text field]

The font of the text field. If empty, the default font is used. Use the font name "dialog"
for the default label font and a "0" size value for the default size.

Text field columns [Text field]

The width of the text field, expressed as a multiple of the width of the character 'm".
If zero, the text field will fill the entire horizontal space.

Variable name [User input]

The name of the variable to which the user input is assigned. The type of the variable
value is <tt>java.lang.Long</tt>

Key validation expression [User input]

An expression or script that validates each key that is pressed in this component by
the user.<p>The <tt>text</tt> parameter does not contain> the modifications of this
key event.

Key listener script [User input]

A script that is executed each time that a key is pressed in this component by the
user.<p>The <tt>text</tt> parameter already contains the modification of this key
event.

Input validation expression [User input]

An expression or script that validates the user input when the text field loses the focus.
If the expression returns false, the focus remains in the text field. In that case you
should display an error message.

Enter goes to next screen [User input]

If selected, hitting the <i>ENTER</i> key while the text field is focused, will go to the
next screen, just as if the user had clicked on the "Next" button.

286

+ Request focus [User input]

If selected, the form component will request the focus after the form is activated. If
you have multiple form components in a single form that have this property selected,
the result is undefined.

#* Console handler

Allows you to interact with the user in a console installer. All standard form components
expose appropriate behavior in console mode, however, there are situations where you
need to fine-tune your console installer with additional messages or questions. In GUI
or unattended mode, this form component does not have any effect.

Properties:

+ Console script

The script that is executed in console mode. The "console" parameter gives you access
to the console and many helper methods. The return type is boolean and indicates
whether the installer should be cancelled or not.

287

B.5.12 Installer - Custom Code & Resources

Custom code is used for

+ specifying additional libraries that can be used in scripts and expressions [p. 294] of screens
[p. 15471, actions [p. 173] and form components [p. 242] .

+ developing new types of actions, screens or form components with the install4j API. Please
see the help topic on using the API [p. 72] for more information.

Before you start to develop a new action, please have a look at the available actions [p. 175]
and screens [p. 157] . Ifit's just a few lines of code, you can use the "Run script" action to enter
them directly into install4j. If you would like to collect user input, most use cases can be solved
with a "Configurable form" screen.

An alternative way of adding your beans to the install4j is packaging them as an extension [p.
75] . In that case, you can select them directly from the standard registry dialogs instead of
having to go through the "Search in custom code" menu entries when adding beans to the
installer.

+ including resource files into the installer. Resource files are arbitrary files like DLLs, external
executables or text files that have to be available before the "Install files" action has run. While
all class files are packed into a single user . j ar file, archives and resource file are extracted
to the user subdirectory in the working directory of the installer. You can access a resource
file with the following expression:

new File("user", "[file name]")
For example, if you have added a native library j ni . dl | to your custom code, you can load
it in a "Run script" action by calling

System | oad(new File("user", "jni.dll").getPath());

In the [Custom code] section you can specify the location of your custom code. The following
custom code location types [p. 292] are available:

" Class or resource files

Directories

~ Archives

All classes used by your custom code have to be included in these locations (except for Java
runtime classes and install4j framework classes).
The control buttons allow you to modify the contents of the list of custom code locations, the

== [Add] button displays the custom code entry dialog [p. 292] .

After you have chosen your custom code locations, you will be able to select your own screens,
actions and form components.

Files that are present in both the custom code as well as the distribution tree will not be packaged
twice. You can add files that are also in the distribution tree freely to your custom code, they
will not increase the size of your installer. The compiler checks the source path of included files
to determine if they are already present in the installer.

288

B.5.13 Installer - Update Options

Please see the help topic on updates [p. 68] for a general discussion on how generated installers
handle installations when an earlier version has already been installed.

Every install4j project has an application ID. When you create a new project, the application 1D
is calculated. The ID is displayed on this tab. If you have to change the ID, you can use the
[Regenerate ID] button. You can also change the ID manually if the manual |y edit | Dcheck
box is checked. You should only change the ID if you want to change the identity if your project.
The application ID ensures that later versions of your application will be able to find and recognize
earlier installations.

install4j offers two types of installers:

* Regular installer

This generates standalone installer. The following options related to updates are available for
regular installers:

+ Detect previous installation directory

If a previous installation can be detected on the computer, the installer will suggest the
directory of that previous installation. In that case, the "Welcome" screen will ask the user
if the previous installation should be updated. This question can be suppressed in the
configuration of the "Welcome" screen.

* Add-on installer

This generates an installer that can only be installed on top of an installation of a certain
installation. An add-on installer doesn't have a separate uninstaller. This is useful to distribute
patches and enhancements.

If the add-on installer type is selected, you have to enter an application ID for the base
application in the text field below. With the [...] chooser button, you can select an install4j
project file from your file system, and extract its application ID.

289

B.5.14 Installer - Auto Update Options

Please see the help topic on auto-updates [p. 45] for a general discussion on how to implement
auto-update functionality in your project.

All settings on this tab are returned at runtime by instances of Updat eDescr i pt or Ent r y objects
that are returned by the Updat eDescr i pt or object. There are two different scenarios for working
with these objects:

* In updater installer applications

If you have added an updater installer application on the screens & actions tab [p. 135], the
updater uses a "Check for update" action to download updates. xml, instantiate an
Updat eDescri pt or object and save it to the installer variable named "updateDescriptor". A
"Set a variable" action is used to save the appropriate Updat eDescri pt or Ent ry object to te
installer variable named "updateDescriptorEntry"

You can use the above installer variables directly in your updater application.
* From the API

If you want to check wupdates from your own code, you can call
cominstall4j.api.update. Updat eChecker. get Updat eDescriptor(...) to obtain
an instance of Updat eDescri pt or.

The URL for updates.xml setting sets the contents of the sys. updat esUr| compiler variable.
When you insert an updater on the screens & actions tab [p. 135], it contains a "Check for updates"
action, that will have its "Update descriptor URL" property setto ${ conpi | er: sys. updat esUr | }.
If there are any "Check for updates" actions in your project that use this compiler variable, you
have to define it in this text field. Note that this must be the full URL to which you will upload
the update descriptor file updates. xml, for example
http://ww. server. conf donwl oad/ updat es. xml . You do not have to name the file
updat es. xml on the server, it can have any name.

The base URL setting controls how the download URL of a new installer is constructed by an
auto-updater. By default, new installers have to be located in the same directory as the
updat es. xm update descriptor file. If they should be downloaded from another source, activate
the base URL setting and specify the base URL. The URK should start with htt p: // and point
to a directory where the installers are located, not to a particular installer.

The configured value is returned by Updat eDescri pt or #get BaseUr | (). It is not possible to
set different base URLs for different media files by using a compiler variable.

The minimum and maximum updatable versions control if updater applications of already
installed applications should recognize the current version as a possible update. For example,
if the installed version is 1.0 and a minimum updatable version of 2.0 is specified, the return
value of Updat eDescri pt or #get Possi bl eUpdat eEntry() will be null and the updater
application will not detect a new version.

The configured values are returned by Updat eDescr i pt or Ent r y#get Updat abl eVer si onM n()
and Updat eDescri pt or Ent r y#get Updat abl eVer si onMax() . They can be overridden for
each media file in the "Customize project defaults->Auto-update options" step of the media file
wizard.

The files with comments setting allows you to embed an comment in text or HTML format in
the update descriptor. You can configure a file for each language [p. 82] that is supported by
the installer. If you configure a comment file for at least the principal language, a hyperlink that
shows the comment in the appropriate language will be added to the "New version available"
screen in updaters that perform a version check.

290

The comment in the user-selected Ilanguage is returned by
Updat eDescr i pt or Ent r y#get Conment () . Comment files can be overridden for each media
file in the "Customize project defaults->Auto-update options" step of the media file wizard.

The files with comments must be encoded in UTF-8.

Additional attributes can be used for custom logic in updaters. Attributes are simple key-value
pairs.

The configured attributes are returned by
Updat eDescr i pt or Ent r y#get Addi ti onal Attri bute(...).Theycanbeoverriddenforeach
media file in the "Customize project defaults->Auto-update options" step of the media file wizard.

291

B.5.15 Dialogs
B.5.15.1 Custom Code & Resources Entry Dialog

The custom code entry dialog is shown when clicking on the % add button in the Custom Code
& Resources tab [p. 288] .
The following entry types are available:

" Class or resource files

For simple actions, screens or form components that do not depend on other classes, it is
easiest to insert their class files directly, especially if you build your installer extensions together
with your application. Anonymous inner classes will be included automatically. If you select a
resource file, e.g. an image, it will be added to the top-level directory of the custom JAR file
and will be available via O ass. get Resour ceAsStreant).

* Directories

With this type of entry you can add an entire directory. Please make sure to select a classpath
root directory, otherwise your classes cannot be loaded.

* L4 Scan Directories

With this type of entry you can add all JAR and ZIP files in a selected directory.
* & Archives
With this type of entry you can add a JAR file. JAR files can optionally ne mapped to installed

JAR files, so that they are not duplicated if they are used by both custom code and launchers.
Please see the help on the Custom Code & Resources tab [p. 288] for more information.

Use the [...] chooser button to select files and directories from your file system. A relative path
will be interpreted relative to the project file.
B.5.15.2 Class Selector Dialog

The custom class selection dialog is shown when you add an action [p. 173], a screen [p. 154] or
a form component [p. 242] from your custom code.

The custom class selector shows all classes thatimplement the appropriate interface, depending
on the context:

« cominstall4j.api.actions.|InstallAction for actions in the installation mode.

« cominstall4j.api.actions.UninstallAction foractions in the uninstallation mode.
« cominstall4j.api.screens.InstallerScreen for screens in the installation mode.

« cominstall4j.api.screens. Uninstall erScreenforscreensinthe uninstallation mode.
« cominstall4j.api.fornconponents. For mConponent for form components.

Note that you usually do not implement these interface directly but rather extend one of the
abstract classes in the respective packages.

Please see the API description for a detailed explanation of these base classes.

292

B.5.15.3 Registry Dialog

The registry dialog is displayed when you add a standard action [p. 173], screen [p. 154] or form
component [p. 242] . It shows all built-in elements as well as any elements contributed by installed
extensions [p. 75].

The registry dialog is quick-search enabled, you can start typing your query when the tree is
focused. The search term will be displayed in a yellow dialog at the top of the tree. If no match
is found, the search term is displayed in red. If a match is found, the search term is displayed in
black and the match is made visible. The matched portion is drawn inverted with a green
background.

To navigate between matches, you can use the arrow keys or F3 and SHI FT- F3.

You can use wildcards in your search term, for example: Font * Handl e.

B.5.15.4 Application Templates Dialog
The application templates dialog is displayed when you add an application [p. 138] on the screens
& actions [p. 294] tab.

Available application templates are grouped into categories. If you select the top-level Enpty
cust om appl i cat i on, a new application will be added that initially does not contain any screens
and actions.

install4j comes with several updater templates. Please see the help topic on auto-update
functionality [p. 45] for more help on creating updaters.

The application templates dialog is quick-search enabled, you can start typing your query when
the tree is focused. The search term will be displayed in a yellow dialog at the top of the tree. If
no match is found, the search term is displayed in red. If a match is found, the search term is
displayed in black and the match is made visible. The matched portion is drawn inverted with a
green background.

To navigate between matches, you can use the arrow keys or F3 and SHI FT- F3.

You can use wildcards in your search term, for example: Font * Handl e.

B.5.15.5 Link Selection Dialog

The link selection dialog is displayed by choosing Add Li nk | nt o from the popup menu that
is shown when clicking on the == [Add] button in the Screens & Actions tab [p. 135].

The dialog shows a tree of installer elements either of the current project or of the selected

merged project. After you close the dialog with the [OK] button, a link to the selected element
is added at the current position in the tree of installer elements.

In order to avoid placing to many links, it is recommend to create a screen group or an action
group to collect several screens and actions. A single link to that screen or action group is less
fragile than multiple links to the single elements.

B.5.15.6 String Edit Dialog

The string edit dialog is shown from the action [p. 173], screen [p. 154] or form component [p.
242] editors when you click on the [...] for a

+ a"multi-line string" property. Multi-line strings cannot be edited inline in the property sheet.

+ a'list of strings" property. While the inline editor in the property sheet accepts items separated
by semicolons (';'), this dialog separates item by line breaks. When you wish to enter a new
item, you have to put it on a new line.

293

All key bindings in the editor are configurable. Choose Set ti ngs- >Key Map to display the Key
map editor [p. 298] .

The editing functionality in the Edi t menu includes:

+ Undo/Redo
+ Copy/Cut/Paste
The "Paste with dialog" action shows previous selections.
* Rectangular selections
+ Extended selection and deletion
This included actions like "Select word" and "Delete line".
+ Join lines
* Duplicate lines
* Indent/Unindent selection
+ Toggle case

By choosing Edi t - >I nsert Vari abl e from the menu, you can add a compiler variable or
custom localization key at the current cursor position. It will be added with the text field variable
syntax, like ${i18n:myKeys} for a custom localization key or ${compiler:myVariable} for a compiler
variable.

The search functionality in the Sear ch menu includes:

* Find

Find simple or regular expressions in the selected or the entire text with options of case
sensitivity and word matching. With "Find next occurrence" and "Find previous occurrence"
you can quickly move among the search results.

* Replace
Same as "Find" with an option to replace the found items.
* Quick search
Search text by typing directly in the editor and highlighting the search results as you type.

B.5.15.7 Java Code Editor

The Java code editor is shown from the screens & actions [p. 135] tab or the form component [p.
242] editor when you click on the [...] for a Java code property.

Please see the help on the string editor dialog [p. 293] for common editing functionality.

The box above the edit area show the available parameters for the Java code property as well
as the return type. If parameters or return type are classes (and not primitive types), they will
be shown as hyperlinks. Clicking on such a hyperlink opens the Javadoc in the external browser.
If you would not like the default browser to be opened, you can configure your own browser in
the preferences dialog [p. 326] .

To get more information on classes from the com i nstal | 4j . * packages, please choose
Hel p- >Show Javadoc Overvi ewfrom the menu and read the help topic for the install4j API
[p. 72].In addition, the Java code editor offers a code gallery [p. 298] that contains useful snippets
that show you how to get started with using the install4j API. The code gallery is invoked from
the tool bar or by choosing Code- >l nsert from Code gal | ery from the menu.

A number of packages can be used without using fully-qualified class names. Those packages
are:

294

java.util.*

java.io.*

javax.swing.*
com.install4j.api.*
com.install4j.api.beans.*
com.install4j.api.context.*
com.install4j.api.events.*
com.install4j.api.screens.*
com.install4j.api.actions.*
com.install4j.api.formcomponents.*
com.install4j.api.update.*
com.install4j.api.windows.*
com.install4j.api.unix.*

You can put a number of import statements as the first lines in the text area in order to avoid
using fully qualified class names.

Java code properties can be

expressions
An expression doesn't have a trailing semicolon and evaluates to the required return type.

Example:! cont ext . i sUnattended() && !context.isConsol e()

The above example would work as the condition expression of an action and skip the action
for unattended or console installations.

scripts

A script consists of a series of Java statements with a return statement of the required return
type as the last statement.

Example: if (! cont ext. get Bool eanVari abl e("enterDetail s"))
cont ext.goForward(2, true, true); return true;

The above example would work as the validation expression of a screen and skip two screens
forward (checking the conditions of the target screen as well as executing the actions of the
current screen) if the variable with name "enterDetails" is not set to "true".

install4j detects automatically whether you have entered an expression or a script.

The primary interface to interact with the installer or uninstaller is the context which is always
among the available parameters. The context provides information about the currentinstallation
and gives access to variables, screens, actions and other elements of the installation or
uninstallation. The parameter is of type

cominstall4j.api.context.|nstallerContext forscreensand actionsintheinstallation
mode

cominstall4j.api.context.UninstallerContext for screens and actions in the
uninstallation mode

cominstall4j.api.context.Context for form components.

295

Apart from the context, the action, screen or form component to which the Java code property
belongs is among the available parameters. If you know the actual class, you can cast to it and
modify the object as needed.

The Java editor offers the following code assistance powered by the eclipse platform:

+ Code completion

Pressing CTRL- Space brings up a popup with code completion proposals. Also, typing a dot
(".")shows this popup after a delay if no other character is typed. While the popup is displayed,
you can continue to type or delete characters with Backspace and the popup will be updated
accordingly. "Camel-hump completion" is supported, i.e. typing NPE and hitting CTRL- Space
will propose Nul | Poi nt er Except i on among other classes. If you accept a class that is not
automatically imported, the fully qualified name will be inserted.

The completion popup can suggest:

@ variables and default parameters. Default parameters are displayed in bold font.

packages (when typing an import statement)

O classes

O fields (when the context is a class)

@ methods (when the context is a class or the parameter list of a method)

You can configure code completion behavior in the Java editor settings [p. 297] .
* Problem analysis

The code that you enter is analyzed on the fly and checked for errors and warning conditions.
Errors are shown as red underlines in the editor and red stripes in the right gutter. Warnings
(such as an unused variable declaration) are shown as a yellow backgrounds in the editor and
yellow stripes in the right gutter. Hovering the mouse over an error or warning in the editor
as well as hovering the mouse over a stripe in the gutter area displays the error or warning
message.

The status indicator at the top of the right gutter is

+ green

if there are no warnings or errors in the code.
+ yellow

if there are warnings but no errors in the code.
* red

if there are errors in the code. In this case the code will not compile and the installer cannot
be generated.

You can configure the threshold for problem analysis in the Java editor settings [p. 297] .
+ Context-sensitive Javadoc

Pressing SHI FT- F1 opens the browser at the Javadoc page that describes the element at the
cursor position. If no corresponding Javadoc can be found, a warning message is displayed.
Javadoc for the Java runtime library can only be displayed if a design time JDK is configured
and a valid Javadoc location is specified in the design time JDK configuration [p. 92] .

You can set the design time JDK in the Java editor settings [p. 297]

296

All key bindings in the Java code editor are configurable. Choose Set t i ngs- >Key Map to display
the Key map editor [p. 298] .

Screens, actions and form components are wired together with installer variables, please see
the help topic on screens and actions [p. 11] for more information. Setting and getting installer
variables is done through the context parameter with the cont ext. get Vari abl e(Stri ng
vari abl eNane) and context.setVariable(String variabl eNane, Cbject val ue)
methods. The convenience method cont ext . get Bool eanVari abl e(Stri ng vari abl eNane)
makes it easier to check conditions. Any object can be used as the value for a variable. To use
installer variables in text properties of actions, screens and form components, write them as
${installer:nyVari abl eNane}.

If the gutter icon in the top right corner of the dialog is green, your script is going to compile
unless you have disabled error analysis in the Java editor settings [p. 297] . In some situations,
you might want to try the actual compilation. Choosing Code- >Test Conpi | e from the menu
will compile the script and display any errors in a separate dialog. Saving your script with the
[OK] button will not test the syntactic correctness of the script. When your install4j project is
compiled, the script will also be compiled and errors will be reported.

B.5.15.8 Java Editor Settings

The Java editor settings dialog is shown when you select Set t i ngs- >Java Editor Settings
from the menu in the Java code editor dialog [p. 294] .

In the code completion popup settings section, you can configure the following options:

* Auto-popup code completion after dot

If selected, each time you type a dot (".") in the Java code editor, the code completion popup
will be displayed after a certain delay unless you type another character in the meantime.

+ Delay

The "Auto-popup code completion after dot" feature above uses a configurable delay. By
default, the delay is set to 1000 ms.

* Popup height
The height of the completion popup in number of entries is configurable.

In the display code problems section, you can configure the threshold for which code problems
are shown in the editor.

* None
No code problems are displayed at all.
* Errors only

Only problems that prevent code compilation are displayed. Errors show as red underlines
in the editor and red stripes in the right gutter.

* Errors and warnings

In addition to errors, warnings are displayed. Warnings cover all kinds of suspicious conditions
that could be sources of bugs such as an unused local variable. Warnings are displayed as
yellow backgrounds in the editor and yellow stripes in the right gutter.

In the Javadoc Settings section, there is an option to use the online documentation for the
install4j APl instead of the bundled HTML files. Since Windows 7, it is not possible to use anchors
when showing URLs anymore, so JavaScript redirection files are used to navigate to anchors in
the Javadoc documentation. When Internet Explorer is used, two warnings are displayed each

297

time you invoke a show Javadoc action. By using the online documentation, these warnings are
eliminated.

The design time JDK section mirrors the design time JDK configuration on the Java version [p.
80] tab of the general settings [p. 78] .

B.5.15.9 Code Gallery

The code gallery dialog is displayed by choosing Code- >l nsert from Code Gallery from
the menu in the Java code editor dialog [p. 294] .

Available code snippets are grouped into categories. They show how to use the install4j APl in
common use cases. The script is shown in a preview on the right side. You can either copy a
portion of the script with CTRL- C or click [OK] to insert the entire script at the current cursor
position.

Please note that not all code snippets might be directly usable in the script that you are editing.

Some java script properties have special code snippets that are only shown for this property.
If such code snippets exist, they are displayed in a category with the name of the java script
property in bold font.

The code gallery dialog is quick-search enabled, you can start typing your query when the tree
is focused. The search term will be displayed in a yellow dialog at the top of the tree. If no match
is found, the search term is displayed in red. If a match is found, the search term is displayed in
black and the match is made visible. The matched portion is drawn inverted with a green
background.

To navigate between matches, you can use the arrow keys or F3 and SHI FT- F3.

You can use wildcards in your search term, for example: Font * Handl e.

B.5.15.10 Key Map Editor
The key map editor is displayed by choosing Set ti ngs- >Key map from the menu in the Java
code editor dialog [p. 294] or the string edit dialog [p. 293] .

The active key map controls all key bindings in the editor. By default, the [Default] key map is
active. The default key map cannot be edited directly. To customize key bindings, you first have
to copy the default key map. Except for the default key map, the name of a key map can be edited
by double-clicking on it.

When assigning new keystrokes or removing existing key strokes from a copied map, the changes
to the base key map will be shown as "overridden" in the list of bindings.

The key map editor also features search functionality for locating bindings as well a conflict
resolution mechanism.

Key bindings are saved in the file $HOVE/ . i nst al | 4j 6/ edi t or _keymap. xni . This file only
exists if the default key map has been copied. When migrating an install4j installation to a different
computer, you can copy this file.

B.5.15.11 ID Selection Dialog

The ID selection dialog is displayed by choosing Edit->I nsert | D of a configuration
conponent from the menu in the Java code editor dialog [p. 294] .

Available configuration components are grouped into categories such as file sets or installation
components. IDs are required for certain finder methods in the context object. For example, in
the following code

context.getFileSetByld("756").setSel ected(fal se);

the ID "756" is not be readily available in the script. With the ID selector, you type

298

cont ext . get Fi | eSet Byl d(

and then open the ID selector. You open the "File sets" node, and select the desired file set. When
the dialog is closed with the [OK] button, the ID will be inserted into the edited script surrounded
by quotes.

The ID selection dialog is quick-search enabled, you can start typing your query when the tree
is focused. The search term will be displayed in a yellow dialog at the top of the tree. If no match
is found, the search term is displayed in red. If a match is found, the search term is displayed in
black and the match is made visible. The matched portion is drawn inverted with a green
background.

To navigate between matches, you can use the arrow keys or F3 and SH FT- F3.

You can use wildcards in your search term, for example: Font * Handl e.

B.5.15.12 Integration Wizard For Custom Installer Applications

The integration wizard for custom installer applications is displayed when you click the [Start
Integration Wizards] button at the top of the configuration pane for any custom installer
application on the screens & actions tab [p. 135] .

With this wizard, you can create a code snippet that you can paste into the Java code of your
own application in order to call the selected custom installer application.

This has several advantages with respect to simply using Runt i me. exec():

+ It works as expected on all supported platforms, including macOS

+ It uses the ID of the application and not the path, so the code snippet still works when you
rename the executable in your project

+ It allows the \"Shut down calling launcher\" action to close your application

+ It provides a callback to react to a shutdown of your application or an exit of the custom
installer application

299

B.6 Step 5: Media

B.6.1 Step 5: Configure Media

Media files are the final output of install4j: single installer files that are used to distribute your
application to your users. The creation of a media file has platform dependent options, so for
each platform, you have to define a media file. It also makes sense to define several media files
for one platform in case you wish to distribute different subsets of your distribution tree, or if
you distribute your application with and without a bundled JRE.

To define a new media file, you double-click on the % new media file entry in the list of defined
media files or choose Medi a- >New nedi a fil e from install4j's main menu. The first step of
the media wizard will then be displayed. The subsequent steps [p. 303] depend on your choice
of the media file type [p. 301] in this first step.

Once you have completed all steps of the media wizard and clicked [OK] in the final step, a new
media file entry will be displayed in the list of media files.

In the list of media files, you can

+ Reorder media file definitions

Media file definitions are reordered by dragging them with the mouse to the desired location.
While dragging, the insertion bar shows you where the media file definition would be dropped.
The order of media files determines the order in which the media files are generated.
Reordering is mainly provided for the purpose of letting you arrange the media file definitions
according to your personal preferences.

+ Copy media file definitions

Media file definitions can be copied by copy-dragging a media file definition or using the
corresponding tool bar button or menu entry. The name of the copied media file definition
will be prefixed with "Copy of".

*« Rename media file definitions

Media file definitions can be renamed by using the corresponding tool bar button or menu
entry. An input dialog will be displayed where the current name can be edited. Please note
that except for the YSETNAME%ovariable used in the media file options [p. 84], the name of
the media file is not used in the distribution but is for your own information only.

+ Delete media files definitions

Media file definitions can be deleted by hitting the DEL key or using the corresponding tool
bar button or menu entry.

+ Edit a media file definition

Media file definitions can be edited by hitting the ENTER key or using the corresponding tool
bar button or menu entry.

The appropriate media wizard [p. 300] will be displayed for the selected media file definition.
Note that you can directly access any step in the wizard by clicking on it in the index.

Each media file definitions has an ID which can be used to select certain media files when building
the project from the command line [p. 328] . To show all IDs, choose Pr oj ect - >Show | Ds from
the main menu. The IDs will then be shown in square brackets next to the names of the media
file definitions.

300

B.6.2 Available Media File Types

There are two fundamentally different types of media files:

Installers

The media file is an executable that invokes the installer. Optionally, the installer can be
executed as an unattended installer or as a console installer. Please see the corresponding
help topic [p. 56] for more information.

+ Windows media file

B a media file for Windows is a native setup executable that installs your application with
an installer wizard.

The installer can download a JRE if no suitable JRE is found on the target system.
* macOS single bundle media file

B a single bundle media file for macOS is a DMG file that contains an installer wizard that
is started by double clicking on it. The wizard installs your application as a single application
bundle. If you wish to support multiple GUI launchers, please choose the "macOS folder
media wizard" (see below). Command line launchers and service launchers are contained
in the application bundle.

The default JRE (which is always present on macOS) is used during the installation phase.

If you would like to create a separate directory next to the generated application bundle
that contains user files, you cannot add it directory to the "Installation directory" root of
the distribution tree, since all files under that node will end up in the application bundle.
The solution to this problem is to use the single bundle installer and to add another
installation root to the distribution directory, that root should be set to

${installer:sys.installationDir}/M Application Docunents

if you want to call the additional folder "My Application Documents". That folder will be
created next to the installed application bundle.

* macOS folder media file

F a folder media file for macOS is a DMG file that contains an installer wizard that is started
by double clicking on it. The wizard installs your application as a folder that contains the
entire distribution tree and multiple application bundles for each included launcher.

The default JRE (which is always present on macOS) is used during the installation phase.
* Unix/Linux GUI installer media file

B a Unix/Linux GUl installer media file is an executable shell script that extracts an installer
and installs your application with an installer wizard.

The installer can download a JRE if no suitable JRE is found on the target system.

Archives

The media file is an archive that the user can extract to an arbitrary location. No screens are
shown and no actions are executed. If you define additional installation roots, the files in them
are not installed. No components can be downloaded.

Archives are intended as a fallback or as additional packages such as documentation bundles.
If your installer heavily relies on actions, screens and additional installation roots, you should
not use archives to distribute your application. The main advantages of archives such as the
ability to install them at the command line is also available from installers by using their
unattended or console installation modes [p. 56] .

301

* Windows archive media file
£ an archive media file for Windows is a ZIP-file that contains your application.

Note: This media file type does not have a GUI installer. If you wish to create a GUl installer
for Windows, please choose the "Windows media wizard" (see above).

* macOS single bundle archive media file
2 a single bundle media file for macOS is a DMG or .tgz archive that contains a single
bundle for your application. If you wish to support multiple GUI launchers, please choose

the "macOS folder archive media wizard" (see below). Command line launchers and service
launchers are contained in the application bundle.

Note: This media file type does not have a GUI installer. If you wish to create a GUl installer
for macOS, please choose the "macOS single bundle media wizard" (see above).

« macOS folder archive media file

£ a folder media file for macOS is a DMG or .tgz archive that contains the entire distribution
tree and multiple application bundles for each included launcher.

Note: This media file type does not have a GUI installer. If you wish to create a GUl installer
for macOS, please choose the "macOS folder media wizard" (see above).

* Linux RPM media file
#& an RPM archive for Linux can be installed and uninstalled with the r pmcommand on

Linux distributions that use the Redhat package management. There are also a large number
of graphical package management tools that Linux users can use to install an RPM archive.

Note: This media file type does not have a GUI installer. If you wish to create a GUl installer
for Linux, please choose the "Unix/Linux GUI installer media wizard" (see below).

* Linux Deb media file

8 an Deb archive for Linux can be installed and uninstalled with the dpkg command on
Linux distributions that use the Debian package management. There are also a large number
of graphical package management tools that Linux users can use to install a Deb archive.

Note: This media file type does not have a GUI installer. If you wish to create a GUl installer
for Linux, please choose the "Unix/Linux GUI installer media wizard" (see below).

+ Unix/Linux archive media file
5 a Unix/Linux archive media file is a gzipped TAR archive that contains your application.

Note: This media file type does not have a GUI installer. If you wish to create a GUl installer
for Unix or Linux, please choose the "Unix/Linux GUI installer media wizard" (see above).

Note: GUI launchers on macOS only start a single instance of your application. Subsequent
launches will not start additional JVMs. You can use the
cominstall4j.api.launcher. StartupNotificationfromtheinstall4jAPlto beinformed
about those invocations.

302

B.6.3 Media File Wizards

The media file wizard is displayed when you add a new media file or when you edit an exiting
media file. To learn more information about the various media file types, please see the overview
[p. 301].

The media file wizards show a number of steps which depend on the media file type. Common
steps are:

Platform [p. 304]

Choose the media file type.

Installer options [p. 305]

Define options for the installer.

Data files [p. 308]

Specify where the installer data should be placed. Not displayed for archives.
Bundled JRE [p. 310]

Decide if and how a JRE should be bundled with the installer. Not displayed for macOS media
file types.

Customize project defaults [p. 312]
A number of project settings can be customized on a per-media file basis.

In addition, there are a number of steps that depend on the media file type:

32-bit or 64-bit [p. 314]

For Windows media files only.
Executable processing [p. 315]
For Windows media files only.
Launcher [p. 316]

For macOS single bundle media files only.
64 bit settings [p. 317]

For macOS media files only.
Additional files in DMG [p. 318]
For macOS media files only.
DMG options [p. 319]

For macOS media files only.

303

B.6.4 Wizard Steps

B.6.4.1 Media File Wizard: Platform

In this step of the media file wizard [p. 303] you select the media file type [p. 301] . If you are
creating a new media file definition, the subsequent steps are undefined at this point.

If you are editing an existing media file definition, changing the media file type away from from
the current selection will change the wizard into a different one and data that has been entered
in the subsequent steps will be lost after a warning message has been confirmed.

304

B.6.4.2 Media File Wizard: Installer Options

In this step of the media file wizard [p. 303] you define options for the installer, most importantly
the default installation directory.

This step is different for installers and archives:

Installers:

+ Installation directory

Enter a simple directory name (without backslashes). The standard location for applications
will we prepended to this directory name. In other words: do not enter C:\ Program
Fi |l es\ MyAppl i cati on but only MyAppl i cati on The installer will find out the correct
equivalent for C:\ Program Fil es, / opt or similar standard locations at runtime. By
default, install4j will suggest the short name you have entered in the general application
options [p. 79] . It is also possible to enter a composite relative directory like My

Cor p\ MyAppl i cati on.

Note that this value will be overridden if an installer with the same application ID has been
previously installed and "Detect previous installation directory" is selected on the update
options tab [p. 289] of the installer section.

+ Use custom installation base directory

If you do not want to install your application to the standard application directory, you can
enter a custom base directory here. This is useful for internal deployments with non-standard
directory policies. The installation directory entered above will be appended to the custom
base directory. For example, if the application should be installed in
D: \ apps\ MyAppl i cati on, check the custom installation base option, enter D: \ apps in
the text field below it and enter MyAppl i cat i on in the installation directory text field above.

On Unix, if you want to suggest a directory below the user home directory, you can use ~
as the custom installation base directory.

Archives:

With the installation directory you determine the top level directory for the archive. All files
will be contained in the top level directory. Enter a simple name without slashes, such as
nyapp. By default, install4j will suggest the short name you have entered in the general
application options [p. 79] .

For macQOS single bundle archives, it is not possible to set an installation directory since all
files in a single bundle are in contained in a single directory whose name is determined by
the name of the main launcher. The user can move the entire bundle somewhere else by
dragging the displayed icon.

For macOS bundle archives, you can configure whether the media file should be a DMG or a
.tar.gzfile. For GUl applications, DMG is preferred. For command line applications or for folder
bundles, you may want to select the .tar.gz file.

For Windows installer media files, this step includes an option Verify integrity of
instal ler file thatallowsyou to disable the built-in integrity verification. You might have to
do that if you use EXE-wrapper software for licensing purposes or similar tools that modify the
installer executable.

For macOS installer media files, this step has an option Si gn installed |aunchers. By
default, only the installer is signed on macOS. If you have configured entitlements for code signing
in the "Executable info->macOS options" step [p. 125] of the launcher wizard, these entitlements
will only be used for your launchers if the above option is selected.

305

Note that it is not possible to modify the Info.plist file at runtime if you select this option.

For Linux Deb media files, this step includes the following options:

Register files with overwrite policy "Never" as config files

If selected, all files that have an overwrite policy "Never" from their configuration in the
distribution tree [p. 101] are marked as config files. When updating the package through the
package manager, those files will not be changed and they are kept when the package is
removed.

Use bzip2 compression method

If selected, the bzip2 compression method will be used. It is slower, but more efficient than
the standard gzip compression method.

Archive description
Enter an optional description that will be displayed by package managers.
Dependencies

Enter optional dependencies that will have to be present in the package management for the
installation to succeed. Enter a comma separated list of packages.

Maintainer email
Optionally enter the email of the maintainer that will be displayed by package managers.

For Linux RPM media files, this step includes the following options:

Register files with overwrite policy "Never" as config files

If selected, all files that have an overwrite policy "Never" from their configuration in the
distribution tree [p. 101] are marked as config files. When updating the package through the
package manager, those files will not be changed and they are kept when the package is
removed.

Operating system

By default, the operating system of the RPM is set to "linux", here you can change it to
something else.

Architecture

By default, the architecture system of the RPM is set to "i386", here you can change it to
something else.

For Unix/Linux GUI installer media files, this step has a Installer custom script sub-step.

If you specify a Bourne shell custom script, the entered script fragment will be inserted into the
launcher script immediately before the Java invocation of your installer takes place. This is a
hook for experienced users to make custom changes in the environment.

You can select one of:

No custom fragment
No custom script fragment will be inserted.
Custom fragment from file

Specify a file from which the custom script will be read. If you enter a relative file, the file will
be interpreted relative to the project file.

Direct entry
Enter your custom script fragment in the text area below.

306

For Linux RPM and Linux Deb media files, this step has sub-steps where you can define scripts
to run before and after installation or uninstallation by the rpm executable. The available hooks
are:

* Pre-install script

+ Post-install script
* Pre-uninstall script
+ Post-uninstall script

Please see http://www.rpm.org for more information.

You can select one of:

* No custom fragment
No custom script fragment will be inserted.
+ Custom fragment from file

Specify a file from which the custom script will be read. If you enter a relative file, the file will
be interpreted relative to the project file.

+ Direct entry
Enter your custom script fragment in the text area below.

307

http://www.rpm.org

B.6.4.3 Media File Wizard: Data Files

In this step of the media file wizard [p. 303] you define where the installer data should be placed.

Typically, installers are single files that contain all data that they install on the user's request.
There are three common use cases where this is not the case:

CD/DVD installers with large data files

If your application relies on large amounts of data, it is often distributed on a CD or DVD. In
that case, you typically ship a number of external data files that you do not wish to package
inside the installer. The installer should start up quickly and the data files should not be
extracted from the installer in order to save time. The user might decide to install only certain
components, so some data files might not be needed at all. If they are included in the installer
executable, all this data would have to be read from disk.

Installers with large optional components

Some applications have large optional components that are not relevant for the typical user.
To reduce download size for the majority, the optional component should be downloadable
on demand.

Net installers

Some application are highly modular, so it is not feasible to build a set of installers for typical
use cases. A net installer lets the user select the desired components and downloads them
on demand. The download size of the net installer is small since no parts of the application
are contained in the installer itself.

To accommodate the above use cases, install4j offers three different ways to handle the installer
data files:

Included in media file

All data files are included in the installer so you can ship it as a single download.
External

This mode covers the "CD/DVD installers with large data files" use case.

All data files are placed in a directory next to your installer that has the name of your installer
with the extension .dat. For example, if your media file name is hel | 0_4_0 (resulting in a
Windows installer executable hel | o_4_0. exe), the directory containing the external data
files is named hel | o_4_0. dat . You have to ship this directory in the same relative location
on your CD or DVD.

The number of data files depends the definition of your installation components. The data
files are generated in such a way that

+ thefiles for an installation component are contained in one or more data files
+ there are no files in those data files that do not belong to this installation component

If components do not overlap, there's a one-to-one correspondence between data files and
installation components.

Downloadable

This mode covers the "Installers with large optional components" and "Net installers" use
cases. It can only be used if you define installation components [p. 108] .

Data files are generated just like for the "External"” mode, but only for installation components
that have been marked as downloadable in the installation component definition [p. 108] .

308

If no installation components are marked as "downloadable", this mode will behave like the
"Included in media file" mode. For a "net installer", all installation components are
"downloadable".

For this mode, you have to enter a HTTP download URL, so the installer knows from where
it should download the data files at runtime if the user requests downloadable components.
The URL must begin with http:// and point to a directory where you place the data files. For
example, if the data file hel | o_wi ndows_4_0. 000 is downloadable and the download URL
ishttp://ww.test.con conponents, the data file must be uploaded to the web server,
so that the installer can download the data file from the URL
http://ww.test.conl conponents/hell o w ndows_4 0.000.

Any data files that you leave in the data file directory next to the installer will not be
downloaded. This means that if you test your installer directory from the location where it
was generated, the installer finds all data files in the data file directory and does not try to
download them.

309

B.6.4.4 Media File Wizard: Bundled JRE

In this step of the media file wizard [p. 303] you define if an how a JRE should be bundled with
the installer.

If you choose to bundle a JRE by selecting the "bundl e the fol | owi ng JRE" radio button, you
have to choose a JRE from the drop down list below it. If you select "manual entry" in the drop
down list, a text field will appear where you can enter a file name with compiler variables. If you
enter a relative file name, it will first be checked whether that file exists relative to the install4j
project file. If not, it will be searched in $I NSTALL4J HOME/ jresand {user hone
directory}/.install4j6/jres. The existence of this bundle file will be checked only at
compile time, not by the wizard.

You can download additional JREs with the JRE download wizard [p. 322] . Click [JRE download
wizard] to download the JREs you need. The drop down list will be updated after the download
has finished.

If you wish to bundle a JRE that is not available from ej-technologies' download server or that
has custom modifications (like an installation of the j avax. conmAPI), please see the JRE bundle
creation wizard [p. 323] on how to create your own JRE bundle.

Further options and runtime behavior are different for installers and archives:

* Installers:

The Bundl e t ype section allows you to choose between the two JRE bundling modes offered
by install4j:

« Static bundle

The selected JRE will be distributed in your media file. install4j will automatically adjust
the JRE search sequence [p. 80] of all generated launchers and include the bundled JRE as
the first choice.

A statically bundled JRE will always be distributed inside the installation root directory [p.
94] , on Windows and Linux/Unix in the directory jre and on macOS in [cont ent
directory]/.install4j/jre.bundl e.The contentdirectory is available from the installer
runtime variable sys. cont ent Di r. and resolves to the installation directory for folder
media file types and Cont ent s/ Resour ces/ app for archive media file types. The actual
location of the JRE installation directory is available from the installer runtime variable
sys. pref erredJre after the "Install files" action has run.

When you update your application and include a static JRE bundle again, the old JRE bundle
will be deleted prior to installation, so that any files left over from the old JRE cannot interfere
with the new JRE.

* Dynamic bundle

Adynamic bundle is downloaded on demand. If the user already has a suitable JRE installed,
that JRE will be used. If there is no such JRE available on the target machine, the installer
will download the dynamically bundled JRE from the URL that you specify in the text fields
below.

To enable the download on demand, you have to locate the corresponding. t ar . gz bundle
archive inthej r es subdirectory of your install4j installation and place it on a server so that
the HTTP downl oad URL will point to the bundle archive. The URL has to be of the form
http://ww. nyserver. com somewher e/ wi ndows- x86-1. 6. 0_08.tar.gz.

If the installer determines that there is no suitable JRE present, it will ask the user whether
the JRE should be downloaded. If the St art downl oad wi t hout user confirmation,

310

i f necessary check box has been selected, that confirmation is skipped and the download
starts immediately.

+ On Windows, a progress bar with download speed and estimated duration will be
displayed during the download.

+ OnUnix-like systems, the progress will be shown in the terminal. Adding an FTP download
URL will increase the chance that the download will work on Unix-like systems behind
restrictive firewalls.

If the download fails or is aborted by the user, the download URL will be displayed together
with instructions on where to place the downloaded bundle archive.

You can override the default JRE search in a Microsoft Windows installer executable by
passing the argument - manual to the installer executable. The installer will then report
that no JRE could be found and offer you to locate one in your file system. If you have set
up a dynamic JRE bundle, it will also offer you to download one. This is a good way to test
if your download URL is correct.

The check boxinstall as a shared JRE determines whether the bundled JRE should be
private for the application or whether other applications distributed with install4j can share
this JRE. The following scenarios are covered by this approach:

+ If you distribute several applications with dynamically bundled JREs, installing as a shared
JRE is advisable, since the user will have to wait for the download only once.

+ If you have a main application and several add-on applications, it makes sense to statically
bundle the JRE with the main application and install it as a shared JRE, so the add-on
applications can be distributed without JRE.

Note: installers generated by install4j will never install a JRE on the system path or
make Windows registry changes. The term "shared installation" only applies to applications
distributed with install4j. Other applications will not be able to use such a JRE.

Archives:

install4j will automatically adjust the JRE search sequence [p. 80] of all generated launchers
and include the bundled JRE as the first choice. The JRE will always be distributed in the directory
j re right below the installation root directory [p. 94] .

311

B.6.4.5 Media File Wizard: Customize Project Defaults

In this step of the media file wizard [p. 303] you can customize a number of project settings on
a per-media file basis. Customizable settings are displayed in sub-steps that can be selected with
the [Choose customization category] button or by clicking into the index on the left side.

The customization categories are:

+ Compiler variables

Compiler variables [p. 21] that are defined on the Compiler Variables tab [p. 88] can be
overridden on a per-media file basis. For example, this would be useful to adjust the native
library directories [p. 128] in a launcher definition.

The variable table shows 4 columns:

* Override marker

If you have overridden a variable by editing the value column, the first column will display

a = marker to indicate that that variable has been overridden. In that case, the reset button
column will display a button to restore the original value.

* Variable name
Shows the name of the variable.
* Variable value

Shows the value of the variable. This column is editable. To override the variable, double-click
on the desired cell in this column and edit the value. The override marker column and the
reset button column will then show that the variable has been overridden.

* Reset button

If a variable has been overridden, this column shows a [Reset] button that allows you to
restore the original value as defined on the Compiler Variables tab [p. 88] .

Overriding compiler variables on a per-media file basis is also possible from the command
line [p. 327] and from the ant task [p. 331].

* Media file name

The file name pattern defined in the Media File Options tab [p. 84] determines the actual
name of the media file. If you want to override that pattern, you can enter an individual name
here. To enter an individual name, select the cust om nare radio button and enter a file name
in the text field below it.

+ Principal language
By default, the language used by an installer is governed by the setting on the Languages [p.

82] tab. If you would like to generate installers with fixed languages, you leave those settings
at their default values and override the principal language and custom localization file here.

You can change the principal language for all media files or on a per-media file basis from the
command line [p. 327] or from the ant task [p. 331] by defining the variable LANGUAGE_| Dwith
the 2-letter ISO code of the desired language (see http://www.w3.org/WAI/ER/IG/ert/is0639.htm).

+ Exclude components

Here, you can select components that should not be distributed by selecting their attached
check boxes. This is useful if you have installation components that do not work with specific
media files, such as a Windows-only extension, for example.

312

http://www.w3.org/WAI/ER/IG/ert/iso639.htm

Include downloadable components

Sometimes, you want to create media files where installation components are included, that
have been marked as downloadable [p. 108] for the entire project. This screens list all
downloadable installation components as a flat list. All selected components are included in
this media file. For example, this is useful if you want to offer a net installer and a full offline
installer where some components should remain downloaded. For the media file of the full
offline installer, you can mark all required components as included on this step.

Exclude files

This step is useful to tailor your distribution to platform-specific needs. The distribution tree
is shown in expanded form and shows all files. This is unlike the distribution tree in the Files
step [p. 94] which shows the definition of the distribution tree.

Each file and subdirectory has a check box attached. If you select that check box, the entry
will not be distributed. Selections of subdirectories are recursive. If you select a subdirectory,
its contents are hidden from the tree since they will be excluded anyway.

Exclude launchers

This step is complementary to the "Exclude files" screen where launchers are not shown. Each
launcher has a check box attached. If you select that check box, the launcher will not be
generated.

Exclude installer elements

If you some installer applications, screens or actions should not be included with this media
file, you can exclude those elements by selecting their attached check boxes in the tree of
installer elements. Note that for more complex cases you can also skip screens by entering a
condition property for screens [p. 154] and actions [p. 173].

http://www.ej-technologies.com/download/install4j/changelog.html For archives, only custom
installer applications are shown, since installer and uninstaller are not present for archives.

Auto-update options

In this step you can override project-level settings [p. 290] for the creation of the update
descriptor file updat es. xml . If you add a files with comments, they will either override the
files in the project-level configuration, or - if there is no project-level comment - set a comment
for this media file only. The files with comments must be encoded in UTF-8. If you define
attributes, they will override attributes with the same name in the project-level configuration
or add new attributes for this media file only. Minimum and maximum updatable versions
can also be overridden.

If you discontinue certain media files, you will probably still want to add entries into the update
descriptor file updat es. xni , so that auto-updaters of installed applications that were installed
by a discontinued media file can still download a new version. In that case, you can enter the
IDs of the discontinued media files. For each ID, an update descriptor entry that mirrors that
of the current media file will be added to the update descriptor. Auto-updaters from
discontinued media files will then be redirected to download the current media file.

313

B.6.4.6 Media File Wizard: 32-bit Or 64-bit (Windows Only)
This step of the media file wizard [p. 303] is specific to Windows media file types.

On Windows, a native executable can be either a 32-bit or a 64-bit executable. If you need a
64-bit JRE for your application you can choose to generate 64-bit installers and launchers for a
media file.

Note that it is not possible to create launchers that work with both 64-bit and 32-bit JREs. Since
the launcher starts the JVM with the JNI interface by loading the JVM DLL, the architecture has
to be the same. If you target both 32-bit and 64-bit JREs and operating systems, you have to
generate different media files for them.

On a 64-bit Windows, there are separate system directories for 32-bit and 64-bit applications. If
you enable the 64-bit executable mode in this step, those system directories will be appropriate
for 64-bit applications, e.g. c: \ Program Fi | es instead of c: \ Program Fi | es (x86).

314

B.6.4.7 Media File Wizard: Executable Processing

In this step of the media file wizard [p. 303] you can optionally configure an external command
that is run for each generated executable.

The install4j compiler can invoke a post-processor for each executable that is generated. This
includes

+ generated launchers
« theinstaller
* the uninstaller

In the post processor text field you can use the $EXECUTABLE variable to reference the executable
that is currently being post-processed. The working directory of the executed process is the
directory your config is located in so you can use relative file names for key or certificate files. If
the signing command cannot replace the executable directly, but rather needs a separate output
file, use the $OUTFI LE variable. It will receive a temporary output file name that will be moved
back to the processed executable by install4j after the post processor has completed.

Prior to install4j 5.1, this facility was use for code signing, which is now implemented directly in
install4j and can be configured on the code signing tab [p. 86] of the general settings section.

315

B.6.4.8 Media File Wizard: Launcher (macOS Single Bundle Only)
This step of the media file wizard [p. 303] is specific to single bundle media file types for macOS.

A macOS single bundle media file supports a single launcher only. Please choose a launcher
from the drop-down list of defined launchers. Only GUI launchers are shown.

Note: external launchers are not supported for single bundles and are not shown in the list of
launchers.

316

B.6.4.9 Media File Wizard: 64-bit Settings (macOS Only)
This step of the media file wizard [p. 303] is specific to macOS media file types.

Since macOS 10.6 (Snow Leopard), the default JRE is a 64-bit JRE. Prior to 10.6, 32-bit JREs were
the default. If your application loads native 32-bit libraries, it will not be able to run with a 64-bit
JRE. In that case, you have to deselect the "Allow 64-bit JREs" option in order to force the launcher

to select a 32-bit JRE.

317

B.6.4.10 Media File Wizard: Additional Files In DMG (macOS Only)
This step of the media file wizard [p. 303] is specific to macOS media file types.
By default, the disk image created by install4j contains

+ theinstaller for the installer media file types
+ the application bundle of the selected GUI launcher for single bundle archives
+ the distribution tree for folder archives

To add more files to the DMG, specify them on this screen. There are two types of files that can
be created:

+ Regular files

You select the file from your local file system and specify the name under which is should be
written to the DMG. The name can be a composite path, like . backgr ound/ i mage. png. In
this example the screen . backgr ound will be created and since it starts with a dot, itis hidden
in the Finder.

+ Symbolic links

You enter the target of the symbolic link (like / Appl i cati ons) and the name of the link.
Quotes around the name are stripped, so you can specify an empty name as a single space
in quotes (" "). An empty name is appropriate for a link to the / Appl i cat i ons directory.

You can use this feature for adding a READMVE. t xt file to the DMG or for adding files that will be
used for styling the Finder window that is shown when the DMG is mounted. For more information
about DMG styling, read the corresponding help topic [p. 52] .

318

B.6.4.11 Media File Wizard: DMG Options (macOS Only)
This step of the media file wizard [p. 303] is specific to macOS media file types.

For installers media file types, you can configure the following properties:

Volume name

When the user double-clicks on the DMG in the Finder, it is mounted and displayed in a new
window. Other Finder windows will show the volume name of the DMG in their side bars and
a link to the mounted DMG will be shown on the desktop. This name should be shorter than
the installer name, so by default it is set to the short name of the project.

Installer name

The name of the installer in the DMG is what the user sees when the DMG is mounted. Note
that this is not the file name of the DMG, that name is is defined by the general media file
settings [p. 84] and possibly by the overridden media file name [p. 312] for the current media
file.

Since the installer is an application bundle, the name of the installer is localizable, just like the
names of launchers [p. 125] and installer applications. To use the localization feature, specify
an i18n variable for the installer file name. The actual file name is evaluated in the context of
the principal language, and for each additional language a localized version is written to the
corresponding localization files in the installer application bundle. If the locale of the user
matches one of the additional languages, that name will be displayed in the Finder instead of
the real file name.

Compression

While DMGs for archive media file types are compressed by default, most files that are part
of the installer are already compressed and the benefit of an additional compression of the
entire DMG is small. On the flip-side, a compressed DMG takes longer to open. That is why
DMGs for installer media file types are not compressed by default. If you add large
uncompressed files on the custom code and resources step [p. 288], you may want to enable
compression.

For archive media file types, the "Installer name" and "Compression" settings are not available.

319

B.7 Step 6: Build

B.7.1 Step 6: Build The Project

In the Build step, all defined media files [p. 300] are generated. There are three different build
modes:

* 4& Regular build

Build the media files and place them in the media file output directory [p. 84] .
* 4% Dry run

Build the media files in the temporary directory only. This mode allows you to check whether
your configuration is ok while not making any changes to your file system.

* [¥ Test installer

This build mode is intended for testing changes that you make in the installer configuration
[p. 135], such as adding, removing or modifying screens, actions and form components.

The action looks for the first media file in the media step [p. 300] that can be run on the current
platform and has an installer media file type [p. 301] . The media file must be already built,
otherwise the action will terminate with an error message.

All scripts are recompiled and the installer configuration files are regenerated. The installed
files are taken from the full build of the media file. If you change the definition of the
distribution tree [p. 95] and expect to see these changes in the installer, you have to rebuild
the media file with a regular build.

At the end, the installer is started, so you can try out your changes immediately. With respect
to a full build, the compilation time is reduced substantially to a couple of seconds, while a
full build can take several minutes, depending on the amount of files that are included and
the selected type of compression.

When a build or a test build is started, important status messages are displayed in the text area
labeled bui | d out put . A progress bar appears in the status bar of install4j's main menu which
indicates what percentage of the total build has been completed so far. The build process is
asynchronous, so you can change to other steps while it is running. The status bar will inform
you when the build process has finished.

With the Bui | d sel ecti on section you can choose which media files should actually be built.
This can be useful for testing purposes, or if you have defined media files that should not be
built by default.

With the standard setting, all media files will be built. If you select the radio button bui | d
sel ect ed, only the media files that are selected in the adjacent list will be built.

These settings are persistent and are saved in your project file, however, when you build from
the command line, your build selection will be ignored unless you specify a special parameter.
Please see the help on the command line compiler options [p. 328] for further details.

Also, have a look at the available build options [p. 320].
B.7.2 Build Options

The following options are available for the build process [p. 320] :

320

Enable extra verbose output

If this option is checked, much more information than usual will be printed in the build output
text area. This can be useful for getting more information about the reason of a build failure.

Do not delete temporary directory

If this option is checked, the temporary directory where install4j creates the project is not
deleted after completion or failure. This can be useful for trouble shooting.

Disable LZMA and Pack200 compression

If this option is checked and either LZMA or Pack200 compression have been enabled for this
project on the media file options tab [p. 84], these compressions will be disabled for the build.
This is useful during testing, since without LZMA and Pack200 compression, the build will
complete much faster.

Disable code signing

If this option is checked and code signing is configured on the code signing [p. 86] , code
signing will be disabled for the build. This is useful during testing to avoid entry of key store
passwords.

Create additional debug installer

If this option is checked, directories with debug installers will be created in the media file
output directory that allow you to execute the installer as well as the uninstaller with a plain
Java invocation from the command line as well as from your IDE. Please see the API
documentation [p. 72] for more information.

321

B.8 JRE Download Wizard

The JRE download wizard lets you download JREs from ej-technologies' servers for easy bundling
with your applications. For more information on JRE bundles and on how they are used by install4;j,
please see the corresponding help topic [p. 33].

The JRE download wizard is started by

* clicking on the ® toolbar button of the main window.

* clicking on @ [JRE download wizard] in the Bundled JRE [p. 310] step of the media file wizard
[p. 303].

The JRE download wizard leads you step by step through the process of connecting to the server,
choosing the desired JREs and downloading them to your local disk.

The "Connection" step allows you to configure a proxy, with an optional proxy authentication.
Note that the password will not be saved in the install4j configuration, you will have to reenter
it each time you run the JRE download wizard.

ej-technologies offers JREs for a number of common platforms. The Windows JREs whose names
end with _us_onl y do not include support for non-English locales.

If you wish to bundle a JRE that is not available from ej-technologies' download server or that
has custom modifications (like an installation of the j avax. conmAPI), please see the JRE bundle
creation wizard [p. 323] on how to create your own JRE bundle.

322

B.9 JRE Bundle Wizard

With the JRE bundle wizard you can create JRE bundles for install4j from any JRE installation on
your disk. For more information on JRE bundles and on how they are used by install4j, please
see the corresponding help topic [p. 33].

Please check first, if one of the JREs provided by ej-technologies' JRE download server [p. 322] fits
your needs.

Note that JRE bundles can only be created on the platform where they are intended to run. For
example, it is not possible to create a Linux JRE bundle on Windows. You have to install install4j
on a Linux machine and run the JRE bundle creation process there.

The JRE bundle wizard is started by choosing Pr oj ect - >Creat e a JRE Bundl e from install4j's
main menu. The JRE bundle wizard leads you step by step through the process of choosing the
desired JRE and creating an install4j bundle from it:

+ Select JRE

In the "Select JRE" step of the wizard you select the Java home directory of the JRE. Itis possible
to select a JDK, however, after a confirmation dialog the bundle will be created from the
included JRE.

* Output directory

By default, the JRE bundle file is saved to the j res directory in your install4j installation
directory. If that directory is not writable, the . i nstal | 4j 6/ j r es directory in your home
directory is used. Bundles in the default directory will be suggested by the IDE.

You can also save your bundle to any other directory and use the Manual entry option in the
Bundled JRE step [p. 310] of the media wizard to select the bundle file.

* Bundle file name

The file name of the bundle is auto-generated and is used by the install4j IDE to suggest
suitable JRE bundles in theBundled JRE step [p. 310] of the media wizard. You can customize
the following components of the file name:

+ Java version

Enter the version of the JRE. This is useful if you would like to use a version without patch
level information, such as 1. 6. 0.

* Custom ID

This should be short identifier that will be presented in the IDE in order to differentiate
multiple bundles with the same architecture and Java version.

The version and the custom ID are used to construct the name of the bundle file. The format
of the name is important for the IDE to recognize the file as a bundle and determine its scope.

To automate the JRE bundle creation, you can use the command line utility cr eat ebundl e[. exe]
in the bi n directory of your install4j installation. The bundle creation tool is invoked as follows:

createbundl e [OPTIONS] [JRE hone directory]

The available options are:

* -hor --help
Displays a quick help for all available options.

323

* -0 or --output

The directory where the bundle file will be created. If you do not specify this option, the default
bundle directory of install4j will be used.

s -vor--version

The version string for the JRE. If you do not specify this option, the JRE will be queried for the
version, for example "1.6.0_18". If you want to use a shorter version number like "1.6.0", you
can use this option.

+ -ior--id
The custom ID of the JRE as described above. If you do not specify this option, it will be set to

the empty string. This is only required if you have multiple bundles with the same architecture
and Java version. This id becomes part of the name of the bundle file.

* -uor --unpacked

If this flag is specified, the JAR files are not packed with the Pack200 algorithm. This makes
the JRE bundles substantially larger. Unpacked JRE bundles are required for single bundle
archives on macOS, where signature requirements prevent any modifications in the installed
application bundle.

Creating a JRE bundle from your ant script (read about ant at ant.apache.org) is easy. Just use
the creat ebundl e task that is provided in $I NSTALL4J_HOVE/ bi n/ ant . j ar and set the
j avahone parameter to the JRE that you want to create a bundle for.

To make the cr eat ebundl e task available to ant, you must first insert a t askdef element that
tells ant where to find the task definition. Here is an example of using the task in an ant build
file:

<t askdef name="cr eat ebundl e"

cl assnane="com i nstal | 4j . Cr eat eBundl eTask"
cl asspath="C:\ Program Fil es\instal | 4j\bin\ant.jar"/>

<target nanme="nedia">
<creat ebundl e j avahome="c:\ Program Fi |l es\Java\jre6"/>
</target>

Thet askdef definition must occur only once per ant-build file and can appear anywhere on the
top level below the pr oj ect element.

Note: it is not possible to copy the ant . j ar archive to the | i b folder of your ant distribution.
You have to reference a full installation of install4j in the task definition.

The cr eat ebundl e task supports the following parameters:

Attribute Description Required
javahome The home directory of the JRE that should be Yes
bundled
outputDirectory The output directory Corresponds to
the - - out put
command line
option
described
above.
version Corresponds to the - - ver si on command line No
option described above.

324

http://ant.apache.org

Attribute Description Required
id Corresponds to the - - i d command line option No
described above.
unpacked Corresponds to the - - unpacked command line No
option described above.
Example:

<creat ebundl e javahonme="/usr/lib/jvnijava-1.6.0_18/jre"

/>

out put ="/ hone/ bui | d/ proj ect s/ nyproj ect/jrebundl es"
version="1.6.0"
id="j 3d"

325

B.10 Preferences Dialog

The preferences dialog is displayed by clicking Pr oj ect - >Pr ef er ences in install4j's main menu.

The preferences dialog has two panels:

* Appearance

Here, you can select a look and feel for the install4j IDE. This does not affect generated installers,
they always use the native look and feel. The newly selected look and feel will be used when
install4j is started the next time.

* Miscellaneous

In the St ar t up section of this tab you can specify that install4j should load the last edited
project at startup. If this option is not selected, install4j starts with a blank screen. If you specify
a project file at the command line, that project will be loaded in any case.

In the Browser sect i on section of this tab, the browser start command for your preferred
browser can be adjusted. Use $URL as a variable for the URL to be displayed. This setting is
important for generating project reports [p. 7] . If you leave the text box empty, install4j will
use the system defaults on Windows and macOS and try to invoke net scape on Linux and
Solaris.

326

B.11 Command Line Compiler

B.11.1 Command Line Compiler

install4j's command line compileri nst al | 4j c[. exe] can befound inthe bi n directory of your
install4j installation. It operates on project files with extension . i nstal | 4j that have been
produced with the install4j IDE. (i nstal | 4j [. exe]). The install4j command line compiler is
invoked as follows:

install4jc [OPTIONS] [config file]

The available options are described here [p. 328] . A quick help for all options is printed to the
terminal when invoking

install4jc --help

In order to facilitate usage of install4jc with automated build processes, the destination directory
[p. 84] for the media files and the application version [p. 79] can be overridden with command
line options [p. 328] . Furthermore you can achieve internationalization and powerful
customizations with compiler variables [p. 21] . As a last resort, since the file format of install4j's
config files is xml-based, you can achieve arbitrary customizations by replacing tokens (see the
ant integration help page [p. 331] for an example) or by applying XSLT stylesheets to the config
file.

327

B.11.2 Options For The Install4j Command Line Compiler
The install4j command line compiler [p. 327] has the following options:

-h or --help

Displays a quick help for all available options.

-V or --version

Displays the version of install4j in the following format:
install4j version 2.0, built on 2003-10-15

-v or --verbose

Enables verbose mode. In verbose mode, install4j prints out information about internal
processes. If you experience problems with install4j, please make sure to include the verbose
terminal output with your bug report.

-q or --quiet

Enables quiet mode. In quiet mode, no terminal output short of a fatal error will be printed.
-t or --test

Enables test mode. In test mode, no media files will be generated in the media file directory.
-i or --incremental

Enables incremental test execution. A test installer [p. 320] for the current platformis updated
with the latest screens, actions and form components and executed immediately. Because
the files are taken from a previously built media file, the compilation is very fast.

-g or --debug

Create additional debug installers for each media file. For each built media file, a directory
that is named like the media file will be created in the media file output directory.

-p or --preserve
Do not delete the temporary directory that the compiler uses for staging all files and launchers.
-n or --faster

Disable LZMA and Pack200 compression. If you have enabled LZMA or Pack200 compression
on the media file options tab [p. 84], this allows you to create development builds much
faster, since LZMA and Pack200 are expensive compression algorithms.

-u or --disable-signing

Disable code signing. If you have configured code signing [p. 86], this allows you to skip code
signing for a build. In that case you do not have to enter the passwords for the key stores.

-j or --disable-bundling

Disable JRE bundling. If you have configured JRE bundles [p. 86] for any media files, those
bundles will not be used and the installer will be built without a contained JRE. This speeds
up the build and the installation.

--win-keystore-password

Set the Windows keystore password for the private key that is configured for code signing [p.
86]. If code signing is enabled for Windows media files and this option is not set, the command
line compiler will prompt you for the password.

--mac-keystore-password

Set the macOS keystore password for the private key that is configured for code signing [p.
86] . If code signing is enabled for macOS media files and this option is not set, the command
line compiler will prompt you for the password.

328

-L or --license=KEY

Update the license key on the command line and exit. This is useful if you have installed
install4j on a headless system and cannot start the GUI. KEY must be replaced with your license
key. If you use floating licenses, replace KEY with FLOAT: ser ver where "server" is the host
name or IP address where the floating license server is installed. For floating licenses, you can
choose the requested edition by passing --w ndows- edi tion or
--multi-platformedition.

-r STRING or --release=STRING

Override the application version defined in the General Settings step [p. 79] . STRI NG must
be replaced with the desired version number. Version number components can be
alphanumeric and should be separated by dots, dashes or underscores.

-d STRING or --destination=STRING

Override the output directory for the generated media files. STRI NG must be replaced with
the desired directory. If the directory contains spaces, you must enclose STRING in quotation
marks.

-s or --build-selected

Only build the media files which have been selected in the install4j IDE. By default, all media
files are built regardless of the selection in the Build step [p. 320] .

-b LIST or --build-ids=LIST

Only build the media files with the specified IDs. LI ST must be replaced with a comma
separated list of numeric IDs. The IDs for media files can be shown in the install4j IDE by
choosing Pr oj ect - >Show | Ds from the main menu. Examples would be:

-b 2,5,9
--build-ids=2,5,9

-m or --media-types=T[,T]

Only build media files of the specified type. T must be replaced with a media file type recognized
by install4j. To see the list of supported media types, execute install4jc
--1ist-medi a-types. Examples would be:

-m wi n32, macos, nacosFol der
--nmedi a-types=wi n32, macos, nmacosFol der

-D NAME=VALUE[,NAME=VALUE]

Override a compiler variable [p. 21] with a different value. You can override multiple variables
by specifying a comma separated list of name value pairs. NAME must be the name of a variable
that has been defined on the Compiler Variables tab [p. 88] of the General Settings step [p.
78] . The value can be empty.

To override a variable for a specific media file definition only, you can prefix NAVE with | D
to specify the ID of the media file. The IDs for media files can be shown in the install4j IDE by
choosing Pr oj ect - >Show | Ds from the main menu.

Examples would be:

- D MYVARI ABLE=15, OTHERVARI ABLE=
"-D MYVARI ABLE=15, OTHERVARI ABLE=t est, 8: MEDI ASETTI TLE=ny title"

A special system variable that you can override from the command line is sys. | anguagel d.
sys. | anguagel d must be set to the ISO code of the language displayed in the Language
selection dialog [p. 90] and determines the principal installer language [p. 82] for the project
or the media file.

329

+ -for--var-file

Load variable definitions from a file. This option can be used together with the - D option,
which takes precedence if a variable occurs twice. The file can contain

+ variable definitions

One variable definition per line of the form NAME=VALUE.
+ blank lines

blank lines will be ignored.
+ comments

lines that start with # will be ignored.

The file is assumed to be encoded in the UTF-8 format. Should you require a different encoding
you can prefix the filename with CHARSET: , where CHARSET is replaced with the name of the
encoding.

Instead of a single variable file you can also specify a list of files separated by semicolons. The
optional charset prefix must be specified for each file separately.
Examples would be:

-f varfile.txt

--var-file=l SO 8859-3:varfile.txt

--var-fil e=one.txt;two.txt

--var-file=l SO 8859-3:0ne.txt;|SO 8859-1:two. txt

* -M or --list-media-types
Prints out a lists of supported media types for the - - nedi a- t ypes option and quits.

330

B.11.3 Using Install4j With Ant

Integrating install4j with your ant script (read about ant at ant.apache.org) is easy. Just use the
i nstal | 4j taskthatis providedin$l NSTALL4J_HQOVE/ bi n/ ant . j ar andsettheproj ectfile
parameter to the install4j project file that you want to build.

To make thei nst al | 4j task available to ant, you must first insert at askdef element that tells
ant where to find the task definition. Here is an example of using the task in an ant build file;
<t askdef name="install4j"

cl assnane="cominstall4j.Install4JTask"
classpath="C:\Program Fi |l es\install4j\bin\ant.jar"/>

<target nane="nedi a">
<install 4j projectfile="nyapp.install4j"/>
</target>

OnmacOS, theant . j ar fileis inside the application bundle, for the default application directory
the full path is/ Appl i cati ons/i nstal | 4j . app/ Cont ent s/ Resour ces/ app/ bi n/ ant . j ar

Thet askdef definition must occur only once per ant-build file and can appear anywhere on the
top level below the pr oj ect element.

Note: it is not possible to copy the ant . j ar archive to the | i b folder of your ant distribution.
You have to reference a full installation of install4j in the task definition.

Thei nst al | 4j task supports the following parameters:

Attribute Description Required
projectfile The install4j project file that should be build. Yes
verbose Corresponds to the - - ver bose command line No, verbose and

option [p. 328] . Eithertrue or f al se. quiet cannot

both betrue

quiet Correspondstothe - - qui et command line option
[p. 328] . Eithertrue orfal se.

license Corresponds to the - -1 i cense command line Yes
option [p. 328] . If the license has not been
configured yet, you can set the license key with this

attribute.

test Corresponds to the - - t est command line option No, test and
[p. 328] . Eithertrue orfal se. incremental

cannot both be

incremental Corresponds to the - -i ncr ement al command true
line option [p. 328] . Either t r ue or f al se.

debug Corresponds to the - - debug command line option No
[p. 328]. Eithertrue orfal se.

preserve Corresponds to the - - pr eser ve command line No
option [p. 328] . Eithertrue or f al se.

faster Corresponds to the - - f ast er command line No

option [p. 328] . Eithertrue or f al se.

331

http://ant.apache.org

Attribute

Description

Required

disableSigning

Corresponds to the - - di sabl e- si gni ng
command line option [p. 328] . Eithert rue orf al se.

No

winKeystorePassword

Corresponds to the - - wi n- keyst or e- passwor d
command line option [p. 328] .

No

macKeystorePassword

Corresponds to the - - mac- keyst or e- passwor d
command line option [p. 328] .

No

release

Corresponds to the - - r el ease command line
option [p. 328] . Enter a version number like

"3. 1. 2". Version number components can be
alphanumeric and should be separated by dots,
dashes or underscores.

No

destination

Corresponds to the - - dest i nati on command
line option [p. 328] . Enter a directory where the
generated media files should be placed.

No

buildselected

Corresponds tothe- - bui | d- sel ect ed command
line option [p. 328] . Either t rue or f al se.

No

buildids

Corresponds to the - - bui | d-i ds command line
option [p. 328] . Enter a list of media file ids. The IDs
for media files can be shown in the install4j IDE by
choosing Pr oj ect - >Show | Ds from the main
menu.

No

mediatypes

Corresponds to the - - mredi a- t ypes command
line option [p. 328] . Enter a list of media types. To
see the list of supported media types, execute
install4jc --1ist-media-types.

No

Contained elements:

* The install 4] task can contain vari abl e elements. These elements override compiler
variables [p. 21] in the project and correspond to the - D command line option [p. 328] .
Definitions with vari abl e elements take precedence before definitions in the variable file
referenced by the vari abl ef i | e parameter.

The vari abl e element supports the following parameters:

Attribute Description Required
name The name of the variable. This must be the Yes
name of a variable that has been defined on
the Compiler Variables tab [p. 88] of the
General Settings step [p. 78].
value The value for the variable. The value may be Yes
empty.

332

Attribute Description Required

mediafileid The ID of the media file for which the variable No
should be overridden. The IDs for media files
can be shown in the install4j IDE by choosing
Pr oj ect - >Show | Ds from the main menu.

Example:

<install4j projectfile="nmyapp.install4j">

<vari abl e name="MYVARI ABLE" val ue="15"/>

<vari abl e name="OTHERVARI ABLE" val ue="test" nedi afil ei d="8"/>
</install4j>

« Theinstall 4j task can contain vari abl ef i | e elements. These elements read text files
containing compiler variables definitions. They correspond to the - - var - fi | e command line
option [p. 328]

The vari abl ef i | e element supports the following parameters:

Attribute Description Required

file The path of the variable Yes
file.

« Theinstall 4] task cancontainvnpar anet er elements. These elements set VM parameters
for the install4j command line compiler process.

The vipar anet er element supports the following parameters:

Attribute Description Required

value The value of the VM parameter. Yes

Example for setting an HTTP proxy (an internet connection is required for Windows code
signing):
<install4j projectfile="nyapp.install4j" w nKeystorePassword="Kajjs7sglLg22">
<vnpar anet er val ue="-DproxySet=true"/>
<vnpar anet er val ue="- Dpr oxyHost =nypr oxy"/ >
<vnpar anet er val ue="-DproxyPort=1234"/>
<vnpar anet er val ue="-Dpr oxyAut h=true"/>
<vnpar anet er val ue="- Dpr oxyAut hUser =bui | dServer"/ >
<vnpar anet er val ue="- Dpr oxyAut hPasswor d=i g4zexwb8et "/ >
</install4j>

The "hello" sample project includes an ant build script that shows how to setup the install4j task.
To install the sample projects, invoke Pr oj ect - >Qpen Sanpl e Proj ect from the install4j IDE.
When you do this for the first time, the sample projects are copied to the "Documents" folder
in your home directory.

In the sanpl es/ hel | o directory, execute
ant nedia

to start the build. If you have not defined install4jHomeDir in bui | d. xm , the build will fail with
a corresponding error message.

333

B.11.4 Using Install4j With Gradle

You can start the install4j compiler from gradle with the install4j gradle plugin. To make the
gradle plugin available to your build script, you have to add the ej-technologies repository to the
class path of the build script and declare a dependency of the build script on the install4j plugin:

buil dscript {

repositories {
maven {
url

}
}

dependenci es {
classpath group: 'cominstall4j', name: 'install4j-gradle',

}
}

"http:// maven. ej -t echnol ogi es. confrepository'

Then you can apply the install4j plugin to your build script:

apply plugin:

The plugin has two parts: The global configuration with the top-level i nst al | 4j

"install4j’

configuration block and tasks of type com i nstal | 4j . gradl e. I nstal | 4] Task.

The global configuration block must specify the install4j installation directory:

install4) {

instalIDir = file('/path/to/install4j_home")

}

version: '

.0

-}

On macOSs, the installation directory is inside the application bundle, for the default application

directory the full path is/ Appl i cati ons/i nstal | 4j . app/ Cont ent s/ Resour ces/ app

In addition, the global configuration block can set defaults for the i nst al | 4j tasks.

Thei nst al | 4j task supports the following parameters:

Attribute Description Required Global
projectFile The install4j project file that should be build. Yes No
variableFiles Corresponds to the - -var - fi | e command No No

line option [p. 328] . Specify the list of variable
files with variable definitions.
variables A map of variable definitions. These No No

definitions override compiler variables [p. 21]
in the project and correspond to the - D
command line option [p. 328] . Definitions with
vari abl e elements take precedence before
definitions in the variable file referenced by
the vari abl eFi | es parameter.

The names of the variables must have been
defined on the Compiler Variables tab [p. 88]
of the General Settings step [p. 78] . The
values can be of any type, t oSt ri ng() will
be called on each value to convert the value
toajava. l ang. Stri ng. For example:
[variabl eOne: ' One', variabl eTwo:
2].

334

http://gradle.org

Attribute Description Required Global
release Corresponds to the - - r el ease command No No
line option [p. 328] . Enter a version number

like "3. 1. 2". Version number components
can be alphanumeric and should be
separated by dots, dashes or underscores.
destination Corresponds to the - - desti nati on No No
command line option [p. 328] . Enter a
directory where the generated media files
should be placed.
buildlds Correspondstothe- - bui | d-i ds command No No
line option [p. 328] . Enter a list of media file
ids. The IDs for media files can be shown in
the install4j IDE by choosing Pr oj ect - >Show
I Ds from the main menu. For example:[12,
24, 36].
verbose Corresponds to the - - ver bose command No, verbose Yes
line option [p. 328] . Either t r ue or f al se. and quiet
cannot both
quiet Corresponds to the - - qui et command line betrue Yes
option [p. 328] . Eithert rue or f al se.
license Corresponds to the - -1 i censecommand Yes
line option [p. 328]. If the license has not been
configured yet, you can set the license key
with this attribute.
test Corresponds to the - - t est command line No, test and Yes
option [p. 328] . Eithert rue or f al se. incremental
cannot both
incremental Corresponds to the - -i ncr enent al betrue Yes
command line option [p. 328] . Eithert r ue or
fal se.
debug Corresponds to the - - debug command line No Yes
option [p. 328] . Eithertrue or f al se.
preserve Corresponds to the - - pr eser ve command No Yes
line option [p. 328] . Either t r ue or f al se.
faster Correspondstothe- - f ast er command line No Yes
option [p. 328] . Eithertrue or f al se.
disableSigning Corresponds to the - - di sabl e- si gni ng No Yes
command line option [p. 328] . Eithert r ue or
fal se.
disableBundling Corresponds to the - - di sabl e- bundl i ng No Yes

command line option [p. 328] . Eithert r ue or
fal se.

335

Attribute

Description

Required

Global

winKeystorePassword

Corresponds to the
--Ww n- keyst or e- passwor d command line
option [p. 328] .

No

Yes

macKeystorePassword

Corresponds to the
- - mac- keyst or e- passwor d command line
option [p. 328] .

No

Yes

buildSelected

Corresponds to the - - bui | d- sel ect ed
command line option [p. 328] . Eithert r ue or
f al se.

No

Yes

mediaTypes

Corresponds to the - - medi a- t ypes
command line option [p. 328] . Enter a list of
media types. To see the list of supported
media types, execute i nstal | 4j c
--list-medi a-types.

No

Yes

vmParameters

A list of VM parameters for the install4j
command line compiler process. For
example: [' - Dpr oxySet =t r ue',

' - Dpr oxyHost =nypr oxy' ,

' - DproxyPort=1234",

' - Dpr oxyAut h=t rue' ,

' - Dpr oxyAut hUser =bui | dSer ver"',

' - Dpr oxyAut hPasswor d=i q4zexwb8et ']
sets an HTTP proxy that is required for code
signing.

No

Yes

The "Global" column shows if a parameter can also be specified inthe globali nstal 1 4] {..

configuration block. Definitions in the task override global definitions.

Simple example:
install 4] {

installDir = file('/opt/install4j")

}

task media(type: cominstall4j.gradle.lnstall4j Task) {
projectFile = file('nyProject.install4j"')

}
Larger example:

if (!'hasProperty('install4jHoneDir')) {
File propertiesFile =

file("${System getProperty('user.home')}/.gradl e/gradle.properties")
throw new Runti meException("Specify install4jHoneDir in $propertiesFile")

}

bool ean dev = hasProperty(' dev')

install 4] {

installDir = file(install 4jHomeDir)

faster = dev

di sabl eSi gni ng = dev

wi nKeyst or ePasswor d
macKeyst or ePasswor d

' supersecret Wn'
' super secr et Mac'

336

-}

if (dev) {
medi aTypes = ['wi ndows']
}

}

task medi a(type: cominstall4j.gradle.lnstall4jTask) {
dependsOn 'dist' // exanple task that prepares the distribution for install 4]

projectFile = "nmyProject.install4j
vari abl es = [maj orVersion: version.substring(0, 1), build: 1234]
variableFiles = ['varl.txt', 'var2.txt']

}

The "hello" sample project includes a gradle build script that shows how to setup the install4j
task. To install the sample projects, invoke Pr oj ect - >Qpen Sanpl e Proj ect fromthe install4j
IDE. When you do this for the first time, the sample projects are copied to the "Documents"
folder in your home directory.

In the sanpl es/ hel | o directory, execute

gradl e nedi a

to start the build. If you have not defined install4jHomeDir in gr adl e. properti es next to
bui | d. gr adl e, the build will fail with a corresponding error message.

337

B.11.5 Using Install4j With Maven

You can start the install4j compiler from maven with the install4j maven plugin. The maven plugin
is developed by Sonatype. Please see the external project site for more information. The source
code is available on github.

338

http://maven.org
http://sonatype.com
http://sonatype.github.io/install4j-support/install4j-maven-plugin/index.html
http://github.com/sonatype/install4j-support

B.11.6 Using Relative Resource Paths

If you would like to use relative paths for splash screen images, icon files, directories and other
external resources, (e.g. for automated build processes in distributed environments) you can
choose "make all paths relative when saving project file"ontheProject Options
tab [p. 89] of the General Settings step [p. 78] .

Note: relative paths are always interpreted relative to the location of the project file.

339

B.12 Launcher API

B.12.1 Controlling The Splash Screen From Your Application

If you have enabled a splash screen [p. 120] for a launcher, you will want to hide it once the
application startup is finished. The splash will be hidden automatically as soon as your application
opens the first window.

However, you might want to hide the splash screen programmatically or update the contents of
the status text line on the splash screen during the startup phase to provide more extensive
feedback to your users.

With the install4j launcher client APl you can

+ Hide the splash screen programatically

Invoke the staticmethodcom i nst al | 4j . api . | auncher. Spl ashScr een. hi de() assoon
as you wish to hide the splash screen.

+ Update the status text line

I nv ok e t he s tatic method
cominstall4j.api.launcher. Spl ashScreen. witeMessage(String nessage) to
change the text in the status line.

install4j's launcher client APl is automatically available to an application deployed with install4;.
For compiling your application, you need to add i4jruntine.jar to the classpath.
i 4j runtine. jar can be found in the r esour ce directory of your install4j installation.

B.12.2 Receiving Startup Events In Single Instance Mode

If you have enabled the single instance mode [p. 114] for your executable, the application can
only be started once. For a GUI application, the existing application window is brought to front
when a user executes the launcher another time.

However, you might want to receive notifications about multiple startups together with the
command line parameters. If you have associated you executable with a file extension, you will
likely want to handle multiple invocations in the same instance of your application. Alternatively,
you might want to perform some action when another startup occurs.

With the install4j launcher client APl you can write a class that implements the
cominstall4j.api.launcher.StartupNotification.Listener interface and register it
W i t h
cominstall4j.api.launcher. StartupNotification.registerStartupli stener(Listener
startupLi stener). Your implementation of st art upPer f ormed(Stri ng paraneters) of
the Li st ener interface will then be notified if another startup occurs.

install4j's launcher client APl is automatically available to an application deployed with install4;.
For compiling your application, you need to add i4jruntine.jar to the classpath.
i 4j runtine. jar can be found in the r esour ce directory of your install4j installation.

340

	install4j help
	Licensing
	Help topics
	Concepts
	Projects
	File sets and components
	Screens and actions
	Form screens
	Layout groups
	Variables
	VM parameters
	JRE bundles
	Services
	Elevation of privileges
	Merged projects
	Auto-update functionality
	Code signing
	Styling of DMGs on macOS

	Generated installers
	Installer modes
	Command line options
	Response files
	JRE search
	Downloads
	Updates
	Error handling

	Extending install4j
	Using the install4j API
	Extensions

	Reference
	Configuration steps
	Step 1: General Settings
	Overview
	Application info
	Java version
	Languages
	Media file options
	Code signing
	Merged projects
	Compiler variables
	Project options
	Dialogs
	Search sequence dialog
	Language selection dialog
	Variable selection dialogs
	Variables edit dialogs
	Input dialog
	Configure JDKs dialog
	Merged projects edit dialog

	Step 2: Files
	Overview
	Defining the distribution tree
	Overview
	File wizard
	Wizard steps
	Select directory
	Select files
	Compiler variable
	Install options
	Exclude files and directories
	Exclude suffixes

	Viewing the results
	File options
	Defining installation components
	Dialogs
	Distribution file chooser dialog
	Folder properties dialog

	Step 3: Launchers
	Overview
	Launcher wizard
	Wizard steps
	Executable
	Icon
	Java invocation
	VM options file
	Splash screen
	Advanced options
	Redirection
	Windows version info
	Windows manifest options
	UNIX options
	macOS options
	Menu integration
	Native libraries
	Preferred VM
	Text lines on splash screen

	Dialogs
	Main class selection dialog
	Class path dialog
	Native libraries entry dialog
	Visual positioning

	Step 4: Installer
	Overview
	Screens & actions
	Configuring applications
	Configuring screens
	Available screens
	Configuring actions
	Available actions
	Screen and action groups
	Configuring form components
	Layout groups
	Available form components
	Custom code
	Update options
	Auto-update options
	Dialogs
	Custom code entry
	Class selector dialog
	Registry dialog
	Application template dialog
	Link selection dialog
	String edit dialog
	Java code editor
	Java editor settings
	Code gallery
	Key map editor
	ID selection dialog
	Integration wizard

	Step 5: Media
	Overview
	Media file types
	Media file wizard
	Wizard steps
	Platform
	Installer options
	Data files
	Bundled JREs
	Customize project defaults
	32-bit or 64-bit (Windows)
	Executable processing (Windows)
	Launcher (macOS single bundle)
	64-bit settings (macOS)
	Additional files in DMG (macOS)
	DMG options (macOS)

	Step 6: Build
	Overview
	Build options

	JRE download wizard
	JRE bundle wizard
	Preferences
	Command line compiler
	Overview
	Options
	Using install4j with ant
	Using install4j with gradle
	Using install4j with maven
	Relative resource paths

	Launcher API
	Controlling the splash screen
	Receiving startup notifications

