EJ Technologies

The definitive guide to install4j

Building professional installers on the JVM

© 2023 ej-technologies GmbH. All rights reserved.

Index

INEFOAUCTION ettt ettt sttt sttt b st st b e st et e b et et et e st e st e st eseeae s st sbesbesbesbesbesbesbesbansansens 4
F N o] o (el =T o] ST PSP SO PO SPROPRRPP 5
AT PrOJECES oiiieieeteet ettt ettt sttt ettt et s b st e bt st e b e e s h b e et e e h b e sa b e et e e sab e e be e baesabeebeenaneen 5
A2 BUIIAING PIrOJECES wvivviriiiirierieieieieeeeeeseseeesessessessessessessessessessessessessessesseseesessessessessessessessesses 11
A3 DISEIIDULING TIlES 1ottt ettt e e s e s e s e sbasbessesbesbesbesbesbenbenee 14
A4 File setsS and COMPONENTS ...cciiiiriririereseste ettt sttt ettt et ettt et sbe s e sbesbesbesbesbesbesbenee 20
A5 SCreeNS ANd ACHIONS .oveuiriiiiiiriestetese ettt ettt ettt b e s bbb bt e st e b et et e e et et e st ebesbesbens 24
ALD SCEIPES ettt et s bbb b s he et bt e s he e bt ereeeesrees 29
A7 Generated |QUNCREIS ..ottt s be et s e e b e sbaetesasenbesaneneas 36
ALB FOIMN SCIEENS ..ttt st bbb bbb saeenesbeens 46
ALD LAYOUL BIrOUPS .eveeuveeieeriieitierieeeteesieesstesieesitesbeesseesas e e seesssesbeesseesaseeseesasesaseesneesasesseesnsesnseennes 51
ALTO SEYIS ittt ettt bbb bbb ettt ettt et e a e b s b e b b e be s bt e naenaen 55
ALTT LOOK & TREI ..ttt bbbt sttt et ettt st e bbb 61
ALT2 VATTADIES .ttt b e bbb bttt ettt et et be b b 63
AT LOCAIIZATION ettt ettt st st s b e st st sss e be s b e s be e b e beeabesheesbenbasanan 79
ATA VM PATaMELEIS ...eouiieiieiteeitecttest ettt st et e st e s bt e s ste s bt e s bt e sabe s beesstesabeesbeesasesabaesseesnsesseesans 84
ATS JRE BUNAIES ..ttt st 89
ALTE SBIVICES oottt sttt ettt sttt ettt e s b s bt et e s ae e s bt et e s b e eaee s bt st e s beeasesbeessesbeensesaeenbesaeesesneens 97
A7 Elevation Of PriVIIEEES ..ottt ettt 102
ALT8 MEIZEA PIrOJECLS ettt ettt et ettt st b e s b e b s b e sbe s b et eneeneen 108
A.19 Auto-update fFUNCLONAITY coivievreieieeeieeesereseee e e a e e e sre s e sresnes 114
A.20 ChecKing fOr UPAATES ..cciviviiriririiresisieiesiesiestetesse e sseesee e ssassesse s e ssessessessesaessessessessessensons 119
A.271 Background aULO-UPAALESccevvervirirerierinienenieniesiestesieseessessessessessessensensesesessessessessessens 125
A.22 VEISION NUMDEIS ettt sttt sttt ettt ettt et et s st sbesaesbesbesbenae 129
A23 MEAIA FIlES ettt ettt ettt b e b b e 131
A28 DAta fIlES evevieiiiiiieseeereee ettt s st b e st st b e e s e beertesbeestesbeenen 139
A.25 COAR SIBNINE couvirieiiiriieierterie sttt sttt steste st esbe st e b e sbaesbesasesbesssessesssesbesssensesssensesssensessaensenses 143
A.26 Apple ApP StOre SUBMISSIONccoviviiiiiiiniresentsesese et e e e e ssessessessens 149
A.27 Styling Of DMGS 0N MACOS ..ottt sttt ettt et e sse s sbesbesbesbesbesbenae 152
B Configuring iNStaller DEANS ..ottt 156
B.T SCreens & QCHIONS STEP .iivviiriiiirierieeieeste sttt sttt st ste e sbe e sate s beesbaesateesbeesasesaseessaesasesnseenns 156
B.2 CUSTOM COAR ittt sttt sttt ettt st ses et sasesbesstenbesasesbesssenbesssensesssesbesssensenns 161
B.3 CoNfiguring @pPPliCAtIONS ..cciviririiriniinirieresesese ettt see e e e e ssessesbessesreseessessessensessens 163
B.4 CONFIGUIING SCrEENS ..ottt sttt sttt ettt ettt et es e sbesbesbesbesbesbesbenbesaen 172
B.5 CONFIGUIING QCLIONS ..veviiiieiiieieeetete ettt sttt ettt ettt sbeenes 178

B.6 CONTIZUIING SrOUPS .ueeuiiieieieeeeeeeiee ettt sttt sttt sttt ettt ettt et e s sbeebesbesbesbenbea 190

B.7 Configuring fOrm COMPONENTS ...occiviiiiiriireererieterretee e ee s sre e sre st sresbesbe st s sbessensenes 193

B.8 CONfigUring [QYOUL SrOUPS ...coivuiviriinieriiniirieiesieiesiesteteeeeeseeessessessessessessessessessessessessensensons 199
B.9 CONFIGUINEG STYIES oottt sttt sttt ettt sbe b sbe e 203
C GENErated INSTAIIEIS .ouviiieieceeeceetee ettt sa e s e st e st e et e s b e et e sbe et e sbeesaesreensesseenes 205
C.T INSTAIIET NOAES ..oviiieiicieiecterteete ettt sttt st s e et sbe et e sba et e sbsebesaaessesssenbesssensessean 205
C.2 CoMMaANA lIN@ OPLIONS ..ovviriiriiriririreseserese et es e s e sressesbesbesbesbesaessesbessensensans 207
C.3 RESPONSE FIlES ettt sttt ettt a e e e e e s e ssesaessessessessesbesbessens 212
CA JRE SEAICN ettt ettt ettt e ete et e ae e beeetaeebe e baesaseeabeesteesabeeseesaseeaseessaeesseenseenns 214
C.5 HTTP FEQUESES ..ottt sttt st ettt et sbe ettt s b e s e b e st e s be et e sbesanesreeneesreenns 216
C.8 UPAALES ettt ettt et b e bbb bbbt b et et et et et et et e e aeeaesbe b eaes 218
C.7 ErrOr NANAIING ..vovveeiiieiiiecieseeest ettt sttt et s s et s s s be s s e be s b e sbesssesbesssesbaensessesssan 220
D AP e bbb b e bbbt h bbb Rt R et b e bbbt b e e b e e b e nnene 222
D IV 1Y = LT N = USRS 222
D I U Tl 1T o o USRI 226
D.3 EXLENSIONS etiiieiiiiiieeiee ettt ettt sttt s e ste et esatessbeesbaesatesbaesatesabeenbaesatesbeesseesasesnses 228
E COMMANA lINE TOOIS w.eeiiiiiieeteteet ettt sttt sttt be e 230
E.1 Command liN@ COMPIIET w.oouiriiiiriiriiieeeeee ettt st a e saeens 230
E.2 Pre-Created JRE BUNGAIESeocveeieeeeeeeeee ettt ettt ettt eve et sabe e ebeesaaesareennaeenns 234
E.3 Gradle PIUSIN woeeeiieeeeeee ettt bbbttt ettt ettt 235
E.4 MAVEN PIUSIN <ottt ettt ettt b s bt s bt s b sb e sbesbesbenbenbens 240

YN 1 = 1] RPN 249

Introduction To Install4j

What is install4j?

install4j is a professional tool for building installers for multiple platforms, especially for
applications that run on the Java Virtual Machine.

Main features that distinguish install4j are:

+ Flexible configuration of screens and actions

In your installers you can define your own flow of installer screens and installer actions [p. 24]
to gather user input and initialize your installation with it. Configurable form screens [p. 46]
allow you to create arbitrary forms that work in GUI and console mode [p. 205]. A rich set of
configurable actions handles a variety of tasks and is extensible with the API [p. 222].

* Generation of native launchers

install4j generates native launchers for console, GUI and service executables [p. 97]. These
launchers offer variety of features such as flexible module and classpath configuration,
version-specific VM parameters [p. 84], icons, splash screens and much more. At runtime,
there is launcher API [p. 226] that interacts with some of these feature and with the variable
system of the installer.

+ Auto-update functionality

The requirements for automatic updates [p. 114] are very individual, so install4j offers a
template-base mechanism for update-downloaders. Update downloaders are fully configurable
installer applications with their own flow of screens and actions, that can handles interactive
auto-update, mandatory auto-update at startup and background update.

* Bundling of Java Runtime Environments

Bundling a Java runtime [p. 89] is made easy with the pre-build JRE bundles and the bundle
creation tools in install4j. JRE bundles can also be downloaded on the fly if no JRE installation
is found.

The install4j Ul is delivered as a desktop application. Building installers is not only possible in
the IDE, but also with the command line compiler [p. 230] as well as the plugins for Gradle [p. 235],
Maven [p. 240] and Ant [p. 249].

How do | continue?

The "Concepts" section is intended to be read in sequence, with later help topics building on the
content of previous ones. The sections at the end are optional readings that should be consulted
if you need certain features.

We appreciate your feedback. If you feel that there's a lack of documentation in a certain area
or if you find inaccuracies in the documentation, please don't hesitate to contact us at
support@ej-technologies.com.

mailto:support@ej-technologies.com

A Concepts

A.1 Projects Overview

Project files

A project in install4j is the collection of all information required to build media files, the
deliverables that can be distributed to the target platforms. A project is saved to a single XML
file with an . i nstal | 4j extension. Project files are platform-independent, you can open and
compile them on any supported platform. The compilation step will produce the media files
from the project definition. All paths that you enter in install4j are saved as absolute paths by
default. This allows you to move the project file to a different location on your computer and
the compilation will still work. If you wish to use your project file on multiple computers or
platforms or compile your launchers with automatic build agents, it is more convenient to use
relative paths. On the "General Settings->Project Options" step, install4j provides an option to
convert all paths to relative paths when you save your project.

install4j keeps a list of recently opened projects under Project->Reopen. By default, install4j opens
the last project on startup. This behavior can be changed in the preferences dialog by choosing
Project->Preferences from the main menu. You can pass the name of a project file as a command
line parameter to install4j to open it on startup. Also, the command line compiler [p. 230] expects
the project file name as its argument.

Contents of a project

The following paragraphs give a high-level overview of the elements that you can configure in
install4j. Each of the configuration sections in install4j as shown in the screenshots below
represents a top-level concept in install4;.

Typically, a project defines the distribution of a single application. An application has an
automatically generated application ID [p. 218] that allows installers to recognize previous
installations.

At the core of the project definition is the sequence of installer screens and actions [p. 24]. They
determine what the users see, what information they can enter and what the installer does.
install4j offers a lot of flexibility regarding the configuration of of your installer. Besides creating
traditional application installers, install4j is equally suited to create small applications that modify
the target system in some way.

o + &
H o
New Open Save Project
Project Project Project Report
General Settings
Files

Define Distribution Tree
View Results
File Options

Installation Components

g Launchers

Installer

4 Screens & Actions
Styles
Look & Feel
Custorn Code

Himdabe Mindinne

o & & 5
Build Dry Test

Und Redo
nae Project Run Installer

Screens & Actions

Ll @

Help

In this step, you cenfigure the screens and actions that are displayed in the installer and
uninstaller, updater and in custom applications. Installdj offers a rich set of screens and

+ Installer (8 screens) [ID install... +
* |, Startup (2 actions) b 4
3 Welcome (1 action) [ID 47] o

0 Load a response file [ID ...

ik Installation location (2 acti.... d
ir Installation components [I...
ik Create program group [ID ...

g Query greeting [Form] [1D ...

{+]

g Service options [Form] [ID ...
* Installation (13 actions) [... aé
& Finish (1 action) |0 60] N

f Uninstaller (3 screens) [I0 uni...
i

)

Standalone update download... || &
s &

fs

Backareund undate downloa...

Configuration

File

Excluded varizbles
Overwrite strategy
Register variables fo...
Error Handling
Failure strategy

Error message
Control Flow
Condition expression
Rollback barrier

Can be executed m...
Privileges

Action elevation type

Load a response file

[Default]
speciallserAccount
Do not overwrite com...

Continue on failure

context.getBooleanVariab

Inherit from parent [Do...

Load a response file that has previously been saved
with the "Create a response file" action.

Idle

The install4j runtime is localized into many languages. You can configure your installers to support
one or multiple languages [p. 79].

OX * &
g i)
New Open Save Project
Project Project Project Report

General Settings

Application Info

4 JRE Bundles

Search Sequence

Languages
Media File Options
Code Signing
Compiler Variables
Merged Projects

Project Options

Files

g Launchers

Installer

F @ —
o B o %
Build Dry Test

Lo Project Run

Languages

Gl @

Show
o Help

In this step, you can specify the languages that the generated installers should support.
Your installers can have a fixed language or they can be multi-language installers.

Principal language: English [en]

Custom localization file:

Choose additional languages for the installer
Language

French [fr]

Italian [it]

Polish [pl]

v @

Custom localization file

P New (7]

If you define additional languages, the installer will ask the user to choose a language with the default

selection set according to the system locale.

Skip language selection dialog if auto-detected locale matches a supported language @)

Language selection always in principal language @

Idle

Most installers install files to a dedicated directory and optionally to several existing directories
on the target computer. That's what the "Files" section [p. 14] in the install4j IDE is for. Here, you
define a "distribution tree", and optionally "installation components" which can also be
downloaded on demand [p. 139].

2mHe o 24T C0

New Open Save Project | Build Dry Test Stop Shaw
Project Project Project Report Project Run Installer Buid IDs

General Settings Define Distribution Tree N7

In this step, you cellect all files and directories that you would like to distribute with your

Help

3 Fil media files. Use drag and drop te move entries in the definition tree.
iles
Define Distribution Tree @ Default file set &
}2 Installation directory
View Results bin
{
File Options casses . L
Selected content of Agui (excluding java)
Installation Components " Selected content of \cli (excluding java)
" Selected content of \service (excluding java)
9 Launchers source /O

| File Adi\HelloClijava
" File \gui\HelloGuijava
Installer " File Aservice\ServiceDemo java
= @ vM options [1D 1128
}2 Installation directory
E}:. Media M SfinstallervmoptionsTargetDirectory}

o " File \vmoptions\hello.vmoptions (overwrite: never)

;‘;‘ Build

Idle

The actual installation of these files is handled by the "Install files" action which is part of the
default project template. If your installers should not install any files, you can remove that action
and ignore the "Files" configuration section. When the "Install files" action is executed, it creates
an uninstaller. The uninstaller offers the same flexibility as the installer and is configured in the
same way.

Unless the installed files are only static data, you will need application launchers to allow the
user to start your application. You can define one or several application launchers in the
"Launchers" section [p. 36]. Launchers generated by install4j have a rich set of configuration
options including an optional splash screen or advanced features like a single instance mode.
Configured launchers can also be "services" that run independently of logged-on users. install4j
offers special installation screens and actions for services.

an - \ & T — 9
*] k k
H o © o % il
New Open Sme Proect o . Buid Dry Test sop | snow («
Project Project Project Report Project Run Installer Buid D=
General Settings Launchers £

In this step, you can configure one or more executables to launch your application. Use

& drag and drop to reorder your launchers in the list,

Files
g Launchers C@ F
-
Mew launcher Hello World Command Line [I0 4]
_ Installer
2, i
E}, Media Hello World GUI [ID 5] Hello World Service [I0 19]

{;‘ Build

Idle

install4j has many advanced features concerning bundling of JREs or the runtime-detection of
an installed JRE. Bundling of JREs [p. 89] is configured on the "JRE bundles" step and can be
refined on a per-media file basis. If you do not wish to bundle a JRE, you define Java version
constraints and a search sequence [p. 36] for both your installers and your generated launchers.
In this way, you ensure that the launchers run with the same JRE as your installers.

O~
]

New

* H o

Open Save Project

Project Project Project Report

"4
«

General Settings

Application Info

4 JRE Bundles

Search Sequence

Languages

Media File Options

Code Signing

Compiler Variables

Merged Projects

Project Options

Files
g Launchers
Installer

b -

Undo

r‘é} .—'C:
o @
Build Dry
Project Run

I Ll @

Test Stop Show

He
Installer Buid Ds =7

Search Sequence Without Bundled JRE N7
For media files without a bundled JRE, you can define version requirements and a search
sequence for the JRE that will be used to run the installers and the generated launchers.
Java Version (7]
Minimum version: | 1.8 3 0
Maximum version: | @
Allow JREs with a beta version number 0
JRE Search Sequence 0
n Search Windows registry and standard locations +
£A Environment variable JAVA_HOME
E4 Environment variable JDK_HOME
Idle

Finally, the media file definitions define the actual executables that you distribute. They capture
platform-specific information and provide several ways to override project settings. You typically
define one media file for each platform. Multiple media files for the same platform can be added
as needed. Media files are either installers or archives. Archives simply capture the launchers
and the distribution tree. They are a limited way to create a distribution and might not be suitable
if you rely on the flexibility that is offered by installers.

O
o

New
Project

L

- = w
g i)

Open Save Project

Prgject Project Report

General Settings
Files
Launchers

Installer

y Media

Build

-‘.:‘: rt-‘:

o # &£

Buld Dr

e D.ouj;:t Rur:r:
Media

e Gl @

Test Stop Show

Installer Buid Ds Help

In this step, you can configure media files for varicus platforms to distribute your
application. Use drag and drop to reerder your media files in the list.

)

New media file

=

Linux RPM [ID 9]

=2

macO5 Felder [ID 11]

e

Unix Installer [ID 12]

=

Windows 64-hit [ID 453]

L

Linux Deb Archive [ID 1677]

-}5

macO5 Single Bundle Archive [ID 2060]

Idle

Project reports

install4j projects can become quite complex, especially the definition of the installer can be very
hierarchical with hundreds of nested elements each of which may have important configuration
in their properties. In order to check all your projects settings on a single page, or to print out
your project definition, install4j offers a project report. The @ action to create such a report is
available in the toolbar. When you generate a report, an HTML file is written to disk together
with a directory named i nst al | 4j _i nages that holds all referenced image files.

If you are looking for certain text value in a property or a particular piece of code in one of your
scripts, use the search functionality in the browser when viewing the exported report to cover
all parts of the project.

IDs of project elements

All elements in projects that can be referenced at runtime, like installation components, launchers,
screens, actions, form components or media files have an automatically assigned ID. You can
toggle the display of IDs globally in the tool bar. You may need to use IDs when using the APl in
scripts. Scripts are written in plain Java in a code editor provided by install4;.

O > \ e o —
0 o B e 2l | ©
Mew Open S=ve Project o Build Dry Test Sto show |
Project Project Project Report o Project Run Installer Build IDs ?
_— " "
5 General Settings Application Info P4

If you would rather not reference automatically generated IDs in your scripts, you can specify
your own custom IDs. Custom IDs can be assigned by using the "Rename" action for the selected
element and selecting the "Custom ID" check box in the rename dialog. Custom IDs must not
start with a number. The numeric internal ID is never discarded. If you disable the custom ID at
a later point, the ID will be reverted to the previous numeric ID.

L3 Rename X
Please enter a name for the component:
v

Hello World Application »

7 Custom ID: helleApp I

The "Insert ID" action in the script editor inserts custom IDs instead of the numeric IDs. All get .
.. Byl d() methods in the APl accept both the custom ID and the internal numeric ID. This means
that you can set a custom ID without breaking anything in the project.

Undo in all views

All changes in the install4j IDE can be undone with the undo toolbar button. The arrow at the
right side opens a list of changes in a popup menu for inspection. Selecting one of these entries
undoes all changes up to an including the selected change. The same feature is available for

redoing undone changes.

Lo)] *

H o

New Open Save Project

Project Project Project Report
General Settings
Files

Define Distribution Tree

EJ Select ID of Configuration Component X

Available IDs:

File sets
Installation components

Hello World Application [ID helleApp]

o Source Files [ID 41]
Launchers
Applications, Screens & Actions

Filter: | i~

o o

Cancel

Gk —

b] k
= o ® O Ll @
. Buld Dy Test Sop Show
Unda fese Project Run Installer Buid IDs Help

Changed property "Cendition expression” of "Load a response file" action
Renamed installation compenent

Hller and
zns and

Added additicnal language
Added additicnal language
Added additicnal language

T Installer (8 screens) [ID install... + ['¥ Configuration

10

A.2 Building Projects

You can build a project from the IDE or from the command line. The command line compiler
executable is bi n/i nst al | 4] ¢ and takes the project name as an argument. On macQOS, that
directory is inside the application bundle and can be shown in the Finder with the "Tools" tool
bar button. That same tool bar button also allows you to create symlinks for all command line
toolsin/usr /1 ocal / bi n so they can be directly invoked in a terminal.

There are plugins for Gradle [p. 235], Maven [p. 240] and Ant [p. 249] for configuring the build ina
way thatis idiomatic for the respective build systems. In the end, all plugins invoke the command
line compiler and for each command line compiler option there is a corresponding setting in the
build system plugins.

When you start a build, install4j will check if all required information has been entered. If the
build has been started from the install4j IDE, the corresponding step will be activated and the
offending setting will be focused, so it is recommended to try out your builds in the IDE first.

Build modes

There are three different build modes that correspond to different tool bar buttons in the install4j
IDE or different command line options in the command line compiler.

oy 5 i g —
J o B FT 7
New Open S=ve Project . Build Dry Test | st Show
Project Project Project Report | Project Run Installer | 2 IDs "
= -
v Application Info
b General Settings ’

When a % regular build is started, the media files [p. 131] are built and placed in the media file
output directory that is configured on the "General Settings->Media File Options" step.

Previous media files are overwritten, but a single build may not produce the same media file
twice. On the "Customize project defaults->Media file name" step of the media wizard you can
adjust the media file name if the global pattern resolves to the same name for multiple media
files. You can also use a compiler variable [p. 63] for the media file output directory and override
it for each media file to avoid name clashes.

B Media Wizard - Windows X

1. Media file type Customize name for media file
2. Installer options
3. Data files You can override the name of the media file that was defined in the general settings step

4. Bxecutable processing of install4j. If unsure, choose the standard name option.

5. Bundled JRE
6. Customnize project defaults

Standard name
© Custom name

+ Compiler variables

myCustomFileMName » Copy Default
+ Media file name
+ Principal language
+ Exclude components
+ Downloadable components
+ Exclude files
+ Exclude launchers
+ Exclude installer elements
+ Look & Feel
+ Auto-update options
7. Finished
7] Help 4 Back MNext P Finish Cancel

11

If you just want to check if the build will not produce any errors or warnings, you can start a

% dry run. The media files will be built in the temporary directory but not moved to their final
location. For command line builds, use the - - t est option.

Building media files can take a long time, especially if you package a lot of files that have to be

collected and compressed. To facilitate faster development, install4j offers to “» build an installer
incrementally. The corresponding command line optionis - - i ncrement al .

This build mode is intended for testing changes that you make in the installer configuration [p. 156]
such as adding, removing or modifying screens, actions and form components.

The action looks for the first media file in the "Media" step that can be run on the current platform
and has an installer media file type [p. 131]. The media file must be already built, otherwise the
action will terminate with an error message.

All scripts are recompiled and the installer configuration files are regenerated. The installed files
are taken from the full build of the media file. If you change the definition of the distribution
tree [p. 14] and expect to see these changes in the installer, you have to rebuild the media file
with a regular build.

When the build is complete, the installer is started so you can try out your changes immediately.
With respect to a full build, the compilation time is reduced substantially, typically to a couple
of seconds. A full build can take several minutes, depending on the amount of files that are
included and the selected type of compression.

Selective building of media files

Instead of building all media files, you can build only a subset by explicitly selecting the desired
media files on the "Build" step.

Build S\
In this final step of your install4j configuration, the launchers and the media files are built. Please adjust the build optiens as
needed.
I“ Build Options O Build Selection
s .‘;B;'Id Enable extra verbose cutput (7] Build all 3 & Windows 64-bit
tart Bui . .
Do not delete temparary directory © O Buidselected: | LinuRPM
Linux Deb Archi
% Disable LZMA and Pack200 compression &) I—!? m'lwr;:)(;Sle:old’e(r e

Disable code signing

Dizable JRE bundling

—!"- macO5 Single Bundle Archive
B Unix Installer

Dry Run

[~ R~

Create additional debug installer

Build output:

This selection is persistent, but the command line build will still build all media files unless you
pass the - - bui | d- sel ect ed option. This allows you to build a suitable media file in the IDE for
testing without impacting the command line build on your build server.

To specify media files from the command line, pass the --build-ids=ID,1D or the
--medi a-types=T[, T] option. IDs of media files are visible in the "Media" step if the "Show
IDs" tool bar toggle button is selected. Selecting media files by their media type ID is useful if
you build different media files on different platforms. The - - | i st - nedi a-t ypes command line
option prints the full list of supported media types and exits.

12

Faster builds during development

During development, you can speed up your build by compromising on the size of the produced
media files. By switching off LZMA and Pack200 compression [p. 131], builds times can be reduced
by 50% and more. By disabling JRE bundling, the generated installer will start up faster, because
the JRE does not have to be unpacked. Finally, disabling code signing will prevent dialogs that
ask for keystore passwords from being shown.

Build Opticns

Enable extra verbose cutput

Do not delete temporary directory
Disable LZMA and Pack200 compression

Disable code signing

Disable JRE bundling

Q00000 O

Create additional debug installer

All these options for making builds faster are also available for the command line compiler, the
corresponding options are - - f ast er for disabling advanced compressions, - di sabl e- bundl i ng
for ignoring JRE bundles and - - di sabl e- si gni ng for building without code signing.

Trouble-shooting build failures

By default, basic progress information is shown in the build output and warning messages are
highlighted. Any error will stop the build and the command line compiler will exit with a non-zero
return code. For debugging purposes, there are two options that give access to more detailed
information.

Build Opticns

Enable extra verbose output

Do not delete temporary directory
Disable LZMA and Pack200 compression

Disable cede signing

Disable JRE bundling

QOOOQ0O O

Create additicnal debug installer

With the - - ver bose option, install4j prints more information about interesting events during
the build. For example, all compiler variable replacements are shown in detail. If the source of
an error message is not clear, switching on verbose mode can give you more context about the
compilation phase that caused the failure. In addition, a compilation failure that occurs while
verbose mode is enabled will print the entire stack trace to the build output.

Secondly, the install4j compiler prepares its artifacts in a temporary directory which is deleted
after the build completes. With the - - pr eser ve option you can ask install4j to keep this temporary
directory so that you can inspect intermediate artifacts.

13

A.3 Distributing Files

In the "Files" step of the install4j IDE, you define your distribution tree, collecting files from
different places to be distributed in the generated media files. In addition, you can optionally
define installation components.

On the "Define Distribution Tree" step, you add and edit the structural elements that make up
the distribution tree. You can create your own directory structure and "mount" directories from
your file system or add single files into arbitrary directories. With drag and drop and
double-clicking on nodes you can modify an existing distribution tree.

Define Distribution Tree N7

In this step, you collect all files and directories that you would like to distribute with your media files. Use drag and drop to move
entries in the definition tree.

@ Default file set Y
A Installation directory
bin
classes
7 Selected content of Agui (exc
7 Selected content of Acli (=

" Selected content of Aservice (ex

source
7 File \cli\HelloClijava i
" File \gui\HelloGui.java
" File \service\ServiceDemo.java
H) WM options [ID 1148]
/d Installation directory
A SlinstallervmoptionsTargetDirectory}
| File \wmoptions\hello.smoptions (cverrite: never

On the "View Results" step, you then see the actual file tree as it will be collected and distributed
by the generated media files [p. 131]. Go to this step to check whether your actions on the "Define
Distribution Tree" step actually produce the desired results.

View Results N /7

In this step, yeu can check whether the definition of the distribution tree is correct. The tree shows a read-only representation of
all distributed files.

Files in distribution tree:

@ Default file set]
/d Installation directory
bin /O

] [Launcher] hello_cli
7 [Launcher] hello_gui
' [Launcher] hello_service
classes
source
7 [Installer application] updater
7 [Installer application] configureGreeting
H] WM options
/d Installation directory
A SiinstallervmoptionsTargetDirectory}
" hello.vmoptions

Root container nodes

The top-level nodes in the distribution tree are called file sets. There is one "Default file set"
node that cannot be deleted or renamed. The relative paths of all files that are added to a file

14

set must be unique. See the help topic on file sets and installation components [p. 20] for more
information on how to use file sets.

Within a single file set, it causes an error at build time if the installation paths for two files collide.
For example, if you have added the contents of two different directories into the same folder in
the distribution tree and both directories contain a file fi | e. t xt, building the project will fail
with a corresponding error message. In this case, you have to exclude the file in one of the
directory entries. This is only an issue for files, sub-directory hierarchies on the other hand are
merged and can overlap between multiple directory entries and explicitly added folders.

L
A

You can create new file sets with the & New File Set action in the " add menu on the right side.
Each file set has its own "Installation directory" root. If you define custom roots that should be
present in multiple file sets, you have to duplicate them.

The child nodes of a file set are called installation roots. Their location is resolved when the
installer runs. There are two types of roots:

The default root of the distribution tree is labeled "Installation directory" and has a /* special
icon. This is the directory where your application will be installed on the target system. The
actual directory location is dependent on user actions at the time of installation. In regular
installers, a user can select an arbitrary directory where the application should be installed.
For Linux package media files, a user can override the default directory with command line
parameters. For archives, the files are simply extracted into a common top-level directory.

(@ Default file set
“ Installation directory

@& VM options (1D 1148]

For installers, the installation directory will only be created if you execute an "Install files"
action in the installer configuration [p. 156]. By default, the "Install files" action is added to the
"Installation" screen. If your installer should not create an installation directory, you can ignore
this root and remove the "Install files" action.

More information on the various installer modes is available in the corresponding help
topic [p. 205].

+ Ifyour application needs to install files into directories outside the main installation directory,
you can add custom roots to the distribution tree. This is done with the * New Root action

in the " add menu on the right side or in the context menu. The actual location of this root
is defined by its name and has to resolve to a valid directory at runtime.

@9 Default file set
@9 VM options [1D 1142)

Installation directo
¥ SlinstallervmoptionsTargetDirectory}

There are several possibilities for using custom roots. The name of a custom root can be

+ a fixed absolute path known at compile-time

This works for custom environments where there is a fixed policy for certain locations. For
example, if you have to install some files to D: \ apps\ nyapp, you can enter that path as
the name for your custom root.

15

If you build installers for different platforms, that root is likely to be different for each
platform. In that case, you can use a compiler variable [p. 63] for the name of the custom
root and override its value for each media file on the "Customize project defaults->Compiler
variables" step of the media wizard.

an installer variable that you resolve at runtime

If you would like to install files into the directory of an already installed application, such
as a plugin for your own application, you can use an installer variable that you resolve at
runtime. Installer variables have ani nst al | er: prefix,suchas${installer:rootDr},
and can be set in a variety of ways [p. 63].

The most common case would be to add a "Directory selection" screen to the screen
sequence [p. 156] and set its variable name property to the variable that you have used as
the name of the custom root. For the above example, that would be r oot Di r, without the
${installer:...} variable syntax.

Alternatively, you could use a "Set a variable" action to determine the location
programmatically.

a pre-defined installer variable

install4j offers several variables for "magic folders" that point to common directories, such
as ${installer:sys.userHone} which resolves to the user home directory or
${installer:sys. systenB2Di r} whichresolvestothe syst enB2 directory on Windows.
Have a look at the "Cross-platform variables" category in the installer variables selector for
a list of variables that are suitable for all platforms.

*

3 Select Installer Runtime Variable

m
(=
£y

Installer runtime variables for:

<

¥ Installer

Predefined Variables Bound Variables

¥ @@ Cross-platform variables

P sys.confirmedUpdatelnstallation
P sys.date

P sys.deskiopDir

P sys.docsDir

P sys.downloadsDir

P sysfileSeparator

P sysjavaHome

B _susiavaVersion

Filter:

Initial Value

Description

@ Help 0K Cancel

If a custom installation root is not bound at runtime or if it points to an invalid directory, the
contained files will not be installed and there will be no error messages. If you require error
handling, you can use a "Run a script" action before the "Install files" action with the appropriate
error message and failure strategy.

For archive media file types, custom installation roots are not installed. If you require these
custom roots for your installation, you cannot use archives.

16

An alternative way to redirect installed files to different directories is to use the "Directory
resolver" property of the "Install files" actions. Also, the "File filter" property of that action can
be used to conditionally install files. The use of these properties is only recommended if you
require their full flexibility. Otherwise, using custom installation roots and installation
components [p. 20] is a better approach.

Content nodes

Adding files to the distribution tree is done with the /* Add Files And Directories action in the

i add menu on the right side or in the context menu. In the first step of the file wizard you
choose the source or the files:

« With a directory entry, you recursively add the contents of a selected directory. You have the
possibility of excluding certain files and subdirectories and exclude files based on their file
suffix. In the configuration wizard you can override the default settings for the overwrite and
uninstall policies as well as the Unix file and directory modes.

B Modify Entry in the Distribution Tree X
1. Select type Select directory to add to the distribution tree

2. Select directory

3. Installation options Please select a directory that contains files you would like to distribute, The

2. Excluded files and directories contents of that directory will be added recursively to the currently selected

5. Exclude suffices position in the distribution tree.

8. Finished
NI Selected directory: | \gui 4

‘Where would you like to add the files that are contained in the selected
directory?

() Add directly to the currently selected node in the distribution tree

Add to subdirectory:

@ Help 4 Back Next P Finish Cancel

+ Alternatively, you can add a number of single files, possibly from different locations, into a
single directory. Each selected file will be added as a separate node that has its own settings
and can be moved independently in the distribution tree.

& Modify Entry in the Distribution Tree X
1. Select type Select files to add to the distribution tree
2. Select files
3. Installation options Please select any number of files fram arbitrary lecations. The selected files will
2, Finished be added to the currently selected position in the distribution tree,
Selected files:
" AdiHelloClijava s
(7] Help 4 Back Next P Finish Cancel

With the * Copy action you can add a file list from the system clipboard. The file list must
consist of file entries that are separated by line breaks or the standard path separator (";" on

17

Windows and ";" on Unix). Each file entry can either be absolute or relative. On the first
occurrence of a relative path, a directory chooser is shown where you select the root directory
against which all further relative paths should be resolved.

+ Finally, files can be passed externally through a compiler variable. This can be useful if you
collect lists of files in your build tool and want to use that information to dynamically build
the distribution tree. The command line compiler [p. 230] as well as the Gradle [p. 235],
Maven [p. 240] and Ant [p. 249] plugins have mechanisms for setting compiler variables for the
build.

The string that separates different files in the variable value is configurable and set to the
platform-specific path separator by default.

3 Add Files and Directories X

1. Select type Specify the compiler variable that should be read
2. Compiler variable
3. Installation options The compiler variable must exist at compile-time and contain a list of JAR files,
4. Finished separated with the specified separator.
For missing files, a warning will be printed during the build

Compiler variable: | myVariable r | @

Path list separator: | ${compilersys.pathlistSeparator} @

@ Help 4 Back Mext P Finish Cancel

Folder nodes

Fixed folder nodes can occur below the root nodes to build nested directory structures. Using
the "Edit entry" action on a fixed folder node allows you to edit the unix mode of the folder.

E1 Folder Properties X

Access Rights

The default setting for the Unix directory mode can be adjusted on the
"File Options" step.

Override default Unix mode: 755

Usually, a directory structure will be copied from a staged distribution directory, but fixed folders
are useful under several circumstances. For example, if you want to apply different top-level
prefix directories, you can add corresponding folder.

Also, fixed folders and single files in fixed folders have a higher precedence than folders and
files from directory entries. In this way, you override settings for certain folders or files. For
example, if a "contents of a directory" node includes the file a/ b/ c. t xt, you can manually add
nested folders a and b and then add the single file node c. t xt . You could then set a different
overwrite or uninstall policy for the file. Also, you could override the Unix mode of the directories.

Compiler variables as directory or file names

Using compiler variables [p. 63] as directory or file names in the distribution tree allows you to
make compile-time conditional includes. The following rules apply:

18

« if a directory node resolves to the empty string after variable replacement, the directory and
any contained entries will not be included in the distribution.

+ if the source directory of a "contents of directory" node resolves to the empty string after
variable replacement, no files will be included by that entry.

+ if the file name of a single file node resolves to the empty string after variable replacement,
no file will be included.

For conditions that are evaluated at runtime or for adding platform dependent files, you should
use files sets [p. 20] instead.

File options

On the "File options" step, a number of settings determine the behavior of the installer and
uninstaller. When files are already present, you can choose a number of strategies for the "Install
files" actions by changing the "Default overwrite policy". Similarly, the "Uninstall files" action
decides what to do for installed files based on the "Default uninstall policy" setting. On Unix, the
"Install files" action assigns permissions to installed files and directories as configured in the
default Unix file and directory modes on this step. All these options can be overridden in the
configuration of the content nodes.

Other available options concern the compilation phase. You can choose the source of the file
modification times, specify a global pattern of files and directories that should be ignored when
collecting files and select a strategy for what should happen if some specified files are missing
at build time.

File Options \N /7

In this step, you can define options that apply to all files in the distribution tree, All settings can be overridden in "Installation
options" step of the file wizard.

Global Bxcludes

Global exclude pattern: r| @
Installation Options

Default overwrite policy: Always ask except for update ~ | @)

Default uninstall policy: If created - @

Default Unix file mode: 644 Reset To Default Q

Default Unix directory mode: | 733 Reset To Default)

Use unix mode of the source files instead when built on Linux/macOS O
Launcher overwrite policy: If newer otherwise ask ~ @

File Attributes
File modification times of installed files: Keep original file modification times
© Use build timestamp
[Preserve symbelic links within the distribution tree (7]
Build Options

What to do when files are missing at build time: | Print 2 warning and continue ¥ (7]

19

A.4 File Sets And Installation Components

install4j offers two mechanisms to group files: File sets and installation components. File sets
are configured in the distribution tree [p. 14] and can be used in a variety of use cases as building
blocks for your installers. Installation components are presented to the user at runtime and
mark certain parts of the distribution tree that have to be installed if the user chooses an
installation component.

Both file sets and installation components are optional concepts that can be ignored if they are
not required for an installer project: There is always a "Default file set" to which you can add files
in the distribution tree and on the "Installation components" step you do not have to add any
components.

File sets

File sets are a way to group files in the distribution tree. When you need to select files in other
parts of the install4j IDE, you can select the file set node instead of selecting single files and
directories. Each file set has a special "Installation directory" child node that maps to the
installation directory selected by the user at run time. Custom installation roots are defined
separately for different file sets. If you require the same installation root in two different file sets,
you simply define the same root twice.

@ Default file set o
A Installation directory
| Content of Adist
@8 Files for Windows 8 1D 45]
A Installation directory
bin
7 Content of \win8\bin
Vad S{‘instaHer:sys‘s)rstemBEDir} o]
File Awin8\driver.dll (zhared
d) Files for Windows 10 [ID 47]
A Installation directory
bin
" Content of \win10\bin
M Slinstallersys.system32Dir}
" File Awin10\driver.dll (zhared

The installation of file sets can be toggled programmatically at run time. The code snippet to
disable the installation of a file set at run time is

context.getFil eSet Byl d("123"). set Sel ect ed(fal se);

if the ID of the file set is "123". You could insert this snippet into a "Run script" action that is
placed before the "Install files" action on the Installer->Screens & Actions step [p. 156]. File set
IDs can be displayed by toggling the "Show IDs" tool bar button.

A common use case is to exclude platform-specific files from certain media files. You can define
file sets for different platforms and exclude all unneeded file sets in the "Customize project
defaults->Exclude files" step in the media wizard. This is an example of how to use file sets at
design time in the install4j IDE.

Within one file set, all relative paths must be unique. However, the same relative path can be
present in different file sets. Suppose you have different DLL files for Windows 8 and for Windows
10 and higher. You can create two file sets so that the installer contains both alternative versions.
Once you find out whether you run on Windows 8 or on Windows 10 and higher, you can disable
the file set that should not be installed with the code snippet shown above. By default, all included

20

file sets are installed. If the same relative path occurs twice, it is undefined which version is used.
In this case you have to make sure to disable the file sets that are not appropriate.

Installation components

If you define installation components. the installer can ask the user which components should
be installed. In the configuration of an installation component you mark the files that are required
for this component. A single file or directory can be required by multiple installation components.

Options Description Dependencies

Base application [ID 124] o Files
't Source code [I0 125]

Demos

oK Demo 11D 127]

Allfiles in the distribution tree
O Selected files:

¢ Dema 3 [ID ® @ Default file set
/O Installation directory
R bin
derno

& lib

. source
@ Files for Windows 8

HJ Files for Windows 10

Installation components are defined in a folder hierarchy. This means you can have groups of
installation components that are enabled or disabled with a single click. Most options in the
configuration of an installation component are used by the "Installation components"
screen [p. 172]. They decide how the installation component is presented to the user, whether it
should be initially selected or mandatory, and if it has dependencies on other installation
components that should be automatically selected. To internationalize the name of the component
for different media files, use custom localization keys [p. 63].

The user will only be able to choose installation components if a "Installation components selector™"
form component is present somewhere in the installer. The "Installation components" screen
that is part of the default project template contains that form component and is only displayed
at runtime if you have defined any installation components.

& Installer (7 screens) [ID instal... #

. Contains 2 form components Q Configure & Preview
=, Startup (1 action) b 4
& | Welcome (1 action) [ID 2] Installation Components
?2 Installation location (1 ac... Selection change script
T Installat D1 Control Flow
| Installation type [ID 213] Cendition expression
Installation components [... Validation expression
[. Rollback barrier
¢ Create program group [ID...| | 3
1 L Quit after screen
Installation (3 actions) [ID... a Back button Safe back button
35 Finish (1D 12 GUI Options
@ Uninstaller (4 3D % Style Inherit from parent [Default style]
ninstaller (4 screens] [
) - Privileaes
Installation components
A screen that displays all installation components and asks the user which components
F) should be installed. This screen will not be shown if ne installation compenents are defined,
o

Another important feature of installation components is that they can be marked as
"downloadable". If you configure the download option [p. 139] in the "Data files" step of the media
wizard, separate data files will be created for the downloadable components.

21

i Base application [1D 124] & Files Options Description Dependencies

Source code [ID 125]

Demos Initially selected for installation (7]

* Dema 1 (1D 127] User can change selection state 0

i Demo 2 [ID 128]

o Demo 31D 129] ® Initially hidden 9
,O I Downloadable component IQ

%

install4j also offers a two-step selection for installation components: In the first step, the user is
asked for the desired "installation type". An installation type is a certain selection of installation
components. Typical installation type sets are [Full, Minimum, Customize] or [Server, Client, All].
The display and the configuration of installation types is handled by the "Installation type" screen.

\ 2 Installer (7 screens) [ID instal..| | == @ sl s
* |\ Startup (1 action) ®
\
ir Welcome (1 action) [ID 2] ,O ¥ Properties

it Installation location (1 ac..

X " 1 Installation types are defined by a configurable set of components, The first installation
Installation type [ID 213] type is selected by default.

#| Installation components [... @ S{i18n:Fulllnstallation} (10 214) o
-‘;‘ Create program group [ID... @smsn:Standard\nstallatmn}[|D:|51
Installation (3 actions) [0 s (@ siirsmCustominstaliation} 10 216)
% Finish [ID 12]
t* Uninstaller (4 screens) [ID ... %
]

For each configured installation type, you can decide whether the user should be able to further
customize the associated installation component selection in the "Installation components"
screen or not. If the installation type is not customizable, the installer variable sys.

pr event Conponent Cust omi zat i onissettotr ue and asubsequent "Installation components"
screen is not displayed.

22

M Configure Installation Type X

Name: 5{i18n:Fulllnstallation} »

Custom ID:

Components Description

o All installation components
Default installation compenents

Specific installation components:

&
%

&

User can customize component selectien in “Installation Components” screen

The IDs of installation components can be used in expressions, scripts and custom code if you
want to check whether the installation component has been selected for installation or not. A
typical condition expression for an action would be

context. getlnstall ati onConponent Byl d("123").i sSel ect ed()

if the ID of the component is "123". In this way you can conditionally execute actions depending
on whether a component is selected or not.

23

A.5 Screens And Actions

With screens and actions you configure two separate aspects of the installer: the user interface
that is displayed by your installer and uninstaller on the one hand and the actual installation and
uninstallation on the other hand. Each screen can have a list of actions attached that are executed
when the user advances to the next screen.

install4j offers a wide variety of pre-defined screens and actions that you can arrange according
to your needs. Some of these screens and actions are generic and can be used as programming
elements, such as the "Form" [p. 46] screen and the "Run script" action.

While this chapter presents an overview of the concepts of the screen and action system, a later
section in the documentation [p. 156] discusses how to configure the related beans in the install4j
IDE in detail.

Installer applications

Building an install4j project creates media files which are either installers or archives. Aninstaller
is defined by a sequence of screens and actions and is executed when the user executes the
media file. Installers usually install an uninstaller which removes the installation. The uninstaller,
too, is a freely configurable sequence of screens and actions. Archives do not have an installer
or uninstaller and the user extracts the contained data with other tools.

In addition to the installer and uninstaller, you can define custom installer applications [p. 163]
that are added to the distribution tree. These custom installer applications can use the same
screens and actions that the installer can use. Unlike installer and uninstaller, they are also added
to archives. They can be used to write separate maintenance applications for your installations
that are either invoked directly by the user or programatically by your application.

v Installer (8 screens) [ID installer] + 5\ Properties

+ Uninstaller (3 screens) [ID uninstaller] x

> qf Standalone update downloader [Custom applic... ,O I) Installer Variables

@g Background update downloader [Custom applic...

" Q Launcher Integration
@E’.‘ Configure greeting [Custom application] (2 scr...

Executable

Create executable
Executable name updater
Executable directory .
Single instance
% File set Default file set
Executable icon [customized icon]
Execution Modes
Allow unattended mode
Progress interface creation...
Allow console installations

Fall back to console mode ...

‘Custom application

A custom installer application is installed by the installer. Users can start
it manually or it can be executed programmatically from your own
s code via the APL

The most common use case for custom installer applications is to create auto-updaters.
Auto-updaters are described in detail in a separate help topic [p. 114].

Executing first-run tasks for archives

Another important use-case for custom installer applications is to create a first-run installer for
archives. While there is no need to install files to the installation directory in the case of an archive,
there will usually be screens and actions that set up the environment of your application.

In order to avoid the duplication of screens and actions, install4j offers the possibility to create
links to screens and actions. In this way, a custom installer application can include a partial set

24

of the screens and actions in the installer. Such a first-run installer should be added to the
.install 4j runtime directory so that it is not exposed as part of the application. This is done
by specifying its "Executable directory" property as the empty string.

Such a first-run installer application is invoked programatically with the com i nst al | 4j . api .
| auncher . Appl i cati onLauncher utility class. To determine whether any of the generated
launchers of an installed archive are run for the first time, call

Appl i cati onLauncher.i sNewAr chi vel nstal | ati on()

at the beginning of your main method. If it returns true, call | aunchApplication or
| aunchAppl i cati onl nProcess to execute the installer application. Check the Javadoc for
detailed information about this API.

Control flow

At runtime, install4j instantiates all screens and actions and organizes the screen flow and action
execution. There are a number of aspects regarding this control flow that you can customize in
the install4j IDE.

Both screens [p. 172] and actions [p. 178] have an optional "Condition expression" property that
can be used to conditionally show screens and execute actions. Screens have a "Validation
expression" property that is invoked when the user clicks on the "Next" button allowing you to
check whether the user input is valid and whether to advance to the next screen. These are the
most commonly used hooks in the control flow for "programming" the installer.

» | T
taller (5 D install
+ retaler (3 sereens) 10 instaler] + Contains 4 form components Q Configure @ Preview
=\ Startup (1 action) ®
> Welcome (1 action) [ID 2] 2 Update Alert
35 Installation location (1 action) [ID 2] Alert for update installation
bl . P Control Flow
i¢ Installation components [ID 12] Condition sxpression
Installaticn (3 actions) [ID 15] Validation expressicn
k-
Install files [ID 17] Rellback barrier
Quit after screen
@ Create program group [/D 12] " Back button
@ Register Add/Remave item [ID 19] GUI Options
35 Finish [ID 20] b4 Style Banner

Custemize banner image
+* Uninstaller (4 screens) [I0 uninstaller]

Privileges

Action elevation type Inherit from parent [Co not eleva..
Screen Activation

Pre-activation script

Post-activation script

Welcome

A screen that welcomes the user to the installation of your application.
This screen should be placed at the beginning of the installation

All "expression" properties in install4j can be simple Java expressions or scripts of Java code as
described in the help topic on scripts [p. 29].

Another hook into the control flow regarding screens is the ability to declare every screen as a
"Finish" screen, meaning that the "Next" button will be replaced with a "Finish" button and the
installer will quit after that button is pressed. Consider applying the "Banner" style to the screen
in that case because it alerts the user that a special screen has been reached.

If you use a series of screens to get user input, users expect to be able to go back to previous
screens in order to review or change their input. This is fine as long as no actions are attached
to the screen. When actions have been executed, the question arises what should happen if the
user goes back to a screen with actions and clicks on "Next" again.

25

By default, install4j executes actions only once, but that may not be what you want if the actions
operate on the user input in a screen. Because install4j has no way of knowing what should
happen in this case, it applies a "Safe back button" policy by default: if the previous screen had
actions attached, the back button is not visible. You can change this policy for each screen, either
making the back button always visible or always hidden. The "Can be executed multiple times"
property of each action is relevantin the case where you you make the back button always visible
for the next screen.

v Installer (5 screens) [ID installer] L Configuration
>) Item name S{compilersys.fullMame} ${cempi..
W Startup (1 action) x lcon source Installer icon
ik Welcome (1 action) [ID 2] p Error Handling
'?‘ Installation location (1 action) [0 2] Failure strategy Continue on failure
— Error message
ir Installation components [0 12] o Control Flow
. w
Installation (3 actions) [ID 13] Condition expression
3
istall files (10 17] Rollback barrier . .
Can be executed multiple times
@ Create program group [/0 12] 3 Privileges
) Register Add/Remove item [ID 19] Action elevation type
3k Finish [ID 20] %
/L" Uninstaller (4 screens) [|D uninstaller] h

Register Add/Remove item

N Register an Add/Remove item in the Windows software registry. This
action will be automatically reverted by the 'Uninstall files' action.

Rollback behavior

At any time in the installation sequence the user can hit the "Cancel" button. The only exception
in the standard screens is the "Display progress" form template screen where the "Cancel" button
has been disabled. install4j is able to completely roll back any modification performed by its
standard actions.

However, the expectation of a user might not be that the installation is rolled back. Consider a
series of post-installation screens that the user doesn't feel like filling out. Depending on the
installer, the user may feel that installation will work even if the installer is cancelled at that point.
A complete rollback would then not be desirable. For this purpose, install4j offers the concept
of a "rollback barrier". Any action or screen can be a rollback barrier which means that any actions
before and including that action or screen will not be rolled back if the user cancels later on.

By default, only the "Installation screen" is a rollback barrier. This means that if the user cancels
while the actions attached to teh installation screen are running, everything is rolled back. If the
user cancels on any of the following screens, nothing that was performed on or before the
installation screen is rolled back. With the "Rollback barrier" property of actions and screens you
can make this behavior more fine-grained and customize it according to your own needs.

Error handling

Every action has two possible outcomes: failure or success. If an action succeeds the next action
is invoked. When the last action of a screen is reached, the next screen is displayed. What should
happen if an action doesn't succeed? This depends on how important the action is to your
installation. If your application will not be able to run without the successful execution of this
action, the installer should fail and initiate a rollback. However, many actions are of peripheral
importance, such as the creation of a desktop link. Declaring that the installer has failed because
a desktop link could not be created and rolling back the entire installation would be
counterproductive. That's why the failure of an action is ignored by install4j by default. If a

26

possible failure of an action is critical, you can configure its "Failure strategy" to either ask the
user on whether to continue or to quit immediately.

Configuration

[tem name ${compilersys.fullMame} ${compi...
lcon source Installer icon

Error Handling

Failure strategy Continue on failure

Error message

Control Flow

Condition expression

Rollback barrier

Can be executed multiple times
Privileges

Action elevation type

Standard actions in install4j fail silently, for example the "Create a desktop link" action will not
display an error message if the link could not be created. For all available failure strategies, you
can configure an error message that is displayed in the case of failure. The "Install files" action
has its own, more granular failure handling mechanism that is automatically invoked after the
installation of each file.

Standard screens and form templates

install4j offers a series of standard screens that are fully localized and serve a specific purpose.
These standard screens have a preferred order, when you insert such a screen it will insert itself
automatically in the correct position. This order is not mandated, you can re-order the screens
in any way you like, however they may not yield the desired result anymore. If for example you
place the "Services" screen after the screen with the "Install service" actions (typically the
"Installation" screen), the "Services" screen will not be able to modify the service installations
anymore and the default values are used.

3 Select an Installation Screen >

Available screens:
= Display text

2 Program group selection

Standard screens

|

i Welcome

|

¢ Display license agreement

¢ Installation location

¢ Installation type

¢ Installation components
1} Create program group
“¢ File associations

]

|

I

I

% Additional confirmations
" Installation

(3 Display information

3 Finish

Filter:

Description

Insert after selection

OK Cancel

The form templates don't have a fully defined purpose, their messages are configurable and
empty by default. For example the "Display progress" screen is similar to the "Installation" screen,
however the title and the subtitle are configurable. For templates also do not have any restriction
with respect to how many times they can occur. While the "Installation" screen (and other screens)
can occur only once for an installer, the "Display progress" screen could be used multiple times.

27

3 Select an Installation Screen >

Available screens:

Form templates

E Banner with header at the top
E Directory selection

E Display PDF file

E Display progress

E- Display text

Program group selection

Standard screens

(3 Welcome

(i Display license agreement
(3 Installation location

T3 Installation type

¥ Inctallatinn cammnnents

Filter:

Description

Insert after selection

OK Cancel

Form templates are built with form components and can be a starting point for developing your

own screen. Forms allow you to freely define the contents of a screen and are described in a
separate help topic [p. 46].

28

A.6 Scripts

All configurable beans on the Installer->Screens & Actions [p. 156] step have script properties that
allow you to customize their behavior, such as executing some code when a button is clicked or
a custom initialization of a text field. Also, control flow in the screen and action system is done
with scripts and expressions.

Design-time JDK

By default, install4j uses the bundled JRE [p. 89] for compiling scripts up to the Java major version
that install4j runs with itself. For JRE bundles with higher Java major versions, install4j uses the
current JRE instead.

For special requirements, you can invoke "Settings->Java Editor Settings" in the script editor and
select a different JDK for that purpose. The list of available design-time JDKs is saved globally for
your entire install4j installation and not for the current project. The only information saved in
your project is the name of the JDK configuration. In this way, you can bind a suitable JDK on
other installations and on other platforms.

& Java Editor Settings X

Code Completion Popup Setting:
Auto-import classes during code completion
Auto-popup code completion after dot

Delay: 1,000 | % | ms

a

Popup height: 10 |+ | entries

Display Code Problems
None Errors only @) @ Errors and Warnings @

IDK For Code Editor 7]
Automatic JRE download ﬂ
OJDK JDK 17 [ChUsers\ingotjdks\jbrsdk-17-b135.1] hd Configure JDKs

The design-time JDK is used for the following purposes:

+ Code completion

The Java code editor will show completion proposals for classes and methods in the JDK
runtime library from the design-time JDK.

+ Context-sensitive Javadoc help

If the design-time JDK from the bundled JRE configuration is used, the corresponding Javadoc
from the Oracle website is shown.

If you manually configure a design-time JDK, you can enter a Javadoc directory to get
context-sensitive Javadoc help in the code editor for all classes in the JDK runtime library. By
default, context-sensitive Javadoc help is only available for the install4j API.

29

B Configure JDKs

Available JDKs for code completion and script compilation:

MName 0 Java Home Directory 0 Javadoc Directory 0 Java Version +

ChUsershingohjdks\jbrsdk-17-b135.1 https://docs.oracle.com/en/java/javas... x

@ Hel Cancel
P

+ Code compilation
install4j uses a bundled eclipse compiler, so it does not use the compiler from the design-time
JDK. However, it needs a runtime library against which scripts entered in the installer
configuration [p. 24] are compiled. The version of thatJDK should correspond to the minimum
Java version for the project. This is automatically the case if the design-time JDK from the
bundled JRE configuration is used. For a manually selected design-time JRE, if its minimum
Java version is higher than the minimum Java version of the project, runtime errors can occur

if you accidentally use newer classes and method.

The code editor

The Java code editor is shown for script properties on the Installer->Screens & Actions [p. 156]
step for any configurable bean including screens, actions, form components and groups, or when
you edit the code for static fields and methods on the Installer->Screens & Actions->Custom

Code [p. 161] step.

I Settings Edit Search Code Help Edit X
¥ E & PR % O
= &« &EHE m 7
Insert Insert Code Test
Copy cut P e = e Find Replace — Help
;_:' Please enter an expression (no trailing semicolon) or a script (ends with a return statement) that consists of
=" regular Java code. The following parameters are available:
JAVA
- com.installdj.api.context InstallerContext context
- com.install4j.api.actions.InstallAction action
The expected return type is boolean
Condition expression:
1 l:Dntext .getBooleanVariable ("sys.confirmedUpdateInstallation™) .

The box above the text editor shows the available parameters as well as the required return
type. If parameters or return type are classes - and not primitive types - they will be shown as
hyperlinks. Clicking on such a hyperlink opens the Javadoc in the external browser.

30

To get more information on classes from the com i nst al | 4j . * packages, choose Help->Show
API Documentation from the menu and read the help topic for the install4j API [p. 222].

A number of packages can be used without using fully-qualified class names. Those packages
are:

+ java.util.*

+ java.io.

* javax.swing.*

+ com.install4j.api.*

+ com.install4j.api.beans.*

+ com.install4j.api.context.*
+ com.install4j.api.events.*
+ com.install4j.api.screens.*
+ com.install4j.api.actions.*
« com.install4j.api.formcomponents.*
+ com.install4j.api.update.*
+ com.install4j.api.windows.*
+ com.install4j.api.unix.*

You can put a number of import statements as the first lines in the text area in order to avoid
using fully qualified class names. For example:

i mport java.aw . Col or;
i mport java.aw . Event Queue;

Event Queue. i nvokeLater (() -> {
JTextField textField =

(JText Fi el d) f or mEnvi r onnment . get For mConponent Byl d(" 123") . get Confi gurati onObj ect () ;
text Fi el d. set Backgr ound(Col or. RED) ;

1),

If the gutter icon in the top right corner of the dialog is green, your script is going to compile
unless you have disabled error analysis in the Java editor settings that are accessible in the menu
of the script editor dialog.

In some situations, you may want to try the actual compilation. Choosing Code->Test Compile
from the menu will compile the script and display any errors in a separate dialog. Saving your
script with the OK button will not test the syntactic correctness of the script. When your install4;
project is compiled, the script will also be compiled and errors will be reported.

Expressions or scripts

Java code properties can either be expressions or scripts. install4j automatically detects whether
you have entered an expression or a script.

An expression does not have a trailing semicolon and evaluates to the required return type. For
example:

Icontext.isUnattended() && !context.isConsole()

31

The above example would work as the condition expression of an action and skip the action for
unattended or console installations.

A script consists of a series of Java statements with a return statement of the required return
type as the last statement. For example:

i f (!context.getBool eanVari abl e("enterDetails")) {
cont ext . goForward(2, true, true);

}

return true;

The above example would work as the validation expression of a screen. If the variable with
name "enterDetails" is not settot r ue, it would skip two screens forward, checking the conditions
of the target screen as well as executing the actions of the current screen.

Script parameters

The primary interface to interact with the installer or uninstaller is the context which is nearly
always among the available parameters. The context provides information about the current
installation and gives access to variables, screens, actions and other elements of the installation
or uninstallation. The parameter is of type

« cominstall4j.api.context.|nstallerContext forscreensand actionsinthe installation
mode

« cominstall4j.api.context.UninstallerContext for screens and actions in the
uninstallation mode

« cominstall4j.api.context.Context for form components.

Apart from the context, the available parameters include the action, screen or form component
to which the Java code property belongs. If you know the implementation class, you can cast to
it and modify the object as needed.

Many other useful static methods are also contained in the class com i nstal | 4j . api . Wi l,
for example OS detection methods or methods to display messages in a way that works for all
installer modes:

if (Wil.isMacOs()) {
Util.showar ni ngMessage("This warning is only shown on macCS");
}

Editor features

The Java editor offers the following code assistance powered by the eclipse platform:

+ Code completion

Pressing CTRL- Space brings up a popup with code completion proposals. Also, typing a dot
(".") shows this popup after a delay if no other character is typed.

While the popup is displayed, you can continue to type or delete characters with Backspace
and the popup will be updated accordingly. "Camel-hump completion" is supported, i.e. typing
NPE and hitting CTRL- Space will propose Nul | Poi nt er Except i on among other classes. If
you accept a class that is not automatically imported, the fully qualified name will be inserted.

The completion popup can suggest:

32

* O variables and default parameters. Default parameters are displayed in bold font.
packages (when typing an import statement)

9 classes

@ fields (when the context is a class)

* W methods (when the context is a class or the parameter list of a method)

You can configure code completion behavior in the Java editor settings.

1 Java Editor Settings X

Code Completion Popup Settings
4 Auto-import classes during code completion

Auto-popup code completion after dot

Delay: 1,000 | ¥ | ms

Popup height: 10 | ¥ | entries

Display Code Problems
None Errors only (7] o Errers and Warnings (7]
JDK For Code Editor (7]

OAutomat\cJREduwnIDad O
JDK | [Select one]

* Problem analysis

The code that you enter is analyzed on the fly and checked for errors and warning conditions.
Errors are shown with red underlines in the editor and with red stripes in the right gutter.
Warnings, such as unused variable declarations, are shown with a yellow background in the
editor and with yellow stripes in the right gutter. Hovering the mouse over an error or warning
in the editor as well as hovering the mouse over a stripe in the gutter area displays the error
or warning message.

The status indicator at the top of the right gutter is green if there are no warnings or errors,
yellow if there are warnings but no errors and red if there are errors. In the latter case the
code will not compile and the installer cannot be generated.

You can configure the threshold for problem analysis in the Java editor settings.

+ Context-sensitive Javadoc

Pressing SHI FT- F1 opens the browser with the Javadoc page that describes the element at
the cursor position. Javadoc for the Java runtime library can only be displayed if a design-time
JDKis configured and a valid Javadoc location is specified in the design-time JDK configuration.

Key bindings

All key bindings in the Java code editor are configurable. The key map editor is displayed by
choosing Settings->Key map from the menu in the Java code editor dialog. On macOS, that menu
is shown as a "hamburger" menu on the right side of the tool bar.

33

B Edit Key Map X

Available shortcut schema:

Default (active) Set Active
MacO5K
Copy

Based on schema:

Show commands containing:

Backspace

Block Comments
Clipboard Copy

Clipboard Cut

Clipboard Paste

Clipboard Paste with Dialog

Shortcuts for selected command:

Press new shortcut:

The active key map controls all key bindings in the editor. By default, the [Default] key map is
active. The default key map cannot be edited directly, to customize key bindings, you first have

to copy it. Except for the default key map, the name of a key map can be edited by double-clicking
onit.

When assigning new keystrokes or removing existing key strokes from a copied map, the changes
to the base key map will be shown as "overridden" in the list of bindings. The key map editor
also features search functionality for locating bindings as well a conflict resolution mechanism.

Key bindings are saved in the file $CONFI G DI R/ i nstal | 4j / v9/ edi t or _keymap. xm where
$CONFI G DI Ris %JSERPROFI LE% AppDat a\ Local onWindows, $HOVE/ . confi gonLinuxand
$HOVE/ Li brary/ Appl i cati on Support on macOS. This file only exists if the default key map

has been copied. When migrating an install4j installation to a different computer, you can copy
this file.

Code gallery

The Java code editor offers a code gallery containing useful snippets that show you how to get
started with using the install4j API. The code gallery is displayed with the "Code gallery" tool bar
button in the script editor.

34

I Select a Code Snippet X

HAuwailable code snippets: Preview:

Condition expression This
= Check if admin user

E Check installer mode

= Check operating system

General

'context.isUnattended() && !context.isConscle()

Windows
Installer actions
Startup actions
Form components
Description

Shows how to check if the installer is running in GUI mede and not in
console and unattended mode

Filter:

You can either copy a portion of the script with CTRL- C or click OK to insert the entire script at
the current cursor position.

Not all code snippets are directly usable in the script that you are editing. Also, some script
properties have special code snippets that are only shown for this property. If such code snippets
exist, they are displayed in bold in a separate category with the name of the script property.

Installer variables and scripts

Screens, actions and form components are wired together with installer variables that can be
set and retrieved with little code snippets that make use of the cont ext parameter that is
available for most scripts. Any object can be used as the value for a variable, for a condition you
can use boolean values. In a "Run script" action, you could set a boolean variable like this:

bool ean nmyCondition = ...
cont ext . set Vari abl e("nmyCondi ti on", nyCondition);

Instead of calling set Var i abl e ina "Run script" action, you can also use a "Set a variable" action
where the return value of the script is saved to an installer variable.

Getting installer variables is done with the cont ext . get Vari abl e(Stri ng vari abl eNane)
method. The convenience method cont ext . get Bool eanVari abl e(Stri ng vari abl eNane)
makes it easier to check conditions and write them as expressions without a return value:

cont ext . get Bool eanVari abl e(" nyCondi ti on")

To use installer variables with a string value in text properties of actions, screens and form
components, write them as ${i nst al | er: nyVar i abl eNane} or use the variable selector button
that inserts them with the correct syntax.

35

A.7 Generated Launchers

Launchers are responsible for starting your application. There are two types of launchers:

& Create Launcher X

1. Select type Select launcher type

You can either let install4j generate launchers for you or previde your own launchers for your
application. Please choose the type of launcher

O Generated launcher

installdj generates launchers that start up your Java application in a secure, professional and
attractive way. Launchers are configured in a platform independent way and are re-generated
for each of your configured media file,

External launcher

Your own platform-dependent launcher is treated and installed by installdj just like the
generated launchers,

@ Help Next P Cancel

Generated launchers

install4j can generate native launchers that start your application. For example, on Windows,
an . exe file will be created that among other things takes care of finding a suitable JRE,
displaying appropriate error messages if required and then starts your application. Using
launchers generated by install4j has numerous advantages as compared to using home-grown
batch files and shell scripts.

Each launcher definition is compiled separately for each defined media file [p. 131]. This means
that for the majority of all cases, a single launcher definition will be sufficient to start your
application. If, for example, your distribution contains two GUI applications and a command
line application, you have to define 3 launchers, regardless of how many media files you define.

When your application is started with a launcher generated by install4j, you can query the
system property i nstal | 4j . appDi r to get the installation directory and and i nst al | 4j .
exeDi r to get the directory where the launcher resides. Use calls like

System get Property("install4j.appDir")

to access these values.

External launchers

If you already have an external launcher for your application, you can let install4j use that
launcher instead of generating one. Because external launchers are most likely
platform-dependent, you will have to add external launchers for each platform that is targeted
by your media files. Make sure to exclude the irrelevant launchers in your media file definitions
in this case.

If the launcher is a binary file rather than a shell script, make sure to set its Unix mode in the
distribution tree to a value that makes it executable for the owner, such as 755 or 700. This
also affects the generated .desktop file whose Exec attribute will start with a shell executable
unless the launcher file is executable itself.

36

Types of generated launchers

Executables created by install4j can be either GUI applications, console applications or service
applications.

= Modify Launcher X
1. Select type Configure executable
2. Executable info)
Executable type:) GUI application (7]
* Redirection 4 Allow -console parameter (7]
- Single inst d
ingle instance mode Uses SWT or QT o
- Windows version info
- Windows manifest options Console application (7]
= Unix eptions Service (7]
= mac05S eptions -
+ Menu integration Executable name: hello_gui > @
= Auto-update integration File set: qﬂ Default file set -~ @
3. lcon
4. Java invocation Directory: bin P~ @
5. VM options fil
optionsTie [Fail if an exception in the main thread is thrown (7]
6. Splash screen
7. Finished [Change working directory to: | . r @
w Advanced Options
@ Help 4 Back Next P Finish Cancel

There is no terminal window associated with a GUI application. If stdout and stderr are not
redirected on the "Executable info->Redirection" step of the launcher wizard, both streams are
inaccessible for the user. This corresponds to the behavior of j avaw(. exe) .

On Windows, if you launch the executable from a console window, a GUI application can neither
write to or read from that console window. Sometimes it might be useful to use the console, for
example for seeing debug output or for simulating a console mode with the same executable.
In that case you can select the Al | ow - consol e par anet er check box. If the user supplies the
- consol e parameter when starting the launcher from a console window, the launcher will try
to acquire the console and redirect stdout and stderr to it. If you redirect stderr and stdout in
the "Executable->Redirection" step, that output will not be written to the console.

A console application has an associated terminal window. If a console application is opened
from the Windows explorer, a new terminal window is opened. If stdout and stderr are not
redirected on the "Executable info->Redirection" step of the launcher wizard, both streams are
printed on the terminal window. This corresponds to the behavior of j ava(. exe) .

Finally, a service runs independently of logged-on users and can be run even if no user is logged
on atall. Aservice cannot rely on the presence of a console, nor can it open windows. On Microsoft
Windows, a service executable will be compiled by install4, on macOS a launch daemon will be
created and on Unix-like platforms a start/stop script will be generated.

When a service is started, the mai n method of the configured main class will be called. To handle
the shutdown of your service, you can use the Runt i ne. addShut downHook () method to register
a thread that will be executed before the JVM is terminated.

For information on how services are installed or uninstalled, see the help topic on services [p. 97].

Java invocation

The most important configuration of a launcher is done on the "Java invocation" step of the
launcher wizard and revolves around replicating the arguments you would pass to the Java
launcher in a batch file:

37

B Modify Launcher X

1. Select type Configure Java invocation
2, Executable info
3. lcon VM Parameters: | -Dapplelaf.useScreenMenuBar=true P @

4. Java invocation
Allow VM passthrough parameters (e.g. -J-Xmx256m) (7]

- Native libraries Configure Version-Specific VM Parameters [no entries]
- Preferred VM
= Owverride Java version O Ciasspath @ Module path @
5. VM opticns file ® [Directory classes &

6. Splash screen
7. Finished

Main class fremn Class path hd HelleGui P @

Arguments for main class: ' @

w Advanced Options

@ Help 4 Back Next P Finish Cancel

* VM parameters

You can provide a fixed list of VM parameters to your launcher and also add version-specific
VM parameters. Fixed VM parameters can contain compiler, launcher and installer
variables [p. 63].

B Modify Launcher X
1. Select type Configure Java invocation

2, Executable info

3. lcon VM Parameters: | -Dapplelaf.useScreenMenuBar=true | Pl @

4. Java invocation
Allow VM passthroug| B* Insert Installer Runtime Variable

- Mative libraries Configure Version-Spd 5 Insert Launcher Runtime Variable

+ Preferred VM 30k Insert C iler Varizbl
referre © Class path @ Module path @ .._:} nsert Compiler Variable
€9 Insert Runtime Environment Variable

5. VM options file L] Directory classes EF
6. Splash screen
7. Finished

= Owverride Java version

Compiler variables are replaced at build time, launcher variables are replaced by the launcher
so that the VM sees the replaced value from the very beginning, and installer variables are
replaced in the main method. This means that using installer variables is not suitable for
setting certain kinds of VM parameters like - Xnx, but can be useful for replacing system
properties that are only used by your code or by libraries.

See the separate help topic on VM parameters [p. 84] for more information on the various
ways to set VM parameters for launchers.

* Module or class path

On the "Java invocation" step of the launcher wizard you can configure both the module path
and the class path. These settings correspond to the - - nodul e- pat h and the - cp parameters
of the standard Java launcher. The module path is only applicable for Java 9 and higher. Like
for the standard Java launcher, you can add directories, single archives or directories with
archives. In addition, you can add archives from environment variables and from compiler
variables.

The compiler variable entry is useful if the set of JAR files that should be added to the module
path or class path is calculated in your build system and these JAR files are not staged to a
fixed set of directories that you could reference in install4j. In that case, the the command

38

line compiler [p. 230] as well as the plugins for Gradle [p. 235], Maven [p. 240] and Ant [p. 249]
can seta compiler variable externally where the single JAR files are separated by a configurable
separator.

& Define Class Path Entry X

Entry Type
Scan directory Directory Archive Environment variable L} Compiler variable
Error Handling
Fail if an error occurs with this class path entry €
Detail
Compiler variable: » @
Path list separator: ${compiler:sys. pathlistSeparator} » @
Relative path prefic
Reads a compiler variable that centains a list of relative JAR files paths, separated with the

specified separator. The files are resolved in the distribution tree, absolute file names will not
work.

* Main class

For Java 9 and higher, you can choose a main class from either the module or the class path.
If you choose the module path option, the syntax for the main class is <nodul e nane>/
<cl ass nane> and corresponds to the - - nodul e parameter of the standard Java launcher.
The chooser dialog shows all the available main classes and inserts the correct value
automatically.

+ Arguments

Like VM parameters, the list of fixed arguments supports compiler, launcher and installer
variables. Arguments on the command line are appended to the fixed list of arguments.

Cross-platform launcher features

Generated launchers optionally support a single instance mode on all supported platforms.
You can use the launcher API [p. 226]to register a startup handler that receives the command line
parameters if the launcher is started more than once. In this way, you can handle file associations
with a single application instance. GUI launchers on macOS are always in single instance mode
because that is a fundamental property of application bundles.

Icons for launchers can be generated from a set of PNG files. On Windows, an . i co file and on
macOS an . i con file is compiled, on Linux the generated . deskt op file references the PNG
images. You can also provide pre-built ICO and ICNS files.

39

B Modify Launcher X

1. Select type Define launcher icon
2, Executable info
3. Icon [Add icon to launcher @)
4. Java invocation
5. VM options file Cross-Platform Image File Size :F
6. Splash screen Aresources\hello16x16.png 16x16
7. Finished Aresourcesihello32x32.png 32x32
AresourceshhellodBxd8.png 48x48
Windows
i: Generate from cross-platform image files
Use ICO file:

macO5

© Generate from cross-platform image files

Use ICNS file:

@ Help 4 Back Next P Finish Cancel

A splash screen image can be configured on the "Splash screen" step of the launcher wizard.
The - spl ash command line parameter does not work for the generated executables, because
it is part of the standard Java launchers and not of the Java runtime itself. An exception is the
argument - J- spl ash: none which is emulated by install4j Windows launchers to disable the

splash screen from the command. The splash screen supports additional high DPI images with
a @x suffix in the file name.

In addition to the standard splash screen image, install4j allows you to position two lines of text

on top of the splash screen image, a version line and a status line. The status line can be updated
from your launcher with the launcher API [p. 226].

B Modify Launcher X
1. Select type Text lines on splash screen

2. Executable info

3. lcen [:]ShnwImeswmhtextnnthesp\ash screen

4. Java invocation
5. VM options file

Status Line

6. Splash screen Initial: Loading application ... | @
. Text lines Position: X = 9 5 ¥= ATV 7 |
7. Finished Font: 8 | pt Bold Color: .
Version Line
Text: version ${compilersys.version} »
Position: X = 7% Y= 16 = @
Font: 8 ¥ pt Bold Color: .

Position Text Lines Visually

@ Help 4 Back Next b Finish Cancel

If your code loads native libraries via Syst em | oad(. . .) orifa native library loads dependent
libraries, the native library path has to be modified to include the directories where these native
libraries are located. In batch or shell scripts you would do this in a platform-specific way,
modifying PATH on Windows, DYLD_LI BRARY_PATH on macOS, LD_LI BRARY_PATH on Linux
and a variety of other variable names on different Unix variants.

40

In install4j, you can use the "Java invocation->Native libraries" step of the launcher wizard to
specify such directories, and the launcher will take care that the appropriate environment variable
is modified. These directories end up in the java.library. path system property in your
launcher. If you need different directories for different media files, use a compiler variable for
the directory name and override it for each media file.

JRE search sequence

By default, launchers use the bundled JRE [p. 89]. In case you do not bundle a JRE, the JRE search
sequence determines how install4j searches for a JRE on the target system. New configurations
get a pre-defined default search sequence.

Search Sequence Without Bundled JRE N 7

For media files without a bundled JRE, you can define version requirements and a search sequence for the JRE that will be used to

run the installers and the generated launchers.

Java Version (7]
Minimum version: | 1.8 3 O

Maximurm version: K]

Allow JREs with a beta version number O

JRE Search Sequence O

E Search Windows registry and standard locations L]
EA Environment variable JAVA_HOME
EA Environment variable JDK_HOME

Apart from searching the Windows registry, well-known standard installation locations and paths
in environment variables, you can also configure a relative directory in your distribution tree.
This is useful if you distribute your own JRE for a launcher that is not provided through a JRE
bundle managed by install4j.

install4j has a special mechanism which allows you to bundle JREs with your media files. If you
choose a particular JRE for bundling [p. 89] in one of the media file wizards [p. 131], this JRE will
always be used first and you do not need to adjust the search sequence yourself.

If you do not bundle a JRE and a launcher has special Java version requirements that differ from
those of the other launchers, you can override them on the "Java invocation->Override Java
version" step of the launcher wizard.

If you have problems with JRE detection at runtime, see the help topic on error handling [p. 220]
for a description on how to get diagnostic information.

Windows-specific features

Aversion info resource will enable the Windows operating system to determine meta information
about your executable. This information is displayed in various locations. For example, when
opening the property dialog for the executable in the Windows explorer, a "Version" tab will be
present in the property dialog if you have chosen to generate the version info resource.

41

The version info resource consists of several pieces of information. If you check Gener at e
version info resource on the "Executable->Windows version info" step of the launcher
wizard, there are several fields whose values must be entered. The "original file name", the
"company name", the "product name" and the "product version" fields in the version info resource
are filled in automatically by install4j and cannot be configured.

B Modify Launcher X

1. Select type Configure Windows version info resource
2. Executable info
installdj can generate a version info resource for Windows executables, This information is

. Redirection displayed, for example, as a tab in the Windows explorer property dialog.

- Single instance mode

) o [Generate version info resource
- Windows version info

- Windows manifest options Product name: ' @
- Unix options))

- macOS options File version: ' @

= Menu integration Internal name: helloGUI ,

» Auto-update integration
3. lcon File description: | Hello World Suite GUI Launcher »
4. Java invocation

5. VM options file Legal copyright: Copyright gj-technologies GmbH, 2002-2003 »
6. Splash screen
7. Finished

@ Help 4 Back Mext P Finish Cancel

On the "Executable->Windows manifest options" step you can adjust the contents of the
executable manifest, a static resource in the executable that controls some Windows features.

B Modify Launcher X

1. Select type Configure options for the executable manifest
2, Executable info
The manifest of a Windows executable is a static resource entry that can enable or disable certain
. Redirection features provided by the operating system.
- Single instance mode
- Windows version info)
- Windows manifest options © Asinvaker @

- Unix options Highest available Q@

Execution Level O

= mac05 eptions

- Menu integration Require administrator O

= Auto-update integration

3. lcon DPI Awareness O
4, Java invocation () Always O
5. VM options file Never @
6. Splash screen
7. Finished Java9+ @
@ Help 4 Back MNext P Finish Cancel

With an execution level other than "As invoker", you can ask Windows to show a UAC prompt
and run the launcher with elevated privileges.

The DPI awareness controls whether Windows will scale up pixels in a GUI if high DPI is used.
By default, DPI awareness is enabled if the minimum Java version of your project is at least Java
9.

42

On Windows, executables can be 64-bit or 32-bit. A 64-bit executable can only run with a 64-bit
JVM and a 32-bit executable can only run with a 32-bit JVM. By default, 64-bit executables are
generated, but you can switch to 32-bit executables in the "Installer options" step of the Windows
media wizard.

macOS-specific features

By default, the generated application bundle for a GUI application uses the "Executable name"
property from the "Executable info" step of the launcher wizard. If you choose compact names
as appropriate for Windows and Unix, you may not be happy with the appearance in the Finder
on macOS.

Onthe "Executable info->macOS options" step, you can specify a localizable application bundle
name. If you specify an i18n variable as the application bundle name, such as ${i 18n:

nyLauncher Nane}, install4j will name the application bundle directory with the resolved value
for the principal language [p. 79] of your project. In addition, it will take the values for all additional
configured languages and set up the appropriate localization in the application bundle.

B Modify Launcher X

1. Select type Options for macOS launchers
2, Executable info
Application Bundle Overrides
- Redirection

Custs tabl =
- Single instance mode ustom executable name: @

+ Windows version info Custom bundle identifier:)
- Windows manifest options
+ Unix options Entitlernents file: (7]
- mac05 options L
= Menu integration aelatichlcatenon; @
= Auto-update integration
2 lcon Customize Plist File Q

4. Java invocation
5. VM options file

B. Splash
_p ash screen Compile-Time File Associations and URL handlers @
7. Finished

Custom fragment for Info.plist file:

@ Help 4 Back MNext P Finish Cancel

On macOs, file associations and URL handlers are not registered with calls to an API that is
provided by the operating system, but by adding special entries to the | nf o. pl i st file of the
application bundle. This is why macOS single bundle archives can handle "Create a file association"
and "Register a URL handler" actions at compile-time. By default, associations for all such actions
that are contained in the installer configuration on the "Installer->Screens & Actions" step are
added to the I nfo. pl i st file. Optionally, you can choose that only selected actions should be
included.

Many advanced modifications of the behavior of an application bundle can be done by adding
entries to the | nf o. pl i st file. On the macOS Options step you can specify a fragment that is
added to the default | nf o. pl i st file. For services, this fragment is written to the launcher plist
file.

Modifying launcher shell scripts and secondary start files

Launchers on Unix as well as command line and service launchers on macOS are shell scripts
that invoke the standard Java launcher. To include your own modifications, you can specify a
fragment that is inserted just before the j ava invocation.

43

B Modify Launcher X

1. Select type Options for Unix launchers
2, Executable info
Executable Options
- Redirection
Executable mode: 755 Reset To Default O
- Single instance mode
+ Windows version info Custom script fragment: -~ @
- Windows manifest options
* Unix OptmTE Options For Service Launchers (7]
= mac05S eptions
= Menu integration
= Auto-update integration
3. lcon
4. Java invocation .
Optiens For GUI Launchers O

5. VM options file

6. Splash screen Additional content for .desktop file: - @
7. Finished

@ Help 4 Back Next P Finish Cancel

On Linux, two conditions require the generation of additional start files for a launcher and in
both cases you can add additional content to them:

« The integration of a GUI launcher into a desktop environment requires the generation of a
. deskt op file. You may want to add additional content to that file to customize the interaction
with the desktop environment.

+ In the case of a service launcher, a . servi ce file is generated if systemd is detected. To
configure advanced aspects of systemd execution you can add additional content to that file.

Auto-update integration

Inthe Installer->Screens & Actions [p. 156] step, you can add a "Background update downloader"
installer application that runs in the background and automatically downloads an updater installer.
Such a background update downloader will not execute the downloaded update installer because
that would disrupt the work of the user. Instead, it executes a "Schedule update installation"
action to register the downloaded updated installer for later execution.

For GUI launchers, you can select the Execute downl oaded updater installers at
st ar t up check box in the "Executable info->Auto update integration" step of the launcher wizard.
When this GUI launcher is started and a downloaded update installer has been scheduled for
installation, the update installer will be executed. By default, the execution mode of the update
installer is set to "Unattended mode with progress dialog" with a configurable message.

44

B Modify Launcher X

1. Select type Auto-update integration
2, Executable info
A background update downloader application can be configured on the Installer->Screens &

- Redirection Actions step.

+ Single instance made When an update installer was downloaded, it can be executed programatically through the

+ Windows version info installdj AP| by calling UpdateChecker.executeScheduledUpdate.
- Windows manifest options

= Unix eptions GUI launchers can process such pending updates automatically at startup.

= mac05S eptions

+ Menu integration Execute downloaded update installers at startup (GUI launchers enly)

- Auto-update integration
3. lcon

4. Java invocation
5. VM options file
6. Splash screen
7. Finished

@ Help 4 Back Next P Finish Cancel

For more on auto-update functionality, see the corresponding help topic [p. 114].

45

A.8 Form Screens

Most screens in install4j contain a configurable form. In these screens, you can configure a list
of form components [p. 193] along the vertical axis of the form. install4j provides you with
properties to control the initialization of form components and the way the user selection is
bound to installer variables [p. 63]. With this facility you can easily generate good-looking installer
screens that display arbitrary data to the user and request arbitrary information to be entered.

Most standard screens are built with form components and form templates are starting points
for your own customizations. Also, you can add empty form screens and add form components
to them. For screens that have a configurable form, a header is shown above the screen
configuration [p. 172] that shows the number of contained form components as well as buttons
for editing them and showing a preview of the form.

v Installer (4 1D instal
. nstaller (4 screens) 1D inszal. || Contains 6 form components 3 configure @ Preview
=, Startup b 4
4k Welcome [ID 1512] /O Form
== DK [Screen group] 2 ser... Fill horizontal space
Fill vertical space
g Search for JDKs [For... Scrollable
E JDK Selection [Form] [l... Messages
T Finish [ID 1346] Screen title 1DK Selection
Screen subtitle Which JDK de you want to use?
a Control Flow

Condition expression

The actual configuration of the form components is performed in a separate dialog:

sﬁ- Single radio button [0 3892) o Configuration
r Allow cenfiguration on screen
__I Vertical greup (2 form components) [I0 2900] x Help
wﬁ Multi-line HTML label [ID 3207] el Help text
7 List[ID 3740] Initialization
Y Initialization script if (configurationOhbject.getModel()
ﬁ single radio button [| = Reset initialization on previous
eﬁ- Directory chooser [ID 374 Visibility script
Label
Text
o Font Default
Font color B
‘}é lcon
R lcon-text gap 4
List

A list with an optional leading label. The user selection (the selected
= indices) is saved to a variable.

Screens can lay out the contained form in different ways, but for plain form screens, you can
configure this with properties of the containing screen. By default, a form is top-aligned and fills
the entire available horizontal space. For example, for a set of radio buttons that should be
centered horizontally and vertically, the "Fill horizontal space" and "Fill vertical space" properties
of the screen must be set to "false" and the horizontal and vertical anchor properties must be
set to "Center".

46

Form
Fill horizental space
Horizental anchar Center
Fill vertical space
Vertical anchor Center
Scrollable
Messages
Screen title JDK Selection
Screen subtitle Which JDK do you want to use?

Control Flow

Form components

install4j offers a large number of form components that represent most common components
available in Java and some other special components that are useful in the context of aninstaller.

I Select a Form Component X

Available form components:

Action compenents
Labels and spacers
Option selectors
Sliders and spinners
Special selectors and displays
Text fields
i Console handler

Filter:

Description

Insert after selection

OK Cancel

All components that expect user input have an optional leading label. The components themselves
are left-aligned on the entire form. If you leave the label text empty, the form component will
occupy the entire horizontal space of the form.

Configuration

Allow configuration on screen
Help

Help text

Initialization

Initialization script if (configurationObject.getModel()
Reset initialization on previeus
Visibility script

Label

Text

Font Default
Font color B3

lcen

|con-text gap 4

Every form component has configurable insets. For vertical gaps that are meant to separate
groups of form components, consider using a "Vertical spacer" form component since it makes
the grouping clearer and allows to to reorder form components more easily.

You can preview your form at any time with the Preview Form button. The preview dialog performs
all variable replacements of compiler variables and custom localization keys, but not of installer
variables. Also, no initialization scripts or screen activation scripts are run. The preview is intended

47

to give you quick feedback about visual aspects of your form. At runtime, the look and feel may
be different.

& Preview X

JDK Selection
Which JDK do you want to use?

© Use detected DK
Found ${installerjymCount} JDKs:

S{installerjvmLocations}

Specify alternative DK base directory

< Back Close Cancel

Every form component always has its preferred vertical height. For some form components such
as the "List" form component, this preferred vertical size is configurable. If the vertical extent of
the form exceeds the available vertical space, a scroll bar is shown. If you want such a form
component to fill the entire available vertical space, you can select the "Fill vertical space" property
for the form component and deselect the "Scrollable" property of the form screen. In that case,
there will be no scroll bar for the form.

User input

If a form component can accept user input, you need some way to access the user selection
afterwards. install4j saves user input for such form components to the installer variable [p. 63]
whose name is specified in the "Variable name" property. That variable can then be used later
on, for example in condition expressions for screens and actions.

lcen

lcon-text gap 4
Layout
Insets 3; 0; 3; 0 [Default]
List
List entries S{installerjvmLocations}
Initially selected index 0
Fill horizental space [:]
Visible rows 5
Fill extra vertical space]
Scrollable [:]
Multi-selection
User input
| Variable name jvmindex |

If you have a checkbox that saves its user input to a variable called "userSelection", the condition
expression

cont ext . get Bool eanVari abl e("user Sel ecti on")

will skip the screen or action for which that condition expression is used. The user selection in
form components is written to the variables before the validation expression for the screen is
called. If you have a text field that saves its input to the variable "fileName", the validation
expression

48

Util.showOptionDial og("Do you really want to del ete " + context.getVariable("fileNanme"),

new String[] {"Yes", "No"}, JOptionPane. QUESTI ON_ MESSAGE) == 0

used on the same screen will block the advance to the next screen if the user answers with "No".

The values of installer variables accommodate the general typej ava. | ang. Obj ect . Every form
component saves its user input in its naturally corresponding data type, for example:

+ For check boxes, the typej ava. | ang. Bool ean is used. For this special case the context offers
the convenience method get Bool eanVari abl e.

+ For text fields, the type j ava. | ang. Stri ng is used.
+ For drop down lists the type j ava. | ang. | nt eger is used to save the selected index.
+ For date spinners, the type j ava. | ang. Dat e is used.

The description of the value type for each form component that accepts user input is shown in
the registry dialog when you select the form component.

Initialization

For each form component, install4j offers several properties that allow you to customize its initial
state. However, you may want to access the properties of the underlying Ul component or use
a more complex logic for modifying the form component.

For this purpose, the "Initialization script" property is provided. Form components can expose
awell-known componentin the initialization script that allows you to perform these modifications.
This so-called "configuration object" is usually contained in the form component itself. For
example a "Check box" form component exposes a conf i gur ati onChj ect parameter of type
j avax. swi ng. JCheckBox and a "Text field" form component exposes a j avax. sw ng.
JText Fi el d.

Allow configuration on screen

Help text

Initialization script if {configurationObject.getModel
Reset initialization on previeus
Visibility script

Text
Font Default
Font color B

lcen
lcon-text gap 4

As with actions and screens [p. 24] in general, the possibility that the user moves back and forth
in the screen sequence presents a dilemma to install4j. Any form components that accepts user
input has a configurable initial value and any form component can have an initialization script.
This initialization is performed when the user enters the screen for the first time. Should this
initialization be performed again when the user moves back and then enters the screen once
again? Since install4j does not know, it initializes every form component only once by default.
This policy can be changed with the "Reset initialization on previous" property for each form
component.

Depending on factors such as the correct platform, user input in the previous screen or whether
the installer runs in console mode, some form components may not be applicable and should

49

be hidden. In the "Visibility script", you can detect such conditions and return f al se to hide the
form components.

50

A.9 Layout Groups

A layout group is an element in a form screen [p. 46]. It contains a number of form components
and other layout groups. With layout groups you can achieve virtually any kind of visual layout.

There are two different kinds of layout groups: vertical and horizontal groups. A horizontal group
puts the contained elements side by side, while a vertical group organizes them from top to
bottom. Essentially, the top-level of a form screen is a vertical layout group itself.

Use case: Side by side

Putting two form components side by side is done with a single horizontal group:

c‘ﬁu Horizontal separater [1D 45] o Configuration
- . i] " — Image File
orizontal group (2 form components) [ID 47] x Background color]
cl'fiu Text field [ID 50] p Foreground color 2]
ol Passwordfield [D57] Border sices
Allow cenfiguration on screen
c'l‘ﬂ* Horizontal separator [ID 47] Initialization
offe File chooser (10 52) Visibility script
Layout
Insets 0000
] Anchor ' _:West
Cell spacing 5
‘x’ Align first label
Make children same height
Horizontal group
A horizontal form cemponent group contains one or more form
4_] components that are distributed along the horizontal axis.
L3 Preview

X
Admin account |
Please configure the credentials for the admin account
——

Admin account
User: Bob Password: | sesses
License

Key file: Browse ...

< Back Close Cancel

The leading labels of the first form component in the horizontal layout group ("User:") and those
of the form components on the same level as the horizontal group ("Key file:") are aligned. There
is a property on the horizontal layout group to switch off this alignment.

Use case: Two columns

Two columns of form components are realized with two vertical layout groups inside a horizontal
layout group:

51

j Herizontal group (7 form components) [ID 54] + Configuration

X . Image File
|| Vertical group (2 form components) [ID 53] b 4 Background color =
* Drop-down list [I0 57] p Foreground color E=
* List [ID 58] Border sides
Allow configuration on screen
v " Buttons [Vertical group] (5 form componen... ||l Initialization
* Button [ID 59] Visibility script
offfe sering[D 61 3| | Anchor I North-west
-ﬁ- Button [ID 62] Cell spacing 0
R é% Make children same width
* Button [ID 63]
Vertical group
Avertical form component group contains one or more form
=] components that are distributed along the vertical axis,

B Preview

X
Drop down and list selectors
With a button bar at the right side
———

Option 1 A Add
One Rermove
Two
Three
Up
Down
< Back Close Cancel

In this case the second column with the buttons takes up a fixed amount of horizontal space,
because buttons do not automatically grow beyond their preferred size. In order to make all
buttons of equal size, the "Make children same width" property has been selected. Two buttons
are aligned at the top of the column, two buttons at the bottom. This is achieved with a "Spring"
form component after the second button that has its axis set to "Vertical". It pushes all further
components to the bottom.

Use case: Breaking label alignment

Alignment of leading labels can be broken by introducing vertical layout groups:

52

offfe Drop-down ist (D 5] &

v " Vertical group (2 form components) [ID 66] b 4

offfe Textfield (D 67] 0
offfe Textfield (D 62]

El

B Preview

Label alignment

Each vertical group has its own alignment

Select one of the following eptions:
VM parameters:

Arguments:

Configuration
Image File
Background color [

Foreground color K|

Border sides

Allow configuration on screen

Initialization

Visibility script

Layout

Inzets 0000

Anchor L[Morth-West

Cell spacing]
Make children same width

Vertical group

Avertical form component group contains one or more form
components that are distributed along the vertical axis,

o

< Back Close Cancel

Here, the long leading label of the first form component does not enlarge the leading labels of
the two text field form components. The latter are aligned only among themselves.

Use case: Center and right alighment

Single form components can be centered or right-aligned if you enclose them in a horizontal
layout group and set the "Anchor" property on the layout group accordingly.

v : Harizontal group (1 form component) [ID 70] +
* Radie butten group [1D 73] x
oo Text field (D 71] 0

E Herizontal group (1 form component) [ID 72]

ol Button (1D 74]

K

Configuration

Image File

Background color £
Foreground color B
Border sides

Allow cenfiguration on screen

Initialization

Visibility script

Layout

Insets G:o00

Anchor ;[Center

Cell spacing 5
Align first label

Make children same height

Horizontal group

A horizontal form cemponent group contains one or more form
components that are distributed along the horizontal axis.

53

B Preview x
Alis it of form compe its
Use the anchor property of form components
e

Client Server

Not centered:

Right-aligned

< Back Close Cancel

For the layout group with the radio button group, the anchor has been set to "Center", for that
with the button the anchor has been set to "East". This only works with form components that
do not grow horizontally. Some form components that do grow horizontally can be restricted to
a fixed horizontal size, such as the text field by specifying a non-zero column count.

54

A.10 Styles

Install4j has a flexible model for styling the Ul of installer applications that allows you to arrange
content and styling elements in arbitrary ways. While there is an API to do this programatically,
you can configure form styles in the install4j IDE without any custom code. Form styles use the
same foundation as form components [p. 193] for screens. All default styles are created with form
styles, so the details of the default styles can we tweaked very easily and new styles can be
developed by starting with the default styles.

Configuring styles

Styles are configured on a per-project basis. On the "Installer->Screens & Actions->Styles" step
of the install4j IDE, all available styles are listed. When you add a style, it can either be a
configurable form style, or a style implementation from your custom code. Styles are either
standalone or not. A non-standalone style cannot be used directly, but is only available for nesting
into other styles.

One single style is marked as the default style and is shown with a bold font. With the "Set As
Default" action you can change the default style. Styles can be grouped into folders for organizing
them according to your individual preferences. For example, in the default styles, the nested
styles are grouped into a separate folder whereas the standalone styles are located at the top
level.

Standard [F: style] [ID 1
‘e andard [Form 10011 + Contains 5 form components Q Configure @ Preview
m Banner [Form style] [ID 7] x
Style components (2 styles) /O Configuration
m Standard header [Form style] [ID 14] Standalone style
s Fill horizontal space
[; Standard footer [Form style] [ID 12] = Fill vertical space
a

Form style

A freely configurable style that uses form compenents to set up a
layout around the screen content

On the "Installer->Screens & Actions" step of the install4j IDE, you can apply styles. Installer
applications, screen groups and screens all have a "Style" property. For installer applications,
this is property is set to "Default". You can change it to any standalone style. For screen groups
and screens, the "Style" property is set to "Inherit from parent". The property also indicates which
style is actually inherited. Alternatively, you can choose to explicitly set a style for the selected
element. Any screen groups and screens below it will now inherit this style.

55

v Installer (5 [ID installer]
nstaller (5 screens) [ID installer] Contains 4 form components Q Configure & Preview

* Startup (1 action) b 4
> Welcome (1 action) [ID 2] o) Update Alert
35| Installation location (1 action) [ID £] Alert for update installation
- o Control Flow
i Installation components [I012] Condition expression
Installation (3 actions) [ID 13] Validation expression
’j’ Finish [ID 20] Rollback barrier
+ .) Quit after screen
Uninstaller (4 screens) [I0 uninstaller] 3 Back button
GUI Options
% | Style Banner |
Custemize banner image
Privileges
Action elevation type Inherit from parent [Do not eleva..
Screen Activation
0’3 Pre-activation script

Post-activation script

Welcome

A screen that welcomes the user to the installation of your application,
This screen should be placed at the beginning of the installation

Some screens have a preference for a particular style. For example, the "Welcome" and "Finish"
screens want their style set to "Banner". When adding such a screen, the IDE matches the style
by name. In this example, if no style named "Banner" is available, the default style is used.
Otherwise, install4j keeps track of style associations by ID and you can rename styles without
breaking any associations.

If you delete a style, all its style associations are broken. Compiling the installer will now fail and
you will have to visit all installer applications, screen groups and screens where this style was
explicitly selected and choose a new style.

Should you want to return to the default styles, there is a "Reset Styles To Default" action for
that purpose. Existing style associations are matched by name in that case, so style associations
with the "Banner" style survive this reset, for example.

Form styles

Arestricted set of the form components that are available for building form screens [p. 193] can
be used to build form styles. Form components that take user input are not suitable for styles
because styles have a different life-cycle than screens.

In addition, form styles can use a set of special form components. The "Screen content" form
component contains the Ul component of the screen and is changed each time when a screen
is activated. When you preview the style, this content area is shown with a placeholder. The
"Screen Title" form component shows the title or the subtitle of the screen, depending on its
"Title type" property. The "Control button" form component is used for realizing the "Next",
"Previous" and "Cancel" buttons.

56

j Horizontal group (4 form components) [I0 19]

Spring [ID 20]

.:_ Back button [Control button] [ID 21] p
ﬁ Mext button [Control button] [0 22]
ﬁ Cancel button [Control button] [ID 23]
a
&l

Button

Control butten type Previous button
Button text < §{i18n:ButtonBack}
Button icon

Configuration

Allow external overriding
Initialization

Initialization script

Reset initialization on previous
Visibility script

Layout

Inzets 3; 0; 3; 0 [Default]

Control button
A control button that handles the user actions with respect to the

screen flow. This includes activating the next screen, activating the
previous screen and cancelling the wizard

Finally, the "Nested style" form component allows you to embed another style. In this way you
can build a set of styles that share common parts. For example, in the default styles, the navigation
buttons at the bottom are the same. With the "Standard Footer" style that is used by both the

"Standard" and the "Banner" standalone styles

H Header [Nested style] [ID 2] o

, You have a single place to change its settings.

Configuration

X 1+ Style Standard footer |
1 Main [Vertical group] (3 form components) [ID ... x “Allow external overriding
@ Screen content [ID 4] p Initialization
* Watermark [Horizental separator] [1D 3] Initialization script
Reset initialization on previous
Footer [Nested style] [ID 6] Visibility script
Layout
Inzets 0000
o
Nested style
Insert another style that is defined in this project. Both top-level styles
=T as well as non-top-level styles can be nested.

Graphical styling elements

A key concern of styling is the placement of images, either in the foreground or in the background.
Both kinds of placements are handled by layout groups in form styles. For both vertical and
horizontal form groups, setting their "Image file" property shows additional properties that allow
you to place the image in the layout group. If you place the image in the foreground, it cuts off
an entire edge of the rectangle that can get its own background and border. In that way, the
image can blend seamlessly into its surroundings.

57

v . Vertical group (3 form components) [ID 8] & Configuration

o Image File §{compilensys.install4jHomelr..,
\nj Screen Title [ID 5] x Image anchor r North-West
cL‘l Horizontal separator [ID 10] p Image edge (0] Vertical
Screen content [ID 11] Image edge background ... [l 25, 143, 220/ 0, 74, 151
] . - Y Image insets ;0,00
Eﬂ Nested style [ID 12] - Overlap with centained c...
Image edge border
Image edge border color [7]
Image edge border wi... 1
3 Background color [l 235, 255, 255/ 49, 52, 53
Foreground color =
‘}g Border sides bottom
Border color B

Vertical group

Avertical form component group contains one or more form
=) components that are distributed along the vertical axis,

To place an image into the flow of form components, you can use the "Image insets" property
and set its "lcon" property.

Other important styling elements are borders and separators. Again, this is handled by layout
groups. With their "Border sides" property you can define which sides of the border should be
drawn. Color and thickness of borders are also configurable.

By default, layout groups and form components are transparent, so that the default background
color of the window shines through. By setting the "Background color" property of a layout group,
you can make it opaque and give it a specific color. The "Foreground color" property sets the
font color for contained form components that do not have their color set explicitly.

Overriding properties

Some styles can have elements that are specific to particular screens or particular installer
applications. For example, the header image in the "Standard" style or the banner image of the
"Banner" style could be required to change for each screen. Instead of duplicating styles in this
scenario, install4j allows you to designate certain properties of selected form components and
layout groups that should be overridable when the style is applied.

When editing the form components of a form style, each form component has an "Allow external
overriding" property. If you select that property, a named overriding entry will be offered when
you explicitly apply the style on the "Installer->Screens & Actions" step. With the "Override title"
property, you specify the displayed name for the override entry and that name is used for saving
the overridden properties. This means that the name must be unique for a single style and that
overrides are lost if you change the name. The "Property selection mode" property then lets you
select which properties should be overridable, either all properties are overridable, or a list of
properties is included or excluded.

58

v P vettical group (2 form components) [ID 15] o5 Image edge (1 Vertical

j Title [Screen Title] (1D 16] % Imzge edge background ... e
Image insets 0:51:1
\; Subtitle [Screen Title] (D 17] p Overlap with contained c...
Image edge border
Background color [l 255, 255, 255/ 49, 52, 53
Foreground color =
Border sides bottom
Border color =
Border width 1
a Allow external overriding
Override title Customize title bar
éfg, Property selection mode Include selected properties
Selected properties 3 properties

Vertical group

Avertical form component group contains one or more form
=) components that are distributed along the vertical axis,

When you select a style on the "Installer->Screens & Actions" step, install4j scans the style and
all its nested styles for form components and layout groups with defined overrides. Each named
override is presented as a checkbox property. If you select the checkbox, the overridable
properties of the form component or layout group are copied and displayed as child properties.
You can now change the properties to different values. Note that the overridable properties lose
their connection to the default values in the original form component or layout group. If you
change a default property value, you have to manually change it in all overrides, if necessary.

4 Installer (5 screens) [ID installer] + ‘-;k Properties

% |, Startup (1 action)

ik Welcome (1 action) [ID 2] /O - Installer Variables
it Installation lecation (1 action) [ID 2] bk Rk ST e e
X _ mac0S
i¢ Installation components [ID12] /macOS entitlernents file
- Installation (3 actions) [ID 13] Custom fragment for Info.plist
& Finish [ID 20] Unix
+ Custom script fragment
Uninstaller {4 screens) [|0 uninstaller] -~ .
GUI Options
Style Standard
Image File icon:§{installensys.installerApplic...
Image anchor :_‘!Nnrth-East
Overlap with contain...
Background color [l 255, 255, 255/ 49, 52, 53
Foreground color B3

Custormn watermark

Customize title bar

A form cemponent in the selected style is configured to allow
customization of selected properties,

For more complex overriding cases, consider adding a "Nested style" form component and
making its "Style" property overridable. When applying such a style, you can substitute a different
nested style as appropriate.

API

Under some circumstances, styles are more easily implemented with the API. For example, if
you want to have configurable properties that determine the construction of the style or if the
styling cannot be realized with the facilities of the form style.

The sample project "customCode" includes a style class SunnySkyBackgr oundSt yl e and its
associated BeanInfo Sunny SkyBackgr oundSt yl eBeanl nf o that show such an example style.
It paints a background image that depends on the window dimensions and continues up to the

59

window border. In the "customCode" project, look for the "Configurable form" screen in in the
installer and preview the form in order to see what it looks like.

That example also shows how to implement a style that wraps a user-selectable style. The main
style is still the standard style and the "Sunny sky background" style takes the function of a
decorator. To make development of such wrappers easier, the APl includes a convenience class
cominstall4j.api.styles. Wapper Styl e.

Merging styles from other projects

Instead of duplicating styles across projects, you can develop them in one project and merge
them into other projects. The merge projects functionality [p. 108] in install4j includes an option
to merge styles.

If styles are merged, the "Style" property of installer applications, screen groups and screens
shows the merged styles as well, with their names prefixed with the project name that was
assigned in the merge settings.

If you link to screens or screen groups of merged projects, they will use their configured styles
from the merged project only if style merging is enabled. Otherwise, install4j tries to match a
style by name in the main project.

Overriding standard icons

If you would like to change the standard icons in the installer, have a look at the JAR filer esour ce/
i 4j runti me. j ar intheinstall4jinstallation directory. The packagecom i nstal | 4j . runti ne.
instal l er.frontend.icons contains all icons that are used by the installer. To replace some
or all of these icons with your own version, create a JAR file that contains just the new icon files
in the same directory and add it on the "Installer->Screens & Actions->Custom Code" step. The
installer will first try to load an icon from the custom code. Failing that, it will fall back to the
built-in version.

60

A.11 Look & Feel

The GUI of the installer, uninstaller and other installer applications is implemented with Java
Swing. Swing is themeable and so install4j can offer you choices for the look and feel of the the
applications that are provided by the runtime. The generated launchers are not affected by these
settings.

Configuring the look & feel

The options for the look & feel can be adjusted on the "Installer->Screens & Actions->Look &
Feel" step.

(O FlatLaf cross platform Lock and Feel @)

Dark or light mode: Aute-detect if light or dark mode should be used =
Light theme: Flat IntelliJ v

Dark theme: Flat Darcula A

Java native Look and Feel 0

Lock and feel from custorn code

The default setting is to use the FlatLaf " cross platform Look and Feel which is a flat Look and
Feel that works well on all supported platforms and includes a dark mode. Please consider

starring it on GitHub ' as a token of appreciation for the author.

FlatLaf includes four built-in themes, two for light mode and two for dark mode. By default, the
themes that look like the Intelli) IDEA light and dark themes are selected. In addition, FlatLaf
supports custom Intelli) themes. These are based on JSON files and can override Ul colors. You

can download an Intellij theme © from the JetBrains plugin repository and add its JAR files on
the "Installer->Screens & Actions->Custom Code" step. If the themes plugin is packaged in a ZIP
file, you have to extract the ZIP file and add the contained JAR files instead. The contained themes
will then show up in the chooser dialog.

O FlatLaf cross platform Lock and Feel €

Dark or light mode: Aute-detect if light or dark mode should be used =
Light theme: Intelli) theme from custom code Cyan.theme.json []
Dark theme: IntelliJ theme from custom code Gradiante_midnight_blue.theme.json y e @

Java native Look and Feel ﬂ

Look and feel from custom code

(1
@
3

) https://www.formdev.com/flatlaf/
) https://github.com/JFormDesigner/FlatLaf
) https://plugins.jetbrains.com/search?tags=Theme

61

https://www.formdev.com/flatlaf/
https://github.com/JFormDesigner/FlatLaf
https://plugins.jetbrains.com/search?tags=Theme

On Windows 10+ and macos 10.14+, the runtime detects whether dark mode is being used and
activates it automatically. If the user switches between light and dark mode, the runtime adjusts
to it on the fly. The look and feel configuration offers options to prevent this auto-detection and
use either light or dark mode.

For backwards compatibility, you can also select the "Java native look and feel". This is a look
and feel that is included the JRE and tries to mimic the native widgets of the operating system
with varying success. In some instances, this look and feel may seem out of place as it shows
the Ul from an older version of the operating system. Also, HiDPI resolutions may not be well
supported by this look and feel. For these reasons, using the native look and feel is discouraged
and the FlatLaf cross-platform look and feel is recommended instead.

Using a custom look and feel

You can apply your own look and feel by extending the cominstall4j.api.laf.
LookAndFeel Handl er class in the install4j APIl. After adding the compiled class and its
dependencies on the "Installer->Screens & Actions->Custom Code" step, you can select the class
in the chooser dialog.

Thecominstall 4j.api.laf.LookAndFeel Handl er implementsthecom i nstal | 4j . api .
| af . LookAndFeel Enhancer interface that contains methods that help with certain aspects of
creating the Ul. You can override these methods to change their default behavior.

For example, a tri-state check box is required by the Ul of installer applications. Java Swing does
notinclude such a component, but some look and feels add this feature. To avoid using a generic
simulation of a tri-state checkbox, the cr eat eTri St at eCheckbox method can be overridden
in your implementation of the com i nst al | 4j . api . | af . LookAndFeel Handl er .

62

A.12 Variables

With variables you can customize many aspects of install4j. They can be used in all text fields
and text properties in the install4j IDE as well as from the install4j API [p. 222]. The general variable
syntax is

${ prefix: vari abl eNane}

where prefix denotes the variable type and is one of

+ compiler
Compiler variables are replaced by the install4j compiler when the project is built.

* installer
Installer variables are evaluated when the installer or uninstaller is running.

+ launcher
Launcher variables are evaluated when a generated application launcher is started.

* i18n
Custom localization keys are evaluated at runtime and depend on the chosen installer language.

* (no prefix)

Variables with no prefix resolve to runtime environment variables when used in the launcher
configuration.

Text fields in the install4j IDE where you can use variables have a » variable selector next to
them. In the popup menu, you first choose a variable system from the available variable types.
In text properties of an installer element [p. 156] or a form component [p. 193], you can use compiler
variables, installer variables and custom localization keys, but not launcher variables.

EXECUTION MOoaes
Allow unattended mode
Progress interface creation script

actions) [ID...
) [1D20]
ler variables ... Allow consele installations
eens} [ID u... Fall back te censole mede on Unix
Disable console mode on Windows
Console screen change handler
Default execution mode GUl mode
Windows console executable
Execution Options
VM parameters »

Arguments - ’ Insert Installer Runtime Variable
J Insert 18N Message

VM et
parameters {D:} Insert Compiler Variable

If you need to pass special VM parameters to thej

here. A common case would be to raise the maximum heap size with a different -Xmx
parameter if your installers require a lot of memory.

The variable selection dialog then shows all known variables of the selected variable type.

63

X

3 Select Installer Runtime Variable

m
=4
=

Installer runtime variables for:

|

¥ Installer
Predefined Variables Bound Variables

System variables

Source and Target
sys.contentDir

’ sys.installationDir

P sys.installerDir

P sys.installerFile

P sys.mediaDir

P sys.mediaFile

Inctaller annlicatinn ctate

Filter:

Initial Value
java.lang.String: undefined

Description

The directery that holds the installed files. On Windows, Linux and Unix, this is the
same as the installation directory. For single bundle installers on macOS5, this is
[Bundle name].app/Concencs/Resources/app/. To reference an installed file
in a cross-platform way, use this variable and not sys.installationDir.

@ Help “ Cancel

For both compiler and installer variables install4j offers a fixed set of "system variables" that are
prefixed with "sys.". These variables are not writable and it is discouraged to use this prefix for
your own variables.

Compiler variables

Compiler variables are written as
${ conpi | er: vari abl eNanme}

The value of a compiler variable is a string that is known and replaced at compile time. The
installer runtime or the generated launchers do not see this variable, but just the value that was
substituted at runtime. Compiler variables are defined on the "General Settings->Compiler
Variables" step.

Compiler Variables \N /7

install4j provides a number of predefined compiler variables. In this step, you can define your own compiler variables, Compiler
wvariables can be used in many places in the installdj GUl to customnize your build process.

£k myVariable L Value Description Overrides

Variable value: | my default value »

®
pe

You can use compiler variables for various purposes. The most common usage of a compiler
variable is the possibility to define a string in one place and use it in many other places. You can
then change the string in one place instead of having to look up all of its usages.

An example of this use case is the pre-defined sys. ver si on variable that contains the value of
the text field where you enter the application version. Another usage for compiler variables is
to override certain project settings on a per-media file basis. For example, if you want to include
one directory in the distribution tree for Windows but another one for macOS, you can use a
compiler variable for that directory and override it for each media file.

64

Compiler Variables

installdj provides a number of predefined compiler variables. In this step, you can define your own compiler variables. Compiler
variables can be used in many places in the install4j GUI to customize your build process,

:Cﬂ} myVariable + Value Description Overrides

Compiler variables can be overridden for each media file, either on this tab or on the
"Customize project defaults-= Compiler variables” step of the media wizard.

x Click on cells in the "Variable value" column to override variables,

/Q Media file Variable value
Windows Reset my value for Windows

é:g, macO5 Folder my default value

To quickly override multiple variables for a single media file, you can configure overridden values
on the "Customize project defaults->Compiler variables" step of the media wizard.

B Media Wizard - Windows

X
1. Media file type Override compiler variables
2. Installer options
3. Data files Compiler variables that have been defined on the "General settings-> Compiler
4. Bxecutable processing variables" step can be overridden for this media file.
> EundIEd_JRE X Click on cells in the "Variable value” column to override variables.
6. Customnize project defaults
< . tabl Variable name Variable value

+ Lompilervariavles (E3=4 my value for Windows

+ Media file name = - g

+ Principal language

+ Exclude components

+ Downloadable components

+ Exclude files

+ Exclude launchers

+ Exclude installer elements

+ Look & Feel

+ Auto-update options
7. Finished

7] Help 4 Back MNext P Finish Cancel

Finally, compiler variables can be overridden from the command line compiler [p. 230] as well as
from the Gradle [p. 235], Maven [p. 240] and Ant [p. 249] plugins.

When you use a compiler variable in your project that is not a system variable, it must be defined
in on the "General Settings->Compiler Variables" step. If an unknown variable is encountered,
the build will fail. You can use other variables in the value of a variable. Recursive definitions are

detected and lead to a failure of the build. It is not possible to define compiler variables with the
name of a system variable.

install4j provides a number of system compiler variables:

65

+ sys.date [Machine-specific variables]
The current date in the format YYYYMVDD (e.g. "20090910"). The value is set at the start of a
build and will not change during a single build.
+ sys.time [Machine-specific variables]
The current time in the format HHWWBS (e.g. "153012") where HH is the hour in 24-hour format,
MM is the minute and SS is the second. The value is set at the start of a build and will not
change during a single build.
+ sys.timestamp [Machine-specific variables]
The current time as the Unix epoch. This is a long value with the milliseconds since January
1st, 1970 (UTC). The value is set at the start of a build and will not change during a single build.
+ sys.install4jHome [Machine-specific variables]
The installation directory of install4j that is used for compiling the media files.

+ sys.install4jVersion [Machine-specific variables]
The version of install4j that is used for compiling the media files.

+ sys.fileSeparator [Machine-specific variables]
The platform-dependent separator for directories in a file path. On Windows, this is a backslash
("\"), on Unix a forward slash ("/"). The value of this variable is intended to refer to files on the
build machine. For a value that is valid at runtime, use sys. nedi aFi | eSepar at or instead.
* sys.newline
A Unix newline character (\ n).

+ sys.pathlistSeparator [Machine-specific variables]

The platform-dependent separator for lists of directories. On Windows, this is a semicolon
(";"), on Unix a colon (":"). The value of this variable is intended to refer to files on the build
machine. For a value that is valid at runtime, use sys. medi aPat hl i st Separ at or instead.

+ sys.version [Project-specific variables]
The version of your application as configured under General Settings->Application Info.

+ sys.shortName [Project-specific variables]
The short name of your application as configured under General Settings->Application Info.

+ sys.fullName [Project-specific variables]
The full name of your application as configured under General Settings->Application Info.

+ sys.publisher [Project-specific variables]
The publisher of your application as configured under General Settings->Application Info.

+ sys.publisherUrl [Project-specific variables]
The publisher URL of your application as configured under General Settings->Application Info.

+ sys.languageld [Project-specific variables]
The 2-letter ISO 639 code (see https://www.loc.gov/standards/iso639-2/php/code_list.php ")
for the principal language of the installer. This variable can be overridden on the command
line or the ant task which is useful if you build different installers for different languages.

M https://www.loc.gov/standards/iso639-2/php/code_list.php

66

https://www.loc.gov/standards/iso639-2/php/code_list.php

sys.javaMinVersion [Project-specific variables]
The minimum Java version as configured under General Settings->Java Version

sys.javaMaxVersion [Project-specific variables]
The maximum Java version as configured under General Settings->Java Version

sys.applicationld [Project-specific variables]
The application ID as configured under Installer->Update Options

sys.updatesUrl [Project-specific variables]

The URL where auto updaters can download the update descriptor file updat es. xm as
configured under Installer->Auto-Update Options. This variable is usually used in the "Update
descriptor URL" property of a "Check for update" action.

sys.mediaFileName [Media-specific variables]

The file name of the currently compiled media file as configured in the Media section and
possibly overridden in "Customize project defaults->Media file name" step of the media wizard.
sys.mediaName [Media-specific variables]

The display name in the install4j IDE of the currently compiled media file as configured in the
Media section. If the default name of the media file is not suitable, you can rename the media
file.

sys.mediald [Media-specific variables]

The ID of the currently compiled media file as configured in the Media section. This corresponds
to the return value of cont ext . get Medi aFi | el d().

sys.platform [Media-specific variables]

The platform descriptor of the currently compiled media file. One of wi ndows- x64,
wi ndows- x32, wi ndows- ar 64, | i nux, uni x or macos. The value of this variable depends
on your choice in the platform step of the media file wizard.

sys.with)Jre [Media-specific variables]

Avariable that contains "_with_jre" if a JRE is statically bundled with a media file and the empty
string if not. This is useful if media files with and without JRE are built.
sys.jreBundleVersion [Media-specific variables]

The Java version of the JRE bundle if a JRE bundle is configured for a media file and the empty
string if not.

sys.jreBundleArch [Media-specific variables]

The architecture of the JRE bundle if a JRE bundle is configured for a media file and the empty
string if not.

sys.mediaFileSeparator [Media-specific variables]

The platform-dependent separator for directories in a file path based on the current media
set. For Windows media sets, this is a backslash ("\"), for all others a forward slash ("/").
sys.mediaPathlistSeparator [Media-specific variables]

The platform-dependent separator for lists of directories based on the current media set. For
Windows media sets, this is a semicolon (";"), for all others a colon (":").

67

+ sys.msiProductld [Media-specific variables]

The product GUID if a Windows installer is wrapped in an MSI package, otherwise an empty
string.

You can access environment variables on the build machine with the syntax
${conpi | er: env. envi ronnment Var i abl eNane}

where "environmentVariableName" is the name of an environment variable. This is resolved at
build time and only works if no compiler variable with the same name is defined on the "General
Settings->Compiler Variables" step.

Compiler variable values in the IDE cannot be multi-line strings. If you need to insert a variable
with a multi-line string, you can use the text file reference syntax

${compiler:file("path/to/file")}

where pat h/to/ fil e is either an absolute file path or a path relative to the config file. All text
areas that have an adjacent variable selector button offer the "Insert contents of text file" action
in its popup menu. The file chooser has an option whether to use a relative or an absolute path
in the variable expression.

In order to debug problems with compiler variables, you can switch on the extra ver bose
out put flagin the Build step [p. 11]. All variable replacements will then be printed to the build
console.

The file path can be a variable expression itself, like in
${compiler:file(${conpiler:nyFile})}

so you can override it for each media file or pass it as a parameter to a command line build.

Installer variables

Installer variables are written as
${installer:variabl eNanme}

The value of aninstaller variable is an arbitrary object that is not known at compile time. Installer
variables are replaced at runtime in the installer, the uninstaller and in custom installer
applications. They can optionally be predefined in the install4j IDE like compiler variables, but
this is not required.

Undefined installer variables come into existence the first time they are defined at runtime.
However, itis an error to use an undefined variable. For example, if you use an installer variable
in an action, you have to make sure that the installer variable is defined before the action is
executed.

Installer variables are used to wire together actions, screens and form components at runtime.
The user input in screens is saved to variables that can be used in the properties of actions.
Furthermore, installer variables can be used in condition and validation expressions. Some
examples are given in the help topic on form screens [p. 46]. In script properties, you retrieve
variables by invoking

68

cont ext . get Vari abl e("vari abl eNane")

Variable values can be set with the installer API by invoking

cont ext. set Vari abl e("vari abl eName", vari abl eVal ue)

You can analyze the bindings of an installer variable on the "Installer Variables" tab of an installer
application configuration. That tab will show you a list of bound variables together with all

bindings.

4 Installer (8 screens) [ID instal... | == f Properties

1} Uninstaller (3 screens) [ID u...
/O - Installer Variables

Y
@'ﬁ Standalone update downloa..
You can pre-define installer variables in erder to document and categorize them or to

e
@" Background update downloa
e
@'i'. Configure greeting [Custom assign initial values,
@ Configure Predefined Installer Variables

The following bound installer variables have been detected:

executelauncherction [type java.lang.Boolean]

P greetingOption [type java.lang String]
> groupCreated [type java.lang.Boolean]
P> installService [type java.lang.Boolean]

Bindings for selection:
" Property Variable name [variable of type java.lang.Boolean]
* Execute launcher [Check box] [ID 72]
T3 Finish [ID 60]
4 Installer [ID installer]

Go To Selection

In order to document and categorize bound installer variables, you can pre-define them and set
descriptions that will be displayed in the installer variable selector in the install4j IDE.

I3 Edit Installer Runtime Variables For "Installer”
Response File

[4 myVariable + Value Description
Value type: String v
- Variable value: | my value >
x Sensitive informatien, do not write values te the log file

Quick Help
Installer variables are replaced at run-time. They can be used

in all text fields in installd) by surrounding the variable name with
Slinstaller...}, like ${installermyVariable].
in scripts with the syntax context.getVariable("'myVariable")

Use the variable selector buttons { *) where available to select available
installer runtime variables. Installer variables do not have to be pre-defined,

but come into existence whenever an installer variable is assigned at runtime.

@ Help

A common scenario is the need to calculate a variable value at runtime with some custom code
and use the result as the initial value of a form component. To achieve this, you can add a "Set

69

a variable" action to the startup screen and set its "Variable name" property to some variable
name. In this context, install4j expects a variable name and you must notuse the ${i nst al | er:

vari abl eNane} syntax but specify the plainvar i abl eNane only. The return value of the "Script"
property is written to the variable.

Screens & Actions \N /7
In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.
& Installer (5 screens) [0 instal... E# General
+ . Script "Some value"
R cloriup (2 actions) x myVarizble
@' Request privileges [1D ... p Only if undefined
::é} Set a variable [ID 24] Fail if value is null

f— Register for response file
ik Welcome (1 action) [ID 2]

Error Handling

For example, if this variable represents the initial directory that is displayed for a "Directory
chooser" form component, you set the "Initial Directory" property of that form component to
${install er:variabl eNane}. In this way you have wired the results of an action with a
behavior of a screen.

Another important use of installer variables is in the names of custom installation roots [p. 14].
In most cases, the name of a custom installation root contains an installer variable that is resolved
at runtime. Often, one of the system installer variables that represent a "magic" folder can be
used, such as ${i nstal | er: sys. syst en82Di r } for the Windows syst enB2 directory.

When you use installer variables in properties that display text, such as the screen title or the
label properties of form components, a live binding will be created and the displayed text is
updated automatically when the variable values change.

Installer variables can be passed to the installer, uninstaller or custom installer applications from
the command line prefixed with - V:

-VnyVar =t est "-VnmyVar Wt hSpaces=this is a test"

Alternatively, you can specify a property file containing installer variables with -varfile ny.
properties, where the file my. properti es contains one variable definition per line. The
variables that are created will be instances of j ava. | ang. Stri ng.

install4j provides a number of system installer variables:

+ sys.installationDir [Source and Target]

The installation directory for the current installation. The value of this variable can change in
the installer as the user selects an installation directory in the "Installation directory" screen
or the installation directory is set via context.setlnstallationDirectory(File
installationDirectory).

Note that for single bundle installers on macOS, the installation directory is usually just
/ Appl i cati ons, not a separate subdirectory.

+ sys.contentDir [Source and Target]

The directory that holds the installed files. On Windows, Linux and Unix, this is the same as
the installation directory. For single bundle installers on macQS, thisis[Bundl e nane] . app/
Cont ent s/ Resour ces/ app/ . To reference an installed file in a cross-platform way, use this
variable and not sys.installationDir.

70

sys.mediaFile [Source and Target]
The path of your media file. Not available for uninstallers.

On Unix and for non-MSI Windows installers this is the same as sys.installerFile. For MSI
installers, this is the MSl file. On macQS, this is the path to the DMG file. If you want to reference
the installer file, use sys.installerFile instead.

sys.mediaDir [Source and Target]

The path of the directory where your installer file is located. Not available for uninstallers.

On Unix and for non-MSI Windows installers this is the same as sys.installerDir. For MSI
installers, this is the directory where the MSI file is located. On macOS, this is the directory
where the DMG file is located. If you want to reference files inside the DMG file, use
sys.installerDir instead.

sys.installerFile [Source and Target]

The path of your installer file. Not available for uninstallers.

On Unix and for non-MSI Windows installers this is the same as sys.mediaFile. For MSl installers,
this is the extracted installer executable. On macOS§, this is the path to the installer inside the
mounted DMG. If you want to reference the DMG file, use sys.mediaFile instead.
sys.installerDir [Source and Target]

The path of the directory where your installer file is located. Not available for uninstallers.

On Unix and for non-MSI Windows installers this is the same as sys.mediaDir. For MSl installers,
thisis the directory the installer was extracted to. On macOS, this is the path into the mounted
DMG. If you want to reference files in the same directory as the DMG file, use sys.mediaDir
instead.

sys.resourceDir [Installer application state]
The directory where the resource files are present that have been configured on the
Installer->Custom Code & Resources tab.

sys.installationTypeld [Installer application state]

The ID of the selected installation type. This is only relevant if the "Installation Type" screen
has been added to the installer. The value is nul | as long as no installation type has been
selected.

sys.version [Installer application state]

For installers, the version of your application as configured under General Settings->Application
Info. In that case, the variable yields the same value as the compiler variable of the same
name. For custom installer applications, the installed version,which might not be the same as
the version for which the custom installer application was originally compiled.

sys.logFile [Installer application state]

The full path to the currently used log file. This is a path in the TEMP directory. For installers,
this changes after the "Install Files" action, when the log file is moved to a path in the installation
directory.

sys.responseFile [Installer application state]

If a response file is supplied with a - var fi | e command line argument, the full path to the
response file. If no response file is used, the variable value is nul | .

71

+ sys.preferredjre [Installer application state]

The home directory of the JRE that will be used by the installed launchers. This variable will
only be set after the "Install files" action has run. It will be the same as System
get Property("java. home") orthe sys. j avaHone installer variable unless a bundled JRE
(shared or non-shared) has been installed. This variable is not available in the uninstaller or
custom installer applications, use the sys. j avaHone directory there.

+ sys.languageld [Installer application state]

The 2-letter 1SO 639 code (see https://www.loc.gov/standards/iso639-2/php/code_list.php ")
for the actual language of the installer. For fixed-language installers, this is the same as the
compiler variable of the same name. For multi-language installers, the value is determined at
runtime.

+ sys.installerApplicationMode [Installer application state]
A string that reports the type of the installer application: "installer" for the installer, "uninstaller"
for the uninstaller and "custom" for custom installer applications.

+ sys.programGroupDisabled [Installer application state/Program group]
If the user has disabled program group creation on the "Standard program group" screen.
This applies to both the Windows program group and the Linux/Unix launcher link directory
selection. If no "Standard program group" screen is present, the variable value will be nul | .

+ sys.programGroupName [Installer application state/Program group]
The name of the program group that user has selected on the "Standard program group"
screen. If no program group has been selected, the variable value will be nul I . Only set in
Windows installers.

+ sys.programGroupDir [Installer application state/Program group]
The directory that has been selected as the program group. This is the full path to the actual
location of the program group, not just the name of the program group. If no program group
has been selected, the variable value will be nul I . Only set in Windows installers.

+ sys.programGroupAllUsers [Installer application state/Program group]
If the user has selected to create menu entries for all users on the "Standard program group"
screen. If no "Standard program group" screen is present, the variable value will be nul I .
Only set in Windows installers.

+ sys.symlinkDir [Installer application state/Program group]
The name of the directory for launcher links that user has selected on the "Standard program
group" screen. If no program group has been selected, the variable value will be nul | . Only
set in Linux/Unix installers.

+ sys.fileSeparator [Cross-platform variables]
The platform-dependent separator for directories in a file path. On Windows, this is a backslash
("\"), on Unix a forward slash ("/").

+ sys.pathlistSeparator [Cross-platform variables]

The platform-dependent separator for lists of directories. On Windows, this is a semicolon
(";"), on Unix a colon (":").

M https://www.loc.gov/standards/iso639-2/php/code_list.php

72

https://www.loc.gov/standards/iso639-2/php/code_list.php

sys.userHome [Cross-platform variables]

The user home directory, typically something like C: \ User s\ $USER on Windows or / horre/
$USER on Unix platforms.

sys.userName [Cross-platform variables]

The user account name.

sys.workingDir [Cross-platform variables]

The working directory. For the installer, this is the temporary directory that the installer was
extracted to.

sys.tempDir [Cross-platform variables]

The temporary directory of the operating system. On all supported platforms, this is the value
of the TEMP environment variable.

sys.javaHome [Cross-platform variables]

The Java home directory of the currently used JRE.

sys.javaVersion [Cross-platform variables]
The Java version of the currently used JRE.

sys.confirmedUpdatelnstallation [Cross-platform variables]

If the user has confirmed an update installation on top of a previous installation. If a previous
installation is detected, the "Welcome" screen asks the user whether to perform an update
installation or choose another installation directory. The result of that question is saved to
this variable. If the "Welcome screen is not shown, this variable is not set and
Cont ext #get Bool eanVari abl e(...) returns false for this variable.

sys.desktopDir [Cross-platform variables]

The directory used to physically store file objects on the desktop. On Windows, a typical path
is C:\ Users\[user name]\ Desktop. On macOSs, this is the ~/ Deskt op directory and on
Unix the freedesktop.org setting for the XDG_DESKTOP_DI Rdirectory is returned.

sys.docsDir [Cross-platform variables]

The directory used to physically store a user's common repository of documents. On Windows,
a typical pathis C: \ User s\ [user nane]\ Docurent s. On macOS, this is the ~/ Docunent s
directory and on Unix the freedesktop.org setting for the XDG_DOCUMENTS_DI R directory is
returned.

sys.downloadsDir [Cross-platform variables]

The directory used to physically store a user's downloads. On Windows, a typical path is C: \
User s\ [user nane]\ Downl oads. On macOS§, this is the ~/ Downl oads directory and on
Unix the freedesktop.org setting for the XDG_DOWLQAD_DI Rdirectory is returned.

sys.appdataDir [Platform-specific variables]

The directory that serves as a common repository for application-specific data. On Windows,
a typical path is C:\ Users\[user nane]\ AppDat a\ Roanm ng. On macQOS, this is the ~/
Li brary/ Appli cation Support directory. On Unix, the value of the XDG_DATA HOVE
environment variable or if not defined ~/ . | ocal / shar e is returned.

sys.localAppdataDir [Platform-specific variables]

The user-specific directory that serves local applications to store computed data. On Windows,
atypical pathisC: \ User s\ [user nane]\ AppDat a\ Local . On macOS, thisisthe~/ Li br ar y/

73

Caches directory. On Unix, the value of the XDG_CACHE_HQOVE environment variable or if not
defined ~/ . cache is returned.

sys.windowsDir [Platform-specific variables]
The Windows installation directory, typically C: \ W ndows.

sys.system32Dir [Platform-specific variables]
The system32 directory of your Windows installation, typically C: \ W ndows\ syst enB2.

sys.commonDir [Platform-specific variables]

The common files directory of your Windows installation, typically C:\ Program Fi | es\
Common Fil es.

sys.programDataDir [Platform-specific variables]

The directory where applications can save data that is not specific to particular users. A typical
path is C:\ Pr ogr anDat a.

sys.startMenuDir [Platform-specific variables]

The directory containing Start menu items. A typical path is C:\ Users\[user nane]\
AppDat a\ Roam ng\ M cr osof t\ W ndows\ St art Menu.

sys.programsDir [Platform-specific variables]

The directory that contains the user's program groups. The groups are themselves file system
directories. A typical path is C \ Users\[user nane]\AppDat a\ Roani ng\ M crosoft\
W ndows\ St art Menu\ Pr ogr ans.

sys.startupDir [Platform-specific variables]

The directory that corresponds to the user's Startup program group. The system starts these
programs whenever any user logs onto Windows. A typical path is C: \ User s\ [user nane]\
AppDat a\ Roam ng\ M cr osof t \ W ndows\ St art Menu\ Pr ogr ans\ St art up.
sys.sendToDir [Platform-specific variables]

The directory that contains Send To menu items. A typical path is C: \ User s\ [user nane]\
AppDat a\ Roani ng\ M cr osof t \ W ndows\ SendTo.

sys.templatesDir [Platform-specific variables]

The directory that serves as a common repository for document templates. A typical path is
C \ Users\[user nane]\ AppDat a\ Roam ng\ M cr osof t\ W ndows\ Tenpl at es.
sys.favoritesDir [Platform-specific variables]

The directory that serves as a common repository for the user's favorite items. A typical path
isC: \Users\[user nane]\Favorites.

sys.programGroupDir [Platform-specific variables]

The directory of the program group that will be or was created by the "Create standard program
group" action. If this action is not present, the value will be nul | . The value of this variable
can change in the installer as the user selects a program group on the "Create program group"
screen.

sys.fontsDir [Platform-specific variables]

The folder that contains fonts. A typical path is C: \ W ndows\ Font s. On macQOS, the value is
/ Li brary/ Fonts.

74

sys.programFilesDir [Platform-specific variables]

The directory where programs are installed, typically something like C: \ Pr ogr am Fi | es. On
macOS, the value is / Appl i cati ons.

sys.date [Cross-platform variables]

The current date in the format YYYYMVDD (e.g. "20090910"). The value is set when the installer
is started and will not change for the current process.

sys.time [Cross-platform variables]

The currenttime in the format HHMVBS (e.g. "153012") where HH is the hour in 24-hour format,
MM is the minute and SS is the second. The value is set when the installer is started and will
not change for the current process.

sys.timestamp [Cross-platform variables]

The current time as the Unix epoch. This is a long value with the milliseconds since January
1st, 1970 (UTC). The value is set when the installer is started and will not change for the current
process.

Launcher variables

Launcher variables are written as

${1 auncher: vari abl eNane}

The value of a launcher variable is a string that is not known at compile time. In contrast to
installer variables, they are replaced by the launcher and not by Java code, so the replaced value
is seen by the JVM at startup. Launcher variables can only be used in the "VM parameters" and
"Arguments" text fields on the "Java invocation" step of the launcher wizard [p. 36].

No user-defined launcher variables exist, the available system launcher variables are:

sys.launcherDirectory
The directory in which your launcher has been installed at runtime.

sys.jvmHome

The home directory of the JVM that your launcher is running with. This is useful to put JAR files
from the JRE into your boot classpath. The "home directory" is the directory that contains the
"bin" directory of the JRE.

sys.tempDir

The temporary directory for the current user.

118N messages

118N messages are written as

${i 18n: keyNane}

The value of an 118N message depends on the language that is selected for the installer. You
can use this facility to localize messages in your installers if they support multiple languages [p. 79].
To do that, you supply key-value pairs in the custom localization file. The variable selection dialog

75

for 118N messages shows all system messages as well as all messages in the custom localization
file for the principal language of your project.

X

B Select 118N Message

m
=4
=

Available 118N messages:

System messages

J AboutSetupMenultemn
J AboutSetupMessage
J AboutSetupTitle

D AddTaDock

J AdminGroupRequired

¥ AdminPrivilegesRequired
J AdminPrivilegesRequiredExecute
J AlertDontShowAgainLabel

J AppRunningError

J AppRunningErrorAddOn
J ApplelavaMinVersionError
J AskContinue

D AskRetrylnstallFile

J BadDirName32

Filter:

Message in Principal Language

You must have administrator privileges to install this program.

@ Help “ Cancel

All standard messages displayed by install4j can be referenced with this syntax as well. You can
locate the key name in one of the message_*. ut f 8 files in the $| NSTALL4J_HOVE/ r esour ce/
nmessages directory and use it anywhere in your project. The standard messages can be
overwritten by your custom localization files.

Default values for missing variables

For the text field syntax of installer and compiler variables there is a mechanism to supply a
default value in case the variable is not defined: After the variable name you add the delimiter
?: and insert the default value before the closing curly bracket.

For example:
${install er:nyVariabl e?: def aul t Val ue}

will resolve to def aul t Val ue if the installer variable "myVariable" is not defined. The default
value can be another variable, also of a different type. For example:

${installer:updatesU | ?: ${conpil er: sys. updatesUrl}}

If the installer variable "updatesUrl" is not defined, the compiler variable "sys.updatesUrl" is
inserted. This is the default value of the "Update descriptor URL" property of the "Check for
update" action.

The chain of default values can be arbitrarily long:

${installer:one?: ${installer:tw?: ${installer:three?:${installer:four?:sone plain

text}}}}

76

This will resolve to the first defined installer variable out of "one", "two", "three", "four" or to
sone plain text if none of them are defined.

Binding variables to non-text properties

Many bean properties do not take text input, for example boolean, integer or enum properties,
so that the variable syntax ${i nst al | er: nyVari abl e} for text fields is not applicable. For
these properties, you can select "Switch to text mode" in the context menu and enter a variable
expression that resolves to the required type. Conversions from string values are important
because compiler variables can only hold string values, unlike installer variables that can hold
arbitrary types.

General

Service [Select a launcher]
Auto start ”m
Description Switch To Text Mode

Windows

Windows arguments

Windows dependencies

Windows custom display name [Use service
Windows pririty MNormal

Account Local System

The help icon in the property editor tells you what the property type is and also informs about
the supported conversions from other primitive types or strings. For example, "true" or "false"
string values are supported for boolean properties as well, which is what you would use with a
compiler variable. For enum properties, the name of the enum or the ordinal as a number or as
a string will be resolved to the actual enum value. Also, numeric values will be parsed from
strings.

General

Service [Select a launcher]
T S s e my AutoStart) »@
De)

Wi In text mode, you can use variables to set the value of boelean properties.
W

Wi The value of the expression at runtime must be of type

Wi java.lang.Boolean orthe strings “true” or “false". Any string whose
Wi lower-case representation is not equal to "true” is converted to “false”.

Wi
To leave text mode, click on the property name and choose "Switch To
Direct Mede" from the context menu.

Restart on failure
Interactive

Delayed aute start

mac0S

macO5 identifier

Unix

Additional systernd entries

Error Handling

If you develop a custom bean and want to support that functionality as well, you have to enable
it in the property descriptor and insert a call into the property getter as explained in the Javadoc
for AbstractBean.

Using variables in your own applications

Frequently there is a need in the installed applications to access user input that was made in the
installer. The launcher API [p. 226] provides the helper classcom i nst al | 4j . api . | auncher.
Vari abl es to access the values of installer variables.

There are two ways that installer variables can be persisted in the installer: First, installer variables
are saved to the default response file [p. 212] . i nst al | 4j / response. varfi | e thatis created
when the installer exits or if a "Create response file" action is executed. Only response file variables
are saved to that file. Secondly, selected installer variables can be saved to the Java preference

77

store.com i nstal | 4j . api . | auncher. Vari abl es offers methods to load variables from both

sources.

Saving to the Java preference store is interesting if you want to modify those variable values in
your applications and save back the modified values. The Java preference store is available on
a per-user basis so that it is possible to modify settings even if the user does not have write
permissions for the installation directory. com i nstal | 4j . api .| auncher. Vari abl es has
methods for loading and saving the entire map of installer variables that was saved in the installer.
Also, it is possible to specify an arbitrary package to which the installer variables are saved, so
that settings can be shared between different installers.

Screens & Actions

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.

2 Installer (5 screens) [0 instal... #

% Startup (2 actions) b 4

ik Welcome (1 action) [ID 2] el
j= Installation location (1 ac...
‘,." Installation components [...
Installation (3 actions) [ID...

ik Finish (1 actien) [ID 20]
o Save installer variables ...

1+ Uninstaller (4 screens) [ID u...

¥

Configuration
Package name §{compilersys.applicationld}
Preference root User specific
Installer variable names
Error Handling

Failure strategy Continue on failure
Error message

Control Flow

Condition expression

Rollback barrier

Can be executed multiple times

Privileges

Action elevation type

Save installer variables to the Java preference store

Save installer variables to the Java preference store. This can be used to communicate
installer variables to the uninstaller or to installers with different application IDs.

,

Finally, itis useful to access compiler variables in your own applications. For example, the version
number configured in the install4j IDE can be accessed in your own application through com
i nstall4j.api.launcher. Vari abl es.

78

A.13 Localization

On the "General Settings->Languages" step, you configure the languages that are supported by
your project. The following languages are available:

« Arabic [ar]

+ Chinese (Simplified) [zh_CN]
* Chinese (Traditional) [zh_TW]
« Croatian [hr]

« Czech [cs]

« Danish [da]

« Dutch [nl]

+ English [en]

« Finnish [fi]

« French [fr]

+ German [de]

+ Greek [el]

+ Hebrew [he]

* Hungarian [hu]

« ltalian [it]

+ Japanese [ja]

« Korean [ko]

+ Norwegian [no]

+ Polish [pl]

+ Portuguese [pt]

+ Portuguese (Brazilian) [pt_BR]
* Romanian [ro]

* Russian [ru]

+ Spanish [es]

+ Swedish [sv]

o Turkish [tr]

By default, only one language is shipped with the installer. This is called the principal language.
By adding additional languages, you can build multi-language installers. If none of the configured
languages match the locale at runtime, the principal language is used.

79

Languages N7

In this step, you can specify the languages that the generated installers should support. Your installers can have a fixed language
or they can be multi-language installers.

Principal language: English [en] > @
Custom localization file: | \rmy_en.utf@ P Edit Q

Choose additienal languages for the installer:

Language Custom localization file @ L
Danish [da] My_da.utfd
French [fr] Amy_froutf8

For multi-language installers, a language selection dialog is shown when the installer is started.
By selecting the Ski p | anguage sel ection di al og check box you can choose to show the
language selection only if the installer cannot find a match between a supported language and
the auto-detected locale.

The principal language setting can be overridden for each media file on the "Customize project
defaults->Principal language" step of the media wizard. In this way, you can build multiple
fixed-language installers, each with a different principal language.

B Media Wizard - Windows x
1. Media file type Override principal language for installer messages
2. Installer options
3. Data files In this step you can override the default principal language settings for the project.
4, Executable processing
5. Bundled JRE Use project default
6. Customize project defaults Override principal language settings
K X Principal language: Spanish [es] hd
+ Compiler variables
+ Media file name Custom localization file: [BRES MNew
+ Principal language
+ Exclude components To everride the language externally, you can define the variable sys. language Id with
+ Downloadable compeonents the desired two-letter SO code.
+ Bxclude files
+ Bxclude launchers
+ Bxclude installer elernents
- Look & Feel
- Auto-update options
7. Finished
© Help 4 Back Next P Finish Cancel

Localization mechanism

In projects, localized messages are obtained in one of two ways;

+ with i18n messages

The i18n variable system [p. 63] gives access to all messages with the syntax

${i 18n: nessagekKey}

To select a message, use the » variable selector button next to text fields and properties. For
messages with one or more parameters of the form {0} to {n}, the variable selector will
insert placeholder values like in

80

${i 18n: Di skSpaceWarni ng("arg 0", "arg 1")}

+ with the API
In scripts and in your custom code you can call

cont ext . get Message(" messageKey")
For messages with arguments, you pass the arguments with the vararg syntax:
cont ext . get Message(" Di skSpaceWar ni ng", 10000, 100)

The "Insert variable" tool bar button in script editors allows you to insert these calls with the
correct syntax for selected message keys.

I Settings Edit Search Code Help Edit X
¥ E & PR % O
= & &E0 m e
Insert Insert Code Test
Copy Pate e D Galey Fnd Repace L HeR
;—:- Please enter an expression (no trai B Insert Installer Runtime Variable Ctrl+Shift+1 |42t consists of
= regular Java code. The following p §3F Insert Compiler Variable Ctrl+Shift+2
Java |
- com.installdj.api.contextnstal = Insert Contents Of Text File Ctrl+Shift+F
- com.installdjapiscreens.nstal] 9 jnsert 118N Message Cirl+Shift+3_|
The expected return type is boolean
Condition expression:
1 (]

Custom localization

In addition to the standard messages that are displayed in the generated installer and uninstaller,
you will have your own messages that need to be localized in the same way. To configure these
messages, create a custom localization file for the principal language. A custom localization file
is a text file with key-message pairs in the format of

* a)ava properties file
A Java properties file has a . properti es file extension and must use ISO 8859-1 encoding.
All other characters must be represented as Unicode escape sequences, like \ u0823.

« a properties file with UTF-8 encoding

A properties file with UTF-8 encoding has an . ut f 8 file extension and has the advantage that
you do not have to use escape sequences. However, it might not be supported by some

localization tools.

81

You can create and edit custom localization files externally or directly in the install4j IDE with the
built-in editor:

I Settings Edit Search Edit X
¥ B & P B
Copy Cut Pame Inzert - Qvemde | ooy papisce

Varishle Message
118n key-message pairs (key=message, one pair per line):

1 messageOne=The first message
2 messageTwo=The second message with parameter {0}

For each additional language, add a corresponding custom localization file that contains the
same keys. If a message is missing for an additional language, the message for the principal
language is used. The variable selection dialog for i18n messages will show all keys in the custom
localization file for the principal language.

*

B Select 118N Message

m
=4
=

Available 118N messages:

Custom messages
¥ messageOne
J messageTwo
System messages

Filter:

Message in Principal Language

The first message

@ Help “ Cancel

If any standard message in the installer is not appropriate for your purpose, you can override it
by looking up the corresponding keys in the appropriate message file with the path

<install4j installation directory>/resource/ messages/ nessages_*. utf8

and defining the same key in your custom localization file. The built-in editor has an "Override
message" tool bar button that helps you to find the message of interest and inserts the key-value
pair in the editor.

82

I Settings Edit Search

$ B 2 P B
Insert | Override

Copy Cut Pazn Find Replac
oPy v ® Vadable | Message " eplace

118n key-message pairs (key=message, one pair per line):

1 messageOne=The first message
2 messageTwo=The second message with parameter {0}

I Select System Message To Override X

System messages:
SetupAppTitle=Setup
SetupWindowTitle=Setup - {0}
UninstallAppTitle=Uninstall
UninstallAppFullTitle={0} Uninstall
InformationTitle= Information
ConfirmTitle= Confirm

L, S T

Filter:

0K Cancel

Parameters in i18n messages

If required, you can use parameters for your messages by using the usual{ n} syntaxinthevalue
and listing the parameters with a function-like syntax after the key name. For example, if your
key name is myKey and your message value is

Create {0} entries of type {1}

you can use a variable
${i 18n: nyKey("5", "foo")}

in order to fill the parameters, so that the actual message becomes
Create 5 entries of type foo

However, in the context of localizing an installer this is rarely necessary. Should you need to
include a literal variable expression { n} in the message, you have to quote itlike' {' n"}".

Another way of adding parameters to i18n messages is to use compiler or installer variables.
Compiler variables are replaced at build time and installer variables are replaced at runtime. For
example:

nessageW t hConpi | er Vari abl e=Titl e for ${conpiler:sys.full Nane}
nessageW thlnstal |l erVariable=Installing to ${installer:sys.installationDir}

83

A.14 VM Parameters

VM parameters can be passed to generated launchers [p. 36] in a variety of ways: You can specify
fixed VM parameters, pass them on the command line or add them to a text file where the user
or your application can edit them.

Fixed VM parameters

Fixed VM parameters can be configured in the launcher wizard [p. 36] where you can use compiler
variables [p. 63] to handle platform-specific changes or launcher variables [p. 63] to use
runtime-dependent paths.

& Modify Launcher X
1. Select type Configure Java invocation

2. bxecutable info

3. lcon WM Parameters: | -Dapple.laf.useScreenMenuBar=true ro- @

4. Java invocation
[Allow VM passthrough parameters (e.g. -J-Xmx256m) €

+ Native libraries Configure Version-Specific VM Parameters | [no entries]
+ Preferred VM —
+ Qverride Java version ©O Classpath @ Module path @
5. VM optiens file ® Directory classes o
6. Splash screen
7. Finished
Main class from | Class path h HelleGui r - @
Arguments for main class: @

w Advanced Options

@ Help 4 Back Next P Finish Cancel

install4j has the ability to add specific VM parameters depending on the Java version. To set this
up, click on the Configure version specific VM parameters button. In the dialog, add rows for each
range of Java versions that should receive specific VM parameters. If the Java version of the JVM
that is used at runtime matches a configured version expression, the associated VM parameters
will be appended to the common VM parameters. The search is stopped at the first matching
entry. The syntax for the Java version expressions is explained by the help icon on the table
header.

84

I Configure Version-Specific VM Parameters X

If the Java version of the JVM that is used at runtime matches a configured version expression, the associated VM parameters
will be appended to the common VM parameters. The search is stopped at the first matching entry.

Java Version Expression (@ VM Parameters L]
1.7 -K¥:MaxPermSize=256m
1.8 ‘ -}:MaxMetaspaceSize=256m

@ Hel Cancel
P

Passing VM parameters on the command line

When executing a generated launcher, arguments are passed to the main class, so you cannot
pass an argument like - Xmk800mand expect it to be interpreted as a VM parameter. To tell the
launcher that you want to use a specific command line argument as a VM parameter, you have
to prefix it with - J, as in

-J- Xnx800m

If this behavior is not desirable, you can deactivate it on the "Java invocation" step of the launcher
wizard.

*.vmoptions files

A common requirement is the capability to adjust the VM parameters of launchers after the
installation has been completed or to determine the VM parameters at installation time depending
on the environment like the target platform or some user selection in the installer.

For this purpose, a parameter file in the same directory as the executable is read and its contents
are added to the list of fixed VM parameters. The name of this parameter file is the same as the
executable file with the extension . vnopt i ons.

For example, if your executable is named hel | 0. exe, the name of the VM parameter file is
hel | 0. vnopti ons. For GUI launchers on macOS, an additional . viopt i ons file inside the
application bundle with the relative path Cont ent s/ viropt i ons. t xt is read.

In the . vnopt i ons file, each line is interpreted as a single VM parameter and the last line must
be followed by a line feed. install4j adapts your . vinopt i ons files during the compilation phase
so that the line endings are suitable for all platforms. For example, the contents of the VM
parameter file could be:

- Xnk256m
- Xms32m

The . vopt i ons files allow the installer as well as expert users to modify the VM parameters

for your generated launchers.

It is possible to include other . vnopt i ons files from a . viopt i ons file with the syntax

85

-include-options [path to other .vnoptions file]

Recursive includes are supported. You can also add this option to the fixed VM parameters of a
launcher. In that way, you do not have to create . vnopt i ons files for all your launchers, but you
can have a single . viopt i ons file for all of them.

This allows you to to centralize the user-editable VM options for multiple launchers and to have
. vropt i ons files in a location that can be edited by the user if the installation directory is not
writable. You can use environment variables to find a suitable directory, for example

-include-options ${APPDATA}\ My Appli cation\ny.vnoptions
on Windows and
-incl ude-options ${HOVE}/. nyApp/ ny. viopt i ons

on Unix. If you have to decide at runtime where the included . vinopt i ons file is located, use an
installer variable:

-include-options ${installer:vnmOpti onsTargetDirectory}/ my.vnoptions

and add a "Replace installer variables in a text file" action to replace it after you have set the the
vinOpt i onsTar get Di r ect or y installer variable to a suitable path with a "Set a variable" action.

In addition to the VM parameters you can also modify the classpath in the . vimopt i ons files
with the following options:

+ -classpath [classpath]
Replace the classpath of the generated launcher.

+ -classpath/a [classpath]
Append to the classpath of the generated launcher.

+ -classpath/p [classpath]
Prepend to the classpath of the generated launcher.

Instead of adding your own . vnopti ons to the distribution tree, you can set up an initial
. viopt i ons file on the "VM options file" step of the launcher wizard, either with a template or
with your own pre-defined content. Overwrite mode and file rights can also be configured in this
step.

86

& Modify Launcher X

1. Select type Generate file for user-editable VM parameters

2. Bxecutable info

2 lcon A VM options file is placed next to the launcher with the same file name and a . vmoptions extension. It
4, Java invocation contains one VM parameter per line for the launcher. If a VM options file is found in the distribution tree,

5. VM options file it takes precedence over the generated file.

6. Splash screen

See the help topic on VM parameters for more information.
7. Finished

Do not generate a vmoptions file
Copy template file with explanations for user
C) Generate with the following contents:

Include the common wmeptions file that is located in a user-writable location
-include-optiens &installervmoptionsTargetDirectoryl/hello.vmoptions

P Insert Variable

Overwrite mode: MNever hd O
Unix file mode: 644 Reset To Default 0
@ Help 4 Back Next P Finish Cancel

Environment variables

You can use environment variables in the fixed VM parameters and in the . viopt i ons file with
the syntax ${vari abl eNane} replacing vari abl eName with the name of the environment
variable.

This environment variable syntax also works in the arguments text field and the classpath
configuration.

"Add VM options" action

With the "Add VM options" action [p. 178], you can handle VM parameter additions to the
. vropt i ons file in the installer. The action creates a. viopt i ons file if necessary or adds your
options if it already exists.

A number of VM parameters can only occur once, so the action replaces the following parameters
if they already exist:

¢ -Xmx
+ -Xms
+ -Xss

+ -Xloggc

+ -Xbootclasspath

+ -verbose

+ -ea/-enableassertions
+ -da/-disableassertions
+ -splash

as well as the install4j-specific classpath modification options that can be used in . viopt i ons
files.

87

Screens 8. Actions

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.

’ Installer (3 screens) [0 instal... +
* \ Startup (1 action) b 4
ik Welcome (1 action) [ID 2] p
ik Installation location (2 ac...

@ Load a responsefile [1...

) Add VM options [ID 24]

i¢ Installation components [...

k- Installation (3 actions) [ID...

f— a
@k | Finish [ID 20]

1+ Uninstaller (4 screens) [I0 u.. é’g’

o’.’

M

To set an - Xnx value to a fraction the total memory of the target system, you can use a "Set a
variable action" that calculates the numeric part of the - Xnx value using the utility method
Syst em nf 0. get Physi cal Menory(). In the second step you use that variable in the "VM
options" property of the "Add VM options" action. For example, if you want to set the maximum
heap size to 50% of the total memory, you do the following after the "Install files" action:

Configuration
Launcher

VM options

mac0S

Target file on macOs
Error Handling

[Select a launcher]

Contained in the application bundle
Failure strategy Continue on failure
Error message

Control Flow

Condition expression

Rollback barrier

Can be executed multiple times

Privileges

Action elevation type

Add VM options

Adds VM optiens for a launcher by modifying or creating a . vmoptions file or by

changing the Info.plist file. This action will be automatically reverted by the 'Uninstall files'

action.

1. Add a "Set a variable" action with variable name "xmx" and a script of

"-Xnmx" + Mat h. round(Syst em nfo. get Physi cal Memory() * 0.5 / 1024 / 1024) + "ni

2. Add a "Add VM options" action with VM options

${installer:xnx}

88

A.15 JRE Bundles

When deploying a Java application, it is recommended to bundle a JRE. While a JRE with the
required version may be available in a controlled environment, it is generally far less error-prone
to ship a JRE with each media file. Any JRE bundle that is installed by install4j is private to your
application and will not interfere with other applications.

install4j offers two ways to create JRE bundles. You can either let install4j download JDK archives
from well-known OpenJDK providers and create JRE bundles from them on the fly, or you can
create JRE bundles yourself from installed JREs.

How JRE bundles work at runtime

install4j automatically adjusts the JRE search sequence [p. 36] of all generated launchers and
includes the bundled JRE as the first choice. A bundled JRE is used automatically by the installer,
the uninstaller, custom installer applications and the generated launchers.

A bundled JRE will always be distributed inside the installation root directory [p. 14], on Windows
and Linux/Unix in the directory

<installation directory>/jre
and on macOS in
<content directory>/.install4j/jre.bundle

The content directory is available from the installer runtime variable sys. content Di r and
resolves to the installation directory for folder media file types and Cont ent s/ Resour ces/ app
for archive media file types. The actual location of the JRE installation directory is available from
the installer runtime variable sys. pr ef err edJr e after the "Install files" action has run.

When you update your application and include a new JRE bundle, the old JRE bundle will be
deleted prior to the installation, so that any files left over from the old JRE cannot interfere with
the new JRE. With the "Update bundled JRE" property of the "Install files" action you can disable
updates of JRE bundles.

Generated JRE bundles

On the "General Settings->JRE Bundles" step, you can use the release chooser dialog to select a
release from which you would like to create the JRE bundles. The available platforms are listed
next to each release. The standard platform IDs are

* Wi ndows- antd64 for 64-bit Windows
* wi ndows- x86 for 32-bit Windows

* macos- and64 for macOS on x64

* macos- aar ch64 for macOS on ARM
* |i nux- and64 for 64-bit Linux

* |i nux-x86 for 32-bit Linux

Other platforms may be provided by the DK providers and are usable in the Linux/Unix media
files.

89

By default, AdoptOpen|DK "is set as theJDK provider and is recommended for general purpose

usage. For JavaFX applications, the Liberica® and the Zulu" providers are convenient, because
JavaFX is already included and you don't have to work with separately downloaded JMOD files.
Liberica also offers an especially wide range of Linux architectures. For Swing desktop applications,

the JetBrains Runtime “ is the best choice because it contams a lot of fixes that are not included

in the upstream OpenJDK. Finally, Amazon Corretto is an Open)DK distribution that focuses
on including additional fixes and patches from the main branch and other sources into older
releases.

Oh * P gk g
H ¢ © % % T al O
Mew Open Save Project Build Dry Test Stop show
Droject Project Project Repor nae === Project Run Inasller A0 IDs =9
v - JRE Bundles
j General Settings - 7
In this step, you cenfigure the JDK that will be used for generating JRE bundles that can be
Application Info distributed with yeur media files.
4 JRE Bundles
DK release: | Adoptium | 18/dk-18021+1 | b ||~ @ | Show All Modules

Search Sequence
Included Modules
Languages
Which modules are included in a JRE bundle is determined from 3 Show Included Modules
Media File Optiens sources, separately for each media file.

Code Signing E] The minimum module requirements of the install4j runtime @

Compiler Variables
E] The I Select Release X
Merged Projects

18
i Sele
Project Options E] " jdk-18.0.2.1+1 [linux-aarch6d, linux-amded, Imux arm, linux- 5390x macos-
E' 7 jdk-18.0.2+9 [alpine-linus 6 arrn, li
Files] jdk-18.0.1+10 [alpine- arm,

arm, linc

| jok-18+36 [alpine-linuc-

17
9 Launchers 16

i

amd6d, linux-aarc

Installer

Selecting a release folder node in the chooser dialog rather than a node for a specific release
willinsert a key endingin/ | at est . At compile time, the latest release that includes the required
platform will be taken.

To add new JDK providers, an SPI is provided in r esour ce/ j dk- provi der . j ar . The associated
Javadoc in the archive r esour ce/ j dk- pr ovi der - j avadoc. j ar has more information.

Downloaded JDK bundles contain all kinds of modules that you do not need in your distribution.
On the other hand, you may have a set of JMODs that have to be linked into the JRE bundle, such
as JavaFX®. With your configuration in the module selector you can include a base set of modules,

single named modules and additional J]MODs. By default, a "JRE" with commonly used modules
is linked, but the module sets "Minimum" and "All" are also available.

install4j always adds modules that are required by the install4j runtime. This includes the j ava.

deskt op module which is required even if you only want to create console installers or archives.
In addition, install4j scans the module requirements of your generated launchers [p. 36] and
adds them automatically. With the Show included modules button, you can show the actual list

1
2

https://adoptopenjdk.net/

https://bell-sw.com/
3

4
5
6

https://confluence.jetbrains.com/display/JBR/JetBrains+Runtime
https://aws.amazon.com/de/corretto/

)
)
) https://www.azul.com/downloads/zulu-community/?package=jdk
)
)
)

https://openijfx.io/

90

https://adoptopenjdk.net/
https://bell-sw.com/
https://www.azul.com/downloads/zulu-community/?package=jdk
https://confluence.jetbrains.com/display/JBR/JetBrains+Runtime
https://aws.amazon.com/de/corretto/
https://openjfx.io/

of modules that will be added to the JRE bundle. In Java 7 and Java 8 there is no module system,
so the entire JRE is bundled for those versions.

JRE Bundles N7

In this step, you configure the JOK that will be used for generating JRE bundles that can be distributed with your media files.

IDK release: | Adeptium - 18/jdk-18.0.2.1+1 |- @ Show All Modules
Included Modules | Define Module Entry X
Which modules are included in a JRE by Entry Type es

0 Selected IDK Modules Default JDK modules JMOD JMOD directory
1 | The minimum madule requirem

Detail
2 | The module graph of all include
Module names: »

3 | Selected additional modules @ Exclude modules &)

5 Module set Common JRE: £dd or exclude one or more module names from the selected IDK separated by | ﬂ
commas. Use the chooser button te select modules.

In the "Bundled JRE" step of the media wizard, the "Generate a JRE bundle" option is selected by
default. You can, setitto "Do not bundle aJRE" in order to create media files without JRE bundles.
Furthermore, you can customize the common JRE bundle configuration.

In addition to overriding the JDK provider and the release, you can specify additional modules
and JMOD files that should be included for the current media file. The Show included modules
button on this step uses the JDK bundle for the target platform unlike the corresponding button
on the "General Settings->JRE Bundles" step which uses the DK bundle for the current platform.
This can lead to slight differences because JDKs contains platform-specific modules.

91

M Media Wizard - Windows

X
1. Media file type Bundle a JRE with your application
2. Installer options
3. Data files You can bundle a JRE with your application. The extracted JRE will be placed in the Jre folder below your
1, Executable processing installation root directory. All launchers in this media file will use this JRE as their first choice,
5. Bundled JRE
u ° Generate a JRE bundle o
- JRE bundle installation Override JDK release
6. Customnize project defaults Additional modules:
7. Finished

* Medule jdk.compiler o
JMOD directory javafx\windows

.y
Use Pack200 (Java 8 and lower) @) Show Included Modules
Use a pre-created JRE bundle @
Do not bundle a JRE
@ Help 4 Back Next P Finish Cancel

For Unix/Linux media files, the actual platform must be defined on the "Bundled JRE" step of the
media wizard. By default, it is set to | i nux- and64 which stands for 64-bit Linux. The chooser
button displays a dialog with all platforms that are available for the selected release.

) Media Wizard - Unix/Linux GUI installer

X
1. Media file type Bundle a JRE with your application
2. Installer opticns
3. Data files ou can bundle a JRE with your application. JRE bundles may not werk on specialized Linux distributions

4. Bundled JRE where commen libraries for the selected bitness are not installed.

The extracted JRE will be placed in the jre folder below your installation root directory. All launchers in this

+ JRE bundle installation media file will use this JRE as their first choice.

+ JRE Search Opticns
5. Customize project defaults o Generate a JRE bundle €
E. Finished
Override JDK release

I?'\atform: linux-amdéd 3 IO

Additional modules:

If Java 8 is bundled, you can optionally deactivate the Pack200 compression for JAR files in the
JRE. In archives, for example, these JAR files are decompressed the first time when a generated
launcher is executed, adding a possibly undesired lag. That is why Pack200 compression is not
selected by default for archive media files. Pack200 compression is unavailable for macOS single
bundle archives where the signature requirements forbid the modification of any included files.

install4j will cache both downloaded JDK bundles as well as generated JRE bundles in the JRE
cache directory

%4 OCALAPPDATA% i nst al | 4j \ v<ver si on>\ cached_jres

on Windows.

92

~/ Li brary/ Caches/instal | 4j / v<ver si on>/ cached_j res

on macOs, and
.caches/install4j/v<version>/cached_jres

on Linux and Unix where the root directory can be modified with the environment variable
XDG_CACHE_HOME.

You can move the contents of this directory including the subdirectories "original" and "generated"
to another machine to avoid downloads and speed up compilation. You can also delete this
directory to force install4j to re-download all JDK bundles and generate new JRE bundles.

Pre-created JRE bundles

You can create a JRE bundle from any installed JRE on your file system. install4j offers the "Create
a JRE bundle" wizard in the "Project" menu to make this task as simple as possible.

I Create JRE Bundle For installdj x

1. Welcome Select the JRE
2. Select JRE

3. Bundle options
4. Modules
5. Create bundle
6. Finished

Please choose the Java heme directory of the JDK for which a JRE bundle should be
created.

The JDK configured on the "General Settings->JRE Bundles” step must have the same
major version number, otherwise the downloaded JDK tools that are required to produce
the JRE bundle will not work.

ChUsershingo\jdks'jbrsdk-17-b135.1

© Help 4 Back Next P Cancel

If you wish to automate the process, a command line tool [p. 234] for building JRE bundles is
available with corresponding tasks in the Gradle, Maven or ant integrations.

Packaging your own JRE can be useful if you want to use JDK providers not supported by install4;
(such as the official Oracle JDKs), or if you want to use runtime images that were created by jlink

") The JRE bundle wizard only works for the platform you are running on. That means, to create
a JRE bundle for Windows, you have to run install4j on Windows, to create a bundle for Linux,
you have to run install4j on Linux.

All JREs are saved with at ar . gz extension to the root of the pre-created JRE directory which is

%4 OCALAPPDATA% i nst al | 4j \ v<versi on>\jres

on Windows.

) https://docs.oracle.com/en/java/javase/11/tools/jlink.html

93

https://docs.oracle.com/en/java/javase/11/tools/jlink.html
https://docs.oracle.com/en/java/javase/11/tools/jlink.html

~/ Li brary/ Application Support/install4j/v<version>/jres

on macOs, and
.local /share/install4j/v<version>/jres

on Linux and Unix where the root directory can be modified with the environment variable
XDG_DATA_HOVE.

Pre-created JRE bundles can be selected in the "Bundled JRE" step of the media wizards

& Media Wizard - Windows X

1. Media file type Bundle a JRE with your application
2. Installer options
3. Data files You can bundle 5 JRE with your application. The extracted JRE will be placed in the jre folder below your

installation root directory. All launchers in this media file will use this JRE as their first choice.

4. Executable processing
5. Bundled JRE
u Generate a JRE bundle €

+ JRE bundle installation
6. Customize project defaults
7. Finished

If you would like to put your JRE bundles into a different directory, such as a directory in a
version-controlled location, you can copy the . t ar . gz file to that directory with the Copy Bundle
File button and choose "Manual entry" in the JRE bundle drop-down to enter the path to the
bundle file.

Dynamically downloaded JRE bundles

By default, JRE bundles are statically bundled and are always distributed along with your
application. A dynamic bundle is downloaded on demand. If the user already has a suitable JRE
installed, that JRE will be used. If there is no such JRE available on the target machine, the installer
will download the dynamically bundled JRE from the URL that you have specified on the "Bundled
JRE" step of the media wizard.

To enable the download on demand, you have to make the . t ar. gz JRE bundle archive file
available on a web server so that the configured HTTP downl oad URL will point to that bundle
archive. The URL has to be of the form https://ww. nyserver. coni somrewher e/
wi ndows- x86-11. t ar. gz. The build output displays the location of the JRE bundle file.

94

M Media Wizard - Windows X

1. Media file type Choose options for the installation of the JRE bundle
2. Installer options
3. Data files Bundle Type
4. Executable processing It is recommended te choose the static bundle option te include a JRE directly in the media file. This
5. Bundled JRE guarantees that a suitable JRE is always available.

- JRE bundle installation Static bundle @
6. Customnize project defaults Io Dynamic bundlel @
7. Finished

HTTP download URL:| https://myserver.com/bundles/windows-amd6&4-17 tar.gz > @

Start download without user confirmation, if necessary O

Installation options
Install as a shared JRE O
Install only if no other suitable JRE is found @)
Sharing opticns

Sharing |D for shared JRE installations: » @

@ Help 4 Back MNext P Finish Cancel

If the installer determines that there is no suitable JRE present, it will ask the user whether the
JRE should be downloaded. If the Start downl oad without user confirmation, if
necessary check box has been selected, that confirmation is skipped and the download starts
immediately.

If the download fails or is aborted by the user, the download URL will be displayed together with
instructions on where to place the downloaded bundle archive.

You can override the default JRE search in a Windows installer executable by passing the argument
- manual to theinstaller executable. The installer will then report that no JRE could be found and
offer you to locate one in your file system. If you have set up a dynamic JRE bundle, it will also
offer to start the download. This is a good way to test if your download URL is correct.

Shared JRE bundles

On Windows, Linux and Unix, it is possible to install JRE bundles as "shared", meaning that other
installers generated by install4j will be aware of these bundles. A shared JRE bundle will not be
uninstalled when the application that has installed the bundle is uninstalled itself.

& Media Wizard - Windows X
1. Media file type Choose options for the installation of the JRE bundle
2. Installer options
3. Data files Bundle Type
4. Executable processing It is recommended to choose the static bundle option to include a JRE directly in the media file. This
5. Bundled JRE guarantees that a suitable JRE is always available.

+ JRE bundle installation Static bundle (7]
6. Customize project defaults © Dynamic bundle @
7. Finished

HTTP download URL: r @

Start download without user confirmation, if necessary O

Installation options
I Install as a shared JRE IO
Install only if ne other suitable JRE is found)

Sharing opticns

Sharing |D for shared JRE installations: » @

@ Help 4 Back Next P Finish Cancel

95

Note that installers generated by install4j will never install a JRE on the system path or make
Windows registry changes. The term "shared installation" only applies to applications distributed
with install4j. Other applications will not be able to use such a JRE.

Both the installer that installs the shared JRE as well as the installers that want to use the shared
JRE have to set the "Sharing ID" to the same string. This ensures that there is no sharing between
installers that have different requirements for the JRE, such as the included modules.

If you dynamically bundle a shared JRE for multiple installers, the bundle will only be downloaded
the first time when a user installs one of your installers. Subsequent installations of other installers
will find the shared JRE installation.

JRE bundle format

In special cases you might want to create or modify a JRE bundle programmatically, without using
the install4j IDE or the command line tools. This can be done with the standard GNU tools t ar
and gzi p. A JRE bundle for install4j is simply a file with the naming scheme:

[operating systenj-[architecture]-[JRE version].tar.gz

For windows bundles, the operating system name must be "windows", for macOS "macos", and
for Linux and Unix any name can be used. The . t ar . gz file contains the JREbi nand| i b folders
as top-level entries. The steps to create a bundle are outlined below:

cdjre

tar cvf mnix-x86-11.tar *

gzi p m ni x-x86-11.tar

cp mni x-x86-11.tar.gz $HOVE/ .| ocal /share/.install4j/v<version>/jres

First you change into the top-level directory of the JRE, then you tar all files and directories and
gzip the tar archive.

96

A.16 Services

Many applications have a component that has to runin the background without user interaction.
On Windows, this is called a "service", on Unix a "daemon", in install4j the term "service" is used
exclusively. install4j can generate service launchers for your application on all supported platforms.
On Windows, managing services is a particularly demanding area and so other service executables
that have not been generated by install4j are supported as well.

Generated service launchers

A service launcher will be generated if the selected executable type in the "Executable" step of
the launcher wizard is set to "Service".

& Modify Launcher X
1. Select type Configure executable
2. Executable info
Executable type: GUI application (7]

+ Redirection (7]

+ Single instance mode e

+ Windows version info o

+ Windows manifest options Console application (7]

+ Unix options I() Service IO

+ macOS5 options

. Menu integration Executable name: | hello_service @

+ Auto-update integration File set @ Default file set v @
3. lcon
4. Java invocation Directory: bin r - @

5. VM opticns file
6. Splash screen
7. Finished [Change working directory to: . | @

Fail if an exception in the main thread is thrown ©)

w Advanced Options

OHeIp 4 Back MNext P Finish Cancel

There are no special requirements and interfaces that have to be used by your code. When the
service is started, the mai n method of the configured main class will be called just like for GUI
or console launchers. Also, there is no special "shutdown" interface that is notified when the
service is stopped. To perform cleanup, use the Runti ne. addShut downHook() method to
register a thread that will be executed just before the JVM is terminated.

If you define a service launcher, it will not run automatically after the installation. A generated
service launcher has to be installed and started explicitly. To do that, you have to add the following
actions to the installer:

* Install a service

This action registers a service with the system, so that it can be executed automatically when
the computer is started. By default, the name of the installed service is the launcher name
that is configured in the launcher section of the install4j IDE. In order to change the service
name you have to rename the launcher.

97

General

Service Hello Werld Service

Auto start

Description A service that says hello every 2 seconds
Windows

Windows arguments

Windows dependencies

Windows custom display name [Use service name]
Windows prigrity Mormal
Account Local System

Keep current account
Restart on failure
Interactive

Delayed auto start

Install a service

Installs a service. On Windows, this is dene by executing the service launcher with the
apprepriate arguments. On Unix, if systemnd is detected, a config file will be created in
/etc/systemd/system otherwise a link will be placed in /etc/init.d. On mac05, a
LaunchDaemon will be created. This action will be automatically reverted by the ‘Uninstall
files' action,

If @ helper process with elevated privileges has been created by the "Request privileges”
action, this actien is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges” for more information.

On Windows, if you require a user-configurable service name or if you wish to install the service
multiple times, use the method for external service launchers as described below.

+ Start a service

Installing a service does not start it immediately and you have to add this separate action to
actually run the service.

General

Service Hello World Service
For "Auto start installations" only

Error Handling

Failure strategy Continue on failure
Error message

Control Flow

Condition expression context.getBooleanVariable("installService”)
Rollback barrier

Can be executed multiple times

Privileges

Action elevation type

Start a service

Starts a service by executing the service launcher with the appropriate arguments.
If a helper process with elevated privileges has been created by the "Request privileges"

action, this actien is pushed to the helper process, Please see the help topic on "Elevation
Of Privileges” for mere information.

When the "Install Files" action runs and a previous installation is being updated, any running
services that are associated with the same executables are stopped.

Windows user accounts

On Windows, you can configure the user account that is used for running the service. There are
a few well-known user accounts, like "Local System" (the default) or "Local Service" that you can
choose directly in the configuration of this action.

In some cases, you might want to create a separate user to run a service. install4j offers API
support for creating new user accounts withthecom i nst al | 4j . api . wi ndows. W nUser class.
If you would like to query the user for details on the user account, it is possible to do that without

98

using the API. On a configurable form, add a "Windows user selector" component and select the
"Show 'Create User' button" property.

cﬁ- Multi-line HTML label [ID 1362] & Configuration
Check box (1D 1568 Show users
e Checkbox 101557 I 5. “C o Vs bston
__I Vertical group (3 form components) [... p Variable for user creation flag userCreated
cﬁ Check box [ID 1572] Variable for local group localGroupForCreatedUser
t Y Variable for group creation ... groupCreated
.—-[Vertical group (2 form componen... - Password form component Password field [ID 1570]
dlﬁ Windows user selector [ID 1369] Show groups
qﬁ- Password field [ID 1570] Show well-known principals
Multiple selection
a Only local objects
Allow configuration on screen
‘#’ Help
Help text
Initialization
Initialization script
Reset initialization on previous
Visibility script Util.isWindows()
Label
Tenes Arcoun: VA
i
Show "Create User” button
If selected, a button to create a new user will be displayed next to the "Browse”
button, On clicking that button, a separate dialeg will be shown where the new
W user can be configured.

The SID of the created or selected user is saved to the configured variable, say "serviceUser".

You also have to query the user for the password of the account. For that purpose, add a
"Password field" form component, set its variable to "servicePassword" and choose that form
component in the "Password form component" property of the user selector form component.

In the "Install a service" action, you can then choose O her in the "Account” property and enter
${installer:serviceUser} in the nested "Account name or SID" property as well as
${install er:servi cePasswor d} inthe nested "Password" property.

General

Service Hello Werld Service

Auto start

Description A service that says hello every 2 seconds
Windows

Windows arguments

Windows dependencies

Windows custom display name [Use service name]
‘Windows prigrity Mormal
Account Other
Account name or SID §{installenserviceficcount}
Password §{installer:servicePassword}

Keep current account

Restart on failure

Install a service

Installs a service. On Windows, this is dene by executing the service launcher with the
apprepriate arguments, On Unix, if systemd is detected, a config file will be created in
/etc/systemd/system otherwise a link will be placed in /etc/init.d. On mac05, a
LaunchDaemon will be created. This action will be automatically reverted by the ‘Uninstall
files' action,

If @ helper process with elevated privileges has been created by the "Request privileges”

action, this actien is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges” for more information.

Command line options of generated service launchers

Under some circumstances, services must be able to be installed and started manually from the
command line. While this is required functionality on Unix, service executables on Windows
usually offer no command line functionality. Instead, it is expected that there is a special program
that installs and uninstalls the service.

99

This task is handled by the "Install a service" and "Uninstall a service" actions in install4j. In
addition, you can start and stop services in the Windows service manager. install4j includes the
"Start a service" and "Stop a service" actions to do this programatically in the installer.

To improve usability, install4j adds Unix-like arguments to the generated service launchers on
Windows as well. For Unix and Windows service executables, the usual

my_service start | my_service.exe /start
my_service stop | my_service.exe /stop
nmy_service status | my_service.exe /status
nmy_service restart | my_service.exe /restart

options for daemon start scripts are supported. The stop command waits for the service to shut
down. The exit code of the status command is 0 when the service was running, 3 when it was
not running and and 1 when the state cannot be determined, for example when it is not installed
on Windows.

For debugging purposes, you may want to run the executable on the command line without
starting it as a background service. This can be done with the r un parameter.

ny_service run | ny_service.exe /run

In that case, all output will be printed on the terminal. If you want to keep the redirection settings,
use therun-redirect parameter instead.

To install or uninstall a service on Windows from the command line, call

nmy_service. exe /install
my_service. exe /uninstall

In this way, your service is always started when Windows is booted. To prevent the automatic
startup of your service, call

nmy_service. exe /install-denmand

instead. As a second parameter after the/ i nst al | parameter, you can optionally pass a service
name. In that way you can

+ install a service with a different service name than the default name.

+ Usethe same service executable to start multiple services with different names. To distinguish
several running service instances at runtime, you can query the system property exe4j .
| aunchNane for the service name. Note that you also have to pass the same service name as
the second parameter if you use the/start,/restart,/status /stop and/uninstall
parameters.

On Windows, all command line switches also work with a prefixed dash instead of a slash, like
-uni nst al | or with two prefixed dashes, like - -uni nstal | .

External service launchers on Windows

When deploying third-party software, you may want to install and start services that were not
generated by install4j. Both the "Install a service" action as well as the "Start a service" action
provide a way to select other service executables. If you choose [&t her servi ce execut abl €]

100

in the drop-down list of the "Service" property, two new nested properties are shown: In the
"Executable" property you set the path of the external service executable and the "Name" property
allows you to specify the name of the installed service.

General

Service [Other service executable]
Executable bin\temcat.exe
MName Tomcat web server

Auto start

Description

Windows

Windows arguments
Windows dependencies

Windows customn display name [Use service name]
Windows prigrity Mormal
Account Local System

Keep current account

Restart on failure

Install a service

Installs a service. On Windows, this is dene by executing the service launcher with the
apprepriate arguments, On Unix, if systemd is detected, a config file will be created in
/etc/systemd/system otherwise a link will be placed in /etc/init.d. On mac05, a
LaunchDaemon will be created. This action will be automatically reverted by the ‘Uninstall
files' action,

If @ helper process with elevated privileges has been created by the "Request privileges”

action, this actien is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges” for more information.

Note that this action does not provide "service wrapper" functionality for regular executables.
The selected executable has to be a service executable, otherwise the action will not work.

101

A.17 Elevation Of Privileges

Most operating systems have the concept of normal users and administrators. While regular
applications can run with limited privileges, installers often need full administrator privileges
because they make modifications to the system that are not granted to limited users.

The required privileges depend on two factors: The operating system and the type of operations
that are performed by the installer. The "Request privileges" action that is present in the "Startup"
sequence of the default template for installers takes care of elevating the privileges to the required
level and optionally terminating the installer with an error message if the required privileged
cannot be obtained.

Due to the differences of the different operating systems, this configuration is made separately
for Windows, macOS and Unix.

Screens 8. Actions N7

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4] offers a rich set of screens and actions to choose from.

2 Installer (5 screens) [0 instzl... EF Windows
+ . Try to obtain full privileges if admin user
) Startup (1 action) x Try to obtain full privileges if normal user
0 Request privileges [ID ... p Show failure if requested privileges can...
I8 Welcome (1 action) 1D 7] mac(s

- Try to obtain root privileges if admin user

#k | Installation location (1 ac... Try to cbtain root privileges if normal u...

j= Installation components [... Show failure if requested privileges can...
b Installation (3 actions [ID... Lo .
f— Linux privilege requirement Mone
#k | Finish [ID 20] 3 Unix
{I‘ Uninstaller (4 screens) [0 u... Show failure if current user is not root
é;g, Error Handling
Failure strategy Continue on failure

Error message
Fall back to user specific installation dir...

Cortral Elos:

Request privileges

Requests configurable administrator privileges. On Windows Vista and higher and on
macQ5, the installer will be restarted with the requested privileges or a helper process will
be created that can perferm certain actions in a privileged context. When you restart the
installer, you should not install files before this action.

Please see the help topic on "Elevation Of Privileges” for a detailed discussion of this action.

If the action fails, you can choose to not display an error message and switch to an installation
directory in the user home directory with the "Fall back to user specific installation directory"
property. Use Ut i | . hasFul | Admi nRi ght s() in condition expressions of actions that only work
with elevated privileged in this case.

For the installer and the uninstaller, the privileges should be the same. This is why the default
template for the uninstaller has a "Request installer privileges" action that will request the same
privileges that were obtained in the installer.

102

Screens 8. Actions N7

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.

’ Installer (3 screens) [0 instal... # General

Show failure if required privileges canno...
1+ Uninstaller (4 screens) [ID u... x 4 " 9

Error Handling

+ . . .
= Startup (2 actions) el Failure strategy Continue on failure
@' Load a response file [1... Error message
— - Y Control Flow
O Require installer privile... il Condition expression
j= Uninstall Welcome [ID 24] Rollback barrier
T+ Uninstallation (1 action) [Can be executed multiple times
f— Privileges
ik Uninstallation failure [ID 22] 3 Action elevation type

i& Uninstallation success [ID ..

&
-]
¢ Require installer privileges
Require the same privileges as the ones that were obtained during the installation. On
Windows Vista and higher and on macQ5, the uninstaller or custom installer application
will be restarted with the requested privileges if necessary. This action only has an effect if a
N "Load response file" action is executed previcusly.

Please see the help topic on "Elevation Of Privileges” for a detailed discussion of this action.

If you have more complex requirements, you can have multiple "Request privileges" actions with
appropriate condition expressions, each with a link in the uninstaller.

Windows privileges

On Windows, "User Account Control" (UAC) " limits privileges for all users by default. An
application can request full privileges, with different effects for normal users and admin users:

+ A normal user cannot be elevated to full privileges, so the user has to enter credentials for
a different administrator account. A normal user is not likely to have these credentials, so by
default the "Request privileges" action does not try to obtain full privileges for normal users.

Under some circumstances, for example if you want to manage services in your installer, you
absolutely require full privileges. In this case, you can select the "Try to obtain full privileges
if normal user" property in the Windows category.

* An admin user can be elevated. A UAC prompt will be shown in this case and the user simply
has to agree in order to elevate privileges for the installer. Given that it is not possible to write
to the program files directory without elevated privileges, this elevation is performed by
default. With the "Try to obtain full privileges if admin user" property you can configure this
behavior according to your own needs.

M http://en.wikipedia.org/wiki/User_Account_Control

103

http://en.wikipedia.org/wiki/User_Account_Control

Windows
Try to obtain full privileges if admin user
Try to obtain full privileges if normal user

Show failure if requested privileges can...
mac0S
Try to obtain root privileges if admin user

Try to obtain root privileges if normal ...

Show failure if requested privileges can...

Linunx

Linux privilege requirement MNone

Unix

Show failure if current user is not root

Error Handling

Failure strategy Continue on failure
Error message

Fall back to user specific installation dir...

Comtral Elos

By default, the installer will fail if the requested privileges cannot be obtained. You can deselect
the "Show failure if requested privileges cannot be obtained" property in the Windows category
to continue and let the user install into the user home directory or another writable directory.

When you insert a service action and the elevation properties are not selected, you will be asked
whether the necessary changes should be made automatically.

macOS privileges

Similar to Windows, macOS limits privileges for all users by default and normal users and admin
users behave differently with respect to privilege elevation:

+ Anormal user cannot be elevated to full privileges, so the user has to enter the root password.
A normal user is not likely to have the root password, so the "Request privileges" action does
not try to obtain full privileges for normal users by default.

+ To elevate an admin user, an authentication dialog will be shown and users have to enter
their own password. Contrary to Windows, admin users can always write to the/ Appl i cat i ons
directory, even without full privileges. That is why on macOS no elevation of privileges is
requested by default.

Windows

Try to obtain full privileges if admin user
Try to obtain full privileges if normal user
Show failure if requested privileges can...

mac0S
Try to obtain root privileges if admin user

Try to obtain root privileges if normal ...

Show failure if requested privileges can...

Linunx

Linux privilege requirement MNone

Unix

Show failure if current user is not root

Error Handling

Failure strategy Continue on failure
Error message

Fall back to user specific installation dir...

Comtral Elos

Like on Windows, the installer will fail by default if the requested privileges cannot be obtained.
In the default setting this has no effect, because privileges are never requested.

Service installations require full privileges, so the "Try to obtain full privileges if admin user" and
the "Try to obtain full privileges if normal user" properties in the macOS category should be
selected in that case. Again, the necessary changes will be suggested when service actions are
inserted into the project.

104

Unix privileges

install4j does not support elevation of privileges on Linux and Unix. Partly this is due to the
differentincompatible systems of elevation, most notably "su" and "sudo" which cannot be easily
detected. If full privileges are required, the user has to elevate the installer manually, either with
"su" or with "sudo" or with the corresponding GUI tools. In this case, the "Show failure if current
user is not root" has to be selected, so that an error message is shown if the installer is not
started as root.

Windows

Try to obtain full privileges if admin user
Try to obtain full privileges if normal user

Show failure if requested privileges can...
mac0S

Try to obtain root privileges if admin user

Try to obtain root privileges if normal ...

Show failure if requested privileges can...
Linux

Linux privilege requirement MNone

Unix
Show failure if current user is not root

Error Handling

Failure strategy Continue on failure
Error message

Fall back to user specific installation dir...

Countral Elos:

Elevation mechanism

install4j does not elevate the entire process, but it starts an elevated helper process with full
privileges.

Elevated
helper Elevated Elevated
process action code
A
A
pushes pushes
launches down | elevates\ up
Original
un:eglevated Unelevated Unelevated
process code action

displays

105

All actions have an "Action elevation type" property that can be set to "Inherit from parent", "Do
not elevate" or "Elevate to maximum available privileges". The root element in the hierarchy or
beans is always an installer application whose "Action elevation type" property is set to "Do not
elevate" by default.

General

Script

Optional Rollback Script

Error Handling

Failure strategy Continue on failure
Error message

Control Flow

Condition expression

Rollback barrier

Can be executed multiple times

Privileges

Action elevation type Inherit from parent [Do not elevate]

Inherit from parent [Do not elevate]
Do not elevate
Elevate to maximum available privileges

An action whose "Action elevation type" property results as "Elevate to maximum available
privileges" will run in the elevated helper process. Such an action has full access to all installer
variables as long as the contents of the variables are serializable.

Actions can have a preferred elevation type that is set automatically when you add the action.
Actions that need to be elevated include

+ the "Install files" and "Uninstall files" actions
* service actions

+ actions that add rights on Windows

+ actions that write files

+ the "Run executable or batch file" action

Actions that are explicitly not elevated by default include

+ the "Show URL" action

+ the "Show file" action

+ the "Execute launcher" action

+ actions that should run as the original user, such as registry actions
* actions that interact with the GUI of the installer application

Elevated code can only interact with the GUIl in a limited way. All methods inthecom i nst al | 4j .

api . Uil class for displaying message dialogs or option dialogs are supported. You cannot call
cont ext . get W zar dCont ext () or directly display a GUI using the Java Swing API. Also, calling
methodsinthecom api . i nstal | 4j . cont ext. Cont ext that change screens is not supported.
Most importantly, because an elevated action runs in a different process, you cannot access any
static state in custom code. The only means to modify state from elevated actions are installer
variables.

For your own scripts or your custom code, the API offers a way to push a piece of code to the
elevated helper process or to the original process if they exist. This is done by wrapping the code
inacom install4j.api.context. RenoteCall abl e and calling cont ext . r unEl evat ed(.

106

..) forthe elevated helper process and cont ext . r unUnel evat ed(
with the Renot eCal | abl e:

cont ext . runEl evat ed(new Renot eCal | abl e() {
public Serializable execute() {
/1 do something in the el evated hel per process
return null;

}
}, true);

cont ext . runUnel evat ed(new Renot eCal | abl e() {
public Serializable execute() {
// do sonething in the original process
return null;
}
D)

...) forthe original process

The Renpt eCal | abl e must be serializable, so its fields can be transferred to the other process.

Its execut e() method that contains the code returns a Seri al i
result to the calling process.

107

zabl e so you can return a

A.18 Merged Projects

There are two basic motivations for merged projects: First, there are large projects where a
monolithic project file is inconvenient because multiple developers work on the same installer.
Secondly, if you have multiple products that share certain components, it is undesirable to
duplicate configuration for their installers.

The "merged projects" feature is a solution for both of these problems. You can create project
files that are separate installers by themselves, such as a "database installer" and reuse them
in multiple projects by adding them on the on the "General Settings->Merged Projects" step. On
the other hand, you can also create project files that do not install anything by themselves, but
just contain a collection of "Run script" actions that are useful in several of your installers.

Merged Projects N7

In this step, you can select other projects that should be merged into the current project. Some settings are merged
autematically, screens and actions are merged manually on the Screens & Actions tab.

@ Database [\compenents\database.install4j] EF
Merge files, launchers, custom installer applications

@ Utility actions [.\compaonentsutil.install4j]
Merge styles

Merged projects in install4j are not sub-projects that will retain their structure at runtime. Merging
inserts selected elements into the main project before the main project is compiled.

Merge options

By default, files, launchers and custom installer applications are inserted. The corresponding
merged elements are only added at compile-time and will not be visible in the main project. You
can change merge options for each merged project individually.

1 Edit Merged Project X

Merged Project

File: \components\database.installdj

MName: Database (7]
Merge Settings
Files (7]
Launchers o
Installer applications €
Styles D

Screens and actions are not merged automatically. On the Screens 8
Actions step you can merge single elements from merged projects such
as screen groups or action greups at any peint.

o Help “ Cancel

108

Merging works across an arbitrary number of levels and is performed in a bottom-to-top fashion:
If the main project Aincludes a merged project B which in turn includes a merged project C, then
Cis first merged into B and the result is merged into A.

All selections are transitive for nested merged projects. For example, if the merged project
contains another merged project for which merging of files is enabled, those files are only merged
if file merging is enabled in the main project.

Merging of files

If you have enabled file merging for a merged project, files are merged automatically according
to the following rules:

+ All files from the default file set of the merged project are merged into the default file set of
the main project.

* Roots are merged if the main project has roots with the same name, otherwise they are
discarded.

+ Files in each file set of the merged project are only merged if the main project has a file set
with the same name.

The contained files in the merged project are not displayed in the main project. When defining
installation components in the main project, you will only be able to select the entire file set. This
means that the file sets in the merged project have to be as granular as required for your main
project.

If there are files with the same relative paths, the main project has the highest precedence and
the most deeply nested merged project has the lowest precedence. For merged projects on the
same level, a project with a lower position in the list has a higher precedence than a project with
a higher position.

There is no merging of installation components. Installation components can only be defined in
the main project. However, with the appropriate definition of file sets in merged projects you
can easily contribute files to installation components in the main project. For example, if your
merged project installs your database, and you want to ask the user whether to install the
database, define a file set named "Database files" in the merged project and add all files to that
file set. In your main project, you also add a file set named "Database files".

Define Distribution Tree \N /7

In this step, you cellect all files and directories that you would like to distribute with your media files, Use drag and drop te move
entries in the definition tree.

When adding the merged project, you will be asked whether to add that file set automatically to
the main project. If file sets change later on, there is an action to repeat this synchronization.
After invoking the action, the new file sets are displayed in the definition of the distribution
tree [p. 14].

109

Merged Projects N7

In this step, you can select other projects that should be merged into the current project. Some settings are merged
autematically, screens and actions are merged manually on the Screens & Actions tab.

@ Database [\components\database.install4j] I:F

Merge files, launchers, custom installer applications

@ Utility actions [\componentsutil.install4j]
Merge styles

In your installation component for the database, choose the file set "Database files". It will not
contain any files in the IDE, but during compilation, the files from the merged project will be
added to it.

Installation Components \N /7

In this step, yeu can optionally define installation components that the user can choose for installation. If you don't define any
components, zall files in the distribution tree will be installed. The component tree is drag-and-drop enabled.

't Core files [ID 21] L | Files Options Description Dependencies
o Database [ID 82]

All files in the distribution tree
© Selected files:
o @8 Default file set

) @ Database files

Merging of launchers and custom installer applications

Alllaunchers and custom installer applications are merged if you have enabled the corresponding
option for a merged project. It is not an error if there are collisions of launchers or custom
installer applications with the same relative paths and the rules of precedence are the same as
for the merging of files. However, it is recommended not to hide launchers in this way because
this can lead to unexpected problems at runtime.

Both launchers and custom installer applications can be attributed to a particular file set. In that
case, they are only merged if the file set also exists in the main project. The attribution to a
particular installation component in the main project is done in the same way as for files.

Merging of screens and actions

Screens and actions are not merged automatically, but through a selective placement of links
on the "Installer->Screens & Actions" step [p. 156]. If merged projects are configured, the "Add
link into" menu contains an entry for each merged project.

110

Screens 8. Actions N7

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.

4 Installer (6 screens) [0 instal... +

* | Startup (1 action) Add Action
_4; Welcome (1 action) [ID 2] Add Screen
_4; Installation location (1 ac... Add Application
_.g; Installation components [... Custom Code
_.g; Create program group [ID... Groups s
+ Installation (3 actions) [ID... B This project startup sequence
_.3; Finish [ID 12] Project "Database" t screen is displayed.
f Uninstaller (4 screens) [ID u... Project "Utility actions”
o’.’

You can add multiple links to single screens and actions, but for more complex tasks it is advisable
to create groups for related beans and add a link to a single group.

3 Select a Screen or Action X

Project: Utility actions
4 Installer [1D installer]
.'\ Startup

434 Set avariable [ID 4]

@ Run script [10 81]

13} Set a variable [ID 93]

@ Run executable or batch file [ID 23]
@ Run executable or batch file [ID 26]
43 Run script [ID 92]

4 Authenticate user [Action group] [ID 100]
L Uninstaller [ID uninstaller]

Filter: | i

o “ Cancel

When adding links, the install4j IDE, shows special nodes that do not show any structure but just
a button that opens the target of the link in a different window. At compile-time, the target
elements are inlined. This means that at runtime, it appears as if all merged elements were
defined directly in the main project.

111

Screens 8. Actions N7

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.

’ Installer (6 screens) [0 instal...
% \ Startup (1 action)
@ Request privileges [ID ...

‘ol | %+

A Linkto Initialize databa..

=
2

& Finish (1D 12) &

Welcome (1 action) [ID 2]

Installation lecation (1 ac.. This element links to a an action group defined in the merged project Utility actions
Installation components [...

Create program group [ID... 3 Go Te Definition
Installation (3 actions) [ID...

1+ Uninstaller (4 screens) [I0 u...

Merging of styles

If style merging is enabled, all styles from the main project are made available for installer
applications, screen groups and screens. This allows you to centrally manage a set of styles and
re-use it in multiple projects.

Contains no form components E Configure ®) Preview

Control Flow
Condition expression
Validation expression
Rollback barrier

Quit after screen

Back button

GUI Options

Style Inherit from parent [Default style]

Privileges Inherit from parent [Default style]

Action elevation type Standard

Screen Activation Banner

Utility actions: Company style

Style Utility actions: Company Banner

The default screen style for this installer application. Screens and screen groups can
override this style.

See the help topic on styles [p. 55] for more information on how merged styles can be used in
the project.

Flat merging considerations

As a result of flat merging, there are no intermediary artifacts for merged projects and the result
of the compilation is a single monolithic installer. This has the advantage of being easy and
flexible, but collisions can occur unless concerns are properly separated between the main
project and its merged projects.

In particular, all elements in the final result share the same namespace for compiler and installer
variables. All custom localization files are merged, so that localization in merged projects is not
impacted unless there is a collision in the message keys. Such problems can be avoided if unique
prefixes are used for compiler variables and installer variables as well as custom localization
keys. For example in project A, all variables could be prefixed with "a." and in project B with "b.".

112

One area where such collisions are not possible is for IDs of any entity in a project, such as
launchers, file sets, actions, screens or form components. When a project is merged, install4j
prefixes all IDs with the application ID of that project.

For example, if the application ID of a merged project is "1406-2150-6354-3051" and a launcher
has the ID "2265", the ID is changed to "1406-2150-6354-3051:2265" after merging. This ensures
that all IDs remain unique no matter how many projects are merged. Beans (screens, actions
and form components) in the merged project are passed a special context that automatically
prefixes all unqualified IDs with this application ID. For example, if you have a script in your
merged project that calls

cont ext . get Launcher Byl d("2265")

this will succeed, even though the ID is now actually "1406-2150-6354-3051:2265". If you want
to access that same launcher configuration from a script in the main project, you would have to
call

cont ext . get Launcher Byl d(" 1406- 2150- 6354- 3051: 2265")

Generally, it is recommended to organize merged projects so that they are relatively self-contained
and only interact with their main project through common installer variables. In that way, the
main project can continue to work if the merged project is removed and the merged project can
work as a standalone installer.

113

A.19 Auto-Update Functionality

install4j can help you to include auto-update functionality to your application. Auto-updating
includes two tasks: First, there must be a way to check if there is a newer version available for
download. This check can be initiated by the user in various ways or the check can be triggered
automatically by your application. Secondly, there must be a way to download and execute an
appropriate installer for the new version.

install4j creates a special file named updat es. xm in the media output directory when you build
the project. This file describes the media files of the current version. If you want to use install4j's
auto-update functionality, you have to upload this file to a web server. The file is then downloaded
by deployed installations and delivers information about the current version. The contents of
updat es. xml are explained in detail in the next chapter [p. 119].

Downloading and installing the new version is done with a custom installer application [p. 163].
install4j offers several templates for update downloaders that correspond to the different update
strategies. These strategies are explained below and in the chapter on background
auto-updates [p. 125].

1 Select an Application Template X

Awailable application templates:

Updater

£ Standalone update downloader

£ Blocking update downloader

% Background update downloader
£ Empty custom application

Description

@ Hel Cancel
P

Getting started

To get basic auto-update functionality for a GUI application, you should start with a standalone
update downloader that will help you validate the associated concepts. To add a standalone
update downloader to your project, you can follow these instructions:

1. Upload the fileupdat es. xm together with your media files to a directory on your web server.

2. Gotothe "Installer->Auto-Update Options" step and enter the download URL for the updat es.
xm file. This must be the full URL for the file, like ht t ps: // www. ser ver. com downl oad/
updat es. xnl and not just for the containing directory.

3. Go to the "Installer->Screens & Actions" step, click on the add button, choose Add application
from the popup menu and select the "Standalone update downloader" template.

4. For the added update downloader application, enter the "Executable name" property, for
example checkFor Updat e.

Users can now execute the checkFor Updat e executable to check whether a new update is
available. Optionally, the update can also be downloaded and installed.

For testing, you can set the "URL for updates.xml" value to a file URL likefil e:///c:/ Users/
bob/ nyPr oj ect / nedi a/ updat es. xnl . Note the triple slashes after the colon that arise from
the initial slash for the required root directory of the file path in addition to the two slashes that

114

separate the protocol from the path. With a file URL, you do not need a web server and the
updates.xml file does not have to be uploaded anywhere.

Installers versus archives

Generally, auto-update functionality is available for installers only. This is because the update
downloader downloads the current installer and executes it to perform the actual update.

One exception is the single bundle archive for macOS where auto-updating is fully supported
by the update downloader templates. On macOS, the single bundle archive is the preferred way
to distribute software unlike on other platforms that prefer installers or packages that are handled
by a package manager. In the update downloader template you will notice screen and action
groups that deal with the macOS single bundle archives separately.

Automatic invocation of update downloaders

Typically update checks are integrated into the application. An easy way to do so for desktop
applications is to start the update downloader when a particular launcher is started. Activate
the "Launcher integration" tab for the update downloader application and select the "Start
automatically when launcher is executed" check box.

To control how often this update check is performed, you can adjust the "Launch schedule". By
default, it uses the frequency that is set it in the "Update schedule registry". To initialize the
update schedule registry you can add a "Configurable form" to your installer and add an "Update
schedule selector" form component to it. In the installer, the user will then get the possibility to
choose the frequency of the update checks.

' Installer (6 scree... EF <

% Properties

+ Uninstaller (4 scree... | 3§

@g Background update... ,Q - Installer Variables

@g Standalone update ... i
@ Launcher Integration

+ a8

=\ Startup

E Welcome [For... Programmatic Integration

g Check for updat...

= Up to date [Scre..

To call this custom installer application from your own code: Start Integration Wizard (7]

= Update available... Autematic Integration

Start automatically when launcher is executed

Launch schedule: Accerding to update schedule registry

Always

Accerding to update schedule registry

First run of any launcher in archive media file by the current user

Launch mode:

o All launchers

Selected launchers:

There are two points in the life-cycle of the launcher when the update downloader can be started:
At startup or when the first window is shown. In addition, the invocation at startup can be blocking
or non-blocking. This is set with the "Launch mode" drop-down on the "Launcher integration"
tab.

115

B iy
Installer (6 scree... %! Properties

+ Uninstaller (4 scree...

@‘g Background update...

@‘g Standalone update ...
* Startup

- Installer Variables

o/ ¥ |+

ﬁ Launcher Integration

g Welcome [For... Programmatic Integration

g Check for updat...

= Up to date [Scre..

To call this custom installer application from your own code: | Start Integration Wizard (7]

 Update available... Autematic Integration
Start autematically when launcher is executed
Launch schedule: Accerding to update schedule registry A

Launch mode When first window is shown

Blocking at startup

o Al launchers Mon-blocking at startup

When first window is shown
Selected launchers:

Of course your ideas for auto-updates might be different. Maybe you do not have a GUI application
and you want to perform unattended updates, or you want to notify your users about updates
directly in your application. That is why the auto-update functionality has to be extremely flexible,
with the unavoidable downside that its configuration is not trivial and there are a couple of
concepts that you have to understand in order to be successful. The bulk of this flexibility comes
from the fact that the update downloader is not a monolithic entity, but is composed of standard
form components and actions that can be adjusted according to your particular requirements.

Blocking update downloaders

Some applications need to ensure that updates are applied as soon as possible or make it a
requirement that the current update is applied before the application can be started. In that
case, an update check has to be made at startup. If an update is found, the update installer
should be downloaded and executed. The "Standalone update downloader" template is not
directly suitable for this purpose, because it informs the user if no new version is available. This
behavior is only appropriate if the user explicitly requested an update check.

The "Blocking update downloader" application template is what is required in this case and is
intended for automatic update checks. It looks for an update in the startup sequence and
terminates the update downloader if no new version is available. This means that if there is no
new version available, your users will not see that a check has taken place. Only if a new version
is available will the update downloader display its window and inform the user of the possibility
to download the update installer.

116

F installer (6 screens) [|D installer] = General
* . . Script ({UpdateDescriptor)context.getVariak
o Uninstaller (4 screens) [|D uninstaller] x Variable name updateDescriptorEnry
@'ﬁ Background update downloader [Custom applic... Only if undefined
{9“' Blocking update downloader [Custom applicati... |-_Fail if value is null] |

4+ Register for response file
A Startup (Bactions) Error Handling

@ Check for update [ID 470] I Failure strategy Cuit on failure I

O Update descriptor entry [Set a vaniable] [ID... cErrnr rr;islsage
ontrol Flow

2% Update available [Action group] (6 actio... 3 Condition expression
@ Mew version [Set a variable] [ID 473] Rollback barrier
i . 3% Can be executed multiple times
{O:} Download size [Set a variable] [ID 474] .
- Privileges
@ Comment [Set a variable] [ID 475]] Action elevation type Inherit from parent [Do not elevate]
@ Download URL [Set a variable] [ID 476]
Z:O:} Archive [Set a variable] [ID 477] o.o
@ DMG [Set a variable] [ID 472]
= Update available [Screen group] (5 screens) [Set avariable

A Sets a variable by running a custom script. The script can return any
java.lang.Okject.

For such an automatic check you may want to invoke the update downloader in a blocking fashion
before the application is actually started. As explained in the chapter about update checks [p. 119],
you can use the Appl i cat i onLauncher class to start update downloaders from your own code.
When calling Appl i cat i onLauncher . | aunchAppl i cation(...) withthebl ocki ng argument
set to t r ue, the method will not return until the update installer has exited. If the user decides
to run the installer on the "Finish" screen, your application will be terminated by the "Shut down
calling launcher" action.

Also, this template does not offer the user a directory selection for the downloaded installer,
but downloads to the user-specific download directory by default. You can change this default
directory by passing the argument - Vupdat er Downl oadLocat i on=[di rectory] to the
ApplicationLauncher. |l aunchApplication(...) call

b Installer (6 screens) [I0 installer] L General
FY Uninstaller (4 0 uninetal Script context.getVariable("updaterDownlo
o ninstaller (4 screens) (1D unin=taller] x Variable name updaterDownloadFile
@'ﬁ Background update downloader [Custom applic... /O Only if undefined
s . .
{9“' Blocking update downloader [Custom applicati... Fail if value is null
+ Register for response file
WA Startup (8 actions) Error Handling
@ Check for update [ID 523] Failure strategy Continue on failure
iC:)} Update descriptor entry [Set a variable] [ID... Error message
Control Flow
2% Update available [Action group] (6 actio... 3 Condition expression
= Update available [Screen group] (5 screens) [... Rollback barrier
i . 3% Can be executed multiple times
g Mew version available [Form] [ID 422] .
- Privileges
@ Update message [Ferm] [ID 421] b Action elevation type Inherit from parent [Do not elevate]
@ Download new version [Form] (3 actions) ...
0 Download location [Set a variable] [ID ... o.o
::c:)} Download file [ID 497]
Z:C:)} Set the UNIX access mode of files and
Set a variable
~7 Finish [Screen group] (2 screens) [ID 500] Sets a variable by running a custom script. The script can return any

java.lang.Okject.

Typically you will want to restart your launcher after an update has been downloaded in this
way. This cannot be done in the update downloader because it has to terminate right after
starting the installer in order to release locks on installed files. The task to start your launcher
again falls to the installer where you can implement it with an "Execute launcher" action in the

117

"Finish screen". If this should only happen during an update, you can set the "Condition
expression" of the action to cont ext . i sUpdat el nstal | ati on().

To disable displaying information about a new version in the update downloader template, you
can set the installer variable ski pNewVer si onAvai | abl e to t r ue or delete the screen named
"New version available". This may be necessary because you already notify users about updates
in your own application as explained in the next chapter [p. 119].

Unattended auto-updates

If a user interaction is not desired, the update downloader can work in unattended mode. The
execution mode of the update downloader is set through its "Default execution mode" property.
By default it is set to "GUI mode". On Unix, access to the X-server is often not available, for
example when you install in an SSH session. Also by default, the "Fall back to console mode on
Unix" property allows the installer to switch to console mode [p. 205] in that case.

To generally disable GUI mode, the "Default execution mode" property can be set to "Unattended
mode". This would be appropriate for a service or for a desktop application that executes the
update downloader in the background. The "Unattended mode with progress dialog" is intended
for desktop applications that need to show a progress Ul while the update is being downloaded.

4 Installer (6 scree... & 5‘ Properties
+ Uninstaller (4 scree... | 3§

@'g Background update...
@'g Standalone update ...

Installer Variables
@]

ﬂ Launcher Integration

* Startup
g ‘Welcome [For... Executable directory [Runtime directory]
g Check for updat... Single instance
File set Default file set
7 Upto date [Scre... Executable icon [customized icen]
“ Update available... Execution Modes
gé Allow unattended mode
Progress interface creation script
Allow console installations
Fall back to console mode on Unix

Disable console mode on Windows
Console screen change handler
[l Default execution mode

GUl mode

Default execution mode Console mode
A The default execution mode for the installer appliy Unattended mode

it is also pessible to run in console mode or unatty |nattended mode with progress dialog

For programmatic invocations, it is possible to set the execution mode on the command line
with the "-q" and "-splash" command line parameters [p. 207]. Programmatic invocations of update
downloaders should be done with the Appl i cati onLauncher API thatis explained in the next
chapter [p. 119].

In the default templates for the standalone and blocking update downloaders, the execution
mode is passed on to the "Run executable or batch file" action that executes the downloaded
installer. The "Set a variable" action named "Set installer arguments" analyzes the current
execution mode and prepares the command line parameters. This is a good example for how
the update downloader is actually a composition of actions, screens and scripts.

118

A.20 Checking For Updates

This chapter explains the background behind update checking and introduces you to the API
that allows you to integrate these checks into your application.

The updates.xml file

The updat es. xnl file is created in the media output directory [p. 131] each time you build the
project. For advanced use cases, you can modify this file before uploading it to the web server.
The file looks like the sample below:

<?xm version="1. 0" encodi ng="UTF- 8" ?>
<updat eDescri ptor baseUr|="">
<entry target Medi aFil el d="8" updat abl eVer si onM n="" updat abl eVer si onMax=""
fileNanme="hell o_wi ndows_4_0. exe"
newMer si on="4. 0" newiedi aFi |l el d="8" fileSize="2014720" bundl edJre=""
myCust omAt t ri but e=" showMar ni ng" >
<conment | anguage="en">Hel | o wor| d</ corment >
<comment | anguage="de">Hal | o Wl t </ comment >
<conment | anguage="it">C ao nondo</comment >
</entry>
<entry targetMediaFil el d="9" updat abl eVersi onM n="" updat abl eVer si onMax=""
fileNanme="hello_linux_4 0.rpnt
newVer si on="4. 0" newMedi aFi | el d="9" fileSize="817758" bundl edJre="">
<coment />
</entry>
<entry targetMedi aFil el d="10" updat abl eVer si onM n="" updat abl eVer si onMax=""
fil eName="hel |l o_macos_4_0. dng"
newer si on="4. 0" newMedi aFi | el d="10" fil eSi ze="1359872" bundl edJre="">
<comment />
</entry>
</ updat eDescri pt or >

Its contents are derived from your input on the "Installer->Auto-Update Options" step where
you define global options and common options that are replicated on all media file entries.

Auto-Update Options \N /7

In this step, you can customize the update descriptor file "updatesxml” which is used by aute-updaters that you can add on the
Screens & Actions step, Most settings can be overridden in the "Customize project defaults-> Auto-update options” step of the

Download Locations

URL for updates.xml: https://www.server.com/download/updates.xml r @

Base URL for installers: (7]

Auto-Update Version Requirements (7]
C] Minimum updatable version: | 2.0 3

Maximum updatable version:

Additional Details
Files with comments: Edit © [4files]

Additional attributes: Edit @ [2 attributes]

119

On the "Customize project defaults->Auto-update options" step of the media wizard you can
override settings with specific values for the each media file.

B Media Wizard - Windows *

1. Media file type Customize options for auto-updaters
2. Installer options

3. Data files Override Global Options
4. Executable processing These settings override the global configuration on the "Installer-» Aute Update
5. Bundled JRE Options” step.
6. Customize project defaults
Minimum updatable version:
+ Compiler variables
+ Media file name Maximum updatable version:

+ Principal language

+ Exclude components Files with comments: Edit € [No files]

+ Downloadable components

. Exclude files Additional attributes: Edit € [No attributes]

+ Bxclude launchers

+ Exclude installer elements Legacy Media Files

"+ Look &Feel IDs of legacy media files: (7]

+ Auto-update options
7. Finished

© Help 4 Back Next P Finish Cancel

The root of the updat es. xni fileisthe updat eDescri pt or element. IthasabaseUr| attribute
that can be used to specify an alternate download URL for the installers and contains the value
of the "Base URL for installers" setting on the "Installer->Auto-Update Options" step. By default,
itis empty which means that the installers must be located in the same directory as the updat es.
xm file.

The updat eDescri pt or element contains one or more ent r y elements that correspond to the
media files that were created by the build.

When install4j determines whether an entry in the update descriptor is a match for the current
installation, it looks at three attributes of the entry element: Most importantly, the
t ar get Medi aFi | el d attribute has to match the media file ID of the current installation. You
can show media file IDs by toggling the "Show IDs" tool bar button

Another criterion is the installed version of the application. Depending on that version, you might
want to offer different updates. The updat abl eVer si onM n and the updat abl eVer si onMax
attributes can set lower and upper limits for the installed versions that should download the
associated entry in the update descriptor. By default, these attributes are empty, so no version
restrictions apply. On the "Installer->Auto-Update Options" step, these versions can be set for
all media files.

Attributes that describe the update installer include f i | eNanme which is necessary to construct
the download URL, and fi | eSi ze which contains the size of the file in bytes. newVer si on
contains the available version while newiMedi aFi | el d is the media file ID of the update installer
which is usually the same as t ar get Medi aFi | el d. Lastly, bundl edJr e contains the original
file name of the JRE bundle without the . t ar . gz extension or the empty string if no JRE is bundled
in the installer.

If you discontinue a media file, you can migrate users of that media file to a different media file
with the legacy media file setting on the "Customize project defaults->Auto-update options" step
of the media wizard. For each specified legacy ID, the entry for the current media file is duplicated,
but with the t ar get Medi aFi | el d attribute set to the legacy ID. For more complex scenarios,
you can modify the updat es. xnm file yourself and add additional entry elements as required.

120

B Media Wizard - Windows

1. Media file type

2. Installer options

3. Data files

4, Executable processing

5. Bundled JRE

6. Customize project defaults

+ Compiler variables
+ Media file name
+ Principal language
+ Exclude components
+ Downloadable compeonents
+ Bxclude files
+ Bxclude launchers
+ Exclude installer elements
- Look & Feel
- Auto-update options
7. Finished

*
Customize options for auto-updaters
Override Global Options
These settings override the global configuration on the "Installer-» Aute Update
Options" step.
Minimum updatable version:
Maximum updatable version:
Files with comments: Edit € [No files]
Additional attributes: Edit € [No attributes]
Legacy Media Files
IDsoergacymedlafl\es: 13,90 0
© Help 4 Back Next P Finish Cancel

In addition to the above attributes, the nested comment elements can contain a localized
description that should be displayed to the user. You can populate these elements for all media
files by configuring the "Files with comments" setting in the "Installer->Auto-Update Options"
step. The main use case for this feature is to display release notes in the update downloader.

& Edit

Principal Language

English [en]: | (SN R MR R L Edit

Additional Languages
Language
French [fr]
German [de]

Italian [it]

Localized file

resourcesirelease_8_0_frixt
resourceshrelease_8_0_detxt

resources\release_8_0_it.tet

Finally, you can add any number of arbitrary attributes to the ent ry element. This is configured
with the "Additional attributes" setting in the "Installer->Auto-Update Options" step. Additional
attributes are useful for custom logic to select a suitable update installer in the update

downloader.

121

1 Edit Additional Attributes x

Additional attributes:

Key Value o
myCustomAttribute showWaming

majorVersion 8

The update descriptor APl and up-to-date checks

The install4j runtime API [p. 222] contains the com i nst al | 4] . api . updat e. Updat eChecker
utility class that can download the updat es. xnl file and translate it to an instance of com
i nstal |l 4j . api . updat e. Updat eDescri pt or. From there, you can get a suitable com
i nstal |l 4j . api . updat e. Updat eDescr i pt or Ent ry with a single method call:

i nport cominstall4j.api.launcher. Vari abl es;
i mport cominstall4j.api.update.*;

String updateU | = Variabl es. get Conpil erVari abl e("sys. updatesUrl");
Updat eDescri pt or updat eDescri ptor = Updat eChecker. get Updat eDescri pt or (updat eUr | ,
Appl i cati onDi spl ayMode. GUI) ;
i f (updateDescriptor.getPossibl eUpdateEntry() !'= null) {
// TODO an update is avail abl e, execute update downl oader
}

See the Javadoc for more detailed information.

In this way, you can display your own notification that announces the new version and lets the
user decide whether to download it or not. This APl is primarily intended for use in your
application. The "hello" sample project shows how to use itin a complex example, see the source
file hello/gui/HelloCGui.java in your install4j installation and look for the
checkFor Updat eW t hApi method.

In a custom installer application, you would rather use a "Check for update" action that performs
the same actions as Updat eChecker and saves the downloaded Updat eDescri ptor to an
installer variable. All update downloader templates included with install4j execute the "Check
for update" action at some point. Its URL is set to ${i nst al | er: updat esUr| ?: ${ conpi | er:
sys. updatesUrl}} by default. If you start the update downloader with the argument
- Vupdat esUr | =<URL>, it will define the installer variable "updatesUrl|" and that value will be
used as the URL. Otherwise it falls back to the compiler variable "sys.updatesUrl" that contains
the URL for updat es. xnmi that you have entered on the "Installer->Auto-Update Options" step.

Instances of Updat eDescri pt or Ent ry expose all attributes of the corresponding ent r y element
in the updat es. xnl file. They also provide access to any additional attributes that were added
to the ent ry element so you can implement custom logic to find a suitable update. The most
important method of the Updat eDescr i pt or Ent ry classis the get Ur | () method that constructs
the full URL from which the update installer can be downloaded. If no baseUr | has been specified
on the updat eDescri pt or root element, the URL starts with the parent directory from which
the updat es. xm file has been downloaded.

122

Update schedule registry

A common requirement is to check for an update on a regular schedule. install4j comes with a
standard implementation of an update schedule registry that frees you of the task to implement
one yourself. This update schedule registry is fully integrated with the launcher integration that
starts update downloaders when launchers are executed, but it is also available in the API.

The cominstal | 4j . api . updat e. Updat eSchedul eRegi st ry class is intended to be used
in your application. You configure a particular Updat eSchedul e by calling

i mport cominstall4j.api.update.*;

Updat eSchedul eRegi st ry. set Updat eSchedul e(Updat eSchedul e. DAILY) ;
and call
bool ean shoul dCheckFor Updat e = Updat eSchedul eRegi stry. checkAndReset () ;

each time your application is started. If you get a positive response, you can start a suitable
update downloader with the Appl i cati onLauncher class as explained below.

To facilitate the configuration of the update schedule in your installer, install4j offers a special
"Update schedule selector" form component whose initial value is set to the current setting (if
any) and automatically updates the setting for the installed application when the user clicks
"Next".

Initial update schedule Newver
x Allow cenfiguration on screen
p Help
Help text
nitialization
Initialization script
Reset initialization on previous
Visibility script
Label
3 Text §{i18n:CheckForlUpdatesLabel}
Fant Nefault

l;é Update schedule selector

'p-down box that lets the user select an update schedule for your
slication. You can use the
n.install4j.api.update.UpdateScheduleRegistry classin yor
slication to check if you should launch an updater. Please see the

= adoc for more information. Please note that simply adding this form
nponent does not automatically launch an updater at regular intervals.

Starting update downloaders from your own code

If you have a GUI application, you could provide integration with the update downloader by
offering a "Check for update" menu item or similar that invokes the update downloader. One
problem in this scenario is that if the updater downloads and executes the update installer, your
application will still be running and the user will receive a corresponding warning message in
the installer. The solution to this problem is to use the cominstall 4. api.|launcher.

Appli cati onLauncher class to launch the update downloader. With this utility class, you can
launch the update installer by passing its ID as an argument. IDs of installer applications can be
shown by toggling the "Show IDs" tool bar button.

If you launch an installer application such as an update downloader that way, the "Shut down
calling launcher" action will be able to close your application. To react to the shutdown and
perform cleanup operations, you can pass a callback to the ApplicationLauncher.

123

| aunchApplication(...) call. After you are notified via the callback, your application will be
terminated with a call to Syst em exi t () . For example, for an update downloader with ID 123:

i mport java.io.|CException;
i mport cominstall4j.api.launcher. ApplicationLauncher;

try {
Appl i cati onLauncher. | aunchApplication("123", null, false, new

Appl i cati onLauncher. Cal | back() {
public void exited(int exitValue) {
/1 TODO updat e check conplete, no update avail abl e

}

public void prepareShutdown() {

// TODO update installer will be executed, performcleanup before process is termninated
}

}

)
} catch (1 OException e) {
e.printStackTrace();

/1 TODO handl e i nvocation failure

}

To easily get such a code snippet for invoking the update downloader, select the update
downloader application and click on the Start Integration Wizard button on the right.

' Installer (6 scree... &+ 5\ Properties
+ Uninstaller (4 scree... | 3¢
@g Background update... ,O - Installer Variables

@g Standalone update ... i
g‘ Launcher Integration

% Startup
E Welcome [For... Programmatic Integration
E Check for updat... . . .
Te call this custom installer application frem your own code: Start Integration Wizard (2]
= Up to date [Scre..
B Up to date no... Autematic Integration
1 Update available... ég Start automatically when launcher is executed

B New version ... i cording to undate cc
B Update mess... : :
B Download ne...

7 Finish [Scree...

124

A.21 Background Auto-Updates

The introductory chapter on the auto-update functionality [p. 114] discussed update downloaders
that check for update installers, download them and execute them directly on demand.

Another way to organize auto-updates is to download the update installer in the background
and schedule the update for execution the next time a launcher is executed. This mode requires
the least involvement of the user during the update process. Depending on how much information
you choose to provide to the user in your application, the only thing the user may notice is an
update dialog when the application is started. No download will take place at that time, because
the update installer was already downloaded during a previous session. The update will be
installed without user interaction and no further user input is necessary.

The "Schedule update installation" action

install4j offers a custom application template that handles such background updates. On the
"Installer->Screens & Actions" step, click on the add button, choose Add application from the
popup menu and select the "Background update downloader" template.

Just like the standalone and blocking update downloader templates, the background update
downloader template uses the "Check for update" action to check if an update is available and
then downloads the update installer with a "Download file" action. There are two differences
with respect to the other update downloader templates: First, a background update downloader
has no Ul and automatically downloads an update installer if available. Second, it will not execute
the downloaded update installer directly, because that would disrupt the work of the user.
Instead, it executes a "Schedule update installation" action to register the downloaded update
installer for later execution.

} Installer (6 screens) [ID installer] E‘} Configuration
ﬁ) R B Installer file §{installerupdaterDownloadFile}
o Uninszaller (4 screens) [ID uninstzller x Version §finstallerupdaterMewVersion}
@g Background update downloader [Custom applic... ,O Check for newer installation
t Startup (15 actions) Installer arguments
. o nstallation Error Handling
@ Check prerequsites [Run script] [ID 279] Maximumn retries on error ;
@ Check for update [ID 220] Maximum retries on cancel 10
@ Update descriptor entry [Set a variable] [ID Retry inhibition in minutes 1,440
Error Handling
i+ Update available [Action group] (12 actio... ™ Failure strategy Quit on failure
{:C}} New version [Set a variable] [I0 283] Error message
Control Flow
{08 Downlosd URL [Set avariable] [0 264] | &b~ ontrelflow
Condition expression
{:C}} Download location [Set a variable] [ID Rollback barrier
(C:;'l} Download file [ID 286] Can be executed multiple times
Privileges
2 Installer [Action group] (2 actions) [ID 0 -

Action elevation type
@' Set the UNIX access mode of files a..

Schedule update installation [ID 289
© _ schedule update instalation [ID 252] Schedule update installation

3 Single Bundle Archive [Action group] (.. N Schedule a downloaded media file to be started upon the next start of a

launcher configured accordingly or by calling

#4 Background update downloader [Cust lic...
{;b ackground update downloader [Custom applic UpdateChecker.executeScheduledUpdate().

In addition to the "Installer file" property that tells the action where the downloaded installer is
located, the "Schedule update installation" action has a "Version" property. This is necessary so
that if multiple installers have been downloaded and not yet been executed, only the most recent
version is actually installed.

To avoid a situation where an installer that terminates with an error or is cancelled by the user
is executed again each time when the launcher is started, the "Maximum retries on error" and
"Maximum retries on cancel" properties limit the number of times that these conditions are
repeated, before the installer is finally ignored and the background update downloader waits
for the next version.

125

To mitigate external issues, such as interrupted internet connectivity, there is a minimum time
between retries of a failed installation. By default, the "Retry inhibition in minutes" property is
set to one day. If you would like to retry more quickly, you can reduce this value. This may be
necessary during development when you want to try out the feature multiple times in succession.
With the default setting, you can only try it once per day.

Executing scheduled installers

There are two options to execute an update installer that is scheduled for execution:

* Programmatic invocation

By calling
cominstall4j.api.update. Updat eChecker. execut eSchedul edUpdate(...);

you can execute the downloaded update installer programatically, usually after checking the
result of

cominstall4j.api.update. Updat eChecker . i sUpdat eSchedul ed()

to determine whether such a download has been completed. You can do that while the launcher
is running or at startup. Notifying the user about this event or letting the user defer the
installation is handled by your own code. For console and service launchers, this is the only
option.

The "HelloGui" class the in the "hello" sample contains a complete demonstration of how to
use the API to check for updates programatically and uses a background update downloader
to download and install updates.

+ Automatic invocation

For GUI launchers, you can edit the launcher, go to the "Executable info->Auto-update
integration" step and select the Execut e downl oaded update installers at startup
check box. When the GUI installer is started and a downloaded update installer has been
scheduled for installation, the update installer will be executed. See the help topic on
launchers [p. 36] for more information.

Restarting the launcher

In the standalone and blocking update downloader templates, the installer is responsible for
starting a launcher after the installation with an "Execute launcher" action and you can choose
whether to do that or not.

Installers that have been scheduled by the "Schedule update installation" action are always
executed from a running launcher, so install4j knows which launcher to restart and does so
automatically if you use the automatic auto-update integration for GUI launchers. For
programmatic invocations with the

cominstall4j.api.update. Updat eChecker. execut eSchedul edUpdate(...)

API calls, the rest art Launcher argument controls whether the current launcher is restarted.
If you pass f al se, you should start a launcher at the end of the update installer yourself.

126

Trouble-shooting background auto-updates

A complete background auto-update involves 5 processes that are created in chronological
succession. First, code in the launcher (1) or the automatic launcher integration for an update
downloader detects a new update. Then, the update downloader (2) is started which downloads
the update installer and schedules it for execution. At a later point in time, the user starts the
launcher again (3) and install4j detects that a scheduled update installer is available. It then
executes that update installer (4) and terminates itself. At the end of the update installer, the
original launcher is restarted (5).

Launcher [Check for update }

executes

Y

-

Update
downloader

[Schedule installer execution]

@Q

starts launcher again

(&

Launcher [Scheduled update found }

executes and terminates itself

Y

N
Update -
installer [Restart original launcher]

J

executes

N
Restarted
Launcher [Up to date J

If an error occurs at any point in this chain of processes, the auto update will fail. When setting
up your project, this may be due to a misconfiguration, like a wrong URL for the updates.xml file
or a failed download of the update installer. Because the log files of the update downloader and
the update installer are not readily available and API calls that you use the in the launcher to
check for updates or execute scheduled installers do not log at all, it is difficult to find out where
the problem is located.

127

To debug issues during background auto-updates, you can set the system propertyi nstal | 4j .
updat eLog=t r ue for the launcher that starts the update process. If you pass it on the command
line, remember to prefix it with- J, otherwise it is passed as an argument to the main class:

-J-Dinstall4j.updatelLog=true

If this system property is set, install4j will create a file named updat e. | og in the updater cache
directory. The updater cache directory can be found in the following platform-dependent locations:

* Windows
% OCALAPPDATAY% i nstal | 4) / updat e

*+ macOS
$HOWE/ Li brary/ Caches/install 4] / updat e

¢ Linux/Unix

$XDG CACHE HOVE/install 4j/update or $HOWE/ .cache/install4j/update if
XDG_CACHE_HOME is undefined

The updater cache directory contains directories whose names are hashes of the application ID
and subsequently directories with hashes of the installation path. You can look for the most
recently modified directories to quickly find the application that you are testing. Inside those
directories is the actual content, including the file updat e. | og, that contains logging output that
will help you determine the location as well as the cause of a failure. Other artifacts in this
directory include the downloaded installers as well as lock files for the update process.

To completely start over with an auto-update process during testing, you can simply delete this
directory and install4j will re-create it as necessary.

128

A.22 Version Numbers

Version numbers in install4j should be a sequence of version components separated by dots:

A B.C ..

where A, B, Care composed of alphanumeric characters without dots, for example 1,112,5-rc-9
orrel ease.

Version comparisons in the auto-update API

The auto-update [p. 114] APl in the com i nstal | 4 . api . updat e package has to determine
whether a new version is greater than an installed version or not. Usually, the
get Possi bl eUpdat eEnt r y() method of the update descriptor is called to make that comparison:

Updat eDescri pt or updat eDescriptor = ...;

i f (updateDescriptor.getPossibl eUpdateEntry() !'= null) {
// TODO an update is avail able

}

In its implementation, it calls

Updat eDescri pt or Entry updat eDescriptorEntry = ...;
String installedVersi on = context.getVersion();
i f (updateDescriptorEntry.checkVersi onConpati bl e(i nstall edVersion)) {
// TODO This entry has a version that is newer than the installed version

}

The checkVer si onConpat i bl e method checks if the supplied version

* is greater or equal than the minimum updatable version in the update descriptor entry (if
defined)

+ isless or equal than the maximum updatable version in the update descriptor entry (if defined)
+ isless than the version of the new media file

Internally, it calls

i f (Updat eChecker. i sVersionG eat er Than(newVer si on, installedVersion)) {
/1 TODO newVersion is indeed greater than installedVersion
}

to compare the version strings of the installed version with the new version in the update
descriptor entry.

Comparison algorithm for versions

Let us call the two versions that should be compared A and B. A has N, components while B has
N, components. Components are determined by splitting the version string with aj ava. uti |l .

St ri ngTokeni zer and a single dot as a delimiter. The components are denoted as A(0)
A(N,-1) andB(0) ... B(N-1).

The following rules apply when comparing these two versions:

129

1. Before the comparison, the following replacements are performed for both versions in this
order:

* When going from left to right, a boundary between digits and non-digits creates a new
component, for example 2. 3a becomes 2. 3. a. Boundaries between non-digits and digits
are left intact, for example 2. 3. a4. This means that non-numeric characters only appear
as leading characters for each component.

« After dots, any "-" and "_" characters are discarded.
+ All characters are converted to lower-case, for example 1. 0- HEAD becomes 1. 0. head.

2. The version that has less components is filled up with components of value 0, so that both
versions have the same number of components N = max(N, N,).

3. The versions are compared from left to right, component by component. The version
comparison is finished for the first K = 0 ... N 1 forwhich the components are not equal:

B(K) > A(K) => B > A
B(K) < ALK => B < A

4. Components that have leading non-numeric characters are considered as less than components
with leading numeric characters. For example 2. 3- pre < 2. 3, because 2. 3- pr e is converted
to 2. 3. preand 2. 3is converted to 2. 3. 0.

5. If both components have a non-numeric part, version comparison is decided by their
lexicographic comparison, as performed by Stri ng. conpareTo(. ..). For example, 2. Z3
> 2. X4. If the non-numeric parts are equal, the numeric parts are compared where missing
numeric parts are set to 0.

6. Otherwise the components are both numeric and can be compared numerically.
Some examples from the unit test for the version comparison method are:

2
1.1

-

0
|« _22
2

AR A
P o
o oo

PAPERAREDN
=N O

betal < 1.0beta2
.betal < 1.0. beta2
< All
beta 1
beta 1
0 beta 1
.0rcl < 1.
.0-rcl < 1.0

.0.rcl < 1.0

.0al pha < 1.0rcl

. Oal pha < 1. 0al phal

. 0al pha9 < 1. 0al phal0

. 0al phal00 < 1.0.rc100

.0.alpha < 1.0-rc

z <1

DEVELOP- HEAD130714193704 < DEVELOP- HEAD130714193705

2
<
<
.0
<
0
0
0
e

<
1
1
1
0
6
6
6
0
0
0
0
0

PRPPPRRERENNNRERRRERROR PR R
O AN ANNA

[

130

A.23 Media Files

Media files are the final output of install4j: single artifacts that are used to distribute your
application to your users. The creation of a media file has platform-dependent options, so for
each platform, you have to define a separate media file. It also makes sense to define several
media files for one platform in case you wish to distribute different subsets of your distribution
tree, or if you distribute your application with and without a bundled JRE.

O~ * . & d —
% o % % 5] @
New Open S=ve Project L . Build Dry Test Stop show|
Project Project Project Report Project Run Instsller Buid IDs
General Settings Media \ ,

In this step, you can cenfigure media files for various platforms to distribute your
application. Use drag and drop to reorder your media files in the list.

Files
O
Launchers Q"
Mew media file Windows 64-bit [ID 463]
_ Installer
a, Media Linux RPM [ID 9] Linux Deb Archive [ID 1677]
{;‘ Build & -!i
macOS Folder [ID 17] macO5 Single Bundle Archive [I0 2060]

e

Unix Installer [ID 12]

Idle

Common options for all media files, such as the destination directory, a pattern for naming the
output file and compression options are defined on the "General Settings->Media File Options"
step.

Media File Options N /7

In this step, you can define general options that apply to all generated media files, Text field with bold labels must be filled in

Media Files
Media file output directory: | .\media r - @
Media file name pattern: ${compilersys.shorthame}_${compilersys.platform]_${compilersys.version} r | @

Convert dots to underscores)

Convert spaces to underscores

Compression

Compression level: | 6 A ﬂ
Use LZMA compression 0

Use Pack200 JAR compression 7]

Shrink runtime library and remove all unused classes (7]
External Data Files (7]

Create common data files where possible (7]

Create files with SHA-256 sums for checking the integrity of data files (7]

131

Media files have names and IDs. The name is available elsewhere by using the sys. nedi aNane
compiler variable but is otherwise not used by the compiler. IDs of media files can be used for
selecting media files when building the project from the command line [p. 230]. You can show
IDs by toggling the "Show IDs" tool bar button.

There are two fundamentally different types of media files: installers and archives. Installers
support the full functionality of install4j while archives are limited in several ways.

I Create Media File

file type.

A

Installer

|

Archive

@ Help

1. Media file type Choose the media file type

This wizard leads you step by step through collecting all required infermation to
generate a media file for a specific platform. Some platforms offer mere than one media

Please select if you want to create a full installer or an archive and choose the target
platferm for the media file,

An installer is a native executable that installs your application, usually
with a GUI wizard, but optionally alse with a console or a silent installer.

Installer type: =» Choose one A

An archive (for example a ZIP file) simply expands to where the user
extracts it.

Archive type: Choose one

Next P Finish Cancel

Installers

Installers install your application programmatically with the configured sequence of screens &
actions [p. 24]. Optionally, an installer can be executed in unattended or in console mode [p. 205]
and it can download a JRE [p. 89] if no suitable JRE is found on the target system.

The following installer media file types are available:

7 Windows

A media file for Windows is a native setup executable that installs your application with an

installer wizard.

Optionally, you can create an MSI wrapper instead of a regular executable. This is configured
on the "MSI wrapper" advanced options step below the "Installation options". It is not
recommended to use the MSI wrapper without having a specific requirement for it. The MSI
wrapper adds a lot of extra process machinery and additional logic to bridge mismatches
between the concepts of install4j and MSI. This results in additional overhead, increased
temporary disk space requirements, reduced responsiveness and extra considerations for

the non-GUI installer modes.

132

B Media Wizard - Windows *

1. Media file type Configure an MSI wrapper for the installer

2. Installer options
You can optionally generate an M5! wrapper instead of a regular executable. This should

- MSI wrapper only be done if the M5 is strictly required, otherwise the executable is the better option.

See the help on media files for more information.

3. Data files

4, Bxecutable processing Create an MS| wrapper

5. Bundled JRE i

6. Customize project defaults Installation scope: (€ Per machine @

7. Finished Per user (7]

MSI product 10z () Mew ID for each build Q
Mew ID for each version @)

Custom value O

© Help 4 Back Next P Finish Cancel

S

MSI wrappers have a fixed setting for whether an installation will be performed per-machine
or per-user. In install4j, this corresponds to whether the "Request privileges" action is performed
or not. In the "per-machine" MSI installation scope it is your responsibility to ensure that the
"Request privileges" action is always executed and that in the the "per-user" MSI installation
scope the "Request privileges" is never executed.

MSI will prevent that an installation is repeated if it has already been performed. The identity
of an installation is defined by the MSI product ID. If an installation with the same product ID
is found, the MSI installer will show an error message and terminate. By default, install4j
creates a unique MSI product ID for each build. You can also tell install4j to create a new
product ID for each application version as configured on the "General Settings->Application
Info" step, or to use a custom MSI product ID that you can change as required.

To change the installation directory, the variable | NSTALLDI Rcan be specified on the command
line. In addition, PARAMETER can be used to pass arbitrary command line parameters to the
wrapped installer.

® macOS single bundle [deprecated]

This media file type is deprecated because of signature requirements in modern macOS
versions. Use the single bundle archive instead and configure a setup application in the media
wizard that is run the first time the user starts the application.

A single bundle media file for macOS is a DMG file that contains an installer wizard that is
started by double-clicking on it in the Finder. The wizard installs your application as a single
application bundle for a selected GUI launcher. Command line launchers and service launchers
are contained in the application bundle. If you wish to support multiple GUI launchers, choose
the "macOS folder media wizard" instead.

All files in the distribution tree will be installed inside the application bundle under the relative
path Cont ent s/ Resour ces/ app. The full path of that directory is exposed by the installer
variable sys. cont ent Di r at runtime. To install files to other directories, add an installation
root [p. 14] to the distribution directory, for example with the name

${installer:sys.installationDir}/M Application Docunents

to create a folder "My Application Documents" next to the installed application bundle.

133

The main drawback of this media file type is that the installer application bundle is not signed.
Signing an application bundle has to be done at compile-time. With an installer, the exact
contents of the installation are not known at compile-time. The installer itself will be signed,
but if you need app entitlements "’ that can be set on the "Executable info->macOS options"
step of the launcher wizard, a signature of the installed application bundle is required. Use
the single bundle archive in that case.

= macOS folder

Like the single bundle installer, the folder media file for macOS is started by the user from
the Finder after opening the DMG. The wizard installs your application as a folder that contains
the entire distribution tree and multiple application bundles for each included GUI launcher.

* B Unix/Linux GUI installer

A Unix/Linux GUI installer media file is an executable shell script that extracts an installer and
installs your application with an installer wizard.

Archives

Archives can be extracted by the user to arbitrary locations or are submitted to package managers
for installation. No screens are shown and no actions are executed. If you define additional
installation roots, the files in them are not installed. Also, no installation components are
downloaded.

Apart from the "macOS single bundle" archive that produces the idiomatic deployment mode
for GUI applications on macOS, archives are mainly intended as a fallback or for additional
packages such as documentation bundles.

When a launcher is executed for the first time after an extraction, you can call a custom installer
application to perform tasks that would otherwise have been part of the installer. With the
Appl i cati onLauncher. i sNewAr chi vel nstal |l ati on() method you can find out whether
this is the case:

i mport cominstall4j.api.launcher.*;

i f (ApplicationLauncher.isNewArchivelnstallation()) {
Appl i cati onLauncher. | aunchApplication("123", null, true, null);
}

where "123" is the ID of the custom installer application that should be run.

The following archive media file types are available:

8 windows archive
An archive media file for Windows is a ZIP-file that contains your application.

macos single bundle archive

Asingle bundle media file for macOS is a DMG or .tgz archive that contains a single application
bundle for a selected GUI launcher. Command line launchers and service launchers are
contained in the application bundle. If you wish to support multiple GUI launchers, choose
the "macOS folder archive" media file type instead.

Just like for the single bundle installer, all files in the distribution tree are contained inside the
application bundle under the relative path Cont ent s/ Resour ces/ app.

M https://developer.apple.com/documentation/security

134

https://developer.apple.com/documentation/security

This is the preferred way to distribute a GUI application on macOS. The corresponding installer
that installs a single application bundle is deprecated because of signature requirements of
modern macOS versions. To make it easier to use the screen and action system in install4j
for installations, the media wizard allows you to select a custom installer application that is
executed the first time the user starts the application bundle.

macos folder archive

A folder media file for macOS is a DMG or .tgz archive that contains the distribution tree and
multiple application bundles for each included GUI launcher.

& Unix/Linux archive

A Unix/Linux archive media file is a gzipped TAR archive that contains your application. Users
will extract them with a command like

tar xzf archive.tar.gz

f Linux RPM

An RPM archive for Linux can be installed and uninstalled with the r pmcommand on Linux
distributions that use the Redhat package management.

A basic installation command looks like
rpm-i archive.rpm

You can configure custom installer applications to run in the post-installation phase and the
pre-uninstallation phase. Alternatively, default actions for installed launchers can be performed
without starting a JVM. These include the installation of services, creating links for non-service
launchers in / usr/ | ocal / bi n and integrating GUI launchers into the menu of the desktop
environment. In addition, bash scripts for pre-install, post-install, pre-uninstall and post-uninstall
phases can be configured.

8 Linux Deb

A Deb archive for Linux can be installed and uninstalled with the dpkg command on Linux
distributions that use the Debian package management.

A basic installation command looks like
dpkg -i archive. deb

Deb media files have the same functionality for running custom installer applications as RPM
media files.

Customizing project defaults

Many project configuration settings can be overridden for each media file. Settings in text fields
can be overridden by using compiler variables [p. 63] and overriding them in the "Customize
project defaults->Compiler variables" step of the media wizard.

It is also possible to override compiler variables for specific media files from the command
line [p. 230] by prefixing the variable name with the media file ID and a colon, as in

135

-D 123: key=val ue

if the media file ID is "123". As a special case, you can change the principal language on a
per-media file basis by setting the compiler variable sys. | anguagel d with the 2-letter ISO code
@ of the desired language, for example

-D 123: sys. | anguagel d=fr

For some features where text fields are not used, special screens are available in the "Customize
project defaults" category. They let you exclude files, launchers, installation components and
installer elements. In addition, the principal language [p. 79] and auto-update options [p. 114]
can be overridden for the media file.

Because it is often necessary to change the name of the media file from the global media file
pattern configured on the "General Settings->Media File Options" step, a separate customization
step is available in the media wizard. For example, you may want to produce two different variants
for the same platform with and without some files. To avoid a name clash of the two media files,
you have to adjust the name of one or both of the media files.

O Media Wizard - Windows x|

1. Media file type Customize name for media file
2. Installer options
3. Data files You can override the name of the media file that was defined in the general settings step
4, Bxecutable processing of install4j. If unsure, choose the standard name option.
5 Eundled.JRE . Standard name
6. Customize project defaults
© Custom name
+ Compiler variables custom_installer 4 Copy Default
+ Media file name
+ Principal language
+ Exclude components
+ Downloadable compeonents
+ Bxclude files
+ Exclude launchers
« Exclude installer elements
+ Lock & Feel
+ Auto-update opticns
7. Finished
@ Help 4 Back Next P Finish Cancel

Pack200 JAR compression
Pack200 compression” is a compression algorithm that was designed for JAR files and achieves
exceptional results, especially for large JAR files.

@) https://www.w3.0rg/WAI/ER/IG/ert/is0639.htm
3 http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/pack200.html

136

https://www.w3.org/WAI/ER/IG/ert/iso639.htm
https://www.w3.org/WAI/ER/IG/ert/iso639.htm
http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/pack200.html

Media Files
Media file output directory: | \media P @

Media file name pattern: S{compiler:sys.shortName]_${compilersys.platform}_S{compilersys.version} » ﬂ

Convert dots to underscores 0

Convert spaces to underscores

Compression
Compression level: | 6 > @
Use LZMA compression
Use Pack200 JAR compression
Exclude signed JARs or JARs creating digests

QOO0

Shrink runtime library and remove all unused classes

External Data Files 0
Create common data files where possible o

Create files with SHA-256 sums for checking the integrity of data files &)
9 grity

If you have signed JAR files or JAR files that create a digest, apply the $JDK_HOVE/ bi n/ pack200
executable in your build process with

pack200 --repack ny.jar

before signing the JAR files. Pack200 rearranges JAR files but the reordering is idempotent, so
the above pack/unpack sequence creates a stable JAR file.

While Pack200 compression can be quite slow, Pack200 decompression is relatively fast. Pack200
compression is only used for installers and not for archives.

To avoid problems with external JAR files, you can check the "Exclude signed JARs or JARs creating
digests" option. If you would like to exclude selected JAR files only, you can place an empty *.

nopack file next to it. For example, if the jar file is named app. j ar, then afile app. j ar. nopack
in the same directory will disable Pack200 compression for that file.

To pass options ' to the packer, create a file *. packopt i ons next to the file and add one option
per line. Currently, only - Pand - - pass- fi | e are supported.

Executable post-processing
The install4j compiler can invoke a post-processor for each executable that is generated. This
includes

+ generated launchers

+ theinstaller

* the uninstaller

+ custom installer applications

“) http://docs.oracle.com/javase/8/docs/technotes/tools/windows/pack200.html

137

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/pack200.html

B Media Wizard - Windows *

1. Media file type Configure an executable processor for launchers and installer
2. Installer options
3. Data files You can process executables to add third-party licensing or run special code signing

4. Executable processing EUB

5. Bundled JRE
6. Customize project defaults
7. Finished

For cross-platferm code signing, you can use the project level code signing facility
under General Settings-> Code Signing which works on all platforms.

Run command for each executable: €}
S{compilericustomSigningCemmand} SEXECUTABLE b o
Use $EXECUTABLE for the full path to the processed executable

Fail if the command returns an error code

© Help 4 Back Next P Finish Cancel

Typically, this feature is used for custom code signing with special requirements that are not
supported by the integrated code signing [p. 143].

In the post processor text field you can use the $EXECUTABLE variable to reference the executable
that is currently being post-processed. The working directory of the executed process is the
directory where your project file is located, so you can use relative file names for key or certificate
files. If the signing command cannot replace the executable directly, but rather needs a separate
output file, use the $OUTFI LE variable. It will receive a temporary output file name that will be
moved back to the processed executable by install4j after the post processor has completed.

138

A.24 Data Files

Typically, installers are single files that contain all data that they can install when they are executed.
There are three common situations where this is not the case:

+ DVD installers with large data files

If your application relies on large amounts of data, it is often distributed on a DVD. In that
case, you typically ship a number of external data files that you do not wish to package inside
the installer. The installer should start up quickly and the data files should not be extracted
from the installer in order to save time. The user might decide to install only certain
components, so some data files might not be needed at all. If they are included in the installer
executable, all this data would have to be read from disk.

+ Installers with large optional components

Some applications have large optional components that are not relevant for the typical user.
To reduce download size for the majority, the optional components should be downloadable
on demand.

* Net installers

Some applications are highly modular, so it is not feasible to build a set of installers for typical
use cases. A net installer lets the user select the desired components and downloads them
on demand. The download size of the net installer is small because no parts of the actual
application are contained in the installer itself.

To accommodate the above use cases, install4j offers three different ways to handle the installer
data files. The data file mode can be selected in the "Data files" step of the media wizard. By
default, the "Included in media file" option is selected where all data files are included in the
installer so you can ship it as a single download.

B Media Wizard - Windows X

1. Media file type Installer data files
2. Installer options
3. Data files The files in the distribution tree can be included into the installer, placed externally into

4. Bxecutable processing a directory next to the installer or be downleaded during the installation.

5. Bundled JRE
6. Customize project defaults
7. Finished Files should be:

See the help topic on data files for more information.

O Included in media file
Stored in external data files)
Downloaded O

OHeIp 4 Back MNext P Finish Cancel

External data files
This mode covers the "DVD installers with large data files" use case.

Next to your installer, a directory for the data files is created with the name of your installer and
the extension . dat . For example, if your media file name is hel | o_4_0, resulting in a Windows

139

installer executable hel | 0_4_0. exe, the directory containing the external data files is named
hel 1 o_4_0. dat . You have to ship this directory in the same relative location on your DVD.

The number of data files depends on the definition of your installation components. The data
files are generated in such a way that

+ thefiles for an installation component are contained in one or more data files
+ there are no files in those data files that do not belong to this installation component

If components do not overlap, there's a one-to-one correspondence between data files and
installation components.

Downloadable data files

This mode covers the "Installers with large optional components" and "Net installers" use cases.
It can only be used if you define installation components [p. 20].

Data files are generated just like for the "External" mode, but only for installation components
that have been marked as downloadable in the installation component definition [p. 20].

Installation Components \N /7

In this step, you can optionally define installation components that the user can choose for installation. If you don't define any
components, all files in the distribution tree will be installed. The component tree is drag-and-drop enabled.

'E Hello World Application [ID 40] # Files Options Description Dependencies
Source Files [ID 41]

Initially selected for installation O
User can change selection state (7]
Initially hidden O
I Downloadable component IO

e
&

If no installation components are marked as "downloadable", this mode will behave like the
"Included in media file" mode. For a "net installer", all installation components should be
"downloadable".

For this mode, you have to enter a HTTP download URL, so the installer knows from where it
should download the data files at runtime if the user requests downloadable components. The
URL must begin with htt p: // orhttps:// and point to a directory where you place the data
files that the compiler produces in the . dat folder next to the installer.

140

B Media Wizard - Windows

1. Media file type

2. Installer options

3. Data files

4, Executable processing

5. Bundled JRE

6. Customize project defaults
7. Finished

Installer data files

The files in the distribution tree can be included into the installer, placed extemally into
a directory next to the installer or be downloaded during the installation.

See the help topic on data files for more information.
Files should be:

Included in media file

Stored in external data files @)

I() Downloaded IO
HTTP download URL: | https:/fwww.test.com/components r @
© Help 4 Back Next P Finish Cancel

The build output will list the data files that belong to downloadable installation components with

a message like

Important: Please nake sure that the following files can be downl oaded from

https://ww.test.conl conponents

hel | o_wi ndows-x64_8_0. 41. dat

This means that the data file must be uploaded to the web server, so that the installer can

download it from the URL

https://ww.test.conl conponents/hel |l o_w ndows-x64_8 0.41. dat

Any data files that you leave in the data file directory next to the installer will not be downloaded.
This means that if you test your installer directory from the location where it was generated, the
installer finds all data files in the data file directory and does not try to download them.

Naming and partitioning of data files

The naming of data files is stable and only depends on the name of the media file and the
downloadable installation components.

For example, say your installer includes the following 7 files:

file_ 1.txt
file_2.txt
file_3.txt
file_12.txt
file_ 13.txt
file 23.txt
file_123.txt

and there are three installation components with IDs 1, 2 and 3 that include the following files:

141

Conponent 1:

file_1.txt
file_12.txt
file_13.txt
file_123.txt
Conponent 2:
file_2.txt
file_ 12.txt
file_23.txt
file_123.txt
Conponent 3:
file_3.txt
file 13.txt
file_23.txt
file_ 123.txt

Note that some files are in multiple components, and in the above scheme each component
includes all files whose number contains the ID of the installation component.

If the media file is named t est , the compiler then produces one data file per component named
test. X. dat with the files that are included exclusively by the corresponding component:

test. 1. dat
file 1.txt

test. 2. dat
file 2. txt

test. 3. dat
file_3.txt

Next, data files named t est . X. Y. dat for the files that are included in exactly two components
are generated:

test. 1. 2. dat
file_ 12.txt

test. 1. 3. dat
file 13.txt

test. 2. 3. dat
file_23.txt

Finally, a data file is generated that includes files that appear in all three components:

test. 1. 2. 3. dat
file_123.txt

When generalizing this partitioning to N installation components, a maximum number of 2" -
1 data files is created. In practice, it is more likely that each installation component only has
exclusive files and that there will be N data files.

For the downloadable data file mode, only the downloadable installation components are included
in this partition. Files that belong to other installation components are included in the installer
and do not play any role in the creation of data files.

142

A.25 Code Signing

Code signing ensures that the installer, uninstaller and launchers can be traced back to a particular
vendor. A third party certificate authority guarantees that the signing organization is known to
them and has been checked to some extent. The certificate authority has the ability to revoke a
certificate in case it gets compromised.

The basis for code signing is a public and private key pair'” that you generate on your computer.
The private key is only known to yourself and you never give it to anyone else. The certificate
provider takes your public key and signs it with its own private key. That key in turn is validated
by an official root certificate that is known to the operating system. The private key, the public
key and the certificate chain provided by the certificate provider are all required for code signing.

Code signing is important for installers on Windows and macOS. For unsigned applications that
require admin privileges, Window will display special warning dialogs to alert the user that the

application is untrusted and may harm the computer. Also, the SmartScreen ? filter will make it
very difficult for the user to execute unsigned executables.

On macOS, the Gatekeeper ™ prevents non-expert users from installing an unsigned application
that was marked as downloaded from the internet, so code signing is practically required.

Code Signing \N /7

In this step, yeu can configure code signing for Windews and macQ5. Code signing options apply to all configured media files,

Windows
In order to sign Windows executables, you need a Microsoft Authenticede code signing certificate together with its private key.
Sign Windows media files
© pkes12 or pfx key store file
PKCS #12 file: signinghcompany_windows.pfx y - @

Windows keystore

Hardware security module with PKCS #11 library

macQ5

In order to sign macOS application bundles, you need a "Developer |D Application” code signing certificate from Apple together with its
private key.

Sign mac05 media files

PKCS #12 filex signinghcompany_macos.plds - @
Additional binaries to be signed: *dylib; *.s0; *jnilib -~ @
JAR. files to be scanned for binaries: jna-* swt-*: javafi-* - | @
Directories excluded for additional signatures: | @

Notarize with Apple ID:

You need different certificates for code signing on Windows and macOS. While it is technically
possibly to use the same certificate, the recognized root certificates are different on both
platforms.

(1
@
3

) https://en.wikipedia.org/wiki/Public-key_cryptography
) https://en.wikipedia.org/wiki/Microsoft_SmartScreen
) https://en.wikipedia.org/wiki/Gatekeeper_(macOS)

143

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Microsoft_SmartScreen
https://en.wikipedia.org/wiki/Gatekeeper_(macOS)

Code signing for Windows

You can purchase a "Microsoft Authenticode" code signing certificate from a certificate provider

such as DigiCert”. In this process, you will create a public and private key pair on your computer
as instructed by your certificate provider. You send them the public key and receive a certificate

in PKCS #12 format® that can be used by install4j.

If you have private key, public key and certificate chain in some other format, you can use openssl|
® to convert them to a PKCS #12 file.

Depending on how you generate the private key while applying for a code signing certificate, the
private key is located in the Windows keystore and the generated certificate is imported into the
keystore as well. In that case, you can use the "Windows keystore" option in install4j and select
the certificate from a list of available certificates. This is only interesting if your build runs on
Windows, on other platforms this option is not visible in the install4j IDE unless it is already
selected in the project.

EV-certificates " get preferential treatment by the Windows SmartScreen filter, but they require
that the private key resides on a hardware security module (HSM), so that it cannot be copied.
On Windows, such a hardware token can be usually accessed through the Windows keystore.
On a different platform, you have to choose the "Hardware security module PKCS #11 library"
option and configure a native library that provides access to the keystore in the HSM through

the PKCS #11 API'®. Libraries can access multiple HSMs that are said to be in different "slots".
By adjusting the slot index, you can switch to a different HSM. By default, the first available HSM
in slot 0 is used. After the library has been configured, a certificate can be chosen from the
keystore in the HSM. Even if you have just one code signing certificate, over time you will likely
add certificate renewals to the same HSM.

Code signing for macOS

This chapter discusses code signing for the standalone distribution of macOS apps outside the
App Store. App Store submission is discussed in a different chapter [p. 149].

Certificates for code signing are only issued by Apple. To get started, open the Keychain Access
app and select Keychain Access->Certificate Assistant->Request a Certificate From a Certificate Authority.
The assistant will save a cer t Si gni ngRequest file to your file system.

Then, log in to the Apple Developer Network " and request a "Developer ID Application" "”

macOS code signing certificate. Download the certificate and double-click to add it to the Keychain.

Finally, open the Keychain Access app, select the "Keys" category and export the key that belongs
to your "Developer ID Application" certificate by selecting both the certificate as well as the private
key and right-clicking on the combined selection. Choose . p12 as the file format. The keychain
tool will ask you for a new password for the exported file. This is the password you will have to
specify during the install4j build to access your key.

install4j will refuse to use certificates for code signing that have a certificate subject name other
than "Developer ID Application”. It is technically possible to sign with an arbitrary certificate,
although such a signature will not be considered as valid by Gatekeeper. To enable signing with
all kinds of certificates, set the compiler variable sys. ext . macosAccept Al | Certs to true.
“) https://www.digicert.com/code-signing/microsoft-authenticode.htm

?) https://en.wikipedia.org/wiki/PKCS_12

(

© https://www.openssl.org
7
(
(
(

)
) https://en.wikipedia.org/wiki/Extended_Validation_Certificate
8)
)

9
10

https://en.wikipedia.org/wiki/PKCS_11
https://developer.apple.com
) https://developer.apple.com/support/developer-id/

144

https://www.digicert.com/code-signing/microsoft-authenticode.htm
https://en.wikipedia.org/wiki/PKCS_12
https://www.openssl.org
https://www.openssl.org
https://en.wikipedia.org/wiki/Extended_Validation_Certificate
https://en.wikipedia.org/wiki/PKCS_11
https://developer.apple.com
https://developer.apple.com/support/developer-id/

Expiration times will still be checked in that case, only the constraints on the certificate subject
name will be removed.

You can find general information about code signing on macOS in the Apple code signing guide
an

Notarizing media files on macOS

Apple offers a service that checks DMGs for security problems and adds them to their database.
This is called "notarization" and is required starting with macOS 10.15. The exact steps for

notarizing your application are described on the Apple developer web site '?.

However, Apple will only notarize applications that follow certain guidelines. The "hardened
runtime" has to be enabled which install4j automatically does for you by adding the appropriate
entries to the entitlementsfile. Also, all binaries in the DMG have to be signed. This also concerns
binaries that are in a ZIP archive. Because JAR files are ZIP archives, the notarization process can
detect binaries in JAR files. Some popular frameworks and libraries such as SWT or JNA ship
native binaries in their JAR files. These contained binaries have to be signed as well.

For this purpose, install4j lets you configure a list name patterns for binaries. All files in the
distribution tree are matched against these patterns and if a match is found, the corresponding

file is signed if it is really a MACH-O binary ", The reason why install4j cannot just automatically
check all files in this way is that this check is rather expensive.

In addition, you can configure a list of name patterns for JAR files that should be scanned for
binaries with the above name patterns. This only works for unsigned JAR files because the
modification introduced by the signature would break the signature of a signed JAR file and
install4j has no way of regenerating that signature.

B Additional Binaries To Be Signed X

Pattern &
* dylib
*.50

* jnilib

The actual notarization of a media file is performed by uploading it with an Xcode command line
tool to Apple while identifying yourself with the Apple ID that was used to create the code signing

certificate and an app-specific password ', If the app passes the inspection, another command
line utility can be used to "staple" the notarization signature to the executable. That stapling is
only necessary if a macOS machine is offline and cannot verify the notarization of an app by
connecting to the internet.

If you build on macOS, install4j can perform the entire notarization process for you. In the install4;
IDE, notarization must be enabled on the "General Settings->Code signing" step and an Apple
ID has to be entered. When building your project, install4j will ask for the associated password.
For command line builds, you can avoid the interactive entry of a password by setting the

https://developer.apple.com/support/code-signing/
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution
https://en.wikipedia.org/wiki/Mach-O

https://support.apple.com/en-us/HT204397

145

https://developer.apple.com/support/code-signing/
https://developer.apple.com/support/code-signing/
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution
https://en.wikipedia.org/wiki/Mach-O
https://support.apple.com/en-us/HT204397

- -appl e-i d- passwor d command line parameter or the equivalent parameter of the Gradle,
Maven and Ant plugins.

If you build on other platforms, you will have to transfer the macOS media files to a macOS
machine where Xcode is installed and perform a series of invocations to the notarytool command

line tool

Key store passwords

Private keys contain sensitive information and if they get into the wrong hands, your identity is
compromised. Because of that, private keys are secured with a password. When install4j signs
your installers and launchers, it needs to work with the private key.

When you start a build in the install4j IDE, you will be asked for the Windows and macQOS key
store passwords as required. install4j does not store those passwords to disk, but they are cached
on a per-project level as long as the install4j IDE remains open.

I Enter Password x

Enter the password for the Windows key store. It will not be stored on disk.

When you run a command line build, the install4j command line compiler will ask you for the
required passwords. If you want to fully automate a build with code signing, you can pass
passwords on the command line by setting the - - wi n- keyst or e- passwor d=[passwor d] and
- - mac- keyst or e- passwor d=[password] command line parameters. The plugins for
Gradle [p. 235], Maven [p. 240] and Ant [p. 249] offer the corresponding "winKeystorePassword"
and "macKeystorePassword" attributes. Note that adding these passwords to shell scripts or ant
build files constitutes a security risk.

In a setup where only a restricted number of people can build signed executables, you can use
the - - di sabl e- si gni ng command line parameter, the "disableSigning" attribute of the build
system plugins or the corresponding build option in the "Build" step of the install4j IDE to
temporarily disable code signing. In that way, other developers can build fully functional, unsigned
installers without modifying the project file.

Time stamp counter-signing

Code signing certificates issued by certificate providers expire after a certain time. For Windows
code signing, the expiry time is usually one to three years, after which you have to purchase a
renewal from your certificate provider. Executables that were signed while the certificate was
still valid are trusted indefinitely unless the certificate is revoked.

A computer that validates an executable compares the signing time and the expiry time of your
certificate. Certificate providers have to prevent you from turning back the clock of your computer
to circumvent the expiry of your certificate. This is why the signing time has to be counter-signed
by a certificate provider. Certificate providers offer free web services that will confirm that a
signature was performed at a particular time. This counter-signature is not related to a particular
certificate, so you can use the web service of any certificate provider, regardless of where the
certificate came from. install4j uses the DigiCert time stamp signing service at

http://timestanp. digicert.com

(15) https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution/
customizing_the_notarization_workflow

146

https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution/customizing_the_notarization_workflow
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution/customizing_the_notarization_workflow

and falls back to the GlobalSign time stamp signing service at
http://timestanp. gl obal si gn. conl ?si gnat ur e=sha2

if there is a failure.

To use a different service, define the compiler variable

sys. ext.ti mestanpUr | =<URL>

where <URL> can contain multiple URLs separated by semicolons.

If the timestamp service call fails, install4j will retry up to 10 times or whatever the sys. ext .
count er Si gnRet ry compiler variable is set to.

Apple has its own time stamp signature server at
http://tinmestanp. appl e. com ts01
that can be changed with the compiler variable

sys. ext. macTi nest anpUr | =<URL>

Setting up a proxy for HTTP calls

The consequence of the time stamp counter-signature scheme is that you need an internet
connection at build time. Many build servers are behind fire walls and you might need to set up
a proxy to get internet connectivity and whitelist the above time stamp servers. install4j will try
to auto-detect the proxy information. If that fails, the IDE will ask you for proxy information, but
the command line builds will not ask for user-input in order to avoid hanging builds due to
temporary internet connectivity problems.

For command line builds, you can pass the following VM parameters to the command line
compiler:

+ -DproxySet=true

+ -DproxyHost=[host name]

* -DproxyPort=1234

+ -DproxyAuth=true

« -DproxyAuthUser=[user name]

+ -DproxyAuthPassword=[password]

The authentication parameters are optional, only the first 3 parameters are required to set up
a proxy.

If you pass these parameters to the command line compiler, you have to prefix them with - J to

mark them as VM parameters, such as

- J- Dpr oxySet =t rue

147

The plugins for Gradle [p. 235], Maven [p. 240] and Ant [p. 249] offer way to set VM parameters
without using the - J prefix.

148

A.26 Submitting An App To The Apple App Store

Apps that are submitted to the macOS App Store have to fulfill a number of requirements and
pass a review process by Apple. While install4j can help you to prepare an artifact that will be
accepted by the App Store, you first have to make yourself familiar with the submission process

by studying the Apple Developer documentation ",
Configuring a media file for App Store submission

To prepare a package that can be uploaded to App Store Connect ?, start with a media file of
type "macOS single bundle archive" and select the ".pkg for App Store submission" option on
the "Installer options" step of the media wizard. Right below that option you have to select a
provisioning profile file.

O Media Wizard - macOS5 single bundle archive X

1. Media file type Configure installer options
2. Launcher
3. Installer options Mo installation directory can be set for a single bundle archive.
All files in a single bundle are in contained in a single directory whose name is
* DMG options and files determined by the name of the main launcher. The user can move the entire bundle

4. Bundled JRE somewhere else by dragging the displayed icon.
5. Customize project defaults
6. Finished Archive Format

DMG archive O

gz archive (7]

© .pkg for App Store submission &)

Provisioning profile: | my_app.provisionprofile »

Architecture
Intel binaries O
ARM binaries (7]
o Universal binaries Q

© Help 4 Back MNext P Finish Cancel

S

This file is created in the "Profiles" section of your Apple Developer account ® and determines
the Apple distribution channel which must be set to "App Store Distribution". When creating the
provisioning profile, you will have to select the App Identifier and a certificate of type "Distribution”
or "Mac App Distribution". The App Identifier and the certificate have to be created in the Apple
Developer account before the provisioning profile can be created.

However, the above certificate is not the only certificate that is required. The PKCS #12 certificate
file for code signing in the macOS section of the "General Settings->Code signing" step has to
contain both the "Mac App Distribution" certificate as well as a certificate of type "Mac Installer
Distribution". As explained in the chapter on code signing [p. 143], you can export multiple
certificates by selecting them in the Keychain Access app together with their private keys. If you
also have media files for standalone distribution on macOS, you can add the certificate of type
"Developer ID Application" as well, so that there are 3 certificates in a single .p12 file.

Configuring the launcher for App Store submission

One requirement for macOS App Store submission is that the App icon contains images in the
formats 16x16, 32x32, 128x128, 256x256 and 512x512 as well as their Retina variants with double
the resolution. On the "Icon" step of the launcher wizard, add the files for the non-Retina formats,

(1
@
3

) https://developer.apple.com/macos/submit/
) https://appstoreconnect.apple.com
) https://developer.apple.com

149

https://developer.apple.com/macos/submit/
https://appstoreconnect.apple.com
https://developer.apple.com

the icon compiler will try to pick up Retina files with an "@2x.png" ending and the same base
name.

By default, install4j will generate a bundle identifier for your launcher that is written to the
Info.plist file. In case of an App Store submission, you have to explicitly set the bundle identifier
to the same value that you have configured in the App ID Configuration in your Apple Developer
account. This is done on the "Executable info->macOS options" step of the launcher wizard.

B Modify Launcher X

1. Select type Options for macOS launchers
2. Executable info

Application Bundle Overrides
- Redirection

Custom executable name:
- Single instance mode o

- Windows version info Custom bundle identifie: @) | com.mycorp.myapp »
- Windows manifest options
+ Unix options Entitlernents file: @ | entitlementsxml »
» mac05 options L " 8
- Menu integration Application category:) | public.app-category.business »
= Auto-update integration
2 lcon Customize Plist File (7]

4. Java invocation
5. VM options file

6. Splash
_p ash screen Compile-Time File Associations and URL handlers @
7. Finished

Custom fragment for Info.plist file:

@ Help 4 Back Next P Finish Cancel

Another requirement for the App Store is that the LSApplicationCategoryType key for the
application category is set in the Info.plist file. You can also do that on the "Executable info->macOS

options" step of the launcher wizard. Possible values for this key are listed in the Apple Developer
)

documentation .
Finally, App Store apps have to run in a sandbox. This is enabled by the
"com.apple.security.app-sandbox" key in the entitlements file that install4j adds automatically.
Your app may need further entitlements, like the ability to read and write user-selected files. In
that case, you have to include an entitlements file on the "Executable info->macOS options" step
of the launcher wizard with content like

<?xm version="1. 0" encodi ng="UTF- 8" ?>
<I DOCTYPE plist PUBLIC "-//Apple//DTD PLI ST 1.0//EN'
"http://ww. appl e. conf DTDs/ PropertyList-1.0.dtd">
<plist version="1.0">
<di ct >
<key>com appl e. security.files.user-selected.read-wite</key>
<true/>
</dict>
</plist>

For a list of all available entitlements, see the Apple Developer documentation .

Testing the sandboxed App

install4j will create a .pkg file that contains your application bundle. This is the kind of archive
that is required for App Store submission. The App Store will install the .pkg file silently. To test

@ https://developer.apple.com/documentation/bundleresources/information_property_list/Isapplicationcategorytype
©) https://developer.apple.com/documentation/bundleresources/entitlements

150

https://developer.apple.com/documentation/bundleresources/information_property_list/lsapplicationcategorytype
https://developer.apple.com/documentation/bundleresources/information_property_list/lsapplicationcategorytype
https://developer.apple.com/documentation/bundleresources/entitlements

your installation before submission you can also double-click the generated .pkg file and follow
the instructions in the wizard to install the application bundle to the / Appl i cati ons folder.

The installed application bundle will run in a sandbox just like the app that end users will download
from the App Store. If some functionality in your application does not work as expected, it may
be missing entitlements. Use the "Console" app to record logging output and find the cause of
a failure.

Submitting the App to the App Store

The most convenient way to upload the generated .pkg file to App Store Connect is through the
"Transporter" app that can be installed from the App store. For signing in, use the Apple ID of
the Apple Developer account where the App is configured.

Before uploading the .pkg file, it is checked for issues that will result in a rejection. After you fix
all these issues in your application, the .pkg file is uploaded and a more thorough check is
performed that may take a couple of minutes. If that check does not pass, you will get an email
with the list of issues that resulted in the rejection. If your app passes these checks, it will be
selectable as a build in the App configuration in App Store Connect.

Another way to upload the app is with the Xcode command line tools:

xcrun altool --upload-app --file <file nane>. pkg --type osx
--user <user> --password <app-specific password>

Note that the password is not the password for the Apple ID but an app-specific password that
you can create in your Apple Developer account.

To validate your app beforehand, replace - - upl oad- app with - - val i dat e- app.

151

A.27 Styling Of DMGs On MacOS

On macOSs, software is usually delivered as a DMG. DMG stands for "Disk image" and contains
a file system that can be mounted, rather than an archive that can be extracted. When the user
double-clicks on a DMG file in the Finder, it is mounted to / Vol unes/ [vol une nane] and a
new Finder window is opened for the mount point.

The Finder can be styled on a per-directory basis and the information about that styling is saved
to a file named . DS_St or e in every directory. This means that you can ship styling information
with a DMG file. Styling includes setting a background image for the Finder window and that
image file can be added to the DMG as well.

For single bundle GUI applications, a styled DMG generally includes a symbolic link to
/ Appl i cati ons in the top-level folder of the DMG, so that user can drag the application bundle
into the default installation directory with minimum effort.

install4j allows you to add any number of files and symbolic links to the DMG. All macOS media
file types have a step named "DMG options and files" as a sub-step of the "Installer options"
step. Here, you can add the top-level . DS_St or e files, a background image and the symlink to
/ Applications.

Step-by-step instructions

To create your . DS_St or e file, follow the steps below on a macOS machine where install4;j is
installed.

1. Compile DMG

The first step is to compile your macOS media file from install4j without any custom styling.
This DMG will be the template for which we will define the style. You cannot use just any
other DMG, because each media file has a unique ID. When using background images, the
. DS_St or e file must have been created for a DMG with the same ID, otherwise the image
will not be found reliably.

When you recompile the media file in install4j, this ID remains the same, so you can add the
. DS_St or e file from a previously compiled DMG to the additional DMG files in the media
wizard.

2. Convert the read-only DMG to a writable DMG

The generated DMG is a read-only image. In order to make any modifications at all, we have
to convert the DMG to a writable format.

First, make sure that the DMG is not mounted. In a terminal, cd to the directory where the
DMG was created and execute

hdiutil convert hello.dng -format UDRW-o0 hell o_rw dng

where "hello" has to be replaced by the actual name of your media file. Note that the last
argument has "_rw" appended at the end, because the output DMG must be different from
the input DMG.

3. Enlarge the writable DMG

By default, a DMG generated by install4j is full. It is not possible to add any more files simply
because the file system in it has no more available space. To enlarge the DMG, we first
determine its current size by executing

152

hdi util resize hello_4 0 rw. dng

The "cur" column of the output shows the number 512-byte sectors. To add about 10 MB,
we add 20000 to that number and execute

hdi util resize -sectors <new nunber of sectors> hello_4_0_rw dng
To check the new size, run

hdi util resize hello_4 0 rw. dng

again.
Mount DMG

We now mount the read/write DMG by executing
hdi util attach hello_4 0 rw. dng

and note the mount point /Volumes/[volume name] that is given by the output of the above
command.

Copy background image to DMG

To add a background image, we first have to copy the image to the DMG. We do not want
the image file to show up in the finder, so we create a hidden directory in the DMG. To do
that, we execute

cd / Vol unes/ [vol une nane]
nmkdi r . background

To open this hidden directory in the Finder, we execute

cd . background
open .

Now, we open another Finder window, locate our background image and copy it to the hidden
directory that is visible in the original Finder window.

Select background image for DMG top-level folder

Because we need the Finder with the hidden directory in a minute, we leave it as it is, and
double-click on the mounted volume on the desktop to open the default Finder window for
the DMG. We position the new Finder window side-by side with the Finder window that shows
the hidden directory.

To start changing styles, we invoke View->Show View Options. This will show a tool window
with styling controls. In the "Background" section, we choose "Picture" and notice the drop
target for a picture file.

153

10.

+| Always cpen In icon view
¥| Browse in icon view

Arrange By: | MNone ﬁ
Sort By: None | <]

lcon size: 128x 128
] M
Grid spacing:

i EE3

Text size: | 12 |]
Label position:
* Bottom Right

Show item info
+| Show icon preview

Background:
White
Color

* Picture Drag image hera

Use as Defaults

Now we have to perform a somewhat tricky operation. From the Finder window that shows
the hidden directory, we drag the image to the mentioned drop target in the view options
dialog without activating that Finder window (otherwise the view options dialog would change
its target folder).

Finally, we see can see the background image applied to our read/write DMG.

Adjust DMG finder window

Two properties of the Finder window should be adjusted: Invoke View->Hide Toolbar and
resize the window so that it fits the size of the background image.

Add link to /Applications for single-bundle archives

If you have a single-bundle archive media file type, you probably want to add a drop-target
for the installation. In the terminal, we execute

cd / Vol unes/[vol une nane]
In -s /Applications " "

This creates a link with an empty name that immediately shows up in the Finder window.
The empty name is a good strategy to get around localization issues. The Applications folder
has a special icon and is easily recognizable, so a name is not necessary.

Adjust icons

Now you can position the icons as needed and adjust the "Icon size" property in the view
options dialog until they fit with your background image.

Extract .DS_Store file

The result of your work above is the . DS_St or e file in the top-level folder of the DMG. Go
to the terminal and copy it to your project folder so that you can reference it in the install4j
IDE:

154

cp .DS Store [project folder]/DS Store

Note that we have omitted the leading dot before DS_Store in the target path. This makes it
easier to work with the file and prevents confusion with the Finder.

At this point, our work with the read/write DMG is finished. We should now delete it and also
remove it from the Trash. If we don't do this, subsequent tests will automatically mount this
DMG again. This is due to the "alias" feature in macOS. The .DS_Store contains an alias to the
configured background image and as long as the original DMG still exists somewhere, it will open
it from the template DMG instead of from the newly generated DMG.

Configuring the media file

In the media file wizard of the install4j project, we can now use the generated . DS_St or e file.
On the "Installer Options->DMG options and files" step we enter the [proj ect fol der]/
DS_St or e and give it the name . DS_St or e in the DMG.

The background image is added with the name . backgr ound/ [i mage nane wi th ext ensi on]
where the image name must be the same as on the read/write DMG. The . backgr ound folder
will be created automatically.

If you have added a symbolic link to / Appl i cati ons, you can add a corresponding symbolic
link entry here, the name should also be set to the same name as in the read/write DMG. An
empty name is entered as " " (with the quotes).

E Media Wizard - macOS$ single bundle archive X
1. Media file type Configure options and additional files for the DMG
2. Launcher
3. Installer options DMG Options
. DMG options and files Volume name: | §{compilersys.shortMame} (N7]
4, Bundled JRE . o
5. Custemize project defaults Additional Files in DMG o
6. Finished " .DS_Store [source \DS_Store] o
" background/background.png [source \background.png]
@ * [target /Applications]
o [target /Applications]
@ Help 4 Back Next P Finish Cancel

With the above files and symbolic links a newly generated DMG will look the same as the
read/write DMG where the styling was added. When you tweak your styling in the future, you
don't start from zero but with the styles that are already present in the generated DMG.

155

B Configuring Installer Beans

B.1 The Screens & Actions Configuration Step

The "Installer->Screens & Actions" step shows a tree representation of the installer, the uninstaller
and other installer applications, such as updaters. The nodes in the tree are of the following

types:

i3 Applications [p. 163]
An application consist of a series of screens.

Screens [p. 172]

Ascreens displays information to the user, optionally gathers user input and optionally executes
a series of actions when the user moves to the next screen.

B Actions [p. 178]
An action usually makes a modification to the installation.

In this chapter, the functionality and configuration options on the "Installer->Screens & Actions"
step are discussed, the underlying concepts are discussed in a different help topic [p. 24].

Adding new installer elements

Installer elements are added by clicking the = Add button.

Screens & Actions N /7

In this step, you cenfigure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Installd] offers a rich set of screens and actions to choose from.

} Installer (8 screens) [ID insta E

+ Uninstaller (5 screens) [ID u Add Action
féﬁ Standalene update downloa... Add Screen
@g Background update downloa... Add Application
@i: Configure greeting [Custom ... Custom Code b
Groups »

Add link into 4

Please select a screen

In the popup window you can select whether to add

« anaction [p. 178], a screen [p. 172] or an application [p. 163]. Actions and screens are made

available by install4j or are contributed by an installed extension [p. 228]. A registry dialog will
be shown where you can select the desired screen or action. When adding an application, the
application template dialog is displayed.

an action or a screen that is contained in your custom code. New types of reusable actions or
screens can be developed with the install4j API [p. 222]. In your custom code configuration [p. 161]
you can specify code locations that are scanned for suitable classes.

an action group or a screen group [p. 190]. The new group is initially empty. You can also create
groups directly from a selection in the tree of installer elements.

156

Installer elements can only be added to appropriate parent elements. If no appropriate parent
element is selected, install4j tries to find one by moving in the ancestor hierarchy from the current
selection. If no appropriate parent element can be found, an error message is displayed.

Applications are added at the top level.
Screens and screen groups can be added to applications or screen groups.
Actions and action groups can be added to screens or action groups.

Editing installer elements

If you select a single installer element in the tree of installer elements, you can edit its properties
on the right side. Properties that have been modified are shown with an asterisk (*) in front and
can be restored to their default value with the "Reset To Default" action from the context menu.

Configuration

File

Excluded variables
Overwrite strategy o Alternative Input Mo
Register variables ﬂ:l Reset to Default

Error Handling

mand line

Failure strategy Continue on failure

Error message

Control Flow

Condition expression context.getBooleanVariable("sys.confirmedUp
Rollback barrier

Can be executed multiple times [v]

Privileges

Action elevation type Inherit from parent [Do not elevate]

Selecting multiple installer elements is possible on the same tree level, meaning that all selected
elements have to be siblings in the tree.

When the configuration area is focused, you can transfer the focus back to the tree of installer
elements with the keyboard by pressing ALT- F1.

The tree of installer elements provides the following actions in the toolbar on the right that
operate on the current selection. You can also access these actions from the context menu or
use the associated keyboard shortcuts.

Delete

All selected installer elements will be deleted after a confirmation dialog when invoking the

% Delete action. The deleted installer elements cannot be restored. You will be notified if
deleting the selected installer elements would break links.

Rename

After you add an installer element, the tree of installer elements shows it with its default name.
If you have multiple instances of the same installer element next to each other, a custom
name makes it easier to distinguish these instances. You can assign a custom name to each
installer element with the ¥ Rename action. The default name is still displayed in brackets
after the custom name. To revert to the default, just enter an empty custom name in the
rename dialog.

Comment

You can add comments to selected installer elements with the ~ Add Comments action. When
a comment is added, the affected installer elements will receive a "Comments" tab. After
adding a comment to a single installer element, the comment area is focused automatically.
Likewise, you can remove comments from one or more installer elements with the Remove
Comments action.

157

In order to visit all comments, you can use the Show next comment and Show previous comment
actions. These actions will focus the comment area automatically and wrap around if no further
comments can be found.

Disable

In order to "comment out" installer elements, you can use the Disable action. The
configuration of the disabled installer elements will not be displayed, their entries in the tree
of installer elements will be shown in gray and they will not be checked for errors when the
project is built.

Copy and paste

install4j has a clipboard for installer elements. You can & Cut or ** Copy installer elements to

the clipboard and [Paste them in the same project or in a different project. Note that
references to launchers or references to files in the distribution tree might not be valid after
pasting to a different project.

Pasted installer elements are appended to the end of the same level that would be chosen if
you added installer elements of that type. Sequence restrictions with respect to the already
present installer elements may force a different order.

Reorder

If your selection is a single contiguous interval, you can move the entire block % up or *¥ down
in the list. The selection can only be moved on the same level with the reorder actions. To
move the selection to a different parent, you can cut and paste it.

Group

You can create a screen group or an action group [p. 190] from the selected installer elements

with the “a Create Group action. The new group will be inserted in place of the selected installer
elements.

You can dissolve a group with the Dissolve Group action. This action is only enabled if the
selection consists of a single screen group or action group. The elements contained in the
group will be inserted in place of the group. Nested groups will not be dissolved.

Link

You can reuse screens and actions by linking to a single definition. This is particularly useful
if you define an installer maintenance application [p. 163] that should repeat parts of the
installer, such as a number of forms that query the user for initial values to set up your
application. Also, links are the only way to integrate screens and actions from merged
project [p. 108] into the main project.

In order to link to a screen, action, screen group or action group, you click on the add button
and select Add Link Into from the popup menu. The first entry in that popup menu is always
"This project" for links into the current project. If you have set up merged projects [p. 108],
then you get an entry for each merged project. The configuration area of a link will only contain
a button that selects the original definition in the tree of installer elements. For merged
projects, the merged project is opened in a new window, unless it is already open.

Another way to add a link into the same project is to select the installer element and invoke
the ¢ Copy Link action. Then you navigate to the installer element where the link should be
inserted and invoke the Paste Link action.

For links into the same project, install4j ensures that there are no broken links in the tree of
installer elements. When you delete an installer element, all links to it will be deleted as well.
If that is the case, the deletion message will tell you how many links are about to be deleted.

158

Links into merged projects may be broken, this condition is shown in in the configuration
panel.

Searching for installer elements

In the log files, actions and screens are logged with their IDs. You can navigate to installer element

if you know their ID by clicking on the * search icon and choosing "Search ID" from the popup
menu.

Screens & Actions \N /7

In this step, you cenfigure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Installd] offers a rich set of screens and actions to choose from.

& Installer (8 screens) [ID instal... E?
+ Uninstaller (5 screens) [I0 u...
'.’g'é Standalene update downloa... p
::g'g Background update downlea..

Search Text In Tree Ctrl+F

L Configure greeting [Custom ... | ¢, p CtrleShifts |

Search Mames, Comments and Properties Cirl+ Shift+5

Please select a screen

When a match is found the result tree shows the match at the top together with the reverse
chain of installer elements that lead to it. You can either show the match itself or select any other
elementin the result tree and show that element instead when closing the dialog with the Show
button. This works even if the target element is in a form component dialog or an action list or
a property. The scope of the search is always rooted in the installer elements that are reachable
from the current view.

A separate action "Search Names, Comments and Properties" is available to search for arbitrary
patterns. You can disable any of the search types to narrow down the scope of the search.

& Search Names, Comments And Properties X

Contains - service Case sensitive

Search in: Element names, Comments, Properties

18 matches

Property Validation expression [if (\context.getBooleanVariable("specialUserAccour
E Service eptions [Form] [ID 1365]
4 Installer [1D installer]
Property Screen subtitle [Please choose options for the service]
E Service eptions [Form] [ID 1365]
b installer (10 installer]
A" Property HTML [The Hello World suite includes a service that says hello every 2 seco
A Multi-line HTML label [ID 1
Q Service eptions [Ferm] [ID 1365]
4 Installer [ID installer]
A" Property Text [Install Hello World service]

Display options for installer elements

When using the install4j API, you reference installer elements with IDs. You can show IDs in the
tree of installer elements by toggling the L Show IDs tool bar button.

159

In order to adjust the information density in the tree of installer elements, you can change the
icon size by choosing large or small icons in the /con Size sub-menu in the context menu. The
default setting is to show large icons.

160

B.2 Custom Code & Resources Step

Custom code is configured on the "Installer->Screens & Actions->Custom Code" step.

Custom Code 8 Resources N7

In this step, you can configure the classpath for your custom cede. Custom code is used for custom screens, actions and form
components on the "Screens 8 Actions” step and can be used directly in all scripts. Resource files in the custom code are

Static fields and methods available in all scripts: Edit Code

Custorn Code & Resources:

2 Archive customCode.jar o
" Resource file driver_installer.exe

Quick Help

Custom code & resources can contain class files, archives and resource files, It is used for

» Adding classes that you want to use in scripts and expressions in the installdj IDE

» Adding custom screens, actions and form components that you have developed with the install4j APl that have not been packaged as an
extension

» Making arbitrary files available at installation time before the "Install files" action has run. Use the "Resource file" entry type for that purpose

Entries in the custom code are used for

+ specifying additional libraries that can be used in scripts and expressions [p. 29] of
screens [p. 172], actions [p. 178] and form components [p. 193].

+ developing new types of actions, screens or form components with the install4j API. See the
help topic on using the API [p. 222] for more information.

Before you start to develop a new action, have a look at the available actions [p. 178] and
screens [p. 172]. If it is just a few lines of code, you can use the "Run script" action to enter
them directly into install4j. If you would like to collect user input, most use cases can be solved
with a form screen [p. 46].

An alternative way of adding your beans to the install4j is packaging them as an
extension [p. 228]. In that case, you can select them directly from the standard registry dialogs
instead of having to go through the "Search in custom code" menu entries when adding beans
to the installer.

+ including resource files into the installer. Resource files are arbitrary files like DLLs, external
executables or text files that have to be available before the "Install files" action has run. All
class files are packed into a single user . j ar file, archives and resource files are extracted to
the user subdirectory in the working directory of the installer. You can access a resource file
named fil e. t xt with the following expression in custom code:

new File("user", "file.txt")

To specify resource files in text fields in the installer configuration, use the sys. r esour ceDi r
installer variable:

${installer:sys.resourcebDir}/file.txt

To load native libraries in custom code, do not use System | oad(..), but rather Wil .
| oadNat i veFr omResour ces(...) to load the library in the same class loader that loads

161

scripts. For example, if you have added a native library j ni . dl | to your custom code, you
can load itin a "Run script" action by calling

Util .l oadNativeFronResources("jni.dl1");

The following types of custom code locations are available:

Class or resource files

For simple actions, screens or form components that do not depend on other classes, it is
easiest to insert their class files directly, especially if you build your installer extensions together
with your application. Anonymous inner classes will be included automatically. If you select a
resource file, for example an image, it will be added to the top-level directory of the custom
JAR file and will be available via d ass. get Resour ceAsStream().

Directories
With this type of entry you can add an entire directory. Make sure to select a classpath root
directory, otherwise your classes cannot be loaded.
£ Scan Directories

Use this type of entry to add all JAR and ZIP files in a selected directory.

: Archives

Use this type of entry to add a JAR file. Files that are present in both the custom code as well
as the distribution tree will not be packaged twice. Files that are also present in the
distribution tree can be freely added to your custom code, they will not increase the size of
your installer. The compiler checks the source path of included files to determine if they are
already present in the installer.

162

B.3 Configuring Applications

Applications are configured on the Screens & and actions step [p. 156].

The top-level nodes represent the different applications that can be configured for the project.
There are 3 types of applications:

Installer

The installer is the application that is executed when the media file is invoked by the user, for
example, when the user double-clicks on the installer executable in the Windows explorer.
The installer cannot be deleted from the tree of installer elements.

' Uninstaller

The uninstaller is a special application for uninstalling an installation. It is used in various
contexts and can be

+ directly invoked by the user
+ invoked from the Windows software registry
+ invoked by the "Uninstall previous installation" action

The uninstaller cannot be deleted from the tree of installer elements. If you do not wish to
generate an uninstaller, you can disable it [p. 156].

% Custom installer application

You can add any number of custom installer applications that can be invoked after the
installation. install4j comes with several templates for auto-updater downloaders [p. 114].
Custom applications can also be used for writing maintenance applications for your installation.

You can add a new custom installer application by clicking on the = Add button on the right
side of the list and choosing Add Appl i cati on from the popup. The application templates
dialog will be displayed and lets you choose a starting point for your custom installer
application. Application templates are entirely made up of existing screens, actions and form
components. You can modify the selected application template after adding it.

Unlike the installer and uninstaller above, custom applications are also created for archive
media files [p. 131]. See the help topic on media files [p. 131] for more information on how to
create first-run installers for archives.

Custom installer applications with a non-empty "Executable directory" property are
automatically added to the "Default file set". If you leave the executable directory empty, the
custom installer application is added to the . i nst al | 4j directory and will always be included,
regardless of the installation component configuration.

Eachinstaller application has a startup sequence of actions [p. 178]. Those actions are executed
before the installer application presents a user interface. If any of these actions fails and has a
"Quit on failure" failure strategy, the installer application will not be shown.

Properties of installer applications

Common properties of installer applications are:

Executable icon [Executable]

By default, a standard installer icon is used for the executable. To customize the icon, press
the customizer button in the configuration pane.

163

Allow unattended mode [Execution Modes]

If selected, the user can pass - g as an argument to run the installer application without a GUI.
No user input is required, the installer applications works with the default values. Please see
the corresponding help topic on installer modes for more information. All standard actions
and standard screens support unattended installations. If your policy forbids unattended
installations or if you include custom code that cannot handle unattended installations, you
can disable them by deselecting this property.

Progress interface creation script [Configuration]

If you would like to implement your own way of displaying progress information for unattended
installations, you can do so by returning a custom implementation of com i nst al | 4j . api .
cont ext . Unat t endedPr ogr essl nt er f ace from this script. If you return nul | , no progress
information will be shown just as if this script had not been set. There is a default
implementationcom i nst al | 4j . api . cont ext . Def aul t Unat t endedPr ogr essl nterface
that does nothing for all its operations. You can derive from that class if you just need to
implement a few particular methods in the progress interface.

If you just need a simple dialog that shows progress information in unattended mode, please
choose the "Unattended mode with progress dialog" execution mode instead.

This property is only visible if "Allow unattended mode" is selected.

Allow console installations [Execution Modes]

If selected, the user can pass - ¢ as an argument to run the installer application on the console.
The installer asks for user input on the console in that mode. Please see the corresponding
help topic on installer modes for more information. All standard actions and standard screens
support console installations, form screens are also fully mapped to console installers. If your
policy forbids console installations or if you include custom code that cannot handle console
installations, you can disable them by deselecting this property.

Console screen change handler [Configuration]

By default, a screen in console mode does not show any particular separation. You insert your
own custom display with this script. The title parameter gives you access to the title of the
screen. In console mode, screens display their subtitle only, so the title string will not be
displayed again.

This property is only visible if "Allow console installations" is selected.
Disable console mode on Windows [Configuration]
Offer console mode only on non-Windows platforms.
This property is only visible if "Allow console installations" is selected.

Fall back to console mode on Unix [Configuration]

On Unix, users often operate in environments where no X11 server is available and no GUI
can be displayed. The installer will fallback to console mode if console mode execution is
allowed and this option is selected. Otherwise an error message will be displayed that tells
the user how to invoke the installer in console mode.

This property is only visible if "Allow console installations" is selected.

Default execution mode [Execution Modes]

The default execution mode for the installer application. By default, a GUI wizard will be shown,
but it is also possible to run in console mode or unattended mode by default.

164

Title for progress dialog [Configuration]

The title for the progress dialog, for example "Updating installation".This title and the
unattended mode with a progress window can also be set by passing - spl ash [title] as
an argument from the command line.

This property is only visible if "Default execution mode" is set to "Unattended mode with
progress dialog".

Show alerts [Configuration]

By default, no alerts are shown in unattended mode. This includes messages boxes, error
alerts and questions. By selecting this property, alerts are enabled for unattended executions
with a progress dialog.

This mode can also be activated by passing - al er t s as an argument from the command line.

This property is only visible if "Default execution mode" is set to "Unattended mode with
progress dialog".

Windows console executable [Execution Modes]

If selected, a console executable will be created on Windows. A non-hideable console will be
shown when the installer is double-clicked in the explorer. This improves the user experience
for a console-only installer (default execution mode set to console) and allows execution
through r sh.

VM parameters [Execution Options]

If you need to pass special VM parameters to the installer application, you can enter them
here. A common case would be to raise the maximum heap size with a different -Xmx
parameter if your installers require a lot of memory.

Arguments [Execution Options]

If you need to pass fixed default arguments to the installer application, you can enter them
here. For example, if you want to display a splash screen in unattended mode by default, you
can set the arguments to -spl ash "Installing ...". Please note that command line
arguments will be appended to this list, so it is not possible to "override" a fixed argument
from the command line.

Rollback on failure [Execution Options]

If selected, the installer application will try to restore the state before the last rollback barrier
by rolling back all actions that were executed since the last barrier. Any screen or action can
be selected as a rollback barrier with the property "Rollback barrier". If no rollback barrier
was encountered, all executed actions will be rolled back.

Help customizer script [General Customization Options]

If the user starts the installer application with one of the arguments -h -hel p /?, help
regarding the available command line options will be displayed. If you have your own command
line options you can customize this help with this script. The script receives a Li st containing
St ri ng arrays of length 2 with the options and explanations. You can add options like this:
options.add(new String[] {"/mySwitch", "Explanation of mySwitch"}}. You
can also delete default options in the list.Attention: The context parameter has not been
initialized at that point.

In order to get extra command line arguments in the installer, call context.
get Ext raCommrandLi neAr gunent s() in any script.

165

Customize version info [Windows]

If selected, you can customize the fields of the Windows version info in the nested properties.
Awindows version info is always generated for the executable with default values for product
name and file version taken from the general settings.

Copyright [Configuration]

The copyright field in the version resource. If empty, the publisher name from the general
settings is used.

This property is only visible if "Customize version info" is selected.

File description [Configuration]

The file description field in the version resource. If empty, the full name from the general
settings is used.

This property is only visible if "Customize version info" is selected.

File version [Configuration]

The file version field in the version resource. If empty, the version from the general settings
is used. The file version must consist of 4 numbers separated by spaces, commas or dots.

This property is only visible if "Customize version info" is selected.

Internal name [Configuration]

The internal name field in the version resource. If empty, the short name from the general
settings is used.

This property is only visible if "Customize version info" is selected.

Product name [Configuration]

The product name field in the version resource. If empty, the full name from the general
settings is used.

This property is only visible if "Customize version info" is selected.

macOS entitlements file [macOS]

If you have configured code signing for macQOS, an entitlements file can unlock certain features
on macOS§, such as iCloud storage or push notifications.

Custom fragment for Info.plist [macOS]

On macOS, you may want to add additional elements to the Info.plist file of the application
bundle in order to customize its behavior in ways that are not directly supported by install4;.
Custom script fragment [Unix]

On Unix and Linux, the JVM for an installer application is launched by a shell script. To add
your own code to the shell script, you can specify a script fragment that is added immediately
before the java invocation takes place.

Style [GUI Options]

The default screen style for this installer application. Screens and screen groups can override
this style.

Window width [GUI Options]

The width of the window displayed by the installer application. The default value is 500. If the
"Size client area" property is selected, this does not include the size of the window frame
border.

166

Window height [GUI Options]

The height of the window displayed by the installer application. The default value is 390.If the
"Size client area" property is selected, this does not include the size of the window frame
border.

Size client area [GUI Options]

If selected, the supplied size for the window will not be applied to the outer dimensions of
the window, but to the actually usable area inside the window. Unusually large window frame
borders can occur due to user settings (accessibility, window themes, etc.) and may interfere
with banner images or introduce unwanted scroll bars to form screens.

Resizable [GUI Options]
If selected, the window displayed by the installer application is resizable.

Action elevation type [Privileges]

If any contained actions should run in the elevated helper process, if their "Action elevation
type" property is set to "Inherit from parent".An elevated helper process is available on Windows
and macOS if the process has been started without admin privileges and the "Request
privileges" action has been configured to require full privileges.

Custom applications as well as the uninstaller are added to the distribution tree and have
additional related properties:

Executable name [Executable]

The name of the executable for the . Please enter a name without any path components and
without a file extension.

Executable directory [Executable]

The directory to which the executable of the will be written. If empty, it will be placed in the
.install 4j runtime directory.

Use custom application bundle name [macOS]

If selected, a different application bundle name is used on macOS. Executable names on
macOS are localizable. Otherwise, the value of the "Executable name" property is used for
the application bundle name.

Custom application bundle name [Configuration]

The application bundle name to be used for macOS media files. Bundle names on macOS are
shown in the Finder and are localizable. For example, the executable name could be set to
${i 18n: nyLauncher Nane(${ conpi | er: sys. ful | Nane})} wherenyLauncher Nane isan
i18n message with value "Launcher for {0}".

This property is only visible if "Use custom application bundle name" is selected.

Unix mode [Unix]
The executable mode for the on Unix.

The remaining properties that are specific to the installer are:

Suppress initial progress dialog [Execution Options]
If selected, the initial native progress dialog of the installer is not displayed.

167

Replacement script for language code [General Customization Options]
With this script you can replace the language that the installer will run with.

Parameters: The parameter | anguageCode contains the 2-letter ISO 639 code of the
auto-detected language. If auto-detection has not been enabled on the languages step of the
general settings, the parameter will be nul I .

Return value: If you return nul |, the language selection dialog will be shown, if you return
a language code, the language selection dialog will not be shown and the returned language
will be used. If the returned language code is a language that is not configured for this installer,
the language selection dialog will be shown.

Create log file for stderr output [Windows]

If selected, and output on stderr is detected, a log file will be created and all output to stderr
will be redirected to that file.

Log file for stderr [Configuration]

The log file for the stderr output relative to the installer media file.

This property is only visible if "Create log file for stderr output" is selected.

Finally, custom installer applications have the following additional properties:

Create executable [Executable]

If selected, an executable for this installer application will be created. If not selected, this
application launcher can only be invoked with the cominstall4j.api.launcher.
Appl i cati onLauncher APl or an automatic launcher integration.

For macOS single bundles, executables for installer applications are never created.

Single instance [Configuration]

If checked the application will ensure at startup that there is only one instance running per
user account.

This property is only visible if "Create executable" is selected.

File set [Executable]

Choose the file set to which the installer application is added. File sets can be defined on the
Files->Define Distribution Tree step.

This property is only visible if "Create executable" is selected.

Change working directory [Execution Options]
If selected the working directory will be changed to the value in 'Working directory' at startup.

Working directory [Configuration]
The working directory to be used when 'Change working directory' is selected.

This property is only visible if "Change working directory" is selected.

Execution level [Windows]

The execution level for this application. If you want to modify files in the installation direction,
you most likely need administrator rights. This is only relevant for Windows Vista and higher.

Window title [GUI Options]
The title of the application window.

168

+ Show message when user cancels [GUI Options]
If selected, a message will be shown when the user cancels the installer application by clicking
on the "Cancel" button or closing the application frame.

+ Cancel message [Configuration]

The message that is shown if the user cancels the installer application by clicking on the
"Cancel" button or closing the application frame. The options that are presented to the user

are "Cancel" or "Continue".
This property is only visible if "Show message when user cancels" is selected.

Configuring installer variables

The second tab in the configuration area for installer applications is the Installer variables tab.
Here, you can check the bindings for all detected installer variables and pre-define installer
variables. For more information, see the help topic on variables [p. 63].

Y
¥ Properties

- Installer Variables
9_ Launcher Integration

You can pre-define installer variables in order to document and categorize them or to
assign initial values.

’ Configure Predefined Installer Variables

The following bound installer variables have been detected:
P installerArguments [type javalang. Object]
» isArchive [type ja t]
P isDmg [type java.l
P> updateDescriptor [ty
ST P | PR .

.

com.installdj.api.update.UpdateDescriptor]

Bindings for selection:

An additional feature with respect to the variable selection dialog is that you can navigate to a
binding by selecting an element in the binding tree at the bottom and click on the Go To Selection

button.

Launcher integrations

Custom installer applications have a Launcher integrations tab in the configuration area that
helps you to start them when launchers are executed.

169

Y
¥ Properties
- Installer Variables

9‘ Launcher Integraticn
Programmatic Integration

To call this custom installer application from your own code: Start Integration Wizard

Automatic Integration

Start automatically when launcher is executed

One way to start an installer application is programmatically, by using the install4j APl [p. 222].
To get the code snippet for starting the selected installer application, click on the Start integration
wizard button. The integration wizard will present a number of options that control the condition
and possible call backs from the installer application.

Another way to start an installer application is automatically, by defining a launch schedule and
a launch mode. The launch schedule is one of
+ Always

Every time you start the launcher, the installer application will be started as well.

+ According to update schedule

install4j provides a built-in update schedule registry that can be configured by the user on a
form screen with an "Update schedule selector" form component. Also, you can programatically
modify the update schedule through the <class cominstall4j.api.update.
Updat eSchedul eRegi st ry in the API. The selected installer application will be started only
if the update schedule requires an update check.

+ First run of any launcher in archive media file by the current user

For archive media files (such as a Windows ZIP file), no installer is available. To execute a
sequence of screens and actions when a launcher is started for the first time after the archive
has been extracted, use this launch schedule. It may be convenient to link to screen groups
in the installer in order to avoid duplicating configuration in your custom installer application.

In your launcher, you can check for this condition with
cominstall4j.api.launcher. ApplicationLauncher.isNewArchivelnstallation()

in case you want to perform some actions outside a custom installer application.

The launch mode is one of

170

+ Blocking at start up

When the launcher is started, the selected installer application will be started first. When the
installer application terminates, the launcher will then start up, unless a "Shut down calling
launcher" action has been executed.

* Non-blocking at start up

When the launcher is started, the selected installer application will be started immediately.
The launcher continues to start up in parallel.

¢ When first window is shown

The selected installer application will be started when the first window is shown. This works
for AWT, Swing and SWT applications. If you have an SWT application, the "Uses SWT" check
box in the "Executable info" step of the launcher wizard [p. 36] must be selected.

Just like with the API, the installer application can be started in the launcher process itself or in
a new process. By default, the installer application is started in the same process. If the "Blocking
at start up" or "Non-blocking at start up" launch modes are selected, the look and feel is set to
the system look and feel. For the "When first window is shown" launch mode, the look and feel
is not changed, so your own look and feel will be used. When the installer application is executed
in the same process, the "Shutdown calling launcher" action has a different effect: The whole
process will be terminated when the installer application exits.

By default, the selected installer application is started for all launchers in your project. If this is
not desired, you can restrict the integration to selected launchers. Note that if "All launchers" is
selected and the project is merged into another project, the integration will be performed for
all launchers in the main project as well.

171

B.4 Configuring Screens

Screens are configured on the Installer->Screens & Actions step [p. 156]. A screen is a single step
in an installer application. It displays information to the user or gathers user input.

& Installer (8 screens) [ID instal... '+

i Finish (1 action) [ID 60]
+ Uninstaller (3 screens) [IC u...

@'g Standalone update downloa..

Custemize banner image
Privileges
Action elevation type
Screen Activation
Pre-activation script

. Contains 4 form components Q Configure & Preview
=, Startup (2 actions) b 4
v Welcome (1 action) [ID 47] e Update Alert
@ Load a response file ||... Alert for update installation

— Control Flow

i Installation location (2 ac... Condition expression
: Installation components [... Validation expression
: Create program group [1D... gzli‘tb::ttrb:(rr”e:;
g Query greeting [Form] [1D... B Back button
g Service options [Form] [ID... GUI Options

Styl E
" Installation (13 actions) [.. e anner

Inherit from parent [Do not elevate]

@E-: Background update downloa... Post-activation script

@E‘_: Configure greeting [Custom ... Welcome

A screen that welcomes the user to the installation of your application. This screen should
be placed at the beginning of the installation
v

If a screen has attached actions [p. 178], there will be an expand control to the left of the screen
icon that allows you to show the associated actions.

Some screens only make sense when corresponding actions are used later on in the installer or
uninstaller. For example, the "Services" screen will only be displayed at runtime if there are
"Install a service" actions present on a subsequent screen. If such a dependency is not fulfilled
after adding a screen, a corresponding notification is displayed.

Properties of screens

Common properties of screens are:

+ Action elevation type [Privileges]

If any contained actions should run in the elevated helper process, if their "Action elevation
type" property is set to "Inherit from parent".An elevated helper process is available on Windows
and macOS if the process has been started without admin privileges and the "Request
privileges" action has been configured to require full privileges.

+ Style [GUI Options]
The default screen style for this installer application. Screens and screen groups can override
this style.

+ Condition expression [Control Flow]

This expression is evaluated to decide whether the screen is displayed. If the expression or
script returns false, the current screen will be skipped. This expression or script should not
have any side-effects, it will be called while another screen is still being displayed.

* Rollback barrier [Control Flow]

If the screen should be a rollback barrier. When a rollback barrier is completed, none of the
preceding actions will be rolled back. You can use this property to prevent an incomplete
rollback of complex changes or to protect actions from rollback when the user hits "Cancel"
in the post-install phase.

172

Exit code [Control Flow]

If the "Rollback barrier" property is selected, and a rollback terminates at this screen, this
property determines the exit code of the installer. By default, reaching a rollback barrier during
a rollback is considered a success, but you can signal a failure by specifying a non-zero exit
code here.

This property is only visible if "Rollback barrier" is selected.

Validation expression [Control Flow]

This expression or script is called when the user clicks the next button. If it returns false, the
current screen will be displayed again. You can use this to validate user input. Error messages
are not displayed automatically, you can use the Util.showErrorMessage(String errorMessage)
method in your script.

Quit after screen [Control Flow]

If the screen should have a "Finish" button instead of a "Next" button. The installer or uninstaller
will quit after this screen. The "Cancel" button will not be visible if this option is checked.
Back button [Control Flow]

Allowing the user to go back to previous screens can be problematic if the previous screen
has actions attached that cannot be executed multiple times. By default, every action is just
executed once, all actions have a property to allow multiple execution. The default behavior
is the "Safe back button", where the back button is hidden if the previous screen has actions
attached that cannot be executed multiple times.

Wizard index [Screen Activation]

Every screen can set or change the current wizard index. The wizard index is an optional panel
on the left side of the wizard that shows overall installation progress. You can leave the index
unchanged as it was set by a previous screen, change the step in the current wizard index,
removed the current wizard index ot configure a new wizard index. For conditional construction
of a wizard index, please use thecom i nstal | 4] . api . cont ext . W zar dl ndex class in the
"Pre-activation" script.

Step key

The key for the step in the wizard index that should be activated.

This property is only visible if "Wizard index" is set to "Activate another step".

Steps

The steps that are displayed by the wizard index. Each step has a key that you can use to
switch to that step later on by setting the wizard index property to "Activate another step"
and specifying that key.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

Initial key

The key of the step in the wizard index that should be initially selected. Leave empty to select
the first step.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

Partially defined

If selected, the list of wizard index steps will be partially defined. This means thata "..." entry
will be appended at the bottom.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

173

* Numbered
If selected, the steps in the wizard index are numbered.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

« Maximum width

The maximum width of the wizard index in pixels. The preferred with is determined by the
longest step name, the maximum width is an upper bound for the actual width.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

* Minimum width

The minimum width of the wizard index in pixels. The preferred with is determined by the
longest step name, the minimum width is a lower bound for the actual width.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

+ Background color
The background color for the index panel. Set to "None" to restore the default color.
This property is only visible if "Wizard index" is set to "Set a new wizard index".

+ Foreground color
The foreground color for the index panel. Set to "None" to restore the default color.
This property is only visible if "Wizard index" is set to "Set a new wizard index".

+ Background image

The image file for the background of the wizard index panel. Leave empty if no background
image is required.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

* Image anchor
The anchor for the background image. The default value is "North".

* Pre-activation script [Screen Activation]
This script is called each time just before the screen is displayed.

+ Post-activation script [Screen Activation]

This script is called each time just after the screen has been displayed. It is not invoked in
console or unattended mode.

Available screens
The following standard screens are available in install4j:
= Empty form

An empty form to which form components can be added. By default, form components are
layouted along the vertical axis, but you can use layout groups for greater flexibility. Form
components with user input are bound to installer variables that can by referenced by other
elements in the installer, for example by actions.

Category: Form templates

174

Hi

Hi

Wi

i

Wi

i

Banner with header at the top

A form that has "Banner" as the default style and a configurable header label at the top.

Directory selection

A form that asks the user to select a directory. All displayed messages are configurable.

Display PDF file

A form that displays a PDF file in an embedded cross-platform PDF viewer.

Display progress

A form that displays a progress bar with a status line capturing the progress information of
associated actions. The default post-activation script executes any associated actions
immediately when the screen is activated. All displayed messages are configurable.

Display text

A form that displays text to the user, either plain text or HTML. All displayed messages are
configurable.

Program group selection

A screen that allows the user to select a program group on Microsoft Windows. All displayed
messages are configurable.

Category: Standard screens

¥ Welcome

A screen that welcomes the user to the installation of your application. This screen should
be placed at the beginning of the installation

" Display license agreement

A screen that displays a license agreement to the user, either plain text or HTML. The license
agreement must be accepted before the installation continues.

¥ Installation location

The screen that asks the user where to install the application. This determines the principal
installation directory.

" Installation type

A screen that displays a list of installation types that correspond to configurable set of
installation components. The default types "Full","Standard" and "Customize" are provided
by default, with localized names and descriptions. Installation components are configured
in the install4j IDE on the "Files->Installation Components" step

The "Installation components" screen may be hidden by this screen, depending on the
installation type selected by the user. This screen will not be shown if no installation
components are defined.

You can choose for each installation type if it should be customizable or not. If the installation
type that is selected by the user is customizable, the "Installation components" screen will

175

be shown if present, otherwise that screen will be skipped. This condition can also be checked
by inspecting the boolean wvalue of the installer variable sys.
prevent Conponent Cust omni zati on.

* Installation components

Ascreen that displays all installation components and asks the user which components should
be installed. This screen will not be shown if no installation components are defined.

" Create program group

Ascreen that allows the user to select the default program group. Under Windows, this screen
sets installer variables that influence "Create program group" and "Create start menu entry"
entry actions. Under Unix, the screen asks the user whether and where symbolic links to
launchers should to be created. Under macOS, the screen is not shown.

¥ File associations

A screen that displays a list of all subsequent file association actions and asks the user which
associations should be made. This screen will not be shown if there are no corresponding
file association actions after this screen.

¥ Additional confirmations

A screen that displays a list of confirmations as check boxes whose results can be used in
condition expressions for actions. While other types of form components can be added to
this screen, only check boxes and other simple elements are consistent with the displayed
text. For arbitrary forms, use the "Configurable form" screen instead.

Installation
The screen that displays displays the installation progress. Where possible, installation actions
should be added to this screen.

* Display information

A screen that displays text to the user, either plain text or HTML. In contrast to the "Display
text" form template, all messages on this screen are pre-defined and localized.

* Finish

A screen that tells the user that the installation is finished. This screen should be placed at
the end of the installation.

" Uninstall Welcome

A screen that welcomes the user to the uninstallation of your application. This screen should
be placed at the beginning of the uninstallation.

Uninstallation

The screen that displays displays the uninstallation progress. Where possible, uninstallation
actions should be added to this screen.

" Uninstallation failure

The screen that is displayed if the uninstallation was not completed successfully. Further
information regarding the uninstallation problems is displayed to the user. This screen is not

176

shown if the uninstallation was completed successfully or if it is placed before the uninstallation
screen. The uninstaller will terminate after showing this screen in case of failure.

¥ Uninstallation success

The screen that is displayed if the uninstallation was completed successfully.

177

B.5 Configuring Actions

Actions are configured on the Installer->Screens & Actions step [p. 156]. An action performs a
configurable unit of work of the installer application.

B Installer (8 screens) [ID instal... E‘* Configuration
Y 5 5) File [Default]
1 tartup (2 actions) x Excluded variables specialUserAccount
ik Welcome (1 action) [ID 47] P Owerwrite strategy Do not overwrite command line
o Load a response file [1... Register variables for response file
— 1 Error Handling
B | Installation location (2 ac—. || = Failure strategy Continue on failure
?a Installation components [... Error message
[| - Control Flow
#& Create pregram group [10... Contro
- preg grede Condition expression context.getBooleanVariable("sys.confirmedUp
E Query greeting [Form] [ID..| | Rollback barrier
E Service options [Form] [ID... Can be executed multiple times
3 . . 3& Privileges
Installation (13 acti 3
nstallation (13 actions) | Action elevation type Inherit from parent [Do not elevate]

7“ Finish (1 action) [ID 50]
+ Uninstaller (3 screens) [IC u...
@g Standalone update downloa.. o°
@g Background update downloa...
@f_z Configure greeting [Custom ... Load a response file

Load a response file that has previously been saved with the "Create a response file" action.

Actions are attached to screens [p. 172] or they are part of the "Startup sequence" that allows
you to perform actions before the installer or uninstaller is displayed. If any one of these actions
fails and has a "Quit on failure" failure strategy, the installer application will not be shown.

Most often, actions are added to the "Installation" or "Uninstallation" screens. The advantage of
those screens is that they have a progress bar and a status display that is utilized by actions. If
a screen does not expose a progress interface, the status and progress messages of attached
actions are lost. This is no problem for near-instantaneous actions such as setting an environment
variable, but for time-consuming operations the user should be informed about progress, even
ifitis only anindeterminate progress bar. As an alternative to the "Installation" or "Uninstallation"
screens, you can use "Display progress" screens to create additional installation phases.

Some actions have an "affinity" to a particular screen and will suggest to add themselves to that
screen, such as the actions in the "Final options" category which would like to go to the "Finish"
screen. However, this is only a suggestion to guide you for the most common use cases.

Some actions have an associated screen that allows the user to modify the behavior of the action.
For example, the "Install a service" action has a corresponding "Services" screen where the user
can decide whether the service should be installed and started when booting. If such a relationship
exists, a corresponding notification is displayed after adding an action.

Properties of actions

Common properties of actions are:

+ Action elevation type [Privileges]

If the action should run in the elevated helper process.An elevated helper process is available
on Windows and macOS if the process has been started without admin privileges and the
"Request privileges" action has been configured to require full privileges.

178

Condition expression [Control Flow]

This expression is evaluated to decide whether the action is executed. If the expression or
script returns false, the current action will be skipped. This expression or script should not
have any side-effects, it will be called while another screen is still being displayed.

Rollback barrier [Control Flow]

If the action should be a rollback barrier. When a rollback barrier is completed, none of the
preceding actions will be rolled back. You can use this property to prevent an incomplete
rollback of complex changes or to protect actions from rollback when the user hits "Cancel"
in the post-install phase.

Exit code [Control Flow]

If the "Rollback barrier" property is selected, and a rollback terminates at this action, this
property determines the exit code of the installer. By default, reaching a rollback barrier during
a rollback is considered a success, but you can signal a failure by specifying a non-zero exit
code here.

This property is only visible if "Rollback barrier" is selected.

Can be executed multiple times [Control Flow]

If the action can be executed multiple times. If unselected, the action will only be executed
once and do nothing for subsequent invocations of the containing screen. The default settings
for screens ensure that a screen with actions that cannot be executed multiple times is only
shown once. However, if the "Back button" property is changed of if you skip screens
programmatically, a screen might be shown multiple times.

Failure strategy [Error Handling]

If an action fails (i.e. returns f al se), the installer or uninstaller can continue, quit, or ask the
user what to do. If you select something other than "Continue on failure", you should enter
an error message in the "Error message" property unless the action displays the error itself.

For "Return to the parent screen”, no further actions will be executed and the previous screen
will be displayed again. If the action is contained in the "Startup" node, the first screen will be
shown and in unattended mode the application will quit.

Error message [Error Handling]

If the action fails, this error message is displayed to the user, otherwise the action fails silently.

Available actions

The following standard actions are available in install4;j:

Category: Control

#* Change cancel button state

Changes the visibility and the enabled state of the cancel button. This action works in GUI
mode as well as in unattended mode when the - spl ash option has been passed on the
command line and the simple unattended progress dialog with a cancel button is shown.
% Run script

Runs a custom script. The script must return a boolean value. If it returns false, the installation
will be canceled.

179

&t Set a variable

Sets a variable by running a custom script. The script can return any j ava. | ang. Obj ect .

© Set messages

Sets the messages in the progress interface.

1 Set the progress bar

Change the value of the progress bar or set it to indeterminate mode.

T Sleep

Sleep a specified number of milliseconds. This is useful to ensure that a progress screen is
displayed for at least a certain period of time.

Category: Desktop integration

% Add a desktop link
Create a link on the desktop to an installed executable or file. This action will be automatically
reverted by the 'Uninstall files' action.

¥ Add a startup executable on Windows and macOS

Add an installed executable to the startup folder on Windows or to the login items on macQOS
so that it will be started automatically when the user logs in. This action will be automatically
reverted by the 'Uninstall files' action.

% Add an executable to the dock
Add an installed executable to the dock on macOS. This action will be automatically reverted
by the 'Uninstall files' action.

& Create a Windows URL link

Create a URL link on Windows. This is a special text file with a .url link that is supported by
the Windows desktop, start menu and explorer. To create links in the start menu, the "Create
program group" action can be used as well. This action will be automatically reverted by the
'‘Uninstall files' action.

“t Create a file association

Create an association between a file extension and a launcher, so that the launcher is invoked
when the user double-clicks a file with the selected extension.

If the application has not yet been started, the arguments to the main method will contain
the file name. Subsequent invocations can be intercepted with the com i nstal | 4j . api .
 auncher. StartupNoti fi cati on class. This action will be automatically reverted by the
'Uninstall files' action.

For macOSs, file associations have to be defined on the "Executable info->macOS options"
step of the launcher wizard.

W Create program group

180

Create standard program group entries on Windows and freedesktop.org compatible UNIX
desktops. This action will be automatically reverted by the 'Uninstall files' action.

Create start menu entry

Create a single start menu entry on Windows and Unix. For creating multiple program group
entries, please see the "Create program group" action. This action will be automatically
reverted by the 'Uninstall files' action.

Register Add/Remove item

Register an Add/Remove item in the Windows software registry. This action will be
automatically reverted by the 'Uninstall files' action.

Register a URL handler

Register a URL handler for a custom scheme, so that the launcher is invoked when the user
clicks on a link with the specified scheme.

On Windows and Linux, the arguments to the main method will contain the URL. On macOS,
the arguments are available from the cominstall4j.api.launcher.
StartupNotificati on class. If the "Allow only a single running instance of the application"
check box is selected on the "Java invocation" step of the launcher wizard, subsequent
invocations are intercepted bythecom i nst al | 4j . api . | auncher. StartupNoti fi cation
class on all platforms.

This action will be automatically reverted by the 'Uninstall files' action.

For macOS, URL handlers have to be defined on the "Executable info->macQOS options" step
of the launcher wizard.

Category: File operations

Change Windows file rights

Changes access rights to files and directories on Windows.

If a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation Of
Privileges" for more information.

Copy files and directories

Copy files and directories. This action will be automatically reverted by the 'Uninstall files'
action.

Create a symbolic link

Creates a symbolic link. This action has no effect on Windows.

Delete files and directories

Deletes files and directory. Directories can be deleted recursively.

Move files and directories

Moves files and directories. The newly created files are subject to removal by the 'Uninstall
files' action.

181

Z* Set the UNIX access mode of files and directories

Sets the UNIX access mode of files and directories. This action has no effect on Windows.

% Set the modification time of files

Sets the modification time of files.

t Set the owner of files and directories

Sets the owner and optionally the group of files and directories. This action has no effect on
Windows.

Category: Final options

{é‘:

Execute launcher

Execute an installed launcher and return immediately. This action is intended to be placed
on the "Finish" screen. A confirmation can be added automatically to the "Finish" screen.

If the main installation process has been elevated by the "Request privileges" action, this
action is pushed to the original process with limited rights. Please see the help topic on
"Elevation Of Privileges" for more information.

{(:;:

Open PDF viewer

Displays a PDF file in a cross-platform PDF viewer. A separate window will be opened.

¥ Reboot computer

Reboot the computer on Windows and macOS. This action will trigger a reboot that takes
place at the end of installation or uninstallation. By default, the user will be asked whether
to reboot or not.

% Show URL

Show a URL in the default browser. This action is intended to be placed on the "Finish" or the
"Uninstallation success" screen.

If the main installation process has been elevated by the "Request privileges" action, this
action is pushed to the original process with limited rights. Please see the help topic on
"Elevation Of Privileges" for more information.

1 Show file

Show a file with the associated application. Usually, a text file or an HTML file is appropriate.
This action is intended to be placed on the "Finish" screen. A confirmation can be added
automatically to the "Finish" screen.

If the main installation process has been elevated by the "Request privileges" action, this
action is pushed to the original process with limited rights. Please see the help topic on
"Elevation Of Privileges" for more information.

Category: HTTP and network

¥ Add a Windows firewall rule

182

Add a Windows firewall rule. This action will be automatically reverted by the 'Uninstall files'
action.
Download file

Download a URL and save it to a file

@ HTTP request

Make an HTTP request to a specified URL. All common HTTP request methods are supported
for REST calls. For mime types starting with t ext or containing "charset" information, the
response body can be saved to an installer variable. To download large files, use the "Download
file" action instead.

The action will succeed if a HTTP response code in the 2xx range is received, otherwise it will
fail. You can save the response code to a variable to inspect it in a later action.

% Upload file
Upload a file to an HTTP server with a POST request.

% Wait for HTTP server

Wait until an HTTP or HTTPS port becomes available. This is useful if you start a server, for
example with a "Start a service" action, and need to wait until the server is operational before
proceeding with the installation.

1 Wait for Socket

Wait until a socket can be connected to. This is useful if you start a non-HTTP server. For HTTP
and HTTPS, use the "Wait for HTTP server" action instead.

Category: JDBC

% Check JDBC connection

Check if a connection can be made to the configured JDBC database. If no connection can be
made, the action will fail. If the action is attached to a form screen that queries a database
location, set its "Error message" property to an appropriate error message and the "Failure
strategy" property to "Return to the parent screen".

 Execute SQL query

Execute a single SQL query and store the result in an installer variable. If only the first row is
taken, the row value is stored directly, otherwise the variable will contain an instance of j ava.
util.Li st with the row values. If the query is for a single column, the row value is the Java
object representation of the return type, e.g. j ava. | ang. Stri ng for VARCHAR or j ava.
| ang. Long for I NT.

% Execute SQL script

Execute a single SQL statement or a script of SQL statements.

¥ JDBC container action

This action allows you to configure connection properties just once and then execute a list
of JDBC actions with the same connection.

183

i

&

Category: Java preference store

Delete a node or key in the Java preference store

Delete an entire package node or a key-value pair in the Java preference store.

Load installer variables from the Java preference store

Load installer variables from the Java preference store that have been previously saved by
the "Save installer variables to the Java preference store" action.

Read a key from the Java preference store

Read the value of a key from the Java preference store and save it to an installer variable.
Only string values can be read.

Save installer variables to the Java preference store

Save installer variables to the Java preference store. This can be used to communicate installer
variables to the uninstaller or to installers with different application IDs.

Set a key in the Java preference store

Set a key-value pair in the Java preference store. The package node is created if necessary.
This is the most convenient way to communicate settings to related installers. Only string
values can be set.

Category: Miscellaneous

Add VM options

Adds VM options for a launcher by modifying or creating a . viopt i ons file or by changing
the Info.plist file. This action will be automatically reverted by the 'Uninstall files' action.
Check for running processes

Check for installed launchers and additional running processes on Windows and macOS.

Modify an environment variable on Windows

Sets, appends to, prepends to or removes an environment variable on Windows. This action
can be automatically reverted by the 'Uninstall files' action.

Modify classpath

Changes the classpath of a launcher by modifying or creating a. vnopt i ons file or by changing
the Info.plist file. This action will be automatically reverted by the 'Uninstall files' action.
Request privileges

Requests configurable administrator privileges. On Windows Vista and higher and on macOS,
the installer will be restarted with the requested privileges or a helper process will be created
that can perform certain actions in a privileged context. When you restart the installer, you
should not install files before this action.

Please see the help topic on "Elevation Of Privileges" for a detailed discussion of this action.

184

% Require installer privileges

o

Require the same privileges as the ones that were obtained during the installation. On
Windows Vista and higher and on macOS, the uninstaller or custom installer application will
be restarted with the requested privileges if necessary. This action only has an effect if a
"Load response file" action is executed previously.

Please see the help topic on "Elevation Of Privileges" for a detailed discussion of this action.

Run executable or batch file

Runs an executable or a Windows batch file. The action can optionally wait for termination
of the executable.

Category: Persistence of installer variables

Create a response file

Create a response file at an arbitrary location to save user input for subsequent installations.
This file can be used with the - var fi | e command line option.

Load a response file

Load a response file that has previously been saved with the "Create a response file" action.

Modify a response file

Update all variables in an existing response file. The action does not delete variables in the
response file for which no installer variables are defined, but keeps them as they are.

This action is useful for updating a response file from a custom installer application, where
not all installer variables are available.

Category: Properties files

Read a properties file

Read a properties file and save a j ava. uti | . Map object with the properties to an installer
variable. If you use a "Write properties to file" action to write the variable back to disk, the
comments on the existing property definitions will be preserved.

Remove keys from properties file

Remove selected keys from a properties file. The line separator of the properties file is
conserved.

Write properties to file

Write property definitions to a properties file. The properties can come from an installer
variable with aj ava. uti | . Map object, another properties file or from direct entry.

If the "Merge into existing file" property is selected, the new property definitions will be added
to the existing ones.

Category: Services

185

o

{é‘:

Install a service

Installs a service. On Windows, this is done by executing the service launcher with the
appropriate arguments. On Unix, if systemd is detected, a config file will be createdin/ et ¢/
syst end/ syst em otherwise a link will be placed in /etc/init.d. On macOS, a
LaunchDaemon will be created. This action will be automatically reverted by the 'Uninstall
files' action.

If a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation Of
Privileges" for more information.

Start a service

Starts a service by executing the service launcher with the appropriate arguments.

If a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation Of
Privileges" for more information.

Stop a service

Stops a service by executing the service launcher with the appropriate arguments.

If a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation Of
Privileges" for more information.

Category: Text files

Fix line feeds

Changes the line feeds of text files to the platform specific type.

Modify text files

Modify installed text files by replacing a search value in the selected files. This action does
not read the entire file into memory and can work on arbitrarily large text files.

Modify text files with regular expressions

Modify installed text files by applying a regular expression.

Read text from file

Read the content of a text file and save it to an installer variable. The variable value will be
of type Stri ng.

Replace installer variables in text files

Modify installed text files by replacing all occurrences of installer variables of the form
${install er: myVari abl e} with their currentvalues. The action also replaces i18n variables
like ${i18n;myKey} and compiler variables like ${ conpi | er : nyConpi | er Vari abl e}

% Write text to a file

Write text to a new file or append text to an existing file.

186

Category: Update

¥ Check for update
Load the update descriptor from the a URL and save it to the a variable. If successful, the
variable will contain an instance of com i nst al | 4j . api . Updat eDescri pt or

% Schedule update installation
Schedule a downloaded media file to be started upon the next start of a launcher configured
accordingly or by calling UpdateChecker.executeScheduledUpdate().

& Shut down calling launcher

Shut down the launcher that called this application if it was started with thecom i nst al | 4j .
api . | auncher. Appl i cati onLauncher API.

Category: Windows registry

& Change access rights for a key in the Windows registry
Changes access rights for a key in the Windows registry.

If a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation Of
Privileges" for more information.

¥ Delete a key or value in the Windows registry

Delete a key or value in the Windows registry.

% Read a value from the Windows registry

Read a value from the Windows registry and save it to an installer variable. The type of the
value depends on the type in the registry, it will be an instance of one of the following classes:
String, Integer, String[], byte[], WnRegistry. ExpandStri ng.

& Set a value in the Windows registry

Set a value in the Windows registry. This action can also create the appropriate key if necessary.

Category: XML files

1 Apply an XSLT transform
Transform an installed file by applying an XSLT stylesheet.

% Count nodes in XML file

Countthe occurrences of an XPath expression in an XML file and save the result to an installer
variable.

% Insert XML fragment into XML files

187

%

Insert an XML fragment into the position defined by an XPath expression. The fragment can
replace an existing element node, or it can be inserted as a child or a sibling.

Read value from XML file

Read a string value from an XML file specified by an XPath expression and save the result to
an installer variable.

Remove nodes from XML files

Remove selected nodes from XML files by specifying an XPath expression.

Replace text in XML files

Modify installed XML files by selecting nodes with an XPath expression and applying a regular
expression on the selected values.

Category: ZIP files and archives

Create a ZIP file

Create a ZIP file from the specified source files and directories.

Extract a DMG file on macOS

Extracts the content of a DMG file to an arbitrary location on macOS.

Extract a TAR file

Extracts the content of a tar or tar.gz file to an arbitrary location.

Extract a ZIP file

Extracts the content of a ZIP file to an arbitrary location.

Install content of a ZIP file

Installs the content of an external ZIP file to an arbitrary location. This action will be
automatically reverted by the 'Uninstall files' action.

Modify a ZIP file

Modify the contents of a ZIP file with a configurable list of actions.

Download and install component

Download a specified downloadable component and install it. This action only works for
installation components that have been marked as "downloadable" on the "Options" tab of
the installation component configuration.

Note: The "Install Files" action already downloads and installs all selected downloadable
installation components. This action is intended for scenarios where an installation component
has to be downloaded after the "Install files" action has run. For example, you could use this
in a custom installer application to install optional files.

Execute previous uninstaller

188

Uninstalls the previous installation of this application in the selected installation directory by
executing the previous uninstaller.

Install files

Install all files in the distribution tree that are contained in the selected installation
components.

Uninstall files

Uninstall all installed files.

189

B.6 Configuring Screens And Actions Groups

Screen and action groups can be configured on the "Installer->Screens & Actions" step [p. 156].

v Installer (8 screens) [ID ins... o Error Handling

+ o 3 acti On error break group

WA Startup (2 actions) x Default error message

4k Welcome (1 action) [ID .. fe Control Flow

& Installation location (2 a... Condition expression

— Loop

i Installation compone... e

: Create program group [... Action elevation type Inherit from parent [Do not elevate]
g Cuery greeting [Form] [..

g Service options [Form] [...
Installation (13 actio...
%
@ Set messages [ID .. |
{:C:J} Set the progress b..,
@ Stop a service [ID ... o
@ Set the progress b...

OF Check for running pr... Action group

By

Install files [ID 35] An action group contains multiple actions that can be disabled with a single condition

OF Create program gro... expression on the group.

v

¥

Actions and screens can be grouped in the tree of installer elements. Groups of the same type
can be nested, meaning that you can put a screen group into a screen group or an action group
into an action group.

You can nest as many levels of groups as you wish. Next to the label of the screen or action group
in the tree of installer elements the number of all contained screens or actions is shown in bold
where elements in nested groups are counted as well.

Grouping offers the following benefits:

+ Organization
If you have many screens or actions, groups emphasize which elements belong together. You
can add a common comment to the group.

+ Common condition
Groups have a "Condition expression" property that allows you to skip the group with a
common condition instead of having to repeat the condition for each contained element.

+ Single link target
If you want to reuse a set of adjacent screens or actions in a different part of your project,
you can put them in a group and add a single link to that group instead of linking to each
element separately.

* Looping
A group has a "Loop expression" property that allows you to execute the group repeatedly
until the loop expression returns f al se.

+ Jump targets (screen groups only)

When you jump to a screen programmatically with cont ext . got oScreen(. . .), itis more
maintainable to jump to a group instead of to a single screen. You can think of the group as
a label in this case.

190

Properties of screen and action groups

The common properties of screen and action groups are:

Condition expression [Control Flow]

This expression is evaluated just before the screen is displayed. If the expression or script
returns f al se, the entire screen group will be skipped.

Loop [Control Flow]

If selected, the screen group will be looped. With the child properties you can set an expression
that terminates the loop and configure a loop index that is available inside the loop.

Note: If actions should be repeated in a loop, their "Can be executed multiple times" property
has to be selected. If form components in a screen should be re-initialized on each loop, their
"Reset initialization on previous" property has to be selected.

Loop expression [Configuration]

This expression is evaluated when the end of the screen group is reached. If it returnst r ue,
all screens will be repeated. If you leave the expression empty, no loop will be performed.

This property is only visible if "Loop" is selected.

Loop index start value [Configuration]
The start value for the loop index variable that is passed to the "Loop expression"

This property is only visible if "Loop" is selected.

Loop index step [Configuration]

The step for the loop index variable that is passed to the "Loop expression". At the end of
each loop, this step is added to the loop index. It is added before the "Loop expression" is
evaluated. To decrement, specify a negative value.

This property is only visible if "Loop" is selected.

Loop index variable name [Configuration]

If you want to use the loop index in a screen that is contained in the group, you can optionally
save the value to an installer variable. Specify the variable name to which the value should be
saved as aj ava. |l ang. | nt eger.

This property is only visible if "Loop" is selected.

Style [GUI Options]

The default screen style for this installer application. Screens and screen groups can override
this style.

Action elevation type [Privileges]

If any contained actions should run in the elevated helper process, if their "Action elevation
type" property is set to "Inherit from parent".An elevated helper process is available on Windows
and macOS if the process has been started without admin privileges and the "Request
privileges" action has been configured to require full privileges.

In addition, action groups have the following properties:

191

On error break group [Error Handling]

If selected, and one of the contained actions returns with an error, the control flow will step
out of the action group and continue with the next element after the group. This behavior
only takes effect if the problematic action has its failure strategy set to "Continue on failure".

Error message [Configuration]

If the action group fails, this error message is displayed to the user, otherwise the action group
fails silently.

This property is only visible if "On error break group" is selected.

Failure strategy [Configuration]

The failure strategy that should be chosen if the action group fails. The "Error message"
property will be used for the option dialog. If you also define a "Default error message", you
will get two option dialogs, the first one from the action that causes the failure.

This property is only visible if "On error break group" is selected.

Retry expression [Configuration]

If this expression is set and returns t r ue, the action group is repeated. If the action group is
configured to loop, the loop index will not be incremented.

This property is only visible if "On error break group" is selected.

Default error message [Error Handling]
A default error message used by all actions that have no dedicated error message.

192

B.7 Configuring Form Components

Form components are configurable units that can be added to a form screen. In this chapter,
the functionality and configuration options on the form components dialog are discussed, the
underlying concepts are discussed in a different help topic [p. 46].

Form elements are added by clicking the " Add button.

2 ~ - -
o world [Single radio button] [ID 423] Configuration

an* persen [Single radio button] [ID 424] Add Form Component

ol Textfield (D7) Search Form Component in Custorn Code
Groups 3
Tabbed Panes 2
TESEL INILENZEUUTT UrT previous
Visibility script
Label
Text Mame of the person:
3 Font Default
Font color [Eee|
‘% lcen

lcon-text gap 4

In the popup window you can select whether to add

+ a form component. Form components are made available by install4j or are contributed by
aninstalled extension [p. 228]. A registry dialog will be shown where you can select the desired
form component.

+ a form component that is contained in your custom code. New types of reusable form
components can be developed with the install4j APl [p. 222]. In your custom code
configuration [p. 161] you can specify code locations that are scanned for suitable classes. A
class selector will be shown where you can select the desired class.

+ alayout group [p. 199], either a vertical group or a horizontal group. The new layout group is
initially empty. You can also create layout groups directly from a selection in the tree of installer
elements.

You can preview a form screen with the ‘@ Preview button which is also available on the property
page of a screen. For screens that embed forms, the preview may not show the actual screen.
However, the layout of the form itself will be the same at runtime.

Properties of form components

Common properties of form components are:

* Insets [Layout]
This insets around the form component. The format is top;left;bottom;right, use the drop-down
button at the right side to show the insets editor.

+ Initialization script [Initialization]

A script that initializes the form component. To configure the contained principal component,
such as a JCheckBox, use the configurationObject parameter (if available). This script will run
after the internal initialization of the form component, just before the component appears
on the screen. It will not be invoked in console mode.

193

+ Reset initialization on previous [Initialization]

If set, the component will be initialized each time the user enters in the forward direction.
Otherwise, the initialization will be performed only once. This setting affects both the internal
initialization as well as the initialization script.

* Visibility script [Initialization]

A script that determines whether the form component will be visible or not. This works for
both GUI and console modes. In GUI mode, the script will be invoked each time just before
the form component is initialized.

Available form components

The following standard form components are available in install4j:

Category: Action components

f* Button
A standard button with an optional leading label. When the user clicks on the button, an
action script is executed.

f* Dark mode switcher
A button that switches between dark and light mode. If the current look and feel does not
support switching between dark and light mode, the button is invisible.

t* Hyperlink URL label
A label that displays a hyperlink. When the user clicks on the hyperlink, the appropriate action
is performed, depending on the protocol of the URL.

#* Hyperlink action label

A label that displays a hyperlink. When the user clicks on the hyperlink, an action script is
executed

Category: Labels and spacers

f* Horizontal separator

A horizontal separator with an optional label.

t* Key value pair label

A pair of labels. The first ('key') label aligns with other leading labels on the form, the second
(‘'value') label consumes the remaining horizontal space,

#* Label

A single label. It is left-aligned with leading labels from other form components and extends
beyond other leading labels.

¥ Leading label

194

A form component that only has a leading label and no central component. This can also be
used to create standalone help tooltips.

Multi-line HTML label

A multi-line label that wraps text as needed and displays simple HTML. In particular you can
include HTML links that open a browser.

Multi-line label

A multi-line label that wraps text as needed.

Spring

Aninvisible spring that can be used in horizontal and vertical layout groups to push subsequent
components to the right or to the bottom

Vertical spacer

An invisible vertical spacer of configurable height.

Category: Option selectors

Check box

A check box with an optional leading label. The user selection (Bool ean. TRUE or Bool ean.
FALSE) is saved to a variable.

Combo box

A combo box with an optional leading label. The user can enter arbitrary text into the combo
box. The user selection (the selected item as a string) is saved to a variable.

Drop-down list

A drop-down list with an optional leading label. The user selection (the selected index as a
java.l ang. | nt eger) is saved to a variable.

List

A list with an optional leading label. The user selection (the selected indices) is saved to a
variable.

Radio button group

A number of radio buttons in a common button group with an optional leading label. The
user selection (the selected index as aj ava. | ang. | nt eger) is saved to a variable.

Single radio button

A single radio button with an optional leading label. If selected, a specified string is saved to
avariable. If you place multiple instances of this form component on a form screen and give
them the same variable name, they will form a radio button group.

Category: Sliders and spinners

195

i* Slider
A slider with an optional leading label. The user input (aj ava. | ang. | nt eger)is saved to a
variable.

f* Spinner of dates
A spinner with date and time values with an optional leading label. The user input is saved
to a variable.

t* Spinner of enumerated values
A spinner with enumerated values with an optional leading label. The user input is saved to
a variable.

t* Spinner of integer values

A spinner with integer values with an optional leading label. The user input is saved to a
variable.

Category: Special selectors and displays

* Directory chooser

A directory chooser with an optional leading label. The user selection is saved to a variable.

i* File associations selector

A form component that displays a list of all subsequent file association actions and asks the
user which associations should be made. This form component will be empty if there are no
corresponding file association actions after this screen.

% File chooser

A file chooser with an optional leading label. The user selection is saved to a variable.

f* HTML or text display
A scroll panel that displays HTML or plain text. The HTML or plain text is easily localizable
because the file selection allows you to enter separate files for all supported languages.

¥ Installation components selector
A form component that displays all installation components and asks the user which
components should be installed.

* Installation directory chooser
An installation directory chooser with an optional display of required and free space. The
user selection is set as the installation directory.

* License agreement
A form component that displays a license agreement to the user, either plain text or HTML.

The license agreement must be accepted before the next screen can be shown.

i+ Log file viewer

196

A text area that shows the contents of a text file. The the viewer follows additions to the file
like the UNIX command tail -f,with a configurable maximum number of displayed lines.

The log file does not have to exist when the form is shown, it can be created later on. Also,
the file can be deleted and re-created. Modifications before the previously observed end of
the file will not be picked up by the viewer unless the length of the file decreases.

* PDF display

Displays a PDF file in an embedded cross-platform PDF viewer.

* Program group selector

A form component that allows the user to select a program group on Microsoft Windows.

% Progress display
An progress display that can show the progress of the actions attached to the containing
screen.

f* Update alert

A pair of radio buttons offering the user a choice whether to update an existing installation
or not. If the existing installation should be updated, the installer variable
sys.confirmedUpdatelnstallation is set to t r ue. Several standard screens use that installer
variable in their default condition expression.

f* Update schedule selector

Drop-down box that lets the user select an update schedule for your application. You can
usethecom i nstal | 4j . api . updat e. Updat eSchedul eRegi st ry classinyour application
to check if you should launch an updater. Please see the Javadoc for more information. Please
note that simply adding this form component does not automatically launch an updater at
regular intervals.

#* Windows user selector

A component for selecting Windows users or groups in the native Windows user dialog.

Optionally, you can display a button to create a new user. The selection is saved as a SID "
to a string variable. If multiple selection is enabled, the result is a string array of SIDs.

This component does not do anything in console mode, since it requires the native Windows
dialog for selecting users and groups.

Category: Text fields

#* Password field

A password text field with an optional leading label. The user input is displayed with '*'
characters. The user input is saved to a variable.

i Text area

A text area with an optional leading label. The user input is saved to a variable.

#* Text field

M https://en.wikipedia.org/wiki/Security_ldentifier

197

https://en.wikipedia.org/wiki/Security_Identifier

A text field with an optional leading label. The user input is saved to a variable.

* Text field with date format
A text field with an optional leading label and a date format. The user input (aj ava. util .
Dat e) is saved to a variable.

i+ Text field with format mask
A text field with an optional leading label and an arbitrary format mask. The user input is
saved to a variable. The default mask is that of an SSN. For more information, please see the
javadoc of j avax. swi ng. t ext . MaskFor natter.

* Text field with integer format
A text field with an optional leading label and an integer format. The user input is saved to a
variable with type j ava. | ang. Long.

i+ Text file editor
A text area for editing a file. If the file does not exist, a configurable initial text is presented
to the user and the file is created. The file is saved when the user clicks on the "Next" button.

f* Console handler

Allows you to interact with the user in a console installer. All standard form components
expose appropriate behavior in console mode, however, there are situations where you need
to fine-tune your console installer with additional messages or questions. In GUI or unattended
mode, this form component does not have any effect.

198

B.8 Configuring Layout Groups

Layout groups can be configured in the form components [p. 193] configuration dialog. This
chapter discusses the configuration options for layout groups, for more information on layout
groups, see the corresponding help topic [p. 51].

c';'- Multi-line HTML label [ID 1562] o Configuration
2 Check box [1D 15661 Image File
CL* ek bex [e x Background color B
v P vertical group (3 form components) [ID 15731 P Foreground color el
offe Check box [ID 1572] Border sides
t Allow configuration on screen
Vertical group (2 form components) [ID 1571] nitialization
2 - -
ofife Windows user selector [ID 1569] Visibility script
2 —
offfe Password field [ID 1570] 'I“-‘Zt“‘ 62000
nsets 20; 0y
3 Anchor r :North—West
Cell spacing]
‘}g Make children same width

Vertical group

A vertical form component group contains one or more form
=) components that are distributed along the vertical axis,

You can create a layout group [p. 199] from selected form components with the = Create Horizontal

Group and Il Create Vertical Group actions. The new group will be inserted in place of the selected
elements.

You can dissolve a group with the Dissolve Group action. This action is only enabled if the selection
consists of a single layout group. The elements contained in the group will be inserted in place
of the group. Nested groups will not be dissolved.

Grouping features

Form components can be grouped in horizontal and vertical layout groups and you can nest
groups to an arbitrary depth.

Grouping offers the following benefits:

+ Custom layout

Instead of a simple sequence of form components on a form screen, you can use horizontal
layout groups to put form components side-by-side. Nesting vertical and horizontal form
components allows you to achieve virtually any layout.

Sometimes, enclosing groups and sibling groups create a cell that cannot be entirely filled by
a layout group. With the "Anchor" property you determine where the group should be placed
in that case. By default, horizontal layout groups are anchored at "West" and vertical layout
groups are anchored at "North-West".

Layout groups have a configurable cell spacing. For vertical layout groups, this is the vertical
gap between two form components (0 pixels by default), for horizontal layout groups this is
the horizontal gap between two adjacent form components (5 pixels by default)

For each layout group, you can specify insets that are inserted around the entire layout group.
By default, the insets are zero in all directions.

By default, a horizontal layout group aligns a leading label of its first form component with
the leading label of the first form component from a direct vertical parent group. This is usually
appropriate when horizontal groups are used to attach additional form components to the

199

right side. If this alignment is not desired, you can use the "Align first label" property of a
horizontal layout group to switch off the alignment.

Vertical layout groups always break the alignment of leading labels: Within a vertical group,
leading labels are aligned, but between vertical groups, the width of leading labels is unrelated.
+ Organization
If you have many form components on a screen, vertical groups emphasize which form
components belong together. You can add a common comment to the group.
+ Common visibility script

Groups have a "Visibility script" property that allows you to hide the entire group with a
common condition instead of having to repeat the condition for each contained form
component.

+ Single target for coupled form components

If a set of form components should be coupled to the selection state of a checkbox or a single
radio button, you can select the containing layout group as the target instead of selecting all
coupled form components separately.

+ Styling

Layout groups have properties for setting background images and borders, as well as
background and foreground colors. Styles [p. 203] use layout groups to achieve visual effects.

Properties of layout groups

Common properties of horizontal and vertical layout groups are:

+ Image File [Configuration]

An image that is shown on the edge or as a background. Apart from an image that is anchored
to the center of the group, the image can optionally cut off an entire edge from the group. In
that case it is possible to set a background color for the edge stripe so that the image can
blend into the surroundings. Can be empty.

To add a high-resolution image, create a file with double the resolution and an additional @x
after the name (e.g. i mage. png and i mage@x. png) next to the selected image. To use
different images in dark mode, add files with an additional _dar k suffix (e.g. i mage_dar k.
png and i nage@x_dar k. png)

The install4j runtime JARfilei 4j runti ne. j ar contains a number of image files that you can
reference here by prefixing the icon file name with "icon:". For example, i con: | ock_open_32.
png loads a 32x32 icon showing an open lock.

+ Image anchor [Configuration]
The anchor where the image will be attached to in the layout group. If Center is chosen, the
image is always displayed in the background.

* Image edge [Configuration]

For corner anchors, you have to select either the horizontal or the vertical edge that will
optionally be filled with the image edge background color and that will be cut of from the
layout group if the image is not displayed in the background.

200

Image edge background color [Configuration]

The background color that the image edge should be filled with. If the image terminates with
the same color, the image will blend with the background and the entire edge will look like a
single visual element.

Not available if the anchor is set to "Center"

Image edge border [Configuration]
If selected, the image edge will be separated by a line border from the content area.

Not available if the image overlaps the contained components.

Image edge border color [Configuration]

The color of the image edge border. Leave empty to choose the default separator color of the
current look and feel.

This property is only visible if "Image edge border" is selected.

Image edge border width [Configuration]
The width of the image edge border in pixels.

This property is only visible if "Image edge border" is selected.

Image insets [Configuration]

The insets around the image. The format is top;left;bottom;right, use the drop-down button
at the right side to show the insets editor.

Overlap with contained components [Configuration]

If selected, the image will by used as a background image and form components contained
in the layout group will overlap with the image. Otherwise, the image edge will be cut off from
the layout group and form components will not overlap with the image. In that case, the insets
of the layout group will be applied to the actual content area that excludes the image edge.

Not available if the anchor is set to "Center"

Background color [Configuration]
The background color of the layout group. Can be empty.

Foreground color [Configuration]

The foreground color of the layout group. Can be empty. If set, all contained form components
will use this foreground color except those that have an explicitly configured foreground color.
Border sides [Configuration]

On which sides a line border should be painted around the form component, a list of "top",
"right", "bottom" and "left", separated by semicolons. Use the drop-down button to select the
sides visually.

Border color [Configuration]

The color of the drawn border sides. Leave empty to choose the default separator color of
the current look and feel.

Border title [Configuration]

A title that is displayed in the top-left corner of the border. Leave empty if no title should be
displayed.

201

Border width [Configuration]
The width of the drawn border sides in pixels.

Visibility script [Initialization]

A script that determines whether form components in the group (and all descendant
components in nested groups) will be visible or not. This works for both GUI and console
modes. In GUI mode, the script will be invoked each time just before the form components
are initialized. Visibility scripts of nested form components can further hide single form
components, but they cannot show them if a parent layout group is already hidden.

Insets [Layout]

The insets around the entire group. The format is top;left;bottom;right, use the drop-down
button at the right side to show the insets editor.

Anchor [Layout]

The position in the available space where the group is anchored in the layout. This is only
relevant if the group takes less space than the cell that is created by the surroundings.

Cell spacing [Layout]

The cell spacing determines how many pixels are inserted between single components in the
layout group.

Vertical layout groups have the additional properties:

Make children same width [Layout]
If all contained elements should have the same width.

and horizontal layout groups have the following specific properties:

Align first label [Layout]

If the horizontal group is directly added to a vertical group or to the top-level of a form, the
leading label in the horizontal group is aligned with other leading labels in the vertical parent
group. If this alignment is not desired, you can deselect this property.

Make children same height [Layout]

If all contained elements should have the same height.

Tabbed panes

In addition to horizontal and vertical layout groups, you can add tabbed panes to a form. A
tabbed pane is added by choosing Tabbed Panes->Add Tabbed Pane from the dropdown menu
displayed by the # Add button. Below the tabbed pane, you have to add one or more single tabs
by choosing Tabbed Panes->Add Single Tab For Tabbed Pane. Each single tab can then contain
arbitrary form components or layout groups.

202

B.9 Configuring Styles

Styles determine how screens look like in GUI installers. For more information on styles, see the
corresponding help topic [p. 55].

Styles are added by clicking the " Add button.

Styles N 7

In this step, you configure the styles that can be applied to installer applications, screen groups and single screens. A styleis a
graphical envelope that embeds the screen content and adds navigation controls.

[3 Standard [Form style] [ID 23

[Z] Banner [Form style] D 2304] Add Configurable Style
Style components (2 styles) Search Style in Custom Code
m Standard header [Form st... Add Group
m Standard footer [Form sty...
e

In the popup window you can select whether to add

+ a configurable style. Styles can be constructed with a restricted set of the form
components [p. 193] for screens that do not take user input and some special form components
that are relevant in a styling context.

+ astyle thatis contained in your custom code. New types of reusable styles can be developed
with the install4j API [p. 222]. In your custom code configuration [p. 161] you can specify code
locations that are scanned for suitable classes. A class selector will be shown where you can
select the desired class.

+ agroup for organizing styles, so you have a better overview of which styles belong together.

For organizing styles in your project, you can create a group from selected styles with the Create
group from selection action and dissolve groups with the Dissolve Group action. This action is only
enabled if the selection consists of a single layout group. The elements contained in the group
will be inserted in place of the group. Nested groups will not be dissolved.

You can preview a style with the @ Preview button which is also available on the property page
of a style.

Properties of styles

Form styles have the following properties:

+ Standalone style
If selected, the style can be selected for installer applications, screen groups and screens. If
a style is not standalone, it can only be used in other styles.

+ Fill horizontal space

If selected, all available horizontal space is filled by this style. This setting is also used when it
is nested in another style by a "Nested style" form component.

203

Horizontal anchor

If "Fill horizontal space" is not selected, the style can be placed at different locations in the
available space.

This property is only visible if "Fill horizontal space" is selected.

Fill vertical space

If selected, all available vertical space is filled by this style. This setting is also used when it is
nested in another style by a "Nested style" form component.

Vertical anchor

If "Fill vertical space" is not selected, the style can be placed at different locations in the available
space.

This property is only visible if "Fill vertical space" is selected.

204

C Generated Installers

C.1 Installer Modes

Installers generated by install4j can be run in three modes:

* GUI mode
The default mode for installer applications is to display a GUI installer or uninstaller.

+ Console mode

If the installer application is invoked with the - ¢ argument, the interaction with the user is
performed in the terminal from which the installer was invoked.

* Unattended mode

If the installer is invoked with the - g argument, there is no interaction with the user and the
installation is performed automatically with the default values.

The flow of screens and action sequence is executed in the same way for all three modes. If
some actions or screens should not be traversed for console or unattended installations, you
can set their "Condition expression" properties to

I cont ext.isConsol e()
or

I cont ext.isUnattended()

GUI mode

In GUI mode, the keyboard shortcut CTRL- SHI FT- L shows the log file in the Explorer on Windows,
in the Finder on macOS and in the file manager on Linux/Unix. This shortcut is not advertised
to the user, but you can communicate it to the user for debug purposes.

Console mode

Installers generated by install4j can perform console installations, unless this feature has been
disabled in the application configuration [p. 163] of the "Installer->Screens & Actions" step. In
order to start a console installation, the installer has to be invoked with the - ¢ argument.

All standard screens and form components in install4j present their information on the console
and allow the user to enter information as in the GUI installer. Not all messages in the style are
displayed in the console installer. By default only the subtitle of a screen is displayed as the first
message, but you can change this behavior with the "Console screen change handler" script of
the installer application.

The subtitle is appropriate to display in in console mode, because all standard screens in install4j
have a question as their subtitle. If you add your own forms to the screen sequence [p. 156], you
should phrase their subtitles as questions in order to create a consistent user experience for
the console installer.

On Windows, the information of whether an executable is a GUI executable or a console
executable has to be statically compiled into the executable. Installers are GUI executables,
otherwise a console would be displayed when starting the installer from the explorer. This is

205

also the reason why the JRE supplies both the j ava. exe console executable and the j avaw.
exe GUI executable on Windows.

However, a GUI executable can attach to a console from which it was started. GUI executables
are started in the background by default, which means that you have to use the st art command
to put it in the foreground and be able to enter information:

start /wait installer.exe -c

If you develop new screens or form components, you have to override the method

bool ean handl eConsol e(Consol e consol e) throws User Cancel edExcepti on

to implement the behavior for console mode. Displaying default data on the console and
requesting user input is made easy with the Consol e class that is passed as a parameter.

Unattended mode

Installers generated by install4j can perform unattended installations, unless this feature has
been disabled on the application configuration [p. 163] of the "Installer->Screens & Actions" step.
In order to start an unattended installation, the installer has to be invoked with the - g argument.
The installer will perform the installation as if the user had accepted all default settings.

There is no user interaction on the terminal. In all cases, where the installer would have asked
the user whether to overwrite an existing file, the installer will not overwrite it. You can change
this behavior by passing - overwri t e as a parameter to the installer. In this case, the installer
will overwrite such files. For the standard case, it is recommended to fine-tune the overwrite
policy in the distribution tree [p. 14] instead, so that this situation never arises.

The installer will install the application to the default installation directory, unless you pass the
-di r parameter to the installer. The parameter after - di r must be the desired installation
directory, for example:

installer.exe -q -dir "D:\ MyApps\ My Application"

For the unattended mode of an installer, response files [p. 212] are an important instrument to
pre-define user input.

On Windows, the output of the installer is not printed to the command line for unattended
installation. If you pass the - consol e parameter after the - q parameter, the executable will try
to connect to the invoking console and display output to the user. This is useful for debugging
purposes.

If the installation was successful, the exit code of the installer will be 0, if no suitable JRE could
be found it will be 83 and for other types of failures it will be 1.

If you develop new screens or form components, you have to override the method

bool ean handl eUnat t ended()

in order to support unattended installations.

206

C.2 Command Line Options For Generated Installers

Installers generated by install4j recognize the following command line parameters:

Name

Explanation

-h or -help or /?

Show help for common command line parameters.
This will be shown in a message box, regardless of
the default execution mode. If the GUI display fails,
it will be printed on the console.

-manual

This option only applies to Windows. In GUI mode,
the defaultJRE search sequence [p. 214] will not be
performed and bundled JREs will not be used
either. The installer will act as if no JRE has been
found at all and display the dialog that lets you
choose a JRE or download one if a JRE has been
bundled dynamically. If you locate a JRE, it will be
used for the installed application.

On Unix, you can define the environment variable
INSTALL4J_JAVA_HOME_OVERRIDE instead to
override the default JRE search sequence.

Executes the installer in console mode [p. 205].

Executes the installer in unattended mode [p. 205].

Forces the installer to be executed in GUI mode.
This is only useful if the default execution

mode [p. 163] of the installer has been configured
as console mode or unattended mode.

-console

If the installer is executed in unattended mode and
- consol e is passed as a second parameter, status
messages will be printed on the console from which
the installer was invoked.

-overwrite

Onlyvalidif - g is set. In the unattended installation
mode, the installer will not overwrite files where
the overwrite policy [p. 14] would require it to ask
the user. If - overwri t e is set, all such files will be
overwritten. The default value for this option can
be changed with the system property

-Dinstal | 4j . qui et Overwite=true

-nofilefailures

Only validif - g is set. In the unattended installation
mode, the installer will not fail if an error occurs
during a file installation. The default value for this
option can be changed with the system property
-Dinstal | 4j . noFi | eFai | ures=true

-wait <timeout in seconds>

Only valid if - q is set. In unattended installation
mode, the installer will perform the installation
immediately. On Windows, this can lead to locking

207

Name

Explanation

errors if the installer is called by an updater or by
a launcher. If -wait is specified, the installer
application will wait until all installed launchers and
installer applications (including the updater) have
shut down. If this does not happen within the
specified timeout, the installer application exits
with an error message.

-dir <directory>

Only valid if - q is set. Sets a different installation
directory for the unattended installation mode. The
next parameter must be the desired installation
directory.

The directory can be absolute or relative. If it is
relative, it will be resolved relative to the media file.

-splash <title>

Only valid if - q is set. Instead of being completely
quiet in unattended installation mode, a small
window with a progress bar and the specified title
will be shown to inform the user about the progress
of the installer application. This is useful if you start
the installer application programmatically and do
not require user input.

-alerts

Only valid if - g and - spl ash are set. By default, in
unattended mode, no alerts are shown. This
includes messages boxes, error alerts and
questions. By setting this command line parameter,
alerts are enabled for unattended executions with
a progress dialog.

-temp <directory>

Change the temporary directory for the installer
application on Windows. An installer may extract
a lot of files and it also extracts executables to its
temporary directory. If the default temporary
directory of the system is not suitable for this
purpose, you can change the directory with this
parameter. The specified directory must exist and
must be writable. This is useful for trouble-shooting
problems caused by anti-virus software.

-Dinstall4j.nolaf=true

Do not set the native look and feel but use the
default. In some rare cases, the native look and
feel is broken and prevents the use of the installer
or any other Java GUI application.

-Dinstall4j.debug=true

By default, install4j catches all exceptions, creates
a "crash log" and informs the user about the
location of that log file. This might be inconvenient
when debugging an installer, so this system
property switches off the default mechanism and
lets exceptions be printed to stderr.

208

Name

Explanation

-Dinstall4j.log=<path>

install4j creates a log file prefixed with i 4j _| og in
the temporary directory when an installer
application is executed. This log file can be helpful
for debugging purposes. If your installer contains
an "Install files" action and terminates successfully,
the log file is copied to <i nstal l ati on dir>/.
install 4j/installation.| og,otherwiseitwill
be deleted after the installer application terminates.

With the - Di nst al | 4j . | og=<pat h> the log file
will be written to the file specified with <pat h>
instead and will not be deleted in any case. If a
relative path is specified, it will be resolved relative
to the installer media file for installers and relative
to the working directory for uninstallers and
custom installer applications.

-Dinstall4j.keepLog=true

As an alternative to - Di nst al | 4 . | og=<pat h>,
you can ask the installer or the installer application
to not delete the temporary log file under any
circumstances.

For situations where you cannot modify the
command line arguments, you can set the
environment variable | NSTALL4J KEEP_LOG=
true.

-Dinstall4j.logTimestamps=true

If set, each message in the log file is prepended
with a time stamp.

-Dinstall4j.logToStderr=true

In addition to the log file created by the installer
application, you can duplicate all log messages to
stderr with this argument.

-Dinstall4j.logEncoding=<character set
name>

By default, the installer will write the log file in the
default encoding of the system where the installer
is running. If you wish to choose a different
encoding, you can pass this VM parameter to the
installer. Some common character set names are

. UTF-8
- UTF-16
+ 1SO-8859-1

The class j ava. ni 0. char set.
St andar dChar set s lists the encodings that are
guaranteed to be available in any JRE.

-Dinstall4j.suppressStdout=true

In unattended mode, status messages of actions
that are displayed in the installer are printed on
stdout. To suppress these messages, you can set
this VM parameter.

209

Name

Explanation

-Dinstall4j.detailStdout=true

In unattended mode, detailed messages regarding
file installations are not printed on stdout. To
enable these messages, you can set this VM
parameter.

-Dinstall4j.suppressUnattendedReboot=true

In unattended mode, a reboot may be undesirable.
To prevent reboots, you can set this VM parameter.

-Dinstall4j.language=<ISO code>

Overrides the language selection for a
multi-language installer. The language selection
dialog will not be displayed in this case, unless the
specified language is not included in the installer.

-Dinstall4j.helperDebugPort=<port>

Debugging the installer application can be done by
passing - agent | i b: j dwp=t ransport =

dt _socket, server =y, suspend=n, addr ess=
<port > on the command line, on Windows this
argument has to be prefixed with - J.

However, this will not debug the elevated helper
process that is started by the "Request privileges"
action. By setting the i nstal | 4j .

hel per DebugPort VM parameter, the same
-agent | i b parameter is passed to the JVM of the
helper process and you can then attach to it with
a debugger. If you debug both the unelevated and
the elevated JVM at the same time, you have to
assign different ports and start two separate
debugging sessions.

-Dsun.locale.formatasdefault=true

Forces the installer locale to be detected from the
"Format" language setting and not from the
"Display language" setting in the Windows "Region
and Language" control panel.

-J<VM par anet er >

Specifies a VM parameter, for example
- J- Xmx512m Can be specified more than once.

-Dpr oper t yName=val ue

You can set further arbitrary system properties
with standard command line parameters. There is
no need to prefix them with - J on Windows.

-Vvari abl eNane=val ue

You can set arbitrary installer variables with the -V
parameter. If you pass - War i abl eNane=val ue,
you can use the variable value by inserting
${install er:variabl eNane} in text fields in
the install4j IDE. The variable value will be aj ava.
| ang. Stri ng object.

-varfile <fileName>

Instead of repeatedly using the >- Vcommand line
option, you can specify a property file containing
the variables you want to set. This option shares
the same mechanism with response files [p. 212].

210

On macOS, you can use the INSTALL4J_ARGUMENTS environment variable to pass arguments
to the installer.

On Unix, the environment variable INSTALL4J_TEMP determines the base directory for
self-extraction. If the environment variable is not set, the parent directory of the installer media
file is used.

211

C.3 Response Files

With a response file, you can change the default user selection in all screens. A response file is
a text file with name-value pairs that represent installer variables. All screens and form
components provided by install4j ensure that user input is bound to appropriate installer variables
that are registered for being written to the response file.

Installer variable values are of the general type j ava. | ang. Obj ect . In a response file, only
variables with values of certain types can be represented: In addition to the default type j ava.
| ang. Stri ng,thetypesj ava. | ang. Bool ean,j ava. | ang. | nt eger,java. util . Date,j ava.
lang. String[] andint[] aresupported.

In order to let the installer runtime know about these non-default types, the variable name in
the response file is followed by a '$' sign and an encoding specifier like 'Integer' or 'Boolean’.

Response file variables are variables that have been registered with

String variableNane = ... ;
cont ext . regi st er ResponseFi | eVari abl e(vari abl eNane) ;

in the installer. All variables that are bound to form components are automatically registered as
response file variables. Also, system screens register response file variables as needed to capture
user input.

Allinstaller variables live in the same name space. If you use an installer variable more than once
for different user inputs, the response file only captures the last user input. If you would like to
optimize your installers for use with a response file, you have to make sure that the relevant
variable names are unique within your installer.

A response file can be used to

+ Configure the installer for unattended execution mode
+ Change the default settings in the GUI and console installer
+ Get additional debugging information for an installation

When applying a response file to an installer, all variable definitions are translated into installer
variables [p. 63]. The response file shares the same mechanism with the variable file offered by
the -varfile [p. 207] command line option. You can add the contents of a response file to a variable
file and vice versa.

Generating response files

There are two ways to generate a response file:

+ A response file is generated automatically after an installation is finished. The generated
response file is found in the . i nstal | 4j directory inside the installation directory and is
named r esponse. varfil e. When you request debugging information from a user, you
should request this file in addition to the installer log file.

* install4j offers a "Create a response file" action [p. 178] that allows you to save the response
file to a different file in addition to the automatically generated response file. Here, you can
also specify variables that you would not like to be included in the response file.

Applying response files

When an installer is executed, it checks whether a file with the same name and the extension
.varfile can be found in the same directory and loads that file as the response file. For example,

212

if an installer is called hel | o_set up. exe on Windows, the response file next to it has to be
named hel | o_setup. varfile.

You can also specify a response file explicitly with the -varfile [p. 207] installer option.

Response files work with all three installer modes [p. 205], GUI, console and unattended.

Response file variables

The variables that you see in the response file are realized as installer variables as soon as the
response file is loaded. You can use these installer variables to access or change user selections
on system screens. For example, the "Create program group" screen on Windows binds the user
selection for the checkbox that asks the user whether to create the program group for all users
to the variable sys. progranta oup. al | Users. To access the current user selection from
somewhere else, you can use the expression

cont ext . get Bool eanVari abl e("sys. prograntz oup. al | Users")
To change that selection, you can invoke

cont ext . set Vari abl e("sys. progranG oup. al | Users", Bool ean. FALSE)

213

C.4 How Installers Find A JRE

Installers generated by install4j are native executables or shell scripts and can start running
without a JRE. However, the installer itself requires a JRE in order to perform its work and so the
first action of the installer is to locate a JRE that is suitable for both the installer and your
application. In this process it performs the following steps:

1. Look for a statically bundled JRE. If a statically bundled JRE is included with the installer, it
will unpack it and use it. First, this JRE is unpacked to a temporary directory, later it is copied
to a location that depends on whether the bundled JRE is configured as shared or not.

Not shared

It is copied to the j r e directory in the installation directory of your application. No other

installer generated by install4j will find this JRE. It will not be made publicly available, for

example in the Windows registry.

Shared

The JRE is copied to the i 4] _j res directory in a common folder which depends on the

operating system:

* % ComonPr ogr anFi | es%on Windows, which typically resolves to C: \ Progr am Fi | es\
Common Fi | es with an English locale.

« [opt ifit exists, otherwise / usr/ | ocal on Unix.

If the above folder is not writable, thei 4j _j r es directory will be created in the use home
directory and the shared JRE will only be shared for the current user.

Other installers generated by install4j will find this JRE. It will not be made publicly available.
For each Java version, only one such JRE can be installed. Shared JREs are never uninstalled.

2. Look for a suitable JRE in the configured search sequence. The installer uses the same search
sequence and Java version constraints as your launchers which are configured for the entire
project [p. 36]. The most important search sequence element in this respect is the "Search
Windows registry and standard locations" entry. On Windows, the registry contains information
on installed JREs, on Unix platforms there is a number of standard locations which are checked,
on macOS the location of installed JREs is always the same.

3. If no JRE has been found, the installer notifies the user

install4j Wizard X

The install4j wizard could not find a Java(TM) Runtime
T Environment an your system, Pleaze locate a suitable
=== 64-bit JRE. (minimum version: 10, maximum version:
11)

and offers the following options:

+ Download a dynamically bundled JRE as configured in the Bundled JRE [p. 89] step of the

media wizard [p. 131].

214

4 installd) Wizard - X

Hello World Suite is downloading the Java{TM) Runtime
L 4 Environment. Please wait.

12.61 MB of 37.60 MB (33.5%) at 5097.1kb/s

n

* Manually locate a JRE
+ Cancel the installation

You can force the installer to skip the first two steps and show this dialog immediately with
the - manual command line parameter [p. 207].

215

C.5 HTTP Requests

Actions that perform HTTP requests

install4j includes several actions that can perform HTTP or HTTPS requests:

« The "Install files" action downloads installation components that have been marked as
"Downloadable" provided that the data files option has been set to "Downloadable" as well
in the media file wizard.

+ The "Check for updates" action downloads the update descriptor updat es. xm from the
specified web server in order to check if there is a new version available.

+ The "Download file" action downloads the specified file from the web server.

+ the "Upload file" action uploads a specified file with a POST request.

+ The "HTTP request" action performs generic HTTP requests.

« The"Wait for HTTP server" action waits until a specified HTTP or HTTPS port becomes available.

When creating an HTTP/HTTPS connection to the requested resource there are three different
concerns that may require user interaction: Proxy selection, proxy authentication and server
authentication.

Proxy selection and authentication

On Windows, installer applications use native code to perform HTTP requests, so the native
Windows proxy dialog will be shown. The proxy configuration of the operating system is used
and the system properties for setting an HTTP proxy in Java do not apply. This has the advantage
that a previously saved proxy password does not have to be entered by the user.

On other platforms, HTTP requests are made through the Java HttpClient for Java 11+ or a
URLConnection for lower Java versions. If a proxy can be auto-detected from the system settings,
itis used automatically. If the proxy requires credentials, an authentication dialog will be shown.
User input in this dialog will be cached for the duration of the process. If the proxy uses basic
authentication then HTTPS connections can only be tunneled if the VM parameter

-D dk. http. aut h. tunnel i ng. di sabl edSchenes=

is set with an empty value as shown above. This is done automatically for installer applications,
but not for generated launchers where you would have to set this VM parameter explicitly. If

you do that, you should read about its security impact " in case you develop your own
implementation of j ava. net . Aut henti cat or.

Entering proxy data is supported in console mode as well. In unattended mode there is no user
interaction, so the proxy information has to be provided to the installer via command line
arguments. The following system properties for proxy configuration can be used:

- Dpr oxyHost =<host nane>
- Dpr oxyPor t =<port nunber >

If the proxy requires credentials, you also have to specify

- Dpr oxyAut hUser =<user nane>
- Dpr oxyAut hPasswor d=<passwor d>

M https://bugzilla.redhat.com/show_bug.cgi?id=1386103

216

https://bugzilla.redhat.com/show_bug.cgi?id=1386103

Except for the native Windows network connection, the above properties can also be used to
configure the proxy from outside. Furthermore the global Java proxy properties

-Dhtt p. proxyHost =<host nane>
-Dhtt p. proxyPort =<port nunber>
-Dhttp. proxyUser =<user nane>

- Dhtt p. proxyPasswor d=<passwor d>

and the corresponding properties with the "https" prefix are also used for HTTP and HTTPS
connections respectively. If you would like to use these properties on Windows as well, you can
disable the native Windows network connection with the system property - Di nstal | 4j .
noW nl net Connect i on=t r ue.

Server authentication

The download URL can be password protected with basic HTTP authentication. In this case, the
user has to supply a user name and a password.

B3 Enter Credentials X
.n‘ Please enter your credentials for the downlead site www.mycerp.com
1 User Name: | Bob

Password:

Neither the user name nor the password is cached by install4j. In unattended mode you have
to pass the arguments

- Dser ver Aut hUser =<user nane>
- Dser ver Aut hPasswor d=<passwor d>

You can set these system properties via

Syst em set Property("serverAut hUser", "<user nane>");
System set Property("server Aut hPassword", "<password>");

programmatically.

217

C.6 Updates

On the "Installer->Update Options" step, you can configure how an installer should behave in
the event of an update. An update occurs when the user installs an application into a directory
where an installation with the same application ID already exists.

o~ . » ey i —
J o 8 e s ©
New Open S=ve Project . o Build Dry Test Sto show
Project Project Project Report o o Project Run Instsller Bu IDs P
o ’ Update Options
5 General Settings \ ’

In this step, you can choose how the generated installers should perform during an update,
Different installer types allow you to handle different update scenarios.

Application ID

g Launchers
The application |D is used to recognize a previous installation of the same project. You can change the
application |D to create a new identity for this project.

Installer

Application 1D: | 5422-0391-5807-37 Regenerate ID
4 Screens & Actions Manually edit ID
Styles
Y Installer Type
Look & Feel © Regular installer
Custern Code [Detect previcus installation directory
Update Options Add-on installer @
Auto-Update Options For application with |D:
; Media
. Build
5

Idle

Typically, minor upgrades of an application should be installed into the same directory as earlier
installations. The default behavior of install4j is to suggest the previous installation directory and
program group, so that the user is guided into installing the application into the same directory.
If this behavior is not desired, you can switch off these suggestions or change the application ID
on the "Installer->Update Options" step.

Updates into the same installation directory

The following points are of interest with respect to updates into the same installation directory:

+ Generated installers will refuse to install on top of installations with a different application ID
by default. You can change this behavior with the "Validate application id" property of the
installation directory chooser on the "Installation location" screen.

+ Generated installers will detect if any of the previously installed launchers are still running
and will ask the user to shut down these applications. This happens when the "Install files"
action or a "Check for running processes" action is executed.

+ Deployed services will be stopped and uninstalled before the installation. This happens when
the "Install files" action is executed. You can optionally stop your services earlier with the "Stop
a service" action if your update process requires it.

+ During an update, the installation databases will be merged, so that files, menu entries, file
associations and other modifications from old installations can still be uninstalled when the
uninstaller is executed.

+ After an update, only the uninstallation actions of the newer installation will be executed when
the uninstaller is executed. However, the auto-uninstall actions from previous installations

218

will be executed, too, for example the uninstallation of a service that was registered by an
"Install service" action during the installation.

If you would like to uninstall the previous installation before installing any new files, you can add
the "Execute previous uninstaller" action before the "Install files" action. In this context, the
uninstallation policies [p. 14] that exclude updates are important. With these uninstallation
policies you can preserve certain files for updates, but uninstall them when the user manually
invokes the uninstaller. The uninstaller invoked by the "Execute previous uninstaller" action is
running in unattended mode. You can use

I cont ext . i sUni nstal | For Upgr ade()

to exclude certain actions for an update uninstaller.

Add-on installers

install4j offers two types of installers that can be selected on the "Installer->Update options"
step:

* Regular installers

This option generates standalone installers. If the "Detect previous installation directory" check
box is selected and a previous installation can be detected on the computer, the installer will
suggest the directory of that previous installation. In that case, the "Update alert" form
component on the "Welcome" screen will ask the user if the previous installation should be
updated.

* Add-on installers

This generates an installer that can only be installed on top of an installation of a certain
installation. An add-on installer does not have a separate uninstaller. This is useful to distribute
additional files that do not change the version number of the installation.

If the add-on installer type is selected, you have to specify the application ID for the base
application.

219

C.7 Error Handling

Debugging on Windows

On Windows, when an installer is executed it always generates a log file in the temp directory
that contains information about the JRE search sequence and can be used for debugging purposes.
The name of the log file starts with i 4j _nl og_. If you have a problem with JRE detection or the
installer startup, send this log file along with your support request.

It is also possible to generate this native debug log file for the generated Windows launchers. In
order to switch on logging, define the environment variable

| NSTALL4J_LOG=yes

and look for the newest text file whose name starts with i 4j _nl og_ in the temp directory. This
is done silently, without notifying the user and is also suitable for situations where launchers
are called automatically or repeatedly.

An easier way for a user to create a log file is to start the launcher with the argument
/create-id4j-log

The launcher will notify the user where the log is created and will offer to open an explorer
window with the log file selected. After the message box is closed, the launcher will continue to
start up.

Debugging on macOS

Similar to Windows, macOS launchers also support the | NSTALL4J_LOG=yes environment
variable definition for debug logging. Rather than writing a log file, they write to the system log.
You can display the system log by starting the "Console" application which is located in
/Applications/UWilities.

Setting the environment variable can be done by opening a terminal and executing
| aunchct| setenv | NSTALL4J_ LOG=yes

Then all newly started applications in the Finder will have this environment variable set. The
current terminal will not be affected until you quit the Terminal application and start it again.

Rather than setting the environment variable for all install4j launchers, you can set it for a
particularinvocation only. To do that, call the Cont ent s/ MacOS/ JavaAppl i cati onSt ubinside
the application bundle and prefix the call with the definition of the environment variable. For an
application bundle "MyApp.app", the call looks like this:

| NSTALL4J_LOG=yes MyApp. app/ Cont ent s/ MacOS/ JavaAppl i cati onSt ub

In this case, the log output will also be written to the terminal. Using / usr/ bi n/ open will not
work with this technique, because the latter gets the environment variables from the Finder.

Note that logging only works for GUI launchers and not for command line and service launchers
which are implemented as Unix shell scripts. There is no command line argument that activates
logging, like on Windows.

220

Error logs

If an exception is thrown in the installer, it prepares an error log and informs the user about its
location

installd X

I b An error occurred:
"M izva.lang.RuntimeException: internal error

Error log: C:\Users\hannes\Docu tshinstalldj\b.1.6\hello\media\install4jErrord047006367258400373 log

Show Log File

You can force the installer to print exceptions to stderr for debugging purposes with the
-Di nstal | 4j . debug=t rue command line option [p. 207].
Installation log

All installer applications generate an installation log that can be used for debugging purposes.
After a successful installation the log file is saved to

<installation dir>/.install4j/installation.|og

For an uninstaller or if the installer exited before the "Install files" action was run, you can find
it in the temporary directory if you pass - Di nstal | 4j . keepLog=t rue to the installer or
uninstaller. The file is prefixed i 4j _| og.

If you would like the installer to log to stderr as well, you can pass - Di nst al | 4j . | ogToSt derr =
t r ue to the installer. Both arguments can also be useful for debug installers and uninstallers,
where they have to be passed as VM parameters.

Error handling of Actions

You can define the error handling for every installation or uninstallation action separately. Mor
information is available in the DMG options and files on screens and actions [p. 24].

Return values

The process of an installer returns 0 if the installation was completed successfully, 1 if the
installation fails and 83 if the installer could not find a suitable JVM to run. These exit codes are
useful when checking the result of an unattended installation [p. 205].

221

D API

D.1 API For Installer Applications

There are two different use cases where the install4j APl is required: Within expression/script
properties [p. 29] in the configuration GUI and for the development of custom elements in
install4j. The development of custom elements in install4j is rarely necessary for typical installers,
most simple custom actions can be performed with a "Run script" action and most custom forms
can be realized with a "Customizable form" screen.

If you would like use your IDE while writing more complex custom code, you can put a single call
to custom code into expression/script properties. The location of your custom code classes must
be configured on the "Installer->Screens & Actions->Custom Code" step, so install4j will package
it with the installer and put in into the class path. In this way you can completely avoid the use
of the interfaces required to extend install4j.

Expression/script properties

Using expression/script properties in install4j is required for wiring together screens and
actions [p. 24] as well as for the conditional execution of screens and actions. The most important
element in this respect is the context which is an instance of

+ com.api.install4j.context.InstallerContext
in an installer

+ com.api.install4j.context.UninstallerContext
in an uninstaller

The context allows you to query the environment and the configuration of the installer as well
as to perform some common tasks.

See the documentation of the com.install4j.api.context package for the complete documentation
of all methods in the context. Some common applications include:

+ Setting the installation directory

By usingcont ext . setlnstallationDirectory(File installationDirectory) inthe
installer context, you can change the default installation directory for the installer. Typically,
this call is placed into a "Run script" action on the "Startup" screen.

+ Getting and setting installer variables

The get Vari abl e(String vari abl eNane) and set Vari abl e(String vari abl eNane,
Obj ect val ue) methods allow you to query and modify installer variables. Note that besides
the "Run script" action, there is also a "Set a variable action" where you don't have to call
set Vari abl e yourself.

+ Conditionally executing screens or actions

Often, condition expressions for screens and actions check the values of variables. In addition,
the context provides a number of boolean getters that you can use for conditionally executing
screens and actions depending on the installer mode and environment. These methods include
i sConsol e(),isUnattended() and others.

222

* Navigating between screens

Depending on the user selection on a screen, you might want to skip a number of screens.
The goForward(...), goBack(...) and goBackl nHi story(...) methods provide the
easiest way to achieve this.

Many other context methods are only useful if you develop custom elements for install4j.

Also have alookatthecom instal | 4j . api. Uil classwhich offers a number of utility methods
that are useful in expression/script properties.

Development environment

To develop custom elements in your IDE, you have to add the install4j APl to the compilation
class path. The entire install4j APl is contained in the single artifact with maven coordinates

group: cominstall4j
artifact: install4j-runtinme
version: <install4j version>

where the install4j version corresponding to this manual is 10.0.6.

Jar, source and javadoc artifacts are published to the repository at
https:// maven. ej -t echnol ogi es. conf repository

You can either add the API to your development class path with a build tool like Gradle or Maven,
or use the JAR file

resource/i4jruntine.jar

in the install4j installation.

To browse the Javadoc, go to
j avadoc/ i ndex. ht m

For a general overview on how to start developing with the install4j API, how to set up your IDE
and how to debug your custom elements, see the API overview in the javadoc.

Developing custom elements for install4j
install4j provides four extension points: actions, screens, form components and styles

All actions, screens and form components in install4j use this APl themselves. To make your
custom elements selectable in the install4j IDE, you first have to configure the custom code
locations on the "Installer->Screens & Actions->Custom Code" step. When you add an action,
screen or form component, the first popup gives you the choice on whether to add a standard
element or search for suitable elements in your custom code.

223

4 Installer (5 screens) [ID instal... #

. Contains 4 form components Q Configure & Preview
=, Startup (1 action) Add Action
"% Welcome (1 action) [ID 2] Add Screen
'?’ Installation location (1 ac... Add Application jte installation
"3 Installation components .. [EIECENSS Y Search Action in Custom Code
" Installation (3 actions) [10.. Groups W Search Screen in Custom Code
—_— . . Add link int: »
%k | Finish [ID 20] 1 nte al
+ = Quit after screen
Uninstaller (4 screens) [I0 u... 3 Back button
GUI Options
% Style Banner
Custemize banner image
Privileges
Action elevation type Inherit from parent [Do not elevate]
Screen Activation
0’3 Pre-activation script

Post-activation script

Welcome

A screen that welcomes the user to the installation of your application. This screen should
be placed at the beginning of the installation

If you want to ship your custom code to third parties, consider packaging an install4j
extension [p. 228], which displays your custom elements alongside the standard elements that
are provided by install4j and allows you to add dependency JAR files that are included in the
installers if any of the contained elements are used in a project.

Serialization

install4j serializes all instances of screens, actions and form components with the default
serialization mechanism for JavaBeans.

To learn more about JavaBeans serialization, visit

Q]

https://docs.oracle.com/javase/8/docs/api/java/beans/XMLEncoder.html for API

documentation on the long-term persistence mechanism for JavaBeans.

https://www.oracle.com/technical-resources/articles/java/persistence4.html® for information
on how to write your own persistence delegates. In your bean infos for screens, actions and
form components you can specify a list of additional persistence delegates for non-default
types. Writing custom persistence delegates will generally not be necessary unless you want
to serialize special types from 3rd party libraries.

Compiler variables are replaced in the serialized representation of a bean. In this way, compiler
variable replacement is automatically available for all properties of type j ava. | ang. Stri ng.
The values of installer variables and localization keys are determined at runtime, so you have to
call the utility methods in com i nstal | 4j . api . beans. Abstr act Bean before you use the
values in the installer or uninstaller. For more information on variables, see the separate help
topic [p. 63].

Internationalization

install4j offers custom localization files in the install4j IDE to localize your own messages. com
i nstal | 4j . api . cont ext. Cont ext. get Message(String key) givesaccess to all messages.

If you develop your own user-configurable screens, actions or form components, you can replace
all custom localization keys and installer variables in property values with calls to the com

M https://docs.oracle.com/javase/8/docs/api/java/beans/XMLEncoder.html
) https://www.oracle.com/technical-resources/articles/java/persistence4.html

224

https://docs.oracle.com/javase/8/docs/api/java/beans/XMLEncoder.html
https://www.oracle.com/technical-resources/articles/java/persistence4.html

i nstal |l 4j.api.beans. Abstract Bean. repl aceVari abl es(...) methods. All abstract base
classes for beans extend com i nst al | 4] . api . beans. Abst r act Bean.

The locale of the installer will always be set to the language selected by the user or configured
for the media file, not the locale of the system that the installer is running on. You can call com
i nstall 4j.api.context.Context.getlLanguagel d() tofind outwhatlanguage your installer
is running with.

Testing and debugging

To test and debug screens, actions and form components for your installer, enable the Cr eat e
addi ti onal debug | auncher build option in the "Build" section. After the build, your media
file output directory will contain directories with the name debug_[name of the nedia file
m nus ext ensi on] for each media file that you have built.

The debug directories contain

+ the Windows batch filesdebug_i nstal | er. bat anddebug_uni nst al | er. bat for Windows
media files

+ theshell scripts debug_i nstal | er. sh and debug_uni nst al | er. sh for media files of Unix
based platforms

These scripts start the installer and the uninstaller with a plain java invocation. All exceptions
are directly printed to stderr and no separate error log files are created.

The file user.jar in the debug directory contains all your custom code. For interactive
development you will not want to rebuild the project after each modification of your custom
code. You can set up the installer or the uninstaller in your IDE by

+ setting the working directory to the debug directory
* including your own code in the class path
* including i4jruntime.jar in the class path

+ including user.jar in the class path. Your own code will also be contained in user.jar, but the
IDE typically places project code at the beginning of the class path so it will override equivalent
classes in user jar.

« usingthemainclasscominstall4j.runtine.installer.|nstaller fortheinstaller or
cominstall4j.runtine.installer.Uninstaller forthe uninstaller

+ passing the VM parameter - Di nst al | 4j . debug=t r ue

Note that the working directory for the executed java process must be the debug directory,
otherwise both the installer as well as the uninstaller will not work.

This procedure allows for an edit-compile-debug cycle that is much faster than building the media
file and running the installer. In addition, output on stderr and stdout can be captured and you
can debug your screens, actions and form components this way.

225

D.2 API For Generated Launchers

Generated launchers in install4j have some features that you can interact with from your own
code. The corresponding APl is contained inthecom i nst al | 4j . api . | auncher package. This
chapter gives an overview of the most important use case, the detailed documentation is
contained in the Javadoc.

install4j's launcher APl is automatically available to an application deployed with install4j. For
compiling your application, you have to add the runtime classes to your class path. You can learn
how to set up a dependency in build systems in the API overview.

Receiving Startup Events in Single Instance Mode

If you have enabled the single instance mode [p. 36] for your executable, the application can
only be started once. For a GUI application, the existing application window is brought to front
when a user executes the launcher another time.

The scope of the single instance check can be per-user or globally across all users. For the per-user
scope, the "Per session on Windows" setting controls whether multiple RDP sessions for the
same user on Windows can support one instance per session or only one instance across all
sessions.

In single instance mode, you may want to receive notifications about multiple startups together
with the command line parameters. If you have associated your executable with a file extension,
you will likely want to handle multiple invocations in the same instance of your application.
Alternatively, you might want to perform some action when another startup occurs.

To do that, create a class that implements the cominstall4j.api.launcher.
StartupNotification.Listener interface and register it with cominstall4j. api.
| auncher. StartupNotification.registerStartupLi stener(listener). Your listener
will then be notified when another startup occurs. See the Javadoc for more information.

Startup notifications only work when the same user starts the executable again. With the global
scope, a startup of a different user will not produce a startup notification. On macOS, this setting
only applies to console launchers, for GUI launchers the macOS operating system enforces single
instance mode if the user starts and application bundle from the Finder. With the / usr/ bi n/
open command line tool and the - n option, the user can circumvent single instance mode.

Controlling the Splash Screen from your Application

If you have enabled a splash screen [p. 36] for a launcher, you will want to hide it once the
application startup is finished. The splash screen will be hidden automatically as soon as your
application opens the first AWT, JavaFX or SWT window. See the Javadoc for more information.

However, you might want to hide the splash screen programmatically by callingcom i nst al | 4j .
api . I auncher. Spl ashScr een. hi de() or update the contents of the status text line on the
splash screen with cominstall4j.api.launcher. Spl ashScreen. witeMessage(...)
during the startup phase to provide more extensive feedback to your users. Also, if the Ul
subsystem is not loaded by the system class loader, install4j cannot automatically detect displayed
windows and you have to hide the splash screen automatically. For example, this is the case for
eclipse RCP applications.

Reading compiler and installer variables from response files

Allinstaller variables that are registered for response files will be saved to the file. i nstal | 4j /
response. var fi | e just before the installer exits. This includes all variables that are bound to
form components and variables for which you have called context.
regi st er ResponseFi | eVari abl e(vari abl eNane) .

226

Some of these variables will contain user input that you need at runtime. You can use the com
install 4j.api.launcher. Vari abl es classto access the variable values. The variable values
from the response file are fixed and its backing file is usually not writable by the user. If you want
to update the variable values at runtime, you can save variables to the preference store with a
"Save installer variables to the preference store" action. Thecom i nst al | 4j . api . | auncher.
Vari abl es class has methods for reading and saving these variables from the preference store.

In addition, all compiler variable values can be retrieved at runtime. See the Javadoc for detailed
information.

Starting installer applications from your launchers

Installer applications like update downloaders are separate executables and can be started
manually by the user. Most often, however, they will by launched by one of the generated
launchers. install4j offers a configurable launcher integration mechanism that automatically
executes an installer application when a launcher is started. For greater flexibility, you may want
to execute the installer application from your code programmatically. On the "Installer->Screens
& Actions" step, when an installer application is selected, the integration wizard on the "Launcher
integration" tab produces code that uses the cominstall4j.api.launcher.
Appli cati onLauncher class.

There are two ways to start installer applications: In-process and out-of-process. For an in-process
invocation, the installer application will use the look and feel of your JVM. The AWT subsystem
will be initialized which may be undesirable if you use a different Ul toolkit like JavaFX. For greater
isolation, out-of-process invocations are recommended. The ApplicationLauncher API offers both
options. In both cases you can supply a callback that is notified when the installer application
exits or if a "Shutdown calling launcher" action in the installer application request a shutdown
of the launcher.

In addition, the Appl i cat i onLauncher class provides a mechanism to run an installer application
the first time a launcher from an archive installation is started. Archives do not have an installer,
but you may still want to run some install4j actions, for example to configure a file association.
With the Appl i cati onLauncher . i sNewAr chi vel nstal | ati on() method you can check at
startup if this is the first time that the launcher is being executed.

227

D.3 Extensions

Introduction

All standard actions, screens and form components in install4j use the installer API [p. 222]
themselves. With this APl you can create new elements that are displayed in the standard registries
by packaging a JAR file with a few special manifest entries and putting that JAR file into the
ext ensi ons directory of your install4j installation.

Configurability

An extension to install4j will likely need to be configurable by the user. install4j uses the JavaBean

specification" to control the user presentation of properties in the install4j IDE. Screens, actions
and form components correspond to beans in this context.

Optionally, you can add BeanlInfo classes. A BeanInfo class next to the bean itself describes which
properties are editable and optionally gives details on how they should be presented. See the
documentation of the com.install4j.api.beaninfo package for the complete documentation on
how to develop BeanlInfo classes. Also, sanpl es/ cust onCode/ sr ¢ in the installation directory
contains sample beans with associated BeanInfo classes.

JAR manifest
In order to tell install4j which classes are screens, actions or form components, you have to use
the following manifest keys:

* Install-Action
for actions implementingcom i nstal | 4j . api . acti ons. Instal | Acti on

* Uninstall-Action
for actions implementing com i nstal | 4j . api . acti ons. Uni nstal | Acti on

* Installer-Screen
for screens implementing com i nst al | 4j . api . screens. I nstal | er Scr een

* Uninstaller-Screen
for screens implementing com i nst al | 4j . api . screens. Uni nstal | er Scr een

*+ Form-Component
for form componentsimplementingcom i nst al | 4j . api . f or ntonponent s. For mConponent

+ Style-Component

for form componentsimplementingcom i nst al | 4j . api . f or ntonponent s. For nConponent
that should also be available in styles. Such form components should not take any user input
because they will have a different life-cycle in styles than in screens.

Note that usually you do not implement these interfaces yourself, but rather extend one of the
abstract base classes.

A typical manifest with one action and one screen looks like this:

M http://www.oracle.com/technetwork/articles/javaee/spec-136004.html

228

http://www.oracle.com/technetwork/articles/javaee/spec-136004.html
http://www.oracle.com/technetwork/articles/javaee/spec-136004.html

Depends- On: driver.jar conmon.jar

Name: coni mycor p/ actions/ MyActi on. cl ass
Install-Action: true

Name: coni mycor p/ screens/ MyScr een. cl ass
Install er-Screen: true
Uni nstal |l er-Screen: true

If you only have named sections and no global section in your manifest file, the first line must
be an empty line since it separates the global keys from the named sections.

The Depends- On manifest key can specify a number of relative JAR files separated by spaces
that must be included when the extension is deployed. That key can also occur separately for
each named section.

As you see in the example for the screen, each class can have multiple keys if the appropriate
interfaces are implemented.

Localization

Extensions can provide localized messages. During development, you can keep these messages
in the custom localization file of the project that you use for testing purposes. When packaging
the extensions, these custom localization files have to be given special names and be putinto a
particular location in the extension JAR file.

The names of the extension localization files have to be the same as those of the system
localization files in the r esour ce/ nessages directory, for example nessages_en. utf 8 and
similarly for other languages. The j ava. util . Properti es file encoding is also supported if
the file name has a .properties extension, like messages_en. properti es.

When creating the extension JAR file, all extension localization files have to be put into the
directory mnessages. No special directives in the manifest are required. Dependencies included
with the Depends- On manifest key are not scanned for extension localization files.

Extension deployment

On startup, install4j will scan the manifests of all JAR files that it finds in the ext ensi ons directory.
Any screens, actions or form components that are found in the manifests are added to the
standard registries. If a bean cannot be instantiated, the exception is printed to stderr which is
capturedin<tenp directory>/install4j_error.| ogand no further error is displayed.

If any of those screens, actions or form components are selected by the user, the required JAR
files are deployed with the generated installers. This means that installing extensions does not
create an overhead for installers that do not use them.

229

E Command Line Tools

E.1 Install4j Command Line Compiler

install4j's command line compileri nst al | 4j c[. exe] can befound inthe bi n directory of your
install4j installation. It operates on project files with extension . i nstal | 4j that have been
produced with the install4j IDE. (i nstal | 4j [. exe]). The install4j command line compiler is
invoked as follows:

install4jc [OPTIONS] [config file]
A quick help for all options is printed to the terminal when invoking
install4jc --help

In order to facilitate usage of install4jc with automated build processes, the destination directory
for the media files and the application version can be overridden with command line options.
Furthermore you can achieve internationalization and powerful customizations with compiler
variables [p. 63]. As a last resort, since the file format of install4j's config files is xml-based, you
can achieve arbitrary customizations by replacing tokens or by applying XSLT stylesheets to the
config file.

Options for the install4j command line compiler

The command line compiler has the following options:

* -hor --help
Displays a quick help for all available options.

+ -V or --version
Displays the version of install4j in the following format:

install4j version X. Y, built on YYYY- M DD

* -vor --verbose
Enables verbose mode. In verbose mode, install4j prints out information about internal
processes. If you experience problems with install4j, make sure to include the verbose terminal
output with your bug report.

* -q or --quiet
Enables quiet mode. In quiet mode, no terminal output short of a fatal error will be printed.

« -tor-test
Enables test mode. In test mode, no media files will be generated in the media file directory.

* -ji or --incremental

Enables incremental test execution. A test installer [p. 11] for the current platform is updated
with the latest screens, actions and form components and executed immediately. Because
the files are taken from a previously built media file, the compilation is very fast.

230

-g or --debug

Create additional debug installers for each media file. For each built media file, a directory
that is named like the media file will be created in the media file output directory.

-p or --preserve
Do not delete the temporary directory that the compiler uses for staging all files and launchers.

-w or --fail-on-warning
If a warning is printed and this option is specified, the build will fail at the end. It does not fail

immediately, so you can see all warnings and fix them all at once. The exit code in this case
is 2 instead of 1 for an actual error and 0 for a successful execution.

-n or --faster

Disable LZMA and Pack200 compression. If you have enabled LZMA or Pack200 compression
on the "General Settings->Media File Options" step, this allows you to create development
builds much faster, since LZMA and Pack200 are expensive compression algorithms.

-u or --disable-signing

Disable code signing. If you have configured code signing [p. 143], this allows you to skip code
signing for a build. In that case you do not have to enter the passwords for the key stores.

-j or --disable-bundling

Disable JRE bundling. If you have configured JRE bundles [p. 89] for any media files, those
bundles will not be used and the installer will be built without a contained JRE. This speeds
up the build and the installation.

--win-keystore-password=<password>

Set the Windows keystore password for the private key that is configured for code
signing [p. 143]. If code signing is enabled for Windows media files and this option is not set,
the command line compiler will prompt you for the password.

--mac-keystore-password=<password>

Set the macOS keystore password for the private key that is configured for code signing [p. 143].
If code signing is enabled for macOS media files and this option is not set, the command line
compiler will prompt you for the password.

--apple-id-password=<password>

Set the app-specific password for the Apple ID that is configured on the "General Settings->Code
Signing" step. If notarization is enabled and this option is not set, the command line compiler
will prompt you for the password. This option only has an effect on macOS, because
notarization requires command line executables that are included in Xcode.

--disable-notarization

Disable notarization of media files on macOS. If you have enabled notarization for code
signing [p. 143] and the build is running on macOS, this option allows you to skip notarization.

-L or --license=<key>

Update the license key on the command line and exit. This is useful if you have installed
install4j on a headless system and cannot start the GUI. <key> must be replaced with your
license key. If you use floating licenses, replace <key> with FLOAT: ser ver where "server" is
the host name or IP address where the floating license server is installed. For floating licenses,
you can choose the requested edition by passing --wi ndows-edition or
--multi-platformedition.

231

The config file that contains the license key has a platform-specific location:

* Windows: % OCALAPPDATA% i nst al | 4j \ v<ver si on>\ confi g. xm
* macOS: ~/ Li brary/ Appl i cation Support/install4j/v<version>/config.xnl

* Linux/Unix: . confi g/install 4j/v<version>/config. xm , the root directory may be
modified by the environment variable XDG_CONFI G_HOVE

-r <string> or --release=<string>

Override the application version defined in the "General Settings->Application Info" step.
<st ri ng> must be replaced with the actual version number. Version number components
can be alphanumeric and should be separated by dots, dashes or underscores.

-d <string> or --destination=<string>

Override the output directory for the generated media files. <st r i ng> must be replaced with
the actual directory. If the directory contains spaces, you must enclose <st ri ng>in quotation
marks.

-s or --build-selected

Only build the media files which have been selected in the install4j IDE. By default, all media
files are built regardless of the selection in the "Build" step.

-b <list> or --build-ids=<list>

Only build the media files with the specified IDs. <l i st > must be replaced with a comma
separated list of numeric IDs. The IDs for media files can be shown in the install4j IDE by
choosing Project->Show IDs from the main menu. Examples would be:

-b 2,5,9
--build-ids=2,5,9

-m or --media-types=<type>[,<type>]...

Only build media files of the specified type. <t ype> must be replaced with a media file type
recognized by install4j. To see the list of supported media types, execute

install4jc --1ist-nedia-types
. Examples would be:

-m wi n32, macos, nacosFol der
--nmedi a-t ypes=wi n32, macos, nacosFol der

-D <name>=<value>[,<name>=<value>]...

Override a compiler variable [p. 63] with a different value. You can override multiple variables
by specifying a comma separated list of name value pairs. <name> must be the name of a
variable that has been defined on the "General Settings->Compiler Variables" step. The value
can be empty.

To override a variable for a specific media file definition only, you can prefix <nane> with | D
to specify the ID of the media file. The IDs for media files can be shown in the install4j IDE by
choosing Project->Show IDs from the main menu.

232

Examples would be:

- D MYVARI ABLE=15, OTHERVARI ABLE=
"-D MYVARI ABLE=15, OTHERVARI ABLE=t est, 8: MEDI ASETTI TLE=ny title"

A special system variable that you can override from the command line is sys. | anguagel d.
sys. | anguagel d must be set to the ISO code of the language displayed in the language
selection dialog and determines the principal installer language [p. 79] for the project or the
media file.

-f <file> or --var-file=<file>

Load variable definitions from a file. This option can be used together with the - D option,
which takes precedence if a variable occurs twice. The file can contain

+ variable definitions
One variable definition per line of the form NAME=VALUE.

+ blank lines
blank lines will be ignored.

+ comments
lines that start with # will be ignored.

The file is assumed to be encoded in the UTF-8 format. Should you require a different encoding
you can prefix the filename with CHARSET: , where CHARSET is replaced with the name of the
encoding.

Instead of a single variable file you can also specify a list of files separated by semicolons. The
optional charset prefix must be specified for each file separately.
Examples would be:

-f varfile.txt

--var-file=ISO 8859-3:varfile.txt
--var-file=one.txt;two.txt

--var-fil e=lI SO 8859-3: one. t xt;| SO 8859-1: two. t xt

-M or --list-media-types
Prints out a lists of supported media types for the - - nedi a- t ypes option and quits.

233

E.2 Command Line Tool For Pre-Created JRE Bundles

To automate the creation of pre-created JRE bundles [p. 89], you can use the command line
utility cr eat ebundl e[. exe] inthe bi n directory of your install4j installation. The bundle creation
tool is invoked as follows:

creat ebundl e [OPTIONS] [JRE hone directory]

The available options are:

-h, --help Di spl ays this help.
-0, --output Qutput directory, default is the current directory.
-V, --version=<VERSIO\N> JRE version to be used in the bundle file nane.
The default is the version as reported by the JRE
-i, --id Sets customid for bundle file nane.
The default is the enpty string.
-u, --unpacked Create bundl e with unpacked JAR files as required
for the macOS single bundle archive.
-r, --jdk-rel ease Rel ease of JDK that provides the JDK tools. Only
=<RELEASE> required if the JRE does not contain the jlink tool

and if the JRE version is 9 or higher. This is not a
versi on nunber, but a rel ease string as shown on the
"JRE Bundl es" step in the install4j |DE

-p, --jdk-provider-id JDK provider ID for the JDK that is specified with
=<| D> --jdk-rel ease. By default "Adopt QpenJDK" is used.
-m --add- nodul es Add a conma-separated |list of nodules to the JRE
bundl e. Can be passed nore than once.
-s, --add-nodul e-set Add a set of mobdules to the JRE bundle, either a

=mn|jre|all|none mninmmset, a typical JRE, all nbdules, or none.
The default is "jre".
-j, --add-jnod=<pat h> Add a JMOD file to the JRE bundle. Can be passed
nore than once.
-d, --add-jnod-dir Add a directory with JMOD files to the JRE bundl e.
=<pat h> Can be passed nore than once.

There are Ant [p. 249] and Gradle [p. 235] tasks as well as a Maven Mojo [p. 240] tasks that you can
use to call this command line application from your build system.

234

E.3 Using Install4j With Gradle

You can execute the install4j compiler from gradle " with the install4j Gradle plugin. To make
the Gradle plugin available to your build script, you have to apply the install4j Gradle plugin:

pl ugi ns {
id "cominstall4j.gradle" version "X Y.Z"
}

If you do not want to use the Gradle plugin repository for this purpose, the Gradle plugin is
distributed in the file bi n/ gradl e. j ar.

The plugin has two parts: The global configuration with the top-level i nstall4j {...}
configuration block and tasks of type com i nstal | 4j . gradl e. I nstal | 4] Task.

The global configuration block must specify the install4j installation directory:
install 4] {

installDir = file("/path/to/install4j home")
}

On macOS, the installation directory is the path of the application bundle, for example
/ Applications/install4j.app. The actual command line compiler is located under
/ Applications/install4j.app/ Contents/ Resources/app/bin/install4j inthatcase.

In addition, the global configuration block can set defaults for the i nst al | 4j tasks.

Task parameters

Thei nst al | 4j task supports the following parameters, many of which are explained in greater
detail for the command line compiler [p. 230].

Attribute Description Required Global

projectFile The install4j project file that should be Yes No
build.

variableFiles Correspondstothe--var-file No No
command line option. Specify the list
of variable files with variable
definitions.

variables A map of variable definitions. These No No

M https://gradle.org

definitions override compiler
variables [p. 63] in the project and
correspond to the - Dcommand line
option. Definitions with vari abl e
elements take precedence before
definitions in the variable file
referenced by the vari abl eFi | es
parameter.

The names of the variables must have
been defined on the "General

235

https://gradle.org

Attribute

Description

Required

Global

Settings->Compiler Variables" step.
The values can be of any type,
toString() will be called on each
value to convert the valueto aj ava.
| ang. Stri ng. For example:

[vari abl eOne: "One",

vari abl eTwo: 2].

release

Corresponds to the - - r el ease
command line option. Enter a version
number like "3. 1. 2", Version number
components can be alphanumericand
should be separated by dots, dashes
or underscores.

No

No

destination

Corresponds to the - - dest i nati on
command line option. Enter a directory
where the generated media files
should be placed.

No

No

buildlds

Corresponds to the - - bui | d-i ds
command line option. Enter a list of
media file ids. The IDs for media files
can be shown in the install4j IDE by
choosing Project->Show IDs from the
main menu. For example: [12, 24,
36] .

No

No

verbose

Corresponds to the - - ver bose
command line option. Either t r ue or
fal se.

quiet

Corresponds to the - - qui et
command line option. Either t r ue or
fal se.

No, verbose
and quiet
cannot both
betrue

Yes

Yes

license

Corresponds to the - -1i cense
command line option. If the license
has not been configured yet, you can
set the license key with this attribute.

Yes

test

Correspondstothe- -t est command
line option. Either true or f al se.

incremental

Corresponds to the - -i ncr enent al
command line option. Either t rue or
fal se.

No, test and

incremental

cannot both
betrue

Yes

Yes

debug

Corresponds to the - - debug
command line option. Either t r ue or
fal se.

No

Yes

236

Attribute

Description

Required

Global

preserve

Corresponds to the - - preserve
command line option. Either t r ue or
fal se.

No

Yes

faster

Corresponds to the - - f ast er
command line option. Either t r ue or
fal se.

No

Yes

disableSigning

Corresponds to the
- - di sabl e- si gni ng command line
option. Either true or f al se.

No

Yes

disableBundling

Corresponds to the
- -di sabl e- bundl i ng command line
option. Either true or f al se.

No

Yes

winKeystorePassword

Corresponds to the
--w n- keyst or e- password
command line option.

No

Yes

macKeystorePassword

Corresponds to the
--mac- keyst or e- password
command line option.

No

Yes

appleldPassword

Corresponds to the
--appl e-i d- passwor d command
line option.

No

Yes

disableNotarization

Corresponds to the
- - di sabl e- not ari zat i oncommand
line option.

No

Yes

buildSelected

Corresponds to the
- - bui I d- sel ect ed command line
option. Eithertrue orf al se.

No

Yes

mediaTypes

Corresponds to the - - medi a- t ypes
command line option. Enter a list of
media types. To see the list of
supported media types, execute
install4jc --1ist-nedia-types.

No

Yes

vmParameters

Alist of VM parameters for the install4j
command line compiler process. For

example: [" - Dpr oxySet =t r ue",

" - Dpr oxyHost =nmypr oxy",

" - DproxyPort=1234",

" - Dpr oxyAut h=true",

" - Dpr oxyAut hUser =bui | dServer",

" - Dpr oxyAut hPasswor d=

i g4zexwb8et "] sets an HTTP proxy

that is required for code signing.

No

Yes

237

The "Global" column shows if a parameter can also be specified in the global i nst al | 4]
} configuration block. Definitions in the task override global definitions.

Examples

Simple example:

install4j {
instalIDir = file("/opt/install4j")
}

task nmedi a(type: cominstall4j.gradle.lnstall4jTask) {
projectFile = file("nmyProject.install4j")
}

More complex example:

if (!hasProperty("install4jHonmeDir")) {

File propertiesFile =
file("${System getProperty("user.hone")}/.gradl e/ gradle.properties")

t hrow new Runti meException("Specify install4jHomeDir in $propertiesFile")
}

bool ean dev = hasProperty("dev")

install4j {
instalIDir = file(install4j HoneDir)
faster = dev
di sabl eSi gni ng = dev
wi nKeyst or ePasswor d
macKeyst or ePasswor d

"supersecret Wn"
"super secr et Mac"

if (dev) {
medi aTypes = ["w ndows"]
}

}

task nedi a(type: cominstall4j.gradle.lnstall4jTask) {
dependsOn "dist" // exanple task that prepares the distribution for install4j

projectFile = "nyProject.install4j"
vari abl es = [mmj or Versi on: version.substring(0, 1), build: 1234]
variableFiles = ["varl.txt", "var2.txt"]

The "hello" sample project includes a Gradle build script that shows how to set up the install4;
task. To install the sample projects, invoke Project->Open Sample Project from the install4j IDE.
When you do this for the first time, the sample projects are copied to the "Documents" folder

in your home directory.

In the sanpl es/ hel | o directory, execute

gradl e nedi a

to start the build. If you have not defined i nst al | 4 HoneDi r in gradl e. properties nextto

bui I d. gr adl e, the build will fail with a corresponding error message.

238

{...

Creating JRE bundles

To create a JRE bundle from your Gradle build script, use the cominstall 4j.gradle.
Cr eat eBundl eTask and and set its j avaHome property to the JRE that you want to create a
bundle for.

The Cr eat eBundl eTask invokes the createbundle command line executable [p. 234] in the
install4j installation and has the following properties:

Attribute Description Required

javaHome The home directory of the JRE that should be Yes
bundled

outputDirectory Corresponds to the - - out put command line No
option.

version Corresponds to the - - ver si on command line No
option.

id Corresponds to the - - i d command line option. No

unpacked Corresponds to the - - unpacked command line No
option.

jdkRelease Corresponds to the - - j dk- r el ease command No
line option.

jdkProviderld Corresponds to the - - j dk- provi der-i d No
command line option.

addModules Corresponds to the - - add- nodul es command No
line option.

addModuleSet Correspondsto the - - add- nodul e- set command No
line option.

jmodFiles Corresponds to the - - add- j rod command line No
option.

jmodDirs Corresponds to the - - add- j nod- di r command No
line option.

vmParameters Like the vmParameters property of the No

I nstal | 4) Task

Example:

task createBundl e(type: cominstall4j.gradle.CreateBundl eTask) {
javaHome = "/usr/lib/jvmjre-11/jre"

output Di rectory = "/home/ bui |l d/ proj ects/ myProj ect/jreBundl es"
version = "11"

id="j 3d"

jmodDirs = ["] nmods"]

jmodFiles = ["one.jnod", "two.jnod"]

239

E.4 Using Install4j With Maven

You can execute the install4j compiler from maven " with the install4j Maven plugin.

The install4j maven plugin is available from the following repository:

<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<i d>ej -t echnol ogi es</i d>
<ur| >https://maven. ej -t echnol ogi es. conl r eposi t ory</url >
</ pl ugi nReposi t ory>
</ pl ugi nReposi tori es>

Compile Mojo parameters

The conpi | e Mojo supports the following parameters, many of which are explained in greater
detail for the command line compiler [p. 230].

Parameter Description Required

installDir The location of the install4j installation. Yes

User property of type j ava.io. Fil e:
install4j.home

projectFile The install4j project file that should be build. Yes

User property of type j ava.io. Fil e:
install4j.projectFile

appleldPassword Set the app-specific password for notarizing macOS No
media files. This only has an effect whenrunon a
macOS machine.

Corresponds to the - - appl e- i d- passwor d
command line option.

User property of type j ava. | ang. Stri ng:
install4j.appleldPassword

attach Attach generated installers. Uses the media file ID No
as the classifier.

User property of type bool ean: install4j.attach

buildlds Only build the media files with the specified IDs, No
separated by commas.

Corresponds to the - - bui | d-i ds command line
option.

User property of type j ava. | ang. Stri ng:
install4j.buildlds

M https://maven.apache.org/

240

https://maven.apache.org/

Parameter

Description

Required

buildSelected

Only build the media files which have been selected
in the install4j IDE.

Correspondstothe- - bui | d- sel ect ed command
line option.

User property of type bool ean:
install4j.buildSelected

No

debug

Create additional debug installers for each media
file.

Corresponds to the - - debug command line option.

User property of type bool ean: install4j.debug

No

destination

The output directory for the generated mediafiles.
By default this is set to ${ pr oj ect . bui | d.

di rect ory}/ medi a, so this flag is always passed
to the install4j compiler.

Corresponds to the - - dest i nat i on command
line option.

User property of type j ava.io. Fil e:
install4j.destination

No

disableBundling

Disable JRE bundling.

Corresponds to the - - di sabl e- bundl i ng
command line option.

User property of type bool ean:
install4j.disableBundling

No

disableNotarization

Disable Notarization on macOS.

Corresponds to the - - di sabl e-notari zati on
command line option.

User property of type bool ean:
install4j.disableNotarization

No

disableSigning

Disable code signing.

Corresponds to the - - di sabl e- si gni ng
command line option.

User property of type bool ean:
install4j.disableSigning

No

failOnWarning

If a warning is printed and this option is specified,
the build will fail at the end.

Corresponds to the - - f ai | - on-war ni ng
command line option.

User property of type bool ean:
install4j.failOnWarning

No

241

Parameter Description Required

faster Disable LZMA and Pack200 compression. No
Corresponds to the - - f ast er command line
option.
User property of type bool ean: install4j.faster

incremental Enables incremental test execution. The No
parameters "test" and "incremental" cannot both
be true.
Corresponds to the - -i ncr ement al command
line option.
User property of type bool ean:
install4j.incremental

jvmArguments Pass JVM arguments to the install4j command line No
compiler.

license install4j license key. If the license has not been No
configured yet, you can set the license key with this
attribute.
Corresponds to the - -1 i cense command line
option.
User property of type j ava. | ang. Stri ng:
install4j.license

macKeystorePassword | Set the macOS keystore password for the private No
key that is configured for code signing.
Corresponds to the - - mac- keyst or e- password
command line option.
User property of type j ava. | ang. Stri ng:
install4j.macKeystorePassword

mediaTypes Only build media files of the specified types, No
separated by commas.
Corresponds to the - - bui | d-i ds command line
option.
User property of type j ava. | ang. Stri ng:
install4j.mediaTypes

preserve Preserve temporary staging directory. No
Corresponds to the - - pr eser ve command line
option.
User property of type bool ean: install4j.preserve

quiet Enables quiet mode. The parameters "verbose" No

and "quiet" cannot both be true.

Corresponds to the - - qui et command line option.

242

Parameter

Description

Required

User property of type bool ean: install4j.quiet

release

Override the application version. By default this is
setto ${ proj ect . ver si on}, so thisflagis always
passed to the install4j compiler unless you set it to
the special string #pr oj ect .

Corresponds to the - - r el ease command line
option.

User property of type j ava. | ang. Stri ng:
install4j.release

No

skip

Skip execution.

User property of type bool ean: install4j.skip

No

test

Enables test mode. In test mode, no media files will
be generated in the media file directory. The
parameters "test" and "incremental" cannot both
be true.

Corresponds to the - -t est command line option.

User property of type bool ean: install4j.test

No

variableFiles

Load variable definitions from files.

Corresponds to the - - var - fi | e command line
option.

No

variables

Override compiler variables with different values.

Corresponds to the - Dcommand line option.

No

verbose

Enables verbose mode. The parameters "verbose"
and "quiet" cannot both be true.

Corresponds to the - - ver bose command line
option.

User property of type bool ean: install4j.verbose

No

winKeystorePassword

Set the Windows keystore password for the private
key that is configured for code signing.

Corresponds to the - - wi n- keyst or e- password
command line option.

User property of type j ava. | ang. Stri ng:
install4j.winKeystorePassword

No

Example

A minimal example is:

243

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>com i nst al | 4j </ gr oupl d>
<artifactld>install4j-mven</artifactld>
<versi on>10. 0. 6</ ver si on>
<execut i ons>
<execution>
<i d>conpil e-install ers</id>
<phase>package</ phase>
<goal s>
<goal >conpi | e</ goal >
</ goal s>
<confi guration>
<install Dir>/path/to/install4j</installDir>

<proj ectFil e>${project.basedir}/src/min/installer/nmyProject.install4j</projectFile>
</ configuration>
</ execut i on>
</ execut i ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Compilation can be skipped by setting the i nst al | 4j . ski p property on the command line:

mvn -Dinstall4j.skip

Using profiles for configuring parameters

Instead of using the i nstal | Di r parameter, it is recommended to configure the installation
location in setti ngs. xm with thei nstal | 4j . horme user property:

<profil es>
<profil e>
<i d>devel opnent </ i d>
<properties>
<install4j.hone>/path/to/install4j</install4j.home>
</ properties>
</profile>
</profiles>

<activeProfil es>
<activeProfil e>devel opnent </ acti veProfil e>
</activeProfil es>

Further parameters that are recommended to be configured in set ti ngs. xm are the license
key and the passwords for code signing. The license key configuration is only required if it was
not configured manually in advance for the user that is running the build.

244

<profil es>
<profile>
<i d>devel opnent </ i d>
<properties>
<install4j.license>CHANGEME</i nstal |l 4j.1icenseKey>
<i nstal |l 4j . wi nKeyst or ePasswor d>SECRET</ i nst al | 4j . wi nKeyst or ePasswor d>
<i nstall 4j.macKeyst or ePasswor d>SECRET</ i nst al | 4] . macKeyst or ePasswor d>
</ properties>
</profil e>
</profil es>

<activeProfil es>
<acti veProfil e>devel opnent </ activeProfil e>
</activeProfil es>

Passing the build class path to the project

A common use case is the need to add all dependency JAR files from the build class path to the
distribution tree. To do that, you first have to execute the "build-classpath" goal of the the
"maven-dependency-plugin” to set a property with the class path:

<pl ugi n>
<artifact!|d>maven- dependency-pl ugi n</artifactld>
<version>3. 1. 2</ ver si on>
<execut i ons>
<execution>
<phase>gener at e- sour ces</ phase>
<goal s>
<goal >bui | d- cl asspat h</ goal >
</ goal s>
<configuration>
<out put Property>ny. cl asspat h</ out put Property>
</ configuration>
</ execut i on>
</ execut i ons>
</ pl ugi n>

In the configuration of the install4j plugin, you then pass this property as a compiler variable;

<confi guration>

<vari abl es>
<ext er nal C assPat h>${ ny. cl asspat h} </ ext er nal Cl assPat h>
</vari abl es>
</ confi gurati on>

On the "Files->Define distribution tree" step in the install4j step, you can add entries of type
"Compiler variable" [p. 14]. This type of entry will split the variable value with a configurable path
separator and add all contained files. Continuing the above example, you have to add a compiler
variable entry with the compiler variable name "externalClassPath" and the default path list
separator ${ conpi | er: sys. pat hl i st Separ at or} to add all the dependency JAR files to the
selected location in the distribution tree.

Attaching media files

Media files compiled by install4j can be attached to the Maven project when the attach parameter
issettotrue.

245

Attached files will be installed into the local repository and will also be deployed. The classifier
for each deployed media files is the media file ID.

Creating JRE bundles

To create a JRE bundle from your Maven build, use the cr eat ebundl e Mojo and setitsj avaHone
property to the JRE that you want to create a bundle for.

The cr eat ebundl e Mojo supports the following parameters, many of which are explained in
greater detail for the command line compiler [p. 230].

Parameter Description Required

installDir The location of the install4j installation. Yes

User property of type j ava. i o. Fil e:
install4j.home

javaHome The home directory of the JRE that should be Yes
bundled.

User property of type j ava.io. Fil e:
install4j.bundleJavaHome

addModuleSet Add a set of modules to the JRE bundle, one of No
"MIN", "JRE", "ALL", "NONE". Corresponds to the
- - add- modul e- set command line option.

User property of type com i nst al | 4j .
bui | dt ool s. Modul eSet : install4j.addModuleSet

addModules Comma-separated list of modules to be added to No
the JRE bundle. Corresponds to the
- - add- nodul es command line option.

User property of type j ava. | ang. Stri ng:
install4j.addModules

id Optional custom ID for the bundle. Corresponds No
to the - - i d command line option.

User property of type j ava. | ang. Stri ng:
install4j.bundleld

jdkProviderld JDK provider ID for the JDK that is specified with No
j dkRel ease. Corresponds to the
- -j dk- provi der-i d command line option.

User property of type j ava. | ang. Stri ng:
install4j.jdkProviderld

jdkRelease Release of a JDK that provides the JDK tools. No
Required only if the bundled JRE does not contain
the jlink tool. Corresponds to the - - j dk-r el ease
command line option.

User property of type j ava. | ang. Stri ng:
install4j.jdkRelease

246

Parameter Description Required

jmodDirs Directories with JMOD files to be added to the JRE No
bundle. Corresponds to the - - add- j nod-di r
command line option.

jmodFiles JMOD files to be added to the JRE bundle. No
Corresponds to the - - add- j rod command line
option.

jvmArguments Pass JVM arguments to the install4j command line No
compiler.

outputDirectory Output directory for the bundle. Corresponds to No

the - - out put command line option.

User property of type j ava. i o. Fil e:
install4j.bundleOutputDir

skip Skip execution. No

User property of type bool ean: install4j.skip

unpacked Create bundle with unpacked JAR files, required No
for macOS single bundle archives. Corresponds to
the - - unpacked command line option.

User property of type bool ean:
install4j.bundleUnpacked

version JRE version to be used, if different from the No
detected version. Corresponds to the - - ver si on
command line option.

User property of type j ava. | ang. Stri ng:
install4j.bundleVersion

An example that shows the usage of this Mojo is:

247

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>com i nst al | 4j </ gr oupl d>
<artifactld>install4j-mven</artifactld>
<versi on>10. 0. 6</ ver si on>
<execut i ons>
<execution>
<i d>create-jre-bundl e</id>
<phase>package</ phase>
<goal s>
<goal >cr eat ebundl| e</ goal >
</ goal s>
<confi guration>
<install Dir>/path/to/install4j</installDir>
<j avaHone>/usr/lib/jvmjre-11/jre</javaHone>
<out put Di r ect or y>/ horre/ bui | d/ pr oj ect s/ nyPr oj ect/j r eBundl es</ out put Di r ect or y>

<j nodFi | es>
<par anrone. j nod</ <par an®
<par anpt wo. j nod</ <par an»
</ j modFi | es>
</ configuration>
</ execut i on>
</ execut i ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

248

E.5 Using Install4j With Ant

To integrate install4j with your Ant script " use the I nstal | 4JTask that is provided in
$I NSTALL4J_HOVE/ bi n/ ant . j ar and set theCreateBundleTask pr oj ect Fi | e parameter to
the install4j project file that you want to build.

To make thei nst al | 4] task available to Ant, you must firstinsert at askdef elementthat tells
Ant where to find the task definition. Here is an example of using the task in an Ant build file:

<t askdef nanme="install4j"
cl assnane="com install 4j.Install 4JTask"
cl asspat h="C.\ Program Fil es\install 4j\bin\ant.jar"/>

<target name="nedi a">
<install4j projectFile="nyapp.install4j"/>
</target>

OnmacOS, theant . j ar fileisinside the application bundle, for the default application directory
the full path is/ Appl i cati ons/i nstal | 4j . app/ Cont ent s/ Resour ces/ app/ bi n/ ant . j ar

The t askdef definition must occur only once per Ant build file and can appear anywhere on the
top level below the pr oj ect element.

Note that it is not possible to copy theant . j ar archivetothel i b folder of your ant distribution.
You have to reference a full installation of install4j in the task definition.

Task parameters

Thei nst al | 4j task supports the following parameters:

Eithertrue or f al se.

Attribute Description Required
projectFile The install4j project file that should be build. Yes
verbose Corresponds to the - - ver bose command line No, verbose and

option. Eithertrue or f al se. quiet cannot
both betrue
quiet Corresponds tothe - - qui et command line option.

failOnWarning

Corresponds to the - - f ai | - on-war ni ng
command line option. Either t rue or f al se.

Eithertrue orf al se.

license Corresponds to the - -1 i cense command line Yes
option. If the license has not been configured yet,
you can set the license key with this attribute.
test Corresponds to the - - t est command line option. No, test and
Eithertrue orfal se. incremental
cannot both be
incremental Corresponds to the - -i ncr ement al command true
line option. Either t rue or f al se.
debug Corresponds to the - - debug command line option. No

M https://ant.apache.org

249

https://ant.apache.org

Attribute

Description

Required

preserve

Corresponds to the - - pr eser ve command line
option. Either t rue or f al se.

No

faster

Corresponds to the - - f ast er command line
option. Either true or f al se.

No

disableSigning

Corresponds to the - - di sabl e- si gni ng
command line option. Either t rue or f al se.

No

winKeystorePassword

Corresponds to the - - wi n- keyst or e- passwor d
command line option.

No

macKeystorePassword

Corresponds to the - - mac- keyst or e- passwor d
command line option.

No

appleldPassword

Corresponds to the - - appl e- i d- passwor d
command line option.

No

disableNotarization

Corresponds to the - - di sabl e-not ari zati on
command line option.

No

release

Corresponds to the - - r el ease command line
option. Enter a version number like "3. 1. 2",
Version number components can be alphanumeric
and should be separated by dots, dashes or
underscores.

No

destination

Corresponds to the - - dest i nat i on command
line option. Enter a directory where the generated
media files should be placed.

No

buildSelected

Correspondstothe- - bui | d- sel ect ed command
line option. Either t rue or f al se.

No

buildlds

Corresponds to the - - bui | d-i ds command line
option. Enter a list of media file ids. The IDs for
media files can be shown in the install4j IDE by
choosing Project->Show IDs from the main menu.

No

mediaTypes

Corresponds to the - - medi a- t ypes command
line option. Enter a list of media types. To see the
list of supported media types, executei nst al | 4j ¢
--list-medi a-types.

No

Contained elements

+ The Install 4JTask can contain vari abl e elements. These elements override compiler
variables [p. 63] in the project and correspond to the - D command line option. Definitions
with vari abl e elements take precedence before definitions in the variable file referenced
by the vari abl efi | e parameter.

The vari abl e element supports the following parameters:

250

Attribute Description Required

name The name of the variable. This must be the Yes
name of a variable that has been defined on
the "General Settings->Compiler Variables"

step.

value The value for the variable. The value may be Yes
empty.

mediaFileld The ID of the media file for which the variable No

should be overridden. The IDs for media files
can be shown in the install4j IDE by choosing
Project->Show IDs from the main menu.

Example:

<install4j projectFile="nyapp.install4j">

<vari abl e name="MY_VARI ABLE" val ue="15"/>

<vari abl e name="OTHER VARI ABLE" val ue="test" nediaFilel d="8"/>
</install4j>

The i nst al | 4j task can contain vari abl ef i | e elements. These elements read text files
containing compiler variables definitions. They correspond to the - - var - fi | e command line
option

Thevari abl ef i | e element supports the following parameters:

Attribute Description Required

file The path of the variable Yes
file.

Thei nst al | 4j task can containvnPar anmet er elements. These elements set VM parameters
for the install4j command line compiler process.

The vrPar anet er element supports the following parameters:

Attribute Description Required

value The value of the VM parameter. Yes

Example for setting an HTTP proxy (an internet connection is required for Windows code
signing):

<install4j projectFile="nyapp.install4j" w nKeystorePassword="Kaj]js7sglLg22">
<vnPar anmet er val ue="- Dpr oxySet =t rue"/ >
<vnPar anet er val ue="- Dpr oxyHost =nypr oxy"/ >
<vnPar anet er val ue="- Dpr oxyPort=1234"/>
<vnPar anmet er val ue="- Dpr oxyAut h=t rue"/ >
<vnPar anet er val ue="- Dpr oxyAut hUser =bui | dServer"/ >
<vnPar amet er val ue="- Dpr oxyAut hPasswor d=i q4zexwb8et "/ >
</install 4j>

251

Complete example

The "hello" sample project includes an Ant build script that shows how to set up the install4;
task. To install the sample projects, invoke Project->Open Sample Project from the install4j IDE.
When you do this for the first time, the sample projects are copied to the "Documents" folder
in your home directory.

In the sanpl es/ hel | o directory, execute
ant nedi a

to start the build. If you have not defined i nst al | 4j HomeDi r in bui | d. xm , the build will fail
with a corresponding error message.

Creating JRE bundles

To create a JRE bundle from your Ant build script, use the Cr eat eBundl eTask that is provided
in $I NSTALL4J_HOVE/ bi n/ ant . j ar and setthej avaHome parameter to the JRE that you want
to create a bundle for.

The Cr eat eBundl eTask invokes the createbundle command line executable [p. 234] in the
install4j installation. Just like for the | nst al | 4JTask above, at askdef element is required:

<t askdef nane="cr eat ebundl e"
cl assnane="com i nstal | 4j . Cr eat eBundl eTask"
cl asspat h="C:\ Program Fil es\instal |l 4j\bin\ant.jar"/>

<target name="nedia">

<cr eat ebundl e j avaHone="c:\ Program Fi | es\Java\jre"/>
</target>

The Cr eat eBundl eTask task supports the following parameters:

Attribute Description Required

javaHome The home directory of the JRE that should be Yes
bundled

outputDirectory Corresponds to the - - out put command line No
option.

version Corresponds to the - - ver si on command line No
option.

id Corresponds to the - -i d command line option. No

unpacked Corresponds to the - - unpacked command line No
option.

jdkRelease Corresponds to the - - j dk- r el ease command No
line option.

jdkProviderld Corresponds to the - -j dk- provi der-i d No
command line option.

252

Attribute Description Required
addModules Corresponds to the - - add- nodul es command No
line option.
addModuleSet Correspondsto the - - add- nodul e- set command No
line option.

The Cr eat eBundl eTask task can contain vinPar anet er elements like the | nst al | 4JTask as
well as j nod elements with the following parameters:

Attribute Description Required
file Corresponds to the - - add- j rod command line Either file or dir
option. must be set, but
not both
dir Corresponds to the - - add- j nod- di r command
line option.
Example:

<creat ebundl e javaHonme="/usr/lib/jvnmjre-11/jre"
out put Di rect ory="/hone/ bui | d/ proj ect s/ nyProj ect/jreBundl es"
version="11"
id="j3d">
<j nod di r="/hone/ bui | d/ proj ects/ myProj ect/j nods" >
<jnmod file="/hone/buil d/ projects/ nmyProject/otherJnods/one.jnod">
<jnod file="/hone/buil d/projects/ myProject/otherJnods/two.jnod">
</ cr eat ebundl e>

253

	Introduction
	Concepts
	Projects
	Building projects
	Distributing files
	File sets and components
	Screens and actions
	Scripts
	Generated launchers
	Form screens
	Layout groups
	Styles
	Look & feel
	Variables
	Localization
	VM parameters
	JRE bundles
	Services
	Elevation of privileges
	Merged projects
	Auto-update functionality
	Checking for updates
	Background auto-updates
	Version numbers
	Media files
	Data files
	Code signing
	Apple App Store Submission
	Styling of DMGs on macOS

	Configuring installer beans
	Screens & actions step
	Custom code
	Configuring applications
	Configuring screens
	Configuring actions
	Configuring groups
	Configuring form components
	Configuring layout groups
	Configuring styles

	Generated installers
	Installer modes
	Command line options
	Response files
	JRE search
	HTTP requests
	Updates
	Error handling

	API
	Installer API
	Launcher API
	Extensions

	Command line tools
	Command line compiler
	Pre-Created JRE Bundles
	Gradle plugin
	Maven plugin
	Ant task

