EJ Technologies

The definitive guide to install4j

Building professional installers on the JVM

© 2022 ej-technologies GmbH. All rights reserved.

Index

INEFOAUCTION ettt ettt sttt sttt b st st b e st et e b et et et e st e st e st eseeae s st sbesbesbesbesbesbesbesbansansens 4
F N o] o (el =T o] ST PSP SO PO SPROPRRPP 5
AT PrOJECES oiiieieeteet ettt ettt sttt ettt et s b st e bt st e b e e s h b e et e e h b e sa b e et e e sab e e be e baesabeebeenaneen 5
A2 BUIIAING PIrOJECES wvivviriiiirierieieieieeeeeeseseeesessessessessessessessessessessessessessesseseesessessessessessessessesses 11
A3 DISEIIDULING TIlES 1ottt ettt e e s e s e s e sbasbessesbesbesbesbesbenbenee 14
A4 File setsS and COMPONENTS ...cciiiiriririereseste ettt sttt ettt et ettt et sbe s e sbesbesbesbesbesbesbenee 20
A5 SCreeNS ANd ACHIONS .oveuiriiiiiiriestetese ettt ettt ettt b e s bbb bt e st e b et et e e et et e st ebesbesbens 24
ALD SCEIPES ettt et s bbb b s he et bt e s he e bt ereeeesrees 29
A7 Generated laUNCREIS ..ottt ettt ene e 36
ALB FOIMN SCIEENS ..ttt st bbb bbb saeenesbeens 46
ALD LAYOUL BIrOUPS .eveeuveeieeriieitierieeeteesieesstesieesitesbeesseesas e e seesssesbeesseesaseeseesasesaseesneesasesseesnsesnseennes 51
ALTO SEYIS ittt ettt bbb bbb ettt ettt et e a e b s b e b b e be s bt e naenaen 55
ALTT LOOK & TREI ..ttt bbbt sttt et ettt st e bbb 61
ALT2 VATTADIES .ttt b e bbb bttt ettt et et be b b 63
ALT3 LOCANIZATION ittt ettt ettt ettt be b b 79
ATA VM PATaMELEIS ...eouiieiieiteeitecttest ettt st et e st e s bt e s ste s bt e s bt e sabe s beesstesabeesbeesasesabaesseesnsesseesans 84
ATS JRE BUNAIES ..ttt st 89
ALTE SBIVICES oottt sttt ettt sttt ettt e s b s bt et e s ae e s bt et e s b e eaee s bt st e s beeasesbeessesbeensesaeenbesaeesesneens 97
A7 Elevation Of PriVIIEEES ..ottt ettt 102
ALT8 MEIZEA PIrOJECLS ettt ettt et ettt st b e s b e b s b e sbe s b et eneeneen 108
A.19 Auto-update fFUNCLONAITY coivievreieieeeieeesereseee e e a e e e sre s e sresnes 114
A.20 VEIrSION NUMDEIS ..ottt sttt et b et sttt b ettt et s b et st e b e 124
A2T MEAIA FIlES ittt ettt 126
AL22 DALa fIlES ettt bttt ettt ettt ettt sae bt be s b sbe 134
A.23 COAR SIGNING ittt sttt sttt ettt et et et e st e st e aeebesbesbesbesbesbesbebeeen 138
A.24 Styling Of DMGS 0N MACOS ..ottt ettt ettt be bbb e 144
B Configuring inStaller DEANS ...c.coveiiiieiiereeeee ettt 148
B.1 SCreens & aCLiONS STEP ..evviirieriirierieriesie ettt et ete st s e st e e e s be st e sbeesbesbeesesseebesaeensessens 148
B.2 CUSLOM COOR ..ottt bbbttt ettt b s bbb s b s b s b st e s besbe st ese e 152
B.3 Configuring @pPliCAtIONS ...coueeuiriiiieieeiesesererte ettt ettt be st s s be e sae e 154
B.4 CONFIGUIING SCIEENS ..viviieieteieeeteeee sttt st sttt e s e e e s e e esaesaesesbesbesbessesbesteseessesss 163
B.5 CONFIZUIING QCLIONS vevviiiiiiiiisierieiisteteieeee et sre st s e bbbt et e b e s esaesaesessassessessessesses 169
B.6 CONTIZUINE BrOUPS ouvevieieieieieiteieesesesiesiessessessessessessessessessessessensessessessesssssesessessessessessessens 180
B.7 Configuring fOrm COMPONENTS ...ooiviviiriiriirieerieteteetee ettt sttt ae e 183
B.8 CoNfigUuring [QYOUL SrOUPS ...couevviruiriiniiiirieieiesiete ettt ettt ettt sbe st b b sbe st st sbenaeeens 189

B.9 CONFIGUINEG STYIES ettt sttt ettt ettt s be s 193

O CT=] g L=l =1 =Te ML =11 E=T TR PR 195

C.1 INSEAIET MOES ...ttt ettt ettt st be e beneas 195
C.2 ComMMaANd lIN@ OPLIONS ..oviriiriiriiriirierierte ettt ettt ettt sb e st s b sbesbesbesbesbensensens 197
C.3 RESPONSE FIlES ettt ettt ettt et be bbb sbe b 202
Cd JRE SEAICTIN eveiieieiictee ettt ettt et eae e et s e st e e eabe s e sabeeseabeseastesebaeesabeeesbaeesabeeesbesesrneesnns 204
C.5 HTTP FEQUESTS ettt ettt sttt st sttt s e s bt e sat e st e e beesaseesbaesabesaseensaesasesabaenssesnsean 206
.6 UPAALES eviereiieieririisese sttt st ste ettt et e e s e s e e s e ebesbesbe st e sbesbe st e b e st et e st essensenaesseseesassessessessenses 208
C.7 Error NANAIING cvoveieiiieicicccteee sttt sttt sttt e s sse s e e snsesassasnessessessessens 210
D AP ettt sttt h et b bRt A e a e b et h et b e b e Rt A et e b e e Re et eneebe et e s eseneens 212
D I TS = LT N = OO RPRRRPPO 212
D.2 LAUNCNEE AP ittt sttt sttt et sttt st et sat et st e s b s st e bessbesbessbesbesssesbesnsessesnsensenn 216
D.3 EXEENSIONS .uviiiiiiiiiiiiiiciictcitrter sttt sb e bbb b e aesreen 218
E COMMANA 1INE TOOIS ..ueiuiiiieiieeeee ettt sttt te e et et e e e e teeaaesbeensesseesaesseensenseeneas 220
E.1 Command liN@ COMPIIET ..ottt ettt 220
E.2 Pre-Created JRE BUNAIES ...ttt ettt et svee e ebas e satnsseabesennnes 224
E.3 Gradle PIUSIN ettt ettt et sas e st sbe s s e st e ssaesbeesbesbasssesbeensesanensens 225
E.Z IMAVEN PIUEIN ceovriiieieieieeseecse sttt sttt b et et a e s e e s e ssessassassessessessessessessessensensens 230

I Y o L = 1] RO 239

Introduction To Install4j

What is install4j?

install4j is a professional tool for building installers for multiple platforms, especially for
applications that run on the Java Virtual Machine.

Main features that distinguish install4j are:

+ Flexible configuration of screens and actions

In your installers you can define your own flow of installer screens and installer actions [p. 24]
to gather user input and initialize your installation with it. Configurable form screens [p. 46]
allow you to create arbitrary forms that work in GUI and console mode [p. 195]. A rich set of
configurable actions handles a variety of tasks and is extensible with the API [p. 212].

* Generation of native launchers

install4j generates native launchers for console, GUI and service executables [p. 97]. These
launchers offer variety of features such as flexible module and classpath configuration,
version-specific VM parameters [p. 84], icons, splash screens and much more. At runtime,
there is launcher API [p. 216] that interacts with some of these feature and with the variable
system of the installer.

+ Auto-update functionality

The requirements for automatic updates [p. 114] are very individual, so install4j offers a
template-base mechanism for update-downloaders. Update downloaders are fully configurable
installer applications with their own flow of screens and actions, that can handles interactive
auto-update, mandatory auto-update at startup and background update.

* Bundling of Java Runtime Environments

Bundling a Java runtime [p. 89] is made easy with the pre-build JRE bundles and the bundle
creation tools in install4j. JRE bundles can also be downloaded on the fly if no JRE installation
is found.

The install4j Ul is delivered as a desktop application. Building installers is not only possible in
the IDE, but also with the command line compiler [p. 220] as well as the plugins for Gradle [p. 225],
Maven [p. 230] and Ant [p. 239].

How do | continue?

The "Concepts" section is intended to be read in sequence, with later help topics building on the
content of previous ones. The sections at the end are optional readings that should be consulted
if you need certain features.

We appreciate your feedback. If you feel that there's a lack of documentation in a certain area
or if you find inaccuracies in the documentation, please don't hesitate to contact us at
support@ej-technologies.com.

mailto:support@ej-technologies.com

A Concepts

A.1 Projects Overview

Project files

A project in install4j is the collection of all information required to build media files, the
deliverables that can be distributed to the target platforms. A project is saved to a single XML
file with an . i nstal | 4j extension. Project files are platform-independent, you can open and
compile them on any supported platform. The compilation step will produce the media files
from the project definition. All paths that you enter in install4j are saved as absolute paths by
default. This allows you to move the project file to a different location on your computer and
the compilation will still work. If you wish to use your project file on multiple computers or
platforms or compile your launchers with automatic build agents, it is more convenient to use
relative paths. On the "General Settings->Project Options" step, install4j provides an option to
convert all paths to relative paths when you save your project.

install4j keeps a list of recently opened projects under Project->Reopen. By default, install4j opens
the last project on startup. This behavior can be changed in the preferences dialog by choosing
Project->Preferences from the main menu. You can pass the name of a project file as a command
line parameter to install4j to open it on startup. Also, the command line compiler [p. 220] expects
the project file name as its argument.

Contents of a project

The following paragraphs give a high-level overview of the elements that you can configure in
install4j. Each of the configuration sections in install4j as shown in the screenshots below
represents a top-level concept in install4;.

Typically, a project defines the distribution of a single application. An application has an
automatically generated application ID [p. 208] that allows installers to recognize previous
installations.

At the core of the project definition is the sequence of installer screens and actions [p. 24]. They
determine what the users see, what information they can enter and what the installer does.
install4j offers a lot of flexibility regarding the configuration of of your installer. Besides creating
traditional application installers, install4j is equally suited to create small applications that modify
the target system in some way.

2mHo & 00

New Open Save Project | Buid Dry Test Show
Project Project Project Report | Project Run Installer IDs

General Settings Screens & Actions N7

In this step, you cenfigure the screens and actions that are displayed in the installer and
uninstaller, updater and in custom applications. Installdj offers a rich set of screens and

Help

Files
Define Distribution Tree ¥ nstaller (8 screens) [ID install.. | e Configuration
4 N File [Default]
View Results WA Startup (2 actions) x Excluded variables specialUserAccount
| Wel 1 acti 1D 47 i
File Options ir | Welcome (1 action) [1 P Overwrite strategy not overwrite com,
0 Load a response file [ID ... Register variables fo...
Installation Components —a K X) Error Handling
| Installation location (2 acti.| | = Failure strategy Continue on failure
w Launchers ir Installation components [I... Error message
| Control Flow
& Create program group [ID ...
¥ prea Jreup Condition expression context.getBoeleanVariab
Installer E Query greeting [Form] [ID ... 3 Rollback barrier
@ Service options [Form] [ID ... Can be executed m...
4 Screens & Actions & aé Priilamas
Installation (13 actions) [...
— N Load a response file
Styles 3% Finish (1 action) [ID £0] } ponset)
Load a response file that has previously been saved
Look & Feel f Uninstaller (3 screens) [I0 uni... with the "Create a response file" action,
i
Fuickam Cada JEE Standalone update download... || _o

Idle

The install4j runtime is localized into many languages. You can configure your installers to support
one or multiple languages [p. 79].

2 m Ao & &3 O o

Show
D=

New Opsn Save Project | Buid Dry T
Project Prgject Project Report | Project Run Installer

General Settings Languages \ ,

In this step, you can specify the languages that the generated installers should support.
Application Info Your installers can have a fixed language or they can be multi-language installers,

Help

4 JRE Bundles
Principal language: English [en] | @
Search Sequence
Custom localization file: | MNew (7]
Languages

- . Choose additional languages for the installer:
Media File Optiens

Language Custom localization file @) o
Cede Signing French [fr]
Compiler Variables Italian [it]
Polish [pl]
Merged Projects
Project Options
Files If you define additional languages, the installer will ask the user to choose a language with the default

selection set according to the system locale,
g Launchers Skip language selection dialog if auto-detected locale matches a supported language (7]

Language selection always in principal language &

Idle

Most installers install files to a dedicated directory and optionally to several existing directories
on the target computer. That's what the "Files" section [p. 14] in the install4j IDE is for. Here, you
define a "distribution tree", and optionally "installation components" which can also be
downloaded on demand [p. 134].

o +

v .
General Settings

Files

Define Distribution Tree
View Results
File Options

Installation Components

a Launchers

Installer

F} Media

;‘;s Build

H o

New Open Save Project
Project Project Project Report

r'.:-} r:-‘: —
% & i O
Build Dry Test Stop Show Hel
Project Run Inssler Zuic IDs =P

Define Distribution Tree

In this step, you cellect all files and directories that you would like to distribute with your
media files. Use drag and drop to move entries in the definition tree.

@ Default file set
}2 Installation directory
bin
classes

" Selected content of \gui (excluding java)

" Selected content of \cli (excluding
" Selected content of \service (=icluding java)
source
| File Adi\HelloClijava
" File \gui\HelloGuijava
" File Aservice\ServiceDemo.java
@ VM options [1D 1128
}2 Installation directory
M SfinstallervmoptionsTargetDirectory}
" File \vmoptions\hello.vmoptions (overwrite: never)

Idle

The actual installation of these files is handled by the "Install files" action which is part of the
default project template. If your installers should not install any files, you can remove that action
and ignore the "Files" configuration section. When the "Install files" action is executed, it creates
an uninstaller. The uninstaller offers the same flexibility as the installer and is configured in the

same way.

Unless the installed files are only static data, you will need application launchers to allow the
user to start your application. You can define one or several application launchers in the
"Launchers" section [p. 36]. Launchers generated by install4j have a rich set of configuration
options including an optional splash screen or advanced features like a single instance mode.
Configured launchers can also be "services" that run independently of logged-on users. install4j
offers special installation screens and actions for services.

O
o

New

* H 0‘

Open Save Project
Project Project Project Report

General Settings

.
Files

@ Launchers

Installer

F;, Media

’»;5- Build

al @

Show
D=

) i —
o 5 »
Build Dry Test
Project Run Installer

Help

Launchers

In this step, you can cenfigure one or more executables te launch your application. Use
drag and drop to reorder your launchers in the list,

k) i”.’-

Helle World Command Line [ID 4]

e T

Hello Werld GUI[ID 3] Hello Werld Service [I0 19]

MNew launcher

Idle

install4j has many advanced features concerning bundling of JREs or the runtime-detection of
an installed JRE. Bundling of JREs [p. 89] is configured on the "JRE bundles" step and can be
refined on a per-media file basis. If you do not wish to bundle a JRE, you define Java version
constraints and a search sequence [p. 36] for both your installers and your generated launchers.
In this way, you ensure that the launchers run with the same JRE as your installers.

an " \
(#] o
H o
New Open Save Project
Project Project Project Report

% & 2l ©

Build Dry Test Show

) Hely
Project Run Inssler Zuic IDs =P

General Settings Search Sequence Without Bundled JRE N7

For media files without a bundled JRE, you can define version requirements and a search

Application Info sequence for the JRE that will be used to run the installers and the generated launchers.
4 JRE Bundles
Java Version (7]
Search Sequence
Minimum version: | 1.8 » 0
Languages
Maximurn version: r | @
Media File Options
Allow JREs with a beta version number 0

Code Signing

JRE Search Sequence 0
Compiler Variables

n Search Windows registry and standard locations L]
Merged Projects 4 Environment variable JAVA_HOME
X £4 Environment variable JDK_HOME
Project Options
Files
g Launchers
Idle

Finally, the media file definitions define the actual executables that you distribute. They capture
platform-specific information and provide several ways to override project settings. You typically
define one media file for each platform. Multiple media files for the same platform can be added
as needed. Media files are either installers or archives. Archives simply capture the launchers
and the distribution tree. They are a limited way to create a distribution and might not be suitable
if you rely on the flexibility that is offered by installers.

Py - . % F T— 9
(#] o J 1
H o o &8 5 Lzl
New Open Ssve Project | Buid Dry Test show
Project Project Project Report | Project Run Installer Buid IDs ?

General Settings Media ~ £
In this step, you can cenfigure media files for various platforms to distribute your
Filee application. Use drag and drop to reorder your media files in the list.
@ Launchers Q;. %lj
MNew media file Windows 64-bit [ID 4563]
- Installer
E Media Windows 32-bit [ID 2] Linux RPM [1D 9]
’»;5- Build |i§ &
Linux Deb Archive [ID 1677] macO5S Folder [ID 11]
mac(5 Single Bundle Archive [ID 2050] Unix Installer [I012]
Idle

Project reports

install4j projects can become quite complex, especially the definition of the installer can be very
hierarchical with hundreds of nested elements each of which may have important configuration
in their properties. In order to check all your projects settings on a single page, or to print out
your project definition, install4j offers a project report. The @ action to create such a report is
available in the toolbar. When you generate a report, an HTML file is written to disk together
with a directory named i nst al | 4j _i nages that holds all referenced image files.

If you are looking for certain text value in a property or a particular piece of code in one of your
scripts, use the search functionality in the browser when viewing the exported report to cover
all parts of the project.

IDs of project elements

All elements in projects that can be referenced at runtime, like installation components, launchers,
screens, actions, form components or media files have an automatically assigned ID. You can
toggle the display of IDs globally in the tool bar. You may need to use IDs when using the APl in
scripts. Scripts are written in plain Java in a code editor provided by install4;.

O > \ e oy —
0 L B » | @
Mew Open Ssve Project Build Dy Test Stop Show e
Project Project Project Report Project Run Installer Euild Dz ?
_— " "
5 General Settings Application Info P4

If you would rather not reference automatically generated IDs in your scripts, you can specify
your own custom IDs. Custom IDs can be assigned by using the "Rename" action for the selected
element and selecting the "Custom ID" check box in the rename dialog. Custom IDs must not
start with a number. The numeric internal ID is never discarded. If you disable the custom ID at
a later point, the ID will be reverted to the previous numeric ID.

1 Rename x
Please enter a name for the component:
v

Hello World Application b

[Custom ID: helloApp I

The "Insert ID" action in the script editor inserts custom IDs instead of the numeric IDs. All get .
.. Byl d() methods in the APl accept both the custom ID and the internal numeric ID. This means
that you can set a custom ID without breaking anything in the project.

E3 Select ID of Configuration Cemponent

MAvailable IDs:

» [File sets

+ 7 Installation components

rld Application [ID helleApp]
o Source Files [ID 41]
» 7] Launchers
» 7] Applications, Screens & Actions

Type into the tree to start quick search

Filter: | i

7

Cancel

10

A.2 Building Projects

You can build a project from the IDE or from the command line. The command line compiler
executable is bi n/i nst al | 4] ¢ and takes the project name as an argument. On macQOS, that
directory is inside the application bundle and can be shown in the Finder with the "Tools" tool
bar button. That same tool bar button also allows you to create symlinks for all command line
toolsin/usr /1 ocal / bi n so they can be directly invoked in a terminal.

There are plugins for Gradle [p. 225], Maven [p. 230] and Ant [p. 239] for configuring the build ina
way thatis idiomatic for the respective build systems. In the end, all plugins invoke the command
line compiler and for each command line compiler option there is a corresponding setting in the
build system plugins.

When you start a build, install4j will check if all required information has been entered. If the
build has been started from the install4j IDE, the corresponding step will be activated and the
offending setting will be focused, so it is recommended to try out your builds in the IDE first.

Build modes

There are three different build modes that correspond to different tool bar buttons in the install4j
IDE or different command line options in the command line compiler.

o - L i g
o |%b W » & o
Mew Open S=ve Project Build Dry Test Stop Show
Project Project Project Report | Project Run Inswaller | Buid IDs "
— s e
v Application Info
J General Settings ’

When a % regular build is started, the media files [p. 126] are built and placed in the media file
output directory that is configured on the "General Settings->Media File Options" step.

Previous media files are overwritten, but a single build may not produce the same media file
twice. On the "Customize project defaults->Media file name" step of the media wizard you can
adjust the media file name if the global pattern resolves to the same name for multiple media
files. You can also use a compiler variable [p. 63] for the media file output directory and override
it for each media file to avoid name clashes.

Bl Media Wizard - Windows X
1. Media file type Customize name for media file
2. Installer options
3. Data files You can override the name of the media file that was defined in the general settings step
4, Executable processing of installd). If unsure, choose the standard name option.
> EundIEd.JRE . Standard name
6. Customnize project defaults
O Custern name

» Compiler variables myCustomFileMName » Copy Default

+ Media file name

+ Principal language

+ Exclude components

+ Downloadable components

- Exclude files

+ Exclude launchers

+ Exclude installer elements

+ Look & Feel

+ Auto-update options
7. Finished

7] Help 4 Back MNext P Finish Cancel

11

If you just want to check if the build will not produce any errors or warnings, you can start a

% dry run. The media files will be built in the temporary directory but not moved to their final
location. For command line builds, use the - - t est option.

Building media files can take a long time, especially if you package a lot of files that have to be

collected and compressed. To facilitate faster development, install4j offers to “» build an installer
incrementally. The corresponding command line optionis - - i ncrement al .

This build mode is intended for testing changes that you make in the installer configuration [p. 148]
such as adding, removing or modifying screens, actions and form components.

The action looks for the first media file in the "Media" step that can be run on the current platform
and has an installer media file type [p. 126]. The media file must be already built, otherwise the
action will terminate with an error message.

All scripts are recompiled and the installer configuration files are regenerated. The installed files
are taken from the full build of the media file. If you change the definition of the distribution
tree [p. 14] and expect to see these changes in the installer, you have to rebuild the media file
with a regular build.

When the build is complete, the installer is started so you can try out your changes immediately.
With respect to a full build, the compilation time is reduced substantially, typically to a couple
of seconds. A full build can take several minutes, depending on the amount of files that are
included and the selected type of compression.

Selective building of media files

Instead of building all media files, you can build only a subset by explicitly selecting the desired
media files on the "Build" step.

Build S\
In this final step of your install4j configuration, the launchers and the media files are built. Please adjust the build optiens as
needed.
ad Build Options Q Build Selection
I"'J; Enable extra verbose output (7] Build all 9 & Windows 64-bit
star: Build Do not delete temporary directory © O Build selected: | i Windows 32-bit
% Disable LZMA and Pack200 compression &) ﬁ t::ﬁi ;z:qﬁ\r(hive
Dry Run Disable code signing @ B macOs Folder
Disable JRE bundling Q —L macO5s Single Bundle Archive
Create additional debug installer (7] 5§ Unix Installer

Build output:

This selection is persistent, but the command line build will still build all media files unless you
pass the - - bui | d- sel ect ed option. This allows you to build a suitable media file in the IDE for
testing without impacting the command line build on your build server.

To specify media files from the command line, pass the --build-ids=ID,1D or the
--nmedi a-types=T[, T] option. IDs of media files are visible in the "Media" step if the "Show
IDs" tool bar toggle button is selected. Selecting media files by their media type ID is useful if
you build different media files on different platforms. The- - | i st - nedi a-t ypes command line
option prints the full list of supported media types and exits.

12

Faster builds during development

During development, you can speed up your build by compromising on the size of the produced
media files. By switching off LZMA and Pack200 compression [p. 126], builds times can be reduced
by 50% and more. By disabling JRE bundling, the generated installer will start up faster, because
the JRE does not have to be unpacked. Finally, disabling code signing will prevent dialogs that
ask for keystore passwords from being shown.

Build Options

Enable extra verbose cutput

Do not delete temporary directory
Disable LZMA and Pack200 compression

Disable code signing

Disable JRE bundling

Q00000 O

Create additional debug installer

All these options for making builds faster are also available for the command line compiler, the
corresponding options are - - f ast er for disabling advanced compressions, - di sabl e- bundl i ng
for ignoring JRE bundles and - - di sabl e- si gni ng for building without code signing.

Trouble-shooting build failures

By default, basic progress information is shown in the build output and warning messages are
highlighted. Any error will stop the build and the command line compiler will exit with a non-zero
return code. For debugging purposes, there are two options that give access to more detailed
information.

Build Options

Enable extra verbose output

Do not delete temporary directory
Disable LZMA and Pack200 compression

Disable cede signing

Disable JRE bundling

QOOOQ0O O

Create additicnal debug installer

With the - - ver bose option, install4j prints more information about interesting events during
the build. For example, all compiler variable replacements are shown in detail. If the source of
an error message is not clear, switching on verbose mode can give you more context about the
compilation phase that caused the failure. In addition, a compilation failure that occurs while
verbose mode is enabled will print the entire stack trace to the build output.

Secondly, the install4j compiler prepares its artifacts in a temporary directory which is deleted
after the build completes. With the - - pr eser ve option you can ask install4j to keep this temporary
directory so that you can inspect intermediate artifacts.

13

A.3 Distributing Files

In the "Files" step of the install4j IDE, you define your distribution tree, collecting files from
different places to be distributed in the generated media files. In addition, you can optionally
define installation components.

On the "Define Distribution Tree" step, you add and edit the structural elements that make up
the distribution tree. You can create your own directory structure and "mount" directories from
your file system or add single files into arbitrary directories. With drag and drop and
double-clicking on nodes you can modify an existing distribution tree.

Define Distribution Tree N7

In this step, you collect all files and directories that you would like to distribute with your media files. Use drag and drop to move
entries in the definition tree.

@ Default file set Y
A Installation directory
bin
classes
7 Selected content of Agui (exc
7 Selected content of Acli (=

" Selected content of Aservice (ex g 'java)
source
7 File \cli\HelloClijava i
" File \gui\HelloGui.java
" File \service\ServiceDemo.java
H) WM options [ID 1148]
/d Installation directory
A SlinstallervmoptionsTargetDirectory}
| File \wmoptions\hello.smoptions (cverrite: never

On the "View Results" step, you then see the actual file tree as it will be collected and distributed
by the generated media files [p. 126]. Go to this step to check whether your actions on the "Define
Distribution Tree" step actually produce the desired results.

View Results N /7

In this step, you can check whether the definition of the distribution tree is correct. The tree shows a read-only representation of
all distributed files.

Files in distribution tree:

@ Default file set)
A Installation directory
bin /o

" [Launcher] hello_cli
hi [Launcher] hello_gui
] [Launcher] hello_service
classes
source
| [Installer application] updater
| [Installer application] configureGreeting
@ VM options
A Installation directory
M SlinstallervmoptionsTargetDirectory}
7 hellowvmoptions

Root container nodes

The top-level nodes in the distribution tree are called file sets. There is one "Default file set"
node that cannot be deleted or renamed. The relative paths of all files that are added to a file
set must be unique. See the help topic on file sets and installation components [p. 20] for more
information on how to use file sets.

14

Within a single file set, it causes an error at build time if the installation paths for two files collide.
For example, if you have added the contents of two different directories into the same folder in
the distribution tree and both directories contain a file fi | e. t xt, building the project will fail
with a corresponding error message. In this case, you have to exclude the file in one of the
directory entries. This is only an issue for files, sub-directory hierarchies on the other hand are
merged and can overlap between multiple directory entries and explicitly added folders.

L
A

You can create new file sets with the & New File Set action in the " add menu on the right side.
Each file set has its own "Installation directory" root. If you define custom roots that should be
present in multiple file sets, you have to duplicate them.

The child nodes of a file set are called installation roots. Their location is resolved when the
installer runs. There are two types of roots:

The default root of the distribution tree is labeled "Installation directory" and has a /* special
icon. This is the directory where your application will be installed on the target system. The
actual directory location is dependent on user actions at the time of installation. In regular
installers, a user can select an arbitrary directory where the application should be installed.
For Linux package media files, a user can override the default directory with command line
parameters. For archives, the files are simply extracted into a common top-level directory.

{# Default file set
“ Installation directory

@& VM options (1D 1148]

For installers, the installation directory will only be created if you execute an "Install files"
action in the installer configuration [p. 148]. By default, the "Install files" action is added to the
"Installation" screen. If your installer should not create an installation directory, you can ignore
this root and remove the "Install files" action.

More information on the various installer modes is available in the corresponding help
topic [p. 195].

+ Ifyour application needs to install files into directories outside the main installation directory,
you can add custom roots to the distribution tree. This is done with the / New Root action

in the " add menu on the right side or in the context menu. The actual location of this root
is defined by its name and has to resolve to a valid directory at runtime.

@9 Default file set
@9 VM options [1D 1142)

Installation directo
¥ SlinstallervmoptionsTargetDirectory}

There are several possibilities for using custom roots. The name of a custom root can be

+ a fixed absolute path known at compile-time

This works for custom environments where there is a fixed policy for certain locations. For
example, if you have to install some files to D: \ apps\ nyapp, you can enter that path as
the name for your custom root.

If you build installers for different platforms, that root is likely to be different for each
platform. In that case, you can use a compiler variable [p. 63] for the name of the custom

15

root and override its value for each media file on the "Customize project defaults->Compiler
variables" step of the media wizard.

an installer variable that you resolve at runtime

If you would like to install files into the directory of an already installed application, such
as a plugin for your own application, you can use an installer variable that you resolve at
runtime. Installer variables have ani nst al | er: prefix,suchas${installer:rootDr},
and can be set in a variety of ways [p. 63].

The most common case would be to add a "Directory selection" screen to the screen
sequence [p. 148] and set its variable name property to the variable that you have used as
the name of the custom root. For the above example, that would be r oot Di r, without the
${installer:...} variable syntax.

Alternatively, you could use a "Set a variable" action to determine the location
programmatically.

a pre-defined installer variable

install4j offers several variables for "magic folders" that point to common directories, such
as ${installer:sys.userHone} which resolves to the user home directory or
${installer:sys. systenB2Di r} whichresolvestothe syst enB2 directory on Windows.
Have a look at the "Cross-platform variables" category in the installer variables selector for
a list of variables that are suitable for all platforms.

E3 Select Installer Runtime Variable X

m
(=N
Ed

Installer runtime variables for:

<

¥ Installer

Predefined Variables Bound Variables

¥ @ Cross-platform variables

P sys.confirmedUpdatelnstallation
P sys.date

P sys.desktopDir

’ sys.docsDir

’ sys.downloadsDir

> sys.fileSeparator

> sysjavaHome

B .

aer imealarsinn

Filter:

Initial Value

Description

@ Help 0K Cancel

If a custom installation root is not bound at runtime or if it points to an invalid directory, the

contained files will not be installed and there will be no error messages. If you require error

handling, you can use a "Run a script" action before the "Install files" action with the appropriate

error message and failure strategy.

For archive media file types, custom installation roots are not installed. If you require these
custom roots for your installation, you cannot use archives.

An alternative way to redirect installed files to different directories is to use the "Directory

resolver" property of the "Install files" actions. Also, the "File filter" property of that action can

16

be used to conditionally install files. The use of these properties is only recommended if you
require their full flexibility. Otherwise, using custom installation roots and installation
components [p. 20] is a better approach.

Content nodes

Adding files to the distribution tree is done with the /* Add Files And Directories action in the

i~ add menu on the right side or in the context menu. In the first step of the file wizard you
choose the source or the files:

« With a directory entry, you recursively add the contents of a selected directory. You have the
possibility of excluding certain files and subdirectories and exclude files based on their file
suffix. In the configuration wizard you can override the default settings for the overwrite and
uninstall policies as well as the Unix file and directory modes.

E3 Modify Entry in the Distribution Tree X
1. Select type Select directory to add to the distribution tree

2. Select directory

3. Installation options Please select a directory that contains files you would like to distribute, The

4, Excluded files and directories contents of that directory will be added recursively to the currently selected

5. Exclude suffives position in the distribution tree.

6. Finished

Selected directory: A\gui »

‘Where would you like to add the files that are contained in the selected
directory?

© Add directly to the currently selected node in the distribution tree

Add to subdirectory:

@ Help 4 Back Next P Finish Cancel

+ Alternatively, you can add a number of single files, possibly from different locations, into a
single directory. Each selected file will be added as a separate node that has its own settings
and can be moved independently in the distribution tree.

E3 Modify Entry in the Distribution Tree X
1. Select type Select files to add to the distribution tree
2. Select files
3. Installation options Please select any number of files from arbitrary locations. The selected files will
1, Finished be added to the currently selected position in the distribution tree,
Selected files:
" AclivHellaClijava &
7] Help 4 Back Next P Finish Cancel

With the * Copy action you can add a file list from the system clipboard. The file list must
consist of file entries that are separated by line breaks or the standard path separator (";" on
Windows and ":" on Unix). Each file entry can either be absolute or relative. On the first

17

occurrence of a relative path, a directory chooser is shown where you select the root directory
against which all further relative paths should be resolved.

+ Finally, files can be passed externally through a compiler variable. This can be useful if you
collect lists of files in your build tool and want to use that information to dynamically build
the distribution tree. The command line compiler [p. 220] as well as the Gradle [p. 225],
Maven [p. 230] and Ant [p. 239] plugins have mechanisms for setting compiler variables for the
build.

The string that separates different files in the variable value is configurable and set to the
platform-specific path separator by default.

B Add Files and Directories X

1. Selecttype Specify the compiler variable that should be read
2. Compiler variable

3. Installation options The compiler variable must exist at compile-time and contain a list of JAR files,
A, Finished separated with the specified separator.
For missing files, a warning will be printed during the build

Compiler variable: | myVariable » | @

Path list separator: | §{compiler:sys. pathlistSeparator} > | @

@ Help 4 Back Mext P Finish Cancel

Folder nodes

Fixed folder nodes can occur below the root nodes to build nested directory structures. Using
the "Edit entry" action on a fixed folder node allows you to edit the unix mode of the folder.

Ed Folder Properties X

Access Rights

The default setting for the Unix directory mode can be adjusted on the
"File Options" step.

Override default Unix mode: | 755

Usually, a directory structure will be copied from a staged distribution directory, but fixed folders
are useful under several circumstances. For example, if you want to apply different top-level
prefix directories, you can add corresponding folder.

Also, fixed folders and single files in fixed folders have a higher precedence than folders and
files from directory entries. In this way, you override settings for certain folders or files. For
example, if a "contents of a directory" node includes the file a/ b/ c. t xt, you can manually add
nested folders a and b and then add the single file node c. t xt . You could then set a different
overwrite or uninstall policy for the file. Also, you could override the Unix mode of the directories.

Compiler variables as directory or file names

Using compiler variables [p. 63] as directory or file names in the distribution tree allows you to
make compile-time conditional includes. The following rules apply:

18

« if a directory node resolves to the empty string after variable replacement, the directory and
any contained entries will not be included in the distribution.

+ if the source directory of a "contents of directory" node resolves to the empty string after
variable replacement, no files will be included by that entry.

+ if the file name of a single file node resolves to the empty string after variable replacement,
no file will be included.

For conditions that are evaluated at runtime or for adding platform dependent files, you should
use files sets [p. 20] instead.

File options

On the "File options" step, a number of settings determine the behavior of the installer and
uninstaller. When files are already present, you can choose a number of strategies for the "Install
files" actions by changing the "Default overwrite policy". Similarly, the "Uninstall files" action
decides what to do for installed files based on the "Default uninstall policy" setting. On Unix, the
"Install files" action assigns permissions to installed files and directories as configured in the
default Unix file and directory modes on this step. All these options can be overridden in the
configuration of the content nodes.

Other available options concern the compilation phase. You can choose the source of the file
modification times, specify a global pattern of files and directories that should be ignored when
collecting files and select a strategy for what should happen if some specified files are missing
at build time.

File Options \N /7

In this step, you can define options that apply to all files in the distribution tree, All settings can be overridden in "Installation
options" step of the file wizard.

Global Bxcludes

Global exclude pattern: r @
Installation Options

Default overwrite policy: Always ask except forupdate * @)

Default uninstall policy: If created ~ @

Default Unix file mode: 644 Reset To Default O

Default Unix directory mode: 735 Reset To Default |)

Launcher overwrite policy: If newer otherwise ask ~ @
File Attributes

File modification times of installed files: Keep original file modification times

() Use build timestamp

Preserve symbolic links within the distribution tree)

Build Options

What to do when files are missing at build time: | Print a waming and continue v | @

19

A.4 File Sets And Installation Components

install4j offers two mechanisms to group files: File sets and installation components. File sets
are configured in the distribution tree [p. 14] and can be used in a variety of use cases as building
blocks for your installers. Installation components are presented to the user at runtime and
mark certain parts of the distribution tree that have to be installed if the user chooses an
installation component.

Both file sets and installation components are optional concepts that can be ignored if they are
not required for an installer project: There is always a "Default file set" to which you can add files
in the distribution tree and on the "Installation components" step you do not have to add any
components.

File sets

File sets are a way to group files in the distribution tree. When you need to select files in other
parts of the install4j IDE, you can select the file set node instead of selecting single files and
directories. Each file set has a special "Installation directory" child node that maps to the
installation directory selected by the user at run time. Custom installation roots are defined
separately for different file sets. If you require the same installation root in two different file sets,
you simply define the same root twice.

@ Default file set o
A Installation directory
| Content of Adist
@8 Files for Windows 8 1D 45]
A Installation directory
bin
7 Content of \win8\bin
Vad S{‘instaHer:sys‘s)rstemBEDir} o]
File Awin8\driver.dll (zhared
d) Files for Windows 10 [ID 47]
A Installation directory
bin
" Content of \win10\bin
M Slinstallersys.system32Dir}
" File Awin10\driver.dll (zhared

The installation of file sets can be toggled programmatically at run time. The code snippet to
disable the installation of a file set at run time is

context.getFil eSet Byl d("123"). set Sel ect ed(fal se);

if the ID of the file set is "123". You could insert this snippet into a "Run script" action that is
placed before the "Install files" action on the Installer->Screens & Actions step [p. 148]. File set
IDs can be displayed by toggling the "Show IDs" tool bar button.

A common use case is to exclude platform-specific files from certain media files. You can define
file sets for different platforms and exclude all unneeded file sets in the "Customize project
defaults->Exclude files" step in the media wizard. This is an example of how to use file sets at
design time in the install4j IDE.

Within one file set, all relative paths must be unique. However, the same relative path can be
present in different file sets. Suppose you have different DLL files for Windows 8 and for Windows
10 and higher. You can create two file sets so that the installer contains both alternative versions.
Once you find out whether you run on Windows 8 or on Windows 10 and higher, you can disable
the file set that should not be installed with the code snippet shown above. By default, all included

20

file sets are installed. If the same relative path occurs twice, it is undefined which version is used.
In this case you have to make sure to disable the file sets that are not appropriate.

Installation components

If you define installation components. the installer can ask the user which components should
be installed. In the configuration of an installation component you mark the files that are required
for this component. A single file or directory can be required by multiple installation components.

Base application [ID 124] o Files Options Description Dependencies

't Source code [I0 125]

Demos Allfiles in the distribution tree
't Demo 1 [ID 127]] o Selected files:
-t Demo 2 [ID .

i Demo 3 (D 129] b 4 3 Default file set
/O Installation directory
R bin
derno

source
@ Files for Windows 8
@D Files for Windows 10

X lib

Installation components are defined in a folder hierarchy. This means you can have groups of
installation components that are enabled or disabled with a single click. Most options in the
configuration of an installation component are used by the "Installation components"
screen [p. 163]. They decide how the installation component is presented to the user, whether it
should be initially selected or mandatory, and if it has dependencies on other installation
components that should be automatically selected. To internationalize the name of the component
for different media files, use custom localization keys [p. 63].

The user will only be able to choose installation components if a "Installation components selector™"
form component is present somewhere in the installer. The "Installation components" screen
that is part of the default project template contains that form component ans is only displayed
at runtime if you have defined any installation components.

y Installer (7 [ID instal
nstaller 7 screens) (1D insal..| | 4 Contains 2 form components E Configure @) Preview

Startup (1 action) ®

Welcome (1 action) [ID 2] yel Installation Components

Installation location (1 ac... Selection change script

Control Flow

%] =] ¥ B

Installation type [ID 213] Condition expression

nstallation components [... Validation expression

j’ Create program group [1D... gnuli‘tb::t:rb:crrn:a;

2 . . -
Installation (3 actions) [1D... g Back button Safe back button

& Finish [ID 12] GUI Options
Shila Inharit framm narant [Defanl chls]
+ Uninstaller (4 screens) [ID u... ‘;é
Installation components

A screen that displays all installation components and asks the user which components
should be installed. This screen will not be shown if ne installation compenents are defined.

Another important feature of installation components is that they can be marked as
"downloadable". If you configure the download option [p. 134] in the "Data files" step of the media
wizard, separate data files will be created for the downloadable components.

21

i Base application [1D 124] & Files Options Description Dependencies

Source code [ID 125]

Demos Initially selected for installation (7]

* Dema 1 (1D 127] User can change selection state 0

i Demo 2 [ID 128]

o Demo 311D 129] ® Initially hidden 7]
,O I Downloadable component IQ

%

install4j also offers a two-step selection for installation components: In the first step, the user is
asked for the desired "installation type". An installation type is a certain selection of installation
components. Typical installation type sets are [Full, Minimum, Customize] or [Server, Client, All].
The display and the configuration of installation types is handled by the "Installation type" screen.

A 4 Installer (7 screens) [0 inztal...

0 Installation types

.
¥ Properties

o
+ .
=\ Startup (1 action) b 4

‘Welcome (1 action) [1D 2] /o

Installation location (1 ac...

s
&
X " 9 Installation types are defined by a configurable set of components, The first installation
Installation type [ID 213] : type is selected by default.

#| Installation components|... @smsﬂ:Funlnstanatmn}[|D:|-‘] B
T3] Create program group [10.. @sman:Standard\nstallatian}[||::|51
_Z Installation (3 actions) [0/ || (@Y s{iten:Custominstallation} [ID 216]
3| Finish [ID 12]
+ Uninstaller (4 screens) [ID u... %
)

For each configured installation type, you can decide whether the user should be able to further
customize the associated installation component selection in the "Installation components"
screen or not. If the installation type is not customizable, the installer variable sys.

pr event Conponent Cust omi zat i onissettotr ue and asubsequent "Installation components"
screen is not displayed.

22

Ed Configure Installation Type X

Marme: $4i18n:Fulllnstallation} 3

Custom I

Components Description

© Allinstallation components
Default installation compenents

Specific installation compenents:

K
&

&

User can customize component selectien in “Installation Components” screen

The IDs of installation components can be used in expressions, scripts and custom code if you
want to check whether the installation component has been selected for installation or not. A
typical condition expression for an action would be

context. getlnstall ati onConponent Byl d("123").i sSel ect ed()

if the ID of the component is "123". In this way you can conditionally execute actions depending
on whether a component is selected or not.

23

A.5 Screens And Actions

With screens and actions you configure two separate aspects of the installer: the user interface
that is displayed by your installer and uninstaller on the one hand and the actual installation and
uninstallation on the other hand. Each screen can have a list of actions attached that are executed
when the user advances to the next screen.

install4j offers a wide variety of pre-defined screens and actions that you can arrange according
to your needs. Some of these screens and actions are generic and can be used as programming
elements, such as the "Form" [p. 46] screen and the "Run script" action.

While this chapter presents an overview of the concepts of the screen and action system, a later
section in the documentation [p. 148] discusses how to configure the related beans in the install4j
IDE in detail.

Installer applications

Building an install4j project creates media files which are either installers or archives. Aninstaller
is defined by a sequence of screens and actions and is executed when the user executes the
media file. Installers usually install an uninstaller which removes the installation. The uninstaller,
too, is a freely configurable sequence of screens and actions. Archives do not have an installer
or uninstaller and the user extracts the contained data with other tools.

In addition to the installer and uninstaller, you can define custom installer applications [p. 154]
that are added to the distribution tree. These custom installer applications can use the same
screens and actions that the installer can use. Unlike installer and uninstaller, they are also added
to archives. They can be used to write separate maintenance applications for your installations
that are either invoked directly by the user or programatically by your application.

v Installer (8 screens) [ID installer] + 5\ Properties

+ Uninstaller (3 screens) [ID uninstaller] x

> qf Standalone update downloader [Custom applic... ,O I) Installer Variables

4" Background update downloader [Custom applic...
(;b d P . i Q Launcher Integration

@E: Configure greeting [Custom application] (2 scr...

Executable

Create executable
Executable name updater
Executable directory .
Single instance
% File set Default file set
Executable icon [customized icon]
Execution Modes
Allew unattended mode
Progress interface creation...
Allow conscle installations

‘Custom application

A custom installer application is installed by the installer. Users can start
it manually or it can be executed programmatically frem your own
s code via the APIL

The most common use case for custom installer applications is to create auto-updaters.
Auto-updaters are described in detail in a separate help topic [p. 114].
Executing first-run tasks for archives

Another important use-case for custom installer applications is to create a first-run installer for
archives. While there is no need to install files to the installation directory in the case of an archive,
there will usually be screens and actions that set up the environment of your application.

In order to avoid the duplication of screens and actions, install4j offers the possibility to create
links to screens and actions. In this way, a custom installer application can include a partial set

24

of the screens and actions in the installer. Such a first-run installer should be added to the
.install 4j runtime directory so that it is not exposed as part of the application. This is done
by specifying its "Executable directory" property as the empty string.

Such a first-run installer application is invoked programatically with the com i nst al | 4j . api .
| auncher . Appl i cati onLauncher utility class. To determine whether any of the generated
launchers of an installed archive are run for the first time, call

Appl i cati onLauncher.i sNewAr chi vel nstal | ati on()

at the beginning of your main method. If it returns true, call | aunchApplication or
| aunchAppl i cati onl nProcess to execute the installer application. Check the Javadoc for
detailed information about this API.

Control flow

At runtime, install4j instantiates all screens and actions and organizes the screen flow and action
execution. There are a number of aspects regarding this control flow that you can customize in
the install4j IDE.

Both screens [p. 163] and actions [p. 169] have an optional "Condition expression" property that
can be used to conditionally show screens and execute actions. Screens have a "Validation
expression" property that is invoked when the user clicks on the "Next" button allowing you to
check whether the user input is valid and whether to advance to the next screen. These are the
most commonly used hooks in the control flow for "programming" the installer.

» | T
taller (5 D install
+ eteller (3 sereens) 10 in o EF Contains 4 form components Q Configure @ Preview
=\ Startup (1 action) x
> Welcome (1 action) [ID 2] 2 Update Alert
j“ Installation location (1 action) [ID 2] Alert for update installation
bl . P Control Flow
i¢ Installation components [ID 12] Condition expression
Installaticn (3 actions) [ID 15] Validation expressicn
k-
Install files [ID 17] Rollback barrier
Quit after screen
@ Create program group [/D 12] " Back button
@ Register Add/Remave item [ID 19] GUI Options
35 Finish [ID 20] b4 Style Banner

Custemize banner image
+* Uninstaller (4 screens) [I0 uninstaller]

Privileges

Action elevation type Inherit from parent [Co not eleva..
Screen Activation

Pre-activation script

Welcome

A screen that welcomes the user to the installation of your application.
This screen should be placed at the beginning of the installation

All "expression" properties in install4j can be simple Java expressions or scripts of Java code as
described in the help topic on scripts [p. 29].

Another hook into the control flow regarding screens is the ability to declare every screen as a
"Finish" screen, meaning that the "Next" button will be replaced with a "Finish" button and the
installer will quit after that button is pressed. Consider applying the "Banner" style to the screen
in that case because it alerts the user that a special screen has been reached.

If you use a series of screens to get user input, users expect to be able to go back to previous
screens in order to review or change their input. This is fine as long as no actions are attached
to the screen. When actions have been executed, the question arises what should happen if the
user goes back to a screen with actions and clicks on "Next" again.

25

By default, install4j executes actions only once, but that may not be what you want if the actions
operate on the user input in a screen. Because install4j has no way of knowing what should
happen in this case, it applies a "Safe back button" policy by default: if the previous screen had
actions attached, the back button is not visible. You can change this policy for each screen, either
making the back button always visible or always hidden. The "Can be executed multiple times"
property of each action is relevantin the case where you you make the back button always visible
for the next screen.

v Installer (5 screens) [ID installer] L Configuration
'S . Item name S{compilensys.fullName} ${compi..
W Startup (1 action) x lcon source Installer icon
ik Welcome (1 action) [ID 2] p Error Handling
'?‘ Installation location (1 action) [0 2] Failure strategy Continue on failure
— Error message
ir Installation components [0 12] ol Control Flow
. w
Installation (3 actions) [ID 13] Condition expression
3
istall files (10 17] Rollback barrier . .
Can be executed multiple times
@ Create program group [/0 12] 3 Privileges
) Register Add/Remove item [ID 19] Action elevation type
3k Finish (1D 20] &
+ Uninstaller (4 screens) [ID uninstaller] i

Register Add/Remove item

N Register an Add/Remove item in the Windows software registry. This
action will be automatically reverted by the 'Uninstall files' action.

Rollback behavior

At any time in the installation sequence the user can hit the "Cancel" button. The only exception
in the standard screens is the "Display progress" form template screen where the "Cancel" button
has been disabled. install4j is able to completely roll back any modification performed by its
standard actions.

However, the expectation of a user might not be that the installation is rolled back. Consider a
series of post-installation screens that the user doesn't feel like filling out. Depending on the
installer, the user may feel that installation will work even if the installer is cancelled at that point.
A complete rollback would then not be desirable. For this purpose, install4j offers the concept
of a "rollback barrier". Any action or screen can be a rollback barrier which means that any actions
before and including that action or screen will not be rolled back if the user cancels later on.

By default, only the "Installation screen" is a rollback barrier. This means that if the user cancels
while the actions attached to teh installation screen are running, everything is rolled back. If the
user cancels on any of the following screens, nothing that was performed on or before the
installation screen is rolled back. With the "Rollback barrier" property of actions and screens you
can make this behavior more fine-grained and customize it according to your own needs.

Error handling

Every action has two possible outcomes: failure or success. If an action succeeds the next action
is invoked. When the last action of a screen is reached, the next screen is displayed. What should
happen if an action doesn't succeed? This depends on how important the action is to your
installation. If your application will not be able to run without the successful execution of this
action, the installer should fail and initiate a rollback. However, many actions are of peripheral
importance, such as the creation of a desktop link. Declaring that the installer has failed because
a desktop link could not be created and rolling back the entire installation would be
counterproductive. That's why the failure of an action is ignored by install4j by default. If a

26

possible failure of an action is critical, you can configure its "Failure strategy" to either ask the
user on whether to continue or to quit immediately.

Configuration
ltern name S{compilersys.fullName} ${compi...

lcon source Installer icon

Error Handling

Failure strategy Continue on failure
Error message

Control Flow

Condition expression

Rollback barrier

Can be executed multiple times
Privileges

Action elevation type

Standard actions in install4j fail silently, for example the "Create a desktop link" action will not
display an error message if the link could not be created. For all available failure strategies, you
can configure an error message that is displayed in the case of failure. The "Install files" action
has its own, more granular failure handling mechanism that is automatically invoked after the
installation of each file.

Standard screens and form templates

install4j offers a series of standard screens that are fully localized and serve a specific purpose.
These standard screens have a preferred order, when you insert such a screen it will insert itself
automatically in the correct position. This order is not mandated, you can re-order the screens
in any way you like, however they may not yield the desired result anymore. If for example you
place the "Services" screen after the screen with the "Install service" actions (typically the
"Installation" screen), the "Services" screen will not be able to modify the service installations
anymore and the default values are used.

B3 Select an Installation Screen x

Available screens:
[=F Uisplay text

2 Program group selection

Standard screens

|

i Welcome

|

¢ Display license agreement

¢ Installation location

¢ Installation type

¢ Installation components
1} Create program group
T3 File associations

]

|

T3 Additional confirmations
" Installation

(3 Display information

3 Finish

Filter:

Description

Insert after selection

OK Cancel

The form templates don't have a fully defined purpose, their messages are configurable and
empty by default. For example the "Display progress" screen is similar to the "Installation" screen,
however the title and the subtitle are configurable. For templates also do not have any restriction
with respect to how many times they can occur. While the "Installation" screen (and other screens)
can occur only once for an installer, the "Display progress" screen could be used multiple times.

27

B3 Select an Installation Screen x

Available screens:

Form templates

E Banner with header at the top
E Directory selection

E- Display PDF file

E- Display progress

E Display text

@ Program group selection

Standard screens

(3 Welcome

(i Display license agreement
T3 Installation location

T3 Installation type

T loctallotinm cnmnmamants

Filter:

Description

Insert after selection

OK Cancel

Form templates are built with form components and can be a starting point for developing your

own screen. Forms allow you to freely define the contents of a screen and are described in a
separate help topic [p. 46].

28

A.6 Scripts

All configurable beans on the Installer->Screens & Actions [p. 148] step have script properties that
allow you to customize their behavior, such as executing some code when a button is clicked or
a custom initialization of a text field. Also, control flow in the screen and action system is done
with scripts and expressions.

Design-time JDK

By default, install4j uses the bundled JRE [p. 89] for compiling scripts up to the Java major version
that install4j runs with itself. For JRE bundles with higher Java major versions, install4j uses the
current JRE instead.

For special requirements, you can invoke "Settings->Java Editor Settings" in the script editor and
select a different JDK for that purpose. The list of available design-time JDKs is saved globally for
your entire install4j installation and not for the current project. The only information saved in
your project is the name of the JDK configuration. In this way, you can bind a suitable JDK on
other installations and on other platforms.

Ed Java Editor Settings X

Code Completion Popup Settings
Auto-import classes during code completion
Auto-popup code completion after dot

Delay: 1,000 |5 | ms

Popup height: 10 % entries

Display Code Problems
None Errors only @ @ Errors and Warnings @

JDK For Code Editor @)
Automatic JRE download o
OJDK JDK11.0 [ChUsershingotyjdkshjbrsdk-11_0_8_1-b1145.63] b Configure JDKs

The design-time JDK is used for the following purposes:

+ Code completion

The Java code editor will show completion proposals for classes and methods in the JDK
runtime library from the design-time JDK.

+ Context-sensitive Javadoc help

If the design-time JDK from the bundled JRE configuration is used, the corresponding Javadoc
from the Oracle web site is shown.

If you manually configure a design-time JDK, you can enter a Javadoc directory to get
context-sensitive Javadoc help in the code editor for all classes in the JDK runtime library. By
default, context-sensitive Javadoc help is only available for the install4j API.

29

E3 Configure JDKs X

Available JDKs for code completion and script compilation:

Name @ Java Home Directory (7] Javadoc Directory (7] Java Version +

JDK11.0 Ch\Users\ingo\jdks\jbrsdk-11_0_9_1-b1...| https://docs.oracle.com/en/java/javas... | 11.0.9.1 x

@ Hel Cancel
P

+ Code compilation

install4j uses a bundled eclipse compiler, so it does not use the compiler from the design-time
JDK. However, it needs a runtime library against which scripts entered in the installer
configuration [p. 24] are compiled. The version of thatJDK should correspond to the minimum
Java version for the project. This is automatically the case if the design-time JDK from the
bundled JRE configuration is used. For a manually selected design-time JRE, if its minimum
Java version is higher than the minimum Java version of the project, runtime errors can occur
if you accidentally use newer classes and method.

The code editor

The Java code editor is shown for script properties on the Installer->Screens & Actions [p. 148]
step for any configurable bean including screens, actions, form components and groups, or when
you edit the code for static fields and methods on the Installer->Screens & Actions->Custom
Code [p. 152] step.

B2 Edit X
Settings Edit Search Code Help
& E & PR % O
S &« &0 @m 7
Insert Insert Code

Test
Unde Redo = ct Pame Find Repiz Hel
ey v = Vaisble D Gallery " PR Compie =9

Please enter an expression (ne trailing semicolon) or a script (ends with a return statement) that consists of
regular Java code. The following parameters are available:

E““"]ll

- com.installdj.api.context.InstallerContext context
- com.install4j.api.actions.InstallAction action

The expected return type is boolean

Condition expression:

1 context.getBooleanVariable ("sys.confirmedUpdateInstallation™)

The box above the text editor shows the available parameters as well as the required return
type. If parameters or return type are classes - and not primitive types - they will be shown as
hyperlinks. Clicking on such a hyperlink opens the Javadoc in the external browser.

30

To get more information on classes from the com i nst al | 4j . * packages, choose Help->Show
API Documentation from the menu and read the help topic for the install4j API [p. 212].

A number of packages can be used without using fully-qualified class names. Those packages
are:

+ java.util.*

+ java.io.

* javax.swing.*

+ com.install4j.api.*

+ com.install4j.api.beans.*

+ com.install4j.api.context.*
+ com.install4j.api.events.*
+ com.install4j.api.screens.*
+ com.install4j.api.actions.*
« com.install4j.api.formcomponents.*
+ com.install4j.api.update.*
+ com.install4j.api.windows.*
+ com.install4j.api.unix.*

You can put a number of import statements as the first lines in the text area in order to avoid
using fully qualified class names. For example:

i mport java.aw . Col or;
i mport java.aw . Event Queue;

Event Queue. i nvokeLater (() -> {
JTextField textField =

(JText Fi el d) f or mEnvi r onnment . get For mConponent Byl d(" 123") . get Confi gurati onObj ect () ;
text Fi el d. set Backgr ound(Col or. RED) ;

1),

If the gutter icon in the top right corner of the dialog is green, your script is going to compile
unless you have disabled error analysis in the Java editor settings that are accessible in the menu
of the script editor dialog.

In some situations, you may want to try the actual compilation. Choosing Code->Test Compile
from the menu will compile the script and display any errors in a separate dialog. Saving your
script with the OK button will not test the syntactic correctness of the script. When your install4;
project is compiled, the script will also be compiled and errors will be reported.

Expressions or scripts

Java code properties can either be expressions or scripts. install4j automatically detects whether
you have entered an expression or a script.

An expression does not have a trailing semicolon and evaluates to the required return type. For
example:

Icontext.isUnattended() && !context.isConsole()

31

The above example would work as the condition expression of an action and skip the action for
unattended or console installations.

A script consists of a series of Java statements with a return statement of the required return
type as the last statement. For example:

i f (!context.getBool eanVari abl e("enterDetails")) {
cont ext . goForward(2, true, true);

}

return true;

The above example would work as the validation expression of a screen. If the variable with
name "enterDetails" is not settot r ue, it would skip two screens forward, checking the conditions
of the target screen as well as executing the actions of the current screen.

Script parameters

The primary interface to interact with the installer or uninstaller is the context which is nearly
always among the available parameters. The context provides information about the current
installation and gives access to variables, screens, actions and other elements of the installation
or uninstallation. The parameter is of type

« cominstall4j.api.context.|nstallerContext forscreensand actionsinthe installation
mode

« cominstall4j.api.context.UninstallerContext for screens and actions in the
uninstallation mode

« cominstall4j.api.context.Context for form components.

Apart from the context, the available parameters include the action, screen or form component
to which the Java code property belongs. If you know the implementation class, you can cast to
it and modify the object as needed.

Many other useful static methods are also contained in the class com i nstal | 4j . api . Wi l,
for example OS detection methods or methods to display messages in a way that works for all
installer modes:

if (Wil.isMacOs()) {
Util.showar ni ngMessage("This warning is only shown on macCS");
}

Editor features

The Java editor offers the following code assistance powered by the eclipse platform:

+ Code completion

Pressing CTRL- Space brings up a popup with code completion proposals. Also, typing a dot
(".") shows this popup after a delay if no other character is typed.

While the popup is displayed, you can continue to type or delete characters with Backspace
and the popup will be updated accordingly. "Camel-hump completion" is supported, i.e. typing
NPE and hitting CTRL- Space will propose Nul | Poi nt er Except i on among other classes. If
you accept a class that is not automatically imported, the fully qualified name will be inserted.

The completion popup can suggest:

32

* O variables and default parameters. Default parameters are displayed in bold font.
packages (when typing an import statement)

9 classes

@ fields (when the context is a class)

* W methods (when the context is a class or the parameter list of a method)

You can configure code completion behavior in the Java editor settings.

Ed Java Editor Settings x

Code Completion Popup Settings
4 Auto-import classes during code completion
Auto-popup code completion after dot

Delay: 1,000 |+ | ms

Popup height: 10 % entries

Display Code Problems
None Errors only (7] o Errars and Warnings (7]

DK For Code Editor (7]
© Automatic JRE download @)
JDK | [Select one]

* Problem analysis

The code that you enter is analyzed on the fly and checked for errors and warning conditions.
Errors are shown with red underlines in the editor and with red stripes in the right gutter.
Warnings, such as unused variable declarations, are shown with a yellow background in the
editor and with yellow stripes in the right gutter. Hovering the mouse over an error or warning
in the editor as well as hovering the mouse over a stripe in the gutter area displays the error
or warning message.

The status indicator at the top of the right gutter is green if there are no warnings or errors,
yellow if there are warnings but no errors and red if there are errors. In the latter case the
code will not compile and the installer cannot be generated.

You can configure the threshold for problem analysis in the Java editor settings.

+ Context-sensitive Javadoc

Pressing SHI FT- F1 opens the browser with the Javadoc page that describes the element at
the cursor position. Javadoc for the Java runtime library can only be displayed if a design-time
JDKis configured and a valid Javadoc location is specified in the design-time JDK configuration.

Key bindings

All key bindings in the Java code editor are configurable. The key map editor is displayed by
choosing Settings->Key map from the menu in the Java code editor dialog. On macQOS, that menu
is shown as a "hamburger" menu on the right side of the tool bar.

33

B3 Edit Key Map X
Available shortcut schema:
Default lactive) Set Active
MacOSX
Copy
Based on scherna:
Show commands containing:
Backspace
EBlock Comrments
Clipboard Copy
Clipboard Cut
Clipboard Paste
Clipboard Paste with Dialog
Shortcuts for selected command:
-
Press new shortcut:

The active key map controls all key bindings in the editor. By default, the [Default] key map is
active. The default key map cannot be edited directly, to customize key bindings, you first have
to copy it. Except for the default key map, the name of a key map can be edited by double-clicking
onit.

When assigning new keystrokes or removing existing key strokes from a copied map, the changes
to the base key map will be shown as "overridden" in the list of bindings. The key map editor
also features search functionality for locating bindings as well a conflict resolution mechanism.

Key bindings are saved in the file $CONFI G DI R/ i nstal | 4j / v9/ edi t or _keymap. xm where
$CONFI G DI Ris %JSERPROFI LE% AppDat a\ Local onWindows, $HOVE/ . confi gonLinuxand
$HOVE/ Li brary/ Appl i cati on Support on macOS. This file only exists if the default key map
has been copied. When migrating an install4j installation to a different computer, you can copy
this file.

Code gallery

The Java code editor offers a code gallery containing useful snippets that show you how to get
started with using the install4j API. The code gallery is displayed with the "Code gallery" tool bar
button in the script editor.

34

B3 Select a Code Snippet X

Available code snippets: Preview:

Condition expression

= Check if admin user

E Check installer mode
= Check operating system
General

Windows

Installer actions

'context.isUnattended() && 'context.isConscle()

Startup actions
Form compenents
Description

Shows how to check if the installer is running in GUI mede and not in
console and unattended mode

Filter:

You can either copy a portion of the script with CTRL- C or click OK to insert the entire script at
the current cursor position.

Not all code snippets are directly usable in the script that you are editing. Also, some script
properties have special code snippets that are only shown for this property. If such code snippets
exist, they are displayed in bold in a separate category with the name of the script property.

Installer variables and scripts

Screens, actions and form components are wired together with installer variables that can be
set and retrieved with little code snippets that make use of the cont ext parameter that is
available for most scripts. Any object can be used as the value for a variable, for a condition you
can use boolean values. In a "Run script" action, you could set a boolean variable like this:

bool ean nmyCondition = ...
cont ext . set Vari abl e("nmyCondi ti on", nyCondition);

Instead of calling set Var i abl e ina "Run script" action, you can also use a "Set a variable" action
where the return value of the script is saved to an installer variable.

Getting installer variables is done with the cont ext . get Vari abl e(Stri ng vari abl eNane)
method. The convenience method cont ext . get Bool eanVari abl e(Stri ng vari abl eNane)
makes it easier to check conditions and write them as expressions without a return value:

cont ext . get Bool eanVari abl e(" nyCondi ti on")

To use installer variables with a string value in text properties of actions, screens and form
components, write them as ${i nst al | er: nyVar i abl eNane} or use the variable selector button
that inserts them with the correct syntax.

35

A.7 Generated Launchers

Launchers are responsible for starting your application. There are two types of launchers:

B3 Create Launcher >

1. Select type Select launcher type

You can either let install4] generate launchers for you or provide your own launchers for your
application, Please choose the type of launchen

O Generated launcher

installd] generates launchers that start up your Java application in a secure, professional and
attractive way. Launchers are configured in a platform independent way and are re-generated
for each of your configured media file.

External launcher

Your own platform-dependent launcher is treated and installed by installdj just like the
generated launchers.

@ Help Next P Finish Cancel

Generated launchers

install4j can generate native launchers that start your application. For example, on Windows,
an . exe file will be created that among other things takes care of finding a suitable JRE,
displaying appropriate error messages if required and then starts your application. Using
launchers generated by install4j has numerous advantages as compared to using home-grown
batch files and shell scripts.

Each launcher definition is compiled separately for each defined media file [p. 126]. This means
that for the majority of all cases, a single launcher definition will be sufficient to start your
application. If, for example, your distribution contains two GUI applications and a command
line application, you have to define 3 launchers, regardless of how many media files you define.

When your application is started with a launcher generated by install4j, you can query the
system property i nstal | 4j . appDi r to get the installation directory and and i nst al | 4j .
exeDi r to get the directory where the launcher resides. Use calls like

System get Property("install4j.appDir")

to access these values.

External launchers

If you already have an external launcher for your application, you can let install4j use that
launcher instead of generating one. Because external launchers are most likely
platform-dependent, you will have to add external launchers for each platform that is targeted
by your media files. Make sure to exclude the irrelevant launchers in your media file definitions
in this case.

Types of generated launchers

Executables created by install4j can be either GUI applications, console applications or service
applications.

36

B3 Modify Launcher X
1. Select type Configure executable
2. Executable info
Executable type:) GUI application (7]
+ Redirection DAIIow—chso\e parameter o
- Windows version info LG T)
- Windows manifest options == orQ
- Unix options Console application @
= mac05 eptions Gy @
= Menu integration
- Auto-update integration Executable name: | hello_gui r @
3:lcen File set: @ Default file set - @
4. Java invocation
5. VM opticns file Directory: bin P @
6. Splash screen
7. Finished [Allow only a single running instance of the application (7]
7 Fail if an exception in the main thread is thrown (7]
[Change working directory to: | . > @
w Advanced Options
@ Help 4 Back Next P Finish Cancel

There is no terminal window associated with a GUI application. If stdout and stderr are not
redirected on the "Executable info->Redirection" step of the launcher wizard, both streams are
inaccessible for the user. This corresponds to the behavior of j avaw(. exe) .

On Windows, if you launch the executable from a console window, a GUI application can neither
write to or read from that console window. Sometimes it might be useful to use the console, for
example for seeing debug output or for simulating a console mode with the same executable.
In that case you can select the Al | ow - consol e par anet er check box. If the user supplies the
- consol e parameter when starting the launcher from a console window, the launcher will try
to acquire the console and redirect stdout and stderr to it. If you redirect stderr and stdout in
the "Executable->Redirection" step, that output will not be written to the console.

A console application has an associated terminal window. If a console application is opened
from the Windows explorer, a new terminal window is opened. If stdout and stderr are not
redirected on the "Executable info->Redirection" step of the launcher wizard, both streams are
printed on the terminal window. This corresponds to the behavior of j ava(. exe) .

Finally, a service runs independently of logged-on users and can be run even if no user is logged
on at all. Aservice cannot rely on the presence of a console, nor can it open windows. On Microsoft
Windows, a service executable will be compiled by install4, on macOS a launch daemon will be
created and on Unix-like platforms a start/stop script will be generated.

When a service is started, the mai n method of the configured main class will be called. To handle
the shutdown of your service, you can use the Runt i ne. addShut downHook () method to register
a thread that will be executed before the JVM is terminated.

For information on how services are installed or uninstalled, see the help topic on services [p. 97].

Java invocation

The most important configuration of a launcher is done on the "Java invocation" step of the
launcher wizard and revolves around replicating the arguments you would pass to the Java
launcher in a batch file:

37

B3 Modify Launcher X

1. Select type Configure Java invocation
2, Executable info
3. lcon VM Parameters: -Dapple.laf.useScreenMenuBar=true ' @

4. Java invocation
Allow WM passthrough parameters (e.g. -J-Xmx256m) €

- Native libraries Configure Version-Specific VM Pararneters
- Preferred VM
= Override Java version O Classpath @ Module path @
5. VM options file @ [Directory classes &

6. Splash screen
7. Finished

Main class fremn Class path ¥ | HelleGui ro- @

Arguments for main class: ' @

w Advanced Options

@ Help 4 Back Next P Finish Cancel

* VM parameters

You can provide a fixed list of VM parameters to your launcher and also add version-specific
VM parameters. Fixed VM parameters can contain compiler, launcher and installer
variables [p. 63].

B3 Modify Launcher X
1. Select type Configure Java invocation

2. Executable info

3.lcon UM Parameters: | -Dapple.af.useScreenMenuBar=true | 4 | (7]

4. Java invocation
Allow VM passthrough pard B> Incert Installer Runtime Variable
- Native libraries Configure Version-Specific . Insert Launcher Runtime Variable

+ Preferred VM b Insert Compiler Variable
= Owerride Java version O Classpath @ Module path @
5. VM options file L] Directory classes
6. Splash screen
7. Finished

H] Insert Runtime Environment Variable

Compiler variables are replaced at build time, launcher variables are replaced by the launcher
so that the VM sees the replaced value from the very beginning, and installer variables are
replaced in the main method. This means that using installer variables is not suitable for
setting certain kinds of VM parameters like - Xnx, but can be useful for replacing system
properties that are only used by your code or by libraries.

See the separate help topic on VM parameters [p. 84] for more information on the various
ways to set VM parameters for launchers.

* Module or class path

On the "Java invocation" step of the launcher wizard you can configure both the module path
and the class path. These settings correspond to the - - nodul e- pat h and the - cp parameters
of the standard Java launcher. The module path is only applicable for Java 9 and higher. Like
for the standard Java launcher, you can add directories, single archives or directories with
archives. In addition, you can add archives from environment variables and from compiler
variables.

The compiler variable entry is useful if the set of JAR files that should be added to the module
path or class path is calculated in your build system and these JAR files are not staged to a
fixed set of directories that you could reference in install4j. In that case, the the command

38

line compiler [p. 220] as well as the plugins for Gradle [p. 225], Maven [p. 230] and Ant [p. 239]
can seta compiler variable externally where the single JAR files are separated by a configurable
separator.

B3 Define Class Path Entry X
Entry Type
Scan directory Directory Archive Environment variable 0} Compiler variable
Errer Handling
Fail if an error occurs with this class path entry &)
Detail
Compiler variable: r @
Path list separator: S{compiler:sys.pathlistSeparator} r @
Relative path prefix:
Reads a compiler variable that contains a list of relative JAR files paths, separated with the
specified separator, The files are resclved in the distribution tree, absolute file names will not
work.

* Main class

For Java 9 and higher, you can choose a main class from either the module or the class path.
If you choose the module path option, the syntax for the main class is <nodul e nane>/
<cl ass nane> and corresponds to the - - nodul e parameter of the standard Java launcher.
The chooser dialog shows all the available main classes and inserts the correct value
automatically.

+ Arguments

Like VM parameters, the list of fixed arguments supports compiler, launcher and installer
variables. Arguments on the command line are appended to the fixed list of arguments.

Cross-platform launcher features

Generated launchers optionally support a single instance mode on all supported platforms.
You can use the launcher API [p. 216]to register a startup handler that receives the command line
parameters if the launcher is started more than once. In this way, you can handle file associations
with a single application instance. GUI launchers on macOS are always in single instance mode
because that is a fundamental property of application bundles.

Icons for launchers can be generated from a set of PNG files. On Windows, an . i co file and on
macOS an . i con file is compiled, on Linux the generated . deskt op file references the PNG
images. You can also provide pre-built ICO and ICNS files.

39

B3 Modify Launcher

>
1. Select type Define launcher icon
2, Executable info
3. lcon Add icon to launcher
4. Java invocation
5. VM options file Cross-Platform Image File Size E*
6. Splash screen Aresources\hello16x16.png 16x16
7. Finished Aresources\hello32x32.png 32432

resnurceshhellndBx 48 nnn AR AR
Add PNG image files of various sizes, recommended formats are 1616, 32x32, 48x48 and 128x128

Windows

© Generate from cross-platform image files

Use ICO file:

macO5

© Generate from cross-platform image files

Use ICNS file:

@ Help 4 Back Next P Finish Cancel

A splash screen image can be configured on the "Splash screen" step of the launcher wizard.
The - spl ash command line parameter does not work for the generated executables, because
it is part of the standard Java launchers and not of the Java runtime itself. An exception is the
argument - J- spl ash: none which is emulated by install4j Windows launchers to disable the

splash screen from the command. The splash screen supports additional high DPI images with
a @x suffix in the file name.

In addition to the standard splash screen image, install4j allows you to position two lines of text
on top of the splash screen image, a version line and a status line. The status line can be updated
from your launcher with the launcher API [p. 216].

1 Modify Launcher

X
1. Select type Text lines on splash screen
2. Executable info
3. lcon [Show lines with text on the splash screen
4. Java invocation Status Line
5. VM options file
6. Splash screen Initial: Leading application ... r @
e a _ -
. Textlines Position: X = g % ¥= 210 |5 @
7. Finished Font: 8 % pt Bold Color .
Version Line
Text: version §{compiler:sys.version} 3
Position: X = 79 5 ¥= 169 |+ @
Font: 8|5 pt Bold Color .

Position Text Lines Visually

@ Help 4 Back Next P Finish Cancel

If your code loads native libraries via Syst em | oad(. . .) orifa native library loads dependent
libraries, the native library path has to be modified to include the directories where these native
libraries are located. In batch or shell scripts you would do this in a platform-specific way,
modifying PATH on Windows, DYLD_LI BRARY_PATH on macOS, LD_LI BRARY_PATH on Linux
and a variety of other variable names on different Unix variants.

40

In install4j, you can use the "Java invocation->Native libraries" step of the launcher wizard to
specify such directories, and the launcher will take care that the appropriate environment variable
is modified. These directories end up in the java.library. path system property in your
launcher. If you need different directories for different media files, use a compiler variable for
the directory name and override it for each media file.

JRE search sequence

By default, launchers use the bundled JRE [p. 89]. In case you do not bundle a JRE, the JRE search
sequence determines how install4j searches for a JRE on the target system. New configurations
get a pre-defined default search sequence.

Search Sequence Without Bundled JRE N 7
For media files without a bundled JRE, you can define version requirements and a search sequence for the JRE that will be used to
run the installers and the generated launchers.
Java Version (7]
Minimum version: | 1.8 3 O
Maximum version: r @

Allow JREs with a beta version number O

JRE Search Sequence O

E Search Windows registry and standard locations L]
EA Environment variable JAVA_ HOME
EA Environment variable JDK_HOME

Apart from searching the Windows registry, well-known standard installation locations and paths
in environment variables, you can also configure a relative directory in your distribution tree.
This is useful if you distribute your own JRE for a launcher that is not provided through a JRE
bundle managed by install4j.

install4j has a special mechanism which allows you to bundle JREs with your media files. If you
choose a particular JRE for bundling [p. 89] in one of the media file wizards [p. 126], this JRE will
always be used first and you do not need to adjust the search sequence yourself.

If you do not bundle a JRE and a launcher has special Java version requirements that differ from
those of the other launchers, you can override them on the "Java invocation->Override Java
version" step of the launcher wizard.

If you have problems with JRE detection at runtime, see the help topic on error handling [p. 210]
for a description on how to get diagnostic information.
Windows-specific features

Aversion info resource will enable the Windows operating system to determine meta information
about your executable. This information is displayed in various locations. For example, when
opening the property dialog for the executable in the Windows explorer, a "Version" tab will be
present in the property dialog if you have chosen to generate the version info resource.

The version info resource consists of several pieces of information. If you check Gener at e
version info resource on the "Executable->Windows version info" step of the launcher

41

wizard, there are several fields whose values must be entered. The "original file name", the
"company name", the "product name" and the "product version" fields in the version info resource
are filled in automatically by install4j and cannot be configured.

B3 Modify Launcher X
1. Select type Configure Windows version info resource
2, Executable info
installdj can generate a version info resource for Windows executables. This information is
. Redirection displayed, for example, as a tab in the Windows explorer property dialog.
- Wind ion inf
fndows version into Generate version info resource

- Windows manifest options

- Unix options Product name: | @

= mac05 eptions

= Menu integration A '@

+ Auto-update integration Internal name: | helloGUI 4
3. lcon
4, Java invocation File description: = Hello World Suite GUI Launcher »
5. VM options file 8 8 8
. Splash screen Legal copyright: Cepyright ej-technologies GmbH, 2002-2003 »
7. Finished

@ Help 4 Back Next P Finish Cancel

On the "Executable->Windows manifest options" step you can adjust the contents of the
executable manifest, a static resource in the executable that controls some Windows features.

3 Modify Launcher X

1. Select type Configure options for the executable manifest

2. Executable info

The manifest of a Windows executable is a static resource entry that can enable or disable certain
features provided by the operating system.

- Redirection

- Windows version info Execution Level (7
- Windows manifest options ceution Leve

= Unix eptions © Asinvoker (7]

+ macQS options Highest available 0

= Menu integration

- Auto-update integration Require administrator (7]

3. lcon
4. Java invocation BElSwaEnes @
5. VM options file o Always (7]
6. Splash screen

N
7. Finished e @

Java9+ @

@ Help 4 Back MNext P Finish Cancel

With an execution level other than "As invoker", you can ask Windows to show a UAC prompt
and run the launcher with elevated privileges.

The DPI awareness controls whether Windows will scale up pixels in a GUI if high DPI is used.
By default, DPI awareness is enabled if the minimum Java version of your project is at least Java
9.

On Windows, executables can be 64-bit or 32-bit. A 64-bit executable can only run with a 64-bit
JVM and a 32-bit executable can only run with a 32-bit JVM. By default, 64-bit executables are

42

generated, but you can switch to 32-bit executables in the "Installer options" step of the Windows
media wizard.

macOS-specific features

By default, the generated application bundle for a GUI application uses the "Executable name"
property from the "Executable info" step of the launcher wizard. If you choose compact names
as appropriate for Windows and Unix, you may not be happy with the appearance in the Finder
on macOS.

Onthe "Executable info->macOS options" step, you can specify a localizable application bundle
name. If you specify an i18n variable as the application bundle name, such as ${i 18n:

nyLauncher Nane}, install4j will name the application bundle directory with the resolved value
for the principal language [p. 79] of your project. In addition, it will take the values for all additional
configured languages and set up the appropriate localization in the application bundle.

3 Modify Launcher X
1. Select type Options for macOS launchers
2, Executable info
Application Bundle Overrides
- Redirection
. Windows version info Custom executable name: ©)
+ Windows manifest options Custom bundle identifier: €)
= Unix eptions
= mac05 options Entitlernents file: (7]
= Menu integration
+ Auto-update integration Association Actions For Archive Media Files 7]
3. lcen O Al q
4, Java invocation & Allassociations
5. VM opticns file Selected associations:
6. Splash screen
7. Finished
fnishe Customize Plist File (7]
Custem fragment for Info.plist file:
@ Help 4 Back MNext P Finish Cancel

On macOs, file associations and URL handlers are not registered with calls to an API that is
provided by the operating system, but by adding special entries to the | nf o. pl i st file of the
application bundle. This is why macOS single bundle archives can handle "Create a file association"
and "Register a URL handler" actions at compile-time. By default, associations for all such actions
that are contained in the installer configuration on the "Installer->Screens & Actions" step are
added to the I nfo. pl i st file. Optionally, you can choose that only selected actions should be
included.

Many advanced modifications of the behavior of an application bundle can be done by adding
entries to the | nf o. pl i st file. On the macOS Options step you can specify a fragment that is
added to the default | nf o. pl i st file. For services, this fragment is written to the launcher plist
file.

Modifying launcher shell scripts and secondary start files

Launchers on Unix as well as command line and service launchers on macOS are shell scripts
that invoke the standard Java launcher. To include your own modifications, you can specify a
fragment that is inserted just before the j ava invocation.

43

B3 Modify Launcher X

1. Select type Options for Unix launchers
2, Executable info
Executable Options
- Redirection
. Windows version info Executable mode: 755 Reset To Default O
- Windows manifest options Custom script fragment: - @
- Unix options
= mac05 eptions
Options For Service Launchers O

= Menu integration
= Auto-update integration
3. lcon
4. Java invocation
5. VM options file
6. Splash screen
7. Finished Additional content for .desktop file: - @

Options For GUI Launchers O

@ Help 4 Back Next P Finish Cancel

On Linux, two conditions require the generation of additional start files for a launcher and in
both cases you can add additional content to them:

« The integration of a GUI launcher into a desktop environment requires the generation of a
. deskt op file. You may want to add additional content to that file to customize the interaction
with the desktop environment.

+ In the case of a service launcher, a . servi ce file is generated if systemd is detected. To
configure advanced aspects of systemd execution you can add additional content to that file.

Auto-update integration

In the Installer->Screens & Actions [p. 148] step, you can add a "Background updater" installer
application that runs in the background and automatically downloads an updater installer. Such
a background updater will not execute the downloaded update installer because that would
disrupt the work of the user. Instead, it executes a "Schedule update installation" action to register
the downloaded updated installer for later execution.

For GUI launchers, you can select the Execute downl oaded updater installers at
st ar t up check box in the "Executable info->Auto update integration" step of the launcher wizard.
When this GUI launcher is started and a downloaded update installer has been scheduled for
installation, the update installer will be executed. By default, the execution mode of the update
installer is set to "Unattended mode with progress dialog" with a configurable message.

44

B3 Modify Launcher X

1. Select type Auto-update integration
2, Executable info
A background downloader application can be configured on the Installer->Screens 8 Actions
- Redirection ELERS
- Windows version info
- Windows manifest options

- Unix options

When an update installer was downloaded, it can be executed programatically through the
installdj AP| by calling UpdateChecker.executeScheduledUpdate.

+ mac0S options GUI launchers can process such pending updates automatically at startup.

= Menu integration

« Auto-update integration Execute downloaded update installers at startup (GUI launchers only)
3. lcon

Unattended maode with progre alog

4. Java invocation

5. VM options file S{i18n:updater.WindowTitle("S{compiler:s
6. Splash screen

7. Finished

3

@ Help 4 Back Next P Finish Cancel

For more on auto-update functionality, see the corresponding help topic [p. 114].

45

A.8 Form Screens

Most screens in install4j contain a configurable form. In these screens, you can configure a list
of form components [p. 183] along the vertical axis of the form. install4j provides you with
properties to control the initialization of form components and the way the user selection is
bound to installer variables [p. 63]. With this facility you can easily generate good-looking installer
screens that display arbitrary data to the user and request arbitrary information to be entered.

Most standard screens are built with form components and form templates are starting points
for your own customizations. Also, you can add empty form screens and add form components
to them. For screens that have a configurable form, a header is shown above the screen
configuration [p. 163] that shows the number of contained form components as well as buttons
for editing them and showing a preview of the form.

v Installer (4 1D instal
. ntaller (4 screens) (1D instal..| | o Contains 6 form components 5 Configure @ Preview
= Startup b 4
4k | Welcome [ID 1512] /O Form
== DK [Screen group] 2 ser... Fill horizontal space
Fill vertical space
g Search for JDKs [For... Scrollable
E JDK Selection [Form] [l... Messages
=‘_; Finish [ID 1946] Screen title JDK.SElﬁttIDH
Screen subtitle ‘Which JDK do you want to use?
a Control Flow

Condition exoression

The actual configuration of the form components is performed in a separate dialog:

sﬁ- Single radio button [0 3892) o Configuration
b_‘l Vertical greup (2 form components) [I0 2900] x Allow configuration on screen
Help
wﬁ Multi-line HTML label [ID 3207] el Help text
‘__' List [ID} 2740] Initialization
Initialization script if (configurationOhbject.getModel()
ﬁ Single radio button [ID 38 Reset initialization on previous
eﬁ- Directory chooser [ID 3743] Visibility script
Label
Text
a Font color =0
Font Default
a% lcon
. lcon-text gap 4
List

A list with an optional leading label. The user selection (the selected
=T indices) is saved to a variable.

Screens can layout the contained form in different ways, but for plain form screens, you can
configure this with properties of the containing screen. By default, a form is top-aligned and fills
the entire available horizontal space. For example, for a set of radio buttons that should be
centered horizontally and vertically, the "Fill horizontal space" and "Fill vertical space" properties
of the screen must be set to "false" and the horizontal and vertical anchor properties must be
set to "Center".

Form

Fill horizental space
Horizental anchar Center

Fill vertical space

Vertical anchor Center

Scrollable

Messages
JDK Selection
Which JDK do you want to use?

Screen title

Screen subtitle

46

Form components

install4j offers a large number of form components that represent most common components
available in Java and some other special components that are useful in the context of aninstaller.

Ed Select a Form Component X

Available form compenents:

Action compenents
Labels and spacers
Option selectors
Sliders and spinners
Special selectors and displays
Text fields
% Console handler

Filter:

Description

Insert after selection

0K Cancel

All components that expect user input have an optional leading label. The components themselves
are left-aligned on the entire form. If you leave the label text empty, the form component will
occupy the entire horizontal space of the form.

Configuration

Allow configuration on screen

Help

Help text

nitialization

Initialization script if (configurationObject.getModel()
Reset initialization on previous
Visibility script

Label

Text

Font color B
Font Default
lcon

|con-text gap 4

Every form component has configurable insets. For vertical gaps that are meant to separate
groups of form components, consider using a "Vertical spacer" form component since it makes
the grouping clearer and allows to to reorder form components more easily.

You can preview your form at any time with the Preview Form button. The preview dialog performs
all variable replacements of compiler variables and custom localization keys, but not of installer
variables. Also, no initialization scripts or screen activation scripts are run. The preview is intended
to give you quick feedback about visual aspects of your form. At runtime, the look and feel may
be different.

47

B3 Preview

JDK Selection
Which JDK do you want to use?

.

© Use detected JDK
Found ${installerjymCount} JDKs:

${installerjymLocations}

Specify alternative JDK base directory

< Back Close Cancel

Every form component always has its preferred vertical height. For some form components such
as the "List" form component, this preferred vertical size is configurable. If the vertical extent of
the form exceeds the available vertical space, a scroll bar is shown. If you want such a form
component to fill the entire available vertical space, you can select the "Fill vertical space" property
for the form component and deselect the "Scrollable" property of the form screen. In that case,
there will be no scroll bar for the form.

User input

If a form component can accept user input, you need some way to access the user selection
afterwards. install4j saves user input for such form components to the installer variable [p. 63]
whose name is specified in the "Variable name" property. That variable can then be used later
on, for example in condition expressions for screens and actions.

lcon

lcon-text gap 4
Layout

Insets 3: 0: 3; 0 [Default]

List

List entries &linstallerjvmLocations)

Initially selected index 0
Fill horizental space

Visible rows 5
Fill extra vertical space

Scrollable

Multi-selection

User input

| Variable name Jvmindex |

If you have a check box that saves its user input to a variable called "userSelection", the condition
expression

cont ext . get Bool eanVari abl e("user Sel ecti on")

will skip the screen or action for which that condition expression is used. The user selection in
form components is written to the variables before the validation expression for the screen is
called. If you have a text field that saves its input to the variable "fileName", the validation
expression

48

Util.showOptionDial og("Do you really want to del ete " + context.getVariable("fileNanme"),

new String[] {"Yes", "No"}, JOptionPane. QUESTI ON_ MESSAGE) == 0

used on the same screen will block the advance to the next screen if the user answers with "No".

The values of installer variables accommodate the general typej ava. | ang. Obj ect . Every form
component saves its user input in its naturally corresponding data type, for example:

+ For check boxes, the typej ava. | ang. Bool ean is used. For this special case the context offers
the convenience method get Bool eanVari abl e.

+ For text fields, the type j ava. | ang. Stri ng is used.
+ For drop down lists the type j ava. | ang. | nt eger is used to save the selected index.
+ For date spinners, the type j ava. | ang. Dat e is used.

The description of the value type for each form component that accepts user input is shown in
the registry dialog when you select the form component.

Initialization

For each form component, install4j offers several properties that allow you to customize its initial
state. However, you may want to access the properties of the underlying Ul component or use
a more complex logic for modifying the form component.

For this purpose, the "Initialization script" property is provided. Form components can expose
awell-known componentin the initialization script that allows you to perform these modifications.
This so-called "configuration object" is usually contained in the form component itself. For
example a "Check box" form component exposes a conf i gur ati onChj ect parameter of type
j avax. swi ng. JCheckBox and a "Text field" form component exposes a j avax. sw ng.
JText Fi el d.

Allow configuration on screen

Help text

Initialization script if {configurationObject.getModel
Reset initialization on previous
Visibility script

Text

Font color B3

Font Default

lcen

lcon-text gap 4

As with actions and screens [p. 24] in general, the possibility that the user moves back and forth
in the screen sequence presents a dilemma to install4j. Any form components that accepts user
input has a configurable initial value and any form component can have an initialization script.
This initialization is performed when the user enters the screen for the first time. Should this
initialization be performed again when the user moves back and then enters the screen once
again? Since install4j does not know, it initializes every form component only once by default.
This policy can be changed with the "Reset initialization on previous" property for each form
component.

Depending on factors such as the correct platform, user input in the previous screen or whether
the installer runs in console mode, some form components may not be applicable and should

49

be hidden. In the "Visibility script", you can detect such conditions and return f al se to hide the
form components.

50

A.9 Layout Groups

A layout group is an element in a form screen [p. 46]. It contains a number of form components
and other layout groups. With layout groups you can achieve virtually any kind of visual layout.

There are two different kinds of layout groups: vertical and horizontal groups. A horizontal group
puts the contained elements side by side, while a vertical group organizes them from top to
bottom. Essentially, the top-level of a form screen is a vertical layout group itself.

Use case: Side by side

Putting two form components side by side is done with a single horizontal group:

cﬁu Horizontal separater [1D 45]

&

v . Herizontal group (2 form components) [ID 47] x

offfe Textfield (1D 50]
ol Passwordfield [D57]

cﬁ Horizontal separator [ID 47]

offe File chooser (10 52)

e

=7

Configuration

Image File

Background color K|
Foreground color B
Border sides

Allow cenfiguration on screen
Initialization

Visibility script

Layout

Insets 0000
Anchor ' _:West
Cell spacing

Align first label
Make children same height

Horizontal group

A horizontal form component group contains one or more form
components that are distributed along the horizental axis,

E1 Preview

Admin account

Please configure the credentials for the admin account

Admin account

£

User:
License

Key file:

Bob

Password: | sesees

Browse ...

< Back Close Cancel

The leading labels of the first form component in the horizontal layout group ("User:") and those
of the form components on the same level as the horizontal group ("Key file:") are aligned. There

is a property on the horizontal layout group to switch off this alignment.

Use case: Two columns

Two columns of form components are realized with two vertical layout groups inside a horizontal

layout group:

51

j Herizontal group (7 form components) [ID 54] + Configuration

" X . Image File
|| Vertical group (2 form components) [ID 53] b 4 Background color =
* Drop-down list [I0 57] p Foreground color =
* List [ID 58] Border sides
Allow configuration on screen
v " Buttons [Vertical group] (5 form componen... i Initialization
* Button [ID 59] Visibility script
offfe sering (10 67) 3| | Anchor I | North-West
-ﬁ- Button [ID 62] Cell spacing 0
R é% Make children same width
* Button [ID 63]

Vertical group

Avertical form component group contains ene or more form
al components that are distributed along the vertical axis.

1 Preview X
Drop down and list selectors
With a button bar at the right side
—_—
Option 1 A Add

One Remove
Two
Three

Up

Down

< Back Close Cancel

In this case the second column with the buttons takes up a fixed amount of horizontal space,
because buttons do not automatically grow beyond their preferred size. In order to make all
buttons of equal size, the "Make children same width" property has been selected. Two buttons
are aligned at the top of the column, two buttons at the bottom. This is achieved with a "Spring"
form component after the second button that has its axis set to "Vertical". It pushes all further
components to the bottom.

Use case: Breaking label alignment

Alignment of leading labels can be broken by introducing vertical layout groups:

52

offfe Drop-down ist (D 5] &

v " Vertical group (2 form components) [ID 66] b 4

offfe Textfield (D 67] 0
offfe Textfield (D 62]

ad

Configuration
Image File
Background color [

Foreground color K|

Border sides

Allow configuration on screen

Initialization

Visibility script

Layout

Inzets 0000

Anchor L[Morth-West

Cell spacing]
Make children same width

Vertical group

Avertical form component group contains ene or more form
components that are distributed along the vertical axis.

1 Preview

Label alignment

Select one of the following eptions:
VM parameters:

Arguments:

Each vertical group has its own alignment

£

< Back Close Cancel

Here, the long leading label of the first form component does not enlarge the leading labels of
the two text field form components. The latter are aligned only among themselves.

Use case: Center and right alighment

Single form components can be centered or right-aligned if you enclose them in a horizontal
layout group and set the "Anchor" property on the layout group accordingly.

v = Harizontal group (1 form component) [ID 70] +
* Radie button group [1D 73]

ol Tectfield (D71)

E Herizontal group (1 form component) [ID 72]

ol Button (10 74] =]

o %

Configuration
Image File
Background color K|

Foreground color B

Border sides

Allow cenfiguration on screen

Initialization

Visibility script

Layout

Insets 0:0:0:0

Anchor ;[Center

Cell spacing 5
Align first label

Make children same height

Horizontal group

A horizontal form component group contains one or more form
components that are distributed along the horizental axis,

53

1 Preview

X
Ali of form comp ts |
Use the anchor property of form components

O Client Server

Not centered:

Right-aligned

< Back Close Cancel

For the layout group with the radio button group, the anchor has been set to "Center", for that
with the button the anchor has been set to "East". This only works with form components that
do not grow horizontally. Some form components that do grow horizontally can be restricted to
a fixed horizontal size, such as the text field by specifying a non-zero column count.

54

A.10 Styles

Install4j has a flexible model for styling the Ul of installer applications that allows you to arrange
content and styling elements in arbitrary ways. While there is an API to do this programatically,
you can configure form styles in the install4j IDE without any custom code. Form styles use the
same foundation as form components [p. 183] for screens. All default styles are created with form
styles, so the details of the default styles can we tweaked very easily and new styles can be
developed by starting with the default styles.

Configuring styles

Styles are configured on a per-project basis. On the "Installer->Screens & Actions->Styles" step
of the install4j IDE, all available styles are listed. When you add a style, it can either be a
configurable form style, or a style implementation from your custom code. Styles are either
standalone or not. A non-standalone style cannot be used directly, but is only available for nesting
into other styles.

One single style is marked as the default style and is shown with a bold font. With the "Set As
Default" action you can change the default style. Styles can be grouped into folders for organizing
them according to your individual preferences. For example, in the default styles, the nested
styles are grouped into a separate folder whereas the standalone styles are located at the top
level.

Standard [F: style] [ID 1
‘e andard [Form 10011 + Contains 5 form components Q Configure @ Preview
m Banner [Form style] [ID 7] x
Style components (2 styles) /O Configuration
m Standard header [Form style] [ID 14] Standalone style
s Fill horizontal space
[; Standard footer [Form style] [ID 12] = Fill vertical space
a
Form style

A freely configurable style that uses form components to set up a
layout areund the screen content

On the "Installer->Screens & Actions" step of the install4j IDE, you can apply styles. Installer
applications, screen groups and screens all have a "Style" property. For installer applications,
this is property is set to "Default". You can change it to any standalone style. For screen groups
and screens, the "Style" property is set to "Inherit from parent". The property also indicates which
style is actually inherited. Alternatively, you can choose to explicitly set a style for the selected
element. Any screen groups and screens below it will now inherit this style.

55

v Installer (5 [ID installer]
nstaller (5 screens) [ID installer] Contains 4 form components E Configure & Preview

* Startup (1 action) b 4
> Welcome (1 action) [ID 2] o) Update Alert
35 Installation location (1 action) [ID 2] Alert for update installation
— o Control Flow
i Installation components [I012] Condition expression
Installation (3 actions) [ID 13] Validation expression
’j’ Finish [ID 20] Rollback barrier
+ .) Quit after screen
Uninstaller (4 screens) [I0 uninstaller] 3 Back button
GUI Options
% 17 Style Banner |
Custemize banner image
Privileges
Action elevation type Inherit from parent [Do not eleva..
Screen Activation
0’3 Pre-activation script

Welcome

A screen that welcomes the user to the installation of your application,
This screen should be placed at the beginning of the installation

Some screens have a preference for a particular style. For example, the "Welcome" and "Finish"
screens want their style set to "Banner". When adding such a screen, the IDE matches the style
by name. In this example, if no style named "Banner" is available, the default style is used.
Otherwise, install4j keeps track of style associations by ID and you can rename styles without
breaking any associations.

If you delete a style, all its style associations are broken. Compiling the installer will now fail and
you will have to visit all installer applications, screen groups and screens where this style was
explicitly selected and choose a new style.

Should you want to return to the default styles, there is a "Reset Styles To Default" action for
that purpose. Existing style associations are matched by name in that case, so style associations
with the "Banner" style survive this reset, for example.

Form styles

Arestricted set of the form components that are available for building form screens [p. 183] can
be used to build form styles. Form components that take user input are not suitable for styles
because styles have a different life-cycle than screens.

In addition, form styles can use a set of special form components. The "Screen content" form
component contains the Ul component of the screen and is changed each time when a screen
is activated. When you preview the style, this content area is shown with a placeholder. The
"Screen Title" form component shows the title or the subtitle of the screen, depending on its
"Title type" property. The "Control button" form component is used for realizing the "Next",
"Previous" and "Cancel" buttons.

56

j Horizontal group (4 form components) [I0 19] L]

offfe spring (10 20)

Back button [Control button] [ID} 21]

Mext button [Control button] [0 22]

Cancel button [Control button] [ID 23]

Button

Control butten type Previous button
Button text < §[i18n:ButtonBack}
Butten icon

Configuration
Allow external overriding

=)

Initialization
Initialization script

Reset initialization on previous

Visibility script
a Layout
Insets 3:0; 3; 0 [Default]
&%
Control button
A contrel button that handles the user actions with respect to the
al screen flow. This includes activating the next screen, activating the

previous screen and cancelling the wizard

Finally, the "Nested style" form component allows you to embed another style. In this way you
can build a set of styles that share common parts. For example, in the default styles, the navigation
buttons at the bottom are the same. With the "Standard Footer" style that is used by both the
"Standard" and the "Banner" standalone styles, you have a single place to change its settings.

L. Headler [Nested style] [ID 2] & Configuration
T X I Style Standard footer I
| | Main [Vertical group] (3 form components) [ID ... x “Allow external overriding
[D] screen content (D 4) e Initialization
* Watermark [Horizental separator] [ID 5] Initialization script
Reset initialization on previous
Footer [Nested style] [ID 6] Visibility seript
Layout
Insets ooo
]
Nested style
Insert another style that is defined in this project. Both top-level styles
= as well as non-top-level styles can be nested.

Graphical styling elements

A key concern of styling is the placement of images, either in the foreground or in the background.
Both kinds of placements are handled by layout groups in form styles. For both vertical and
horizontal form groups, setting their "Image file" property shows additional properties that allow
you to place the image in the layout group. If you place the image in the foreground, it cuts off
an entire edge of the rectangle that can get its own background and border. In that way, the
image can blend seamlessly into its surroundings.

57

v . Vertical group (3 form components) [ID 8] & Configuration

o Image File S{compilensys.installdjHomefr...
\nj Screen Title [ID x Image anchor r North-West
cL‘l Horizontal separator [ID 10] p Image edge (0] Vertical
Screen content [ID 11] Image edge background ... [l 25, 143, 220/ 0, 74, 151
] . - Y Image insets ;0,00
Eﬂ Nested style [ID 12] - Overlap with centained c...
Image edge border
Image edge border color [7]
Image edge border wi... 1
3 Background color [l 235, 255, 255/ 49, 52, 53
Foreground color =
‘}g Border sides bottom

Border color B

Vertical group

Avertical form component group contains ene or more form
Gl components that are distributed along the vertical axis.

To place an image into the flow of form components, you can use the "Image insets" property
and set its "lcon" property.

Other important styling elements are borders and separators. Again, this is handled by layout
groups. With their "Border sides" property you can define which sides of the border should be
drawn. Color and thickness of borders are also configurable.

By default, layout groups and form components are transparent, so that the default background
color of the window shines through. By setting the "Background color" property of a layout group,
you can make it opaque and give it a specific color. The "Foreground color" property sets the
font color for contained form components that do not have their color set explicitly.

Overriding properties

Some styles can have elements that are specific to particular screens or particular installer
applications. For example, the header image in the "Standard" style or the banner image of the
"Banner" style could be required to change for each screen. Instead of duplicating styles in this
scenario, install4j allows you to designate certain properties of selected form components and
layout groups that should be overridable when the style is applied.

When editing the form components of a form style, each form component has an "Allow external
overriding" property. If you select that property, a named overriding entry will be offered when
you explicitly apply the style on the "Installer->Screens & Actions" step. With the "Override title"
property, you specify the displayed name for the override entry and that name is used for saving
the overridden properties. This means that the name must be unique for a single style and that
overrides are lost if you change the name. The "Property selection mode" property then lets you
select which properties should be overridable, either all properties are overridable, or a list of
properties is included or excluded.

58

v . Vertical group (2 form compeonents) [ID 15] L]

g wen

:::Verti(al

Image edge
j Title [Screen Title] [ID 16] b7 Image edge background ... [7]
j Subtitle [Screen Title] (1D 17] Image insets G5 %1
p Overlap with contained c...
Image edge border
Background color [l 255, 255, 255/ 49, 52, 53
Foreground color =
Border sides bottom
Border color B
Border width
a Allow external overriding
Override title Custornize title bar
é{: Property selection mode Include selected properties
. Selected properties 5 properties
Vertical group
Avertical form component group contains ene or more form
=T components that are distributed along the vertical axis.

When you select a style on the "Installer->Screens & Actions" step, install4j scans the style and
all its nested styles for form components and layout groups with defined overrides. Each named
override is presented as a check box property. If you select the check box, the overridable
properties of the form component or layout group are copied and displayed as child properties.
You can now change the properties to different values. Note that the overridable properties lose
their connection to the default values in the original form component or layout group. If you
change a default property value, you have to manually change it in all overrides, if necessary.

+ 2

4 Installer {5 screens) [ID installer] ¥ Properties

* \, Startup (1 action)

Installer Variables

ir Welcome (1 action) [ID 2] b

P

ik Installation lecation (1 action) [ID 2] i X
macO5 entitlements file

4% | Installation components [I012] Custom fragment for Info.plist

Unix

Custom script fragment

- Installation (3 actions) [ID 15]
¢ Finish [ID 20

| Finish [! GUI Options

Style

Image File

G Uninstaller {4 screens) [I0 uninstaller] Standard

icon:${installensys.installerApplic..
1 MNorth-East

Image anchor

Overlap with centain...
[l 255, 255, 255/ 48, 52, 53
I

Background color

Foreground color

Customn watermark

Customize title bar

Aform component in the selected style is configured to allow
customization of selected properties,

For more complex overriding cases, consider adding a "Nested style" form component and
making its "Style" property overridable. When applying such a style, you can substitute a different
nested style as appropriate.

API

Under some circumstances, styles are more easily implemented with the API. For example, if
you want to have configurable properties that determine the construction of the style or if the
styling cannot be realized with the facilities of the form style.

The sample project "customCode" includes a style class SunnySkyBackgr oundSt yl e and its
associated BeanInfo SunnySkyBackgr oundSt yI eBeanl nf o that show such an example style.
It paints a background image that depends on the window dimensions and continues up to the
window border. In the "customCode" project, look for the "Configurable form" screen in in the
installer and preview the form in order to see what it looks like.

59

That example also shows how to implement a style that wraps a user-selectable style. The main
style is still the standard style and the "Sunny sky background" style takes the function of a
decorator. To make development of such wrappers easier, the APl includes a convenience class
cominstall4j.api.styles. Wapper Styl e.

Merging styles from other projects

Instead of duplicating styles across projects, you can develop them in one project and merge
them into other projects. The merge projects functionality [p. 108] in install4j includes an option
to merge styles.

If styles are merged, the "Style" property of installer applications, screen groups and screens
shows the merged styles as well, with their names prefixed with the project name that was
assigned in the merge settings.

If you link to screens or screen groups of merged projects, they will use their configured styles
from the merged project only if style merging is enabled. Otherwise, install4j tries to match a
style by name in the main project.

Overriding standard icons

If you would like to change the standard icons in the installer, have a look at the JAR filer esour ce/
i 4j runti me. j ar intheinstall4jinstallation directory. The packagecom i nstal | 4j . runti ne.
instal l er.frontend.icons contains all icons that are used by the installer. To replace some
or all of these icons with your own version, create a JAR file that contains just the new icon files
in the same directory and add it on the "Installer->Screens & Actions->Custom Code" step. The
installer will first try to load an icon from the custom code. Failing that, it will fall back to the
built-in version.

60

A.11 Look & Feel

The GUI of the installer, uninstaller and other installer applications is implemented with Java
Swing. Swing is themeable and so install4j can offer you choices for the look and feel of the the
applications that are provided by the runtime. The generated launchers are not affected by these
settings.

Configuring the look & feel

The options for the look & feel can be adjusted on the "Installer->Screens & Actions->Look &
Feel" step.

(O FlatLaf cross platform Lock and Feel @)

Dark or light mode: Auto-detect if light or dark mode should be used
Light theme: Flat Intelli) A
Dark theme: Flat Darcula v

Java native Look and Feel 0

Lock and feel from custorn code

The default setting is to use the FlatLaf " cross platform Look and Feel which is a flat Look and
Feel that works well on all supported platforms and includes a dark mode. Please consider

starring it on GitHub ' as a token of appreciation for the author.

FlatLaf includes four built-in themes, two for light mode and two for dark mode. By default, the
themes that look like the Intelli) IDEA light and dark themes are selected. In addition, FlatLaf
supports custom Intelli) themes. These are based on JSON files and can override Ul colors. You

can download an Intellij theme © from the JetBrains plugin repository and add its JAR files on
the "Installer->Screens & Actions->Custom Code" step. If the themes plugin is packaged in a ZIP
file, you have to extract the ZIP file and add the contained JAR files instead. The contained themes
will then show up in the chooser dialog.

O FlatLaf cross platform Lock and Feel €

Dark or light mode: Auto-detect if light or dark mode should be used =
Light theme: Intelli) theme from custom code + Cyan.theme.json [7]
Dark theme: Intelli) theme from custom code + Gradiante_midnight_blue.theme.json y o @

Java native Look and Feel ﬂ

Look and feel from custom code

(1
@
3

) https://www.formdev.com/flatlaf/
) https://github.com/JFormDesigner/FlatLaf
) https://plugins.jetbrains.com/search?tags=Theme

61

https://www.formdev.com/flatlaf/
https://github.com/JFormDesigner/FlatLaf
https://plugins.jetbrains.com/search?tags=Theme

On Windows 10+ and macos 10.14+, the runtime detects whether dark mode is being used and
activates it automatically. If the user switches between light and dark mode, the runtime adjusts
to it on the fly. The look and feel configuration offers options to prevent this auto-detection and
use either light or dark mode.

For backwards compatibility, you can also select the "Java native look and feel". This is a look
and feel that is included the JRE and tries to mimic the native widgets of the operating system
with varying success. In some instances, this look and feel may seem out of place as it shows
the Ul from an older version of the operating system. Also, HiDPI resolutions may not be well
supported by this look and feel. For these reasons, using the native look and feel is discouraged
and the FlatLaf cross-platform look and feel is recommended instead.

Using a custom look and feel

You can apply your own look and feel by extending the cominstall4j.api.laf.
LookAndFeel Handl er class in the install4j APIl. After adding the compiled class and its
dependencies on the "Installer->Screens & Actions->Custom Code" step, you can select the class
in the chooser dialog.

Thecominstall 4j.api.laf.LookAndFeel Handl er implementsthecom i nstal | 4j . api .
| af . LookAndFeel Enhancer interface that contains methods that help with certain aspects of
creating the Ul. You can override these methods to change their default behavior.

For example, a tri-state check box is required by the Ul of installer applications. Java Swing does
notinclude such a component, but some look and feels add this feature. To avoid using a generic
simulation of a tri-state checkbox, the cr eat eTri St at eCheckbox method can be overridden
in your implementation of the com i nst al | 4j . api . | af . LookAndFeel Handl er .

62

A.12 Variables

With variables you can customize many aspects of install4j. They can be used in all text fields
and text properties in the install4j IDE as well as from the install4j APl [p. 212]. The general variable
syntax is

${ prefix: vari abl eNane}

where prefix denotes the variable type and is one of

+ compiler
Compiler variables are replaced by the install4j compiler when the project is built.

* installer
Installer variables are evaluated when the installer or uninstaller is running.

+ launcher
Launcher variables are evaluated when a generated application launcher is started.

* i18n
Custom localization keys are evaluated at runtime and depend on the chosen installer language.

* (no prefix)

Variables with no prefix resolve to runtime environment variables when used in the launcher
configuration.

Text fields in the install4j IDE where you can use variables have a » variable selector next to
them. In the popup menu, you first choose a variable system from the available variable types.
In text properties of an installer element [p. 148] or a form component [p. 183], you can use compiler
variables, installer variables and custom localization keys, but not launcher variables.

actions} [ID... EXECUTION MOoaes
: Allow unattended mode
) (1D 20] Progress interface creation script
ler variables ... Allow console installations
eens} [ID u... Fall back to conscle mede on Unix
Disable console mode on Windows
Console screen change handler
Default execution mode GUl mode

Windows console executable
Execution Options
VM parameters »

’ Insert Installer Runtime Variable

VM parameters
pa J Insert 18N Message

If you need to pass special VM parameters to the
here, A commen case would be to raise the max| ‘é} Insert Compiler Variable
parameter if your installers require a lot of memory,

The variable selection dialog then shows all known variables of the selected variable type.

63

B3 Select Installer Runtime Variable x

m
2
=

Installer runtime variables for:

<

¥ Installer
Predefined Variables Bound Variables

System variables
Source and Target
P sys.installationDir
P sys.installerDir
P sysinstallerFile
P sys.mediaDir
’ sys.mediaFile

Lactallar annlication chate

Filter:

Initial Value

java.lang.String: undefined

Description

The directory that holds the installed files. On Windows, Linux and Unix, this is the
same as the installation directory. For single bundle installers on macOS, this is
[Bundle name].app/Contents/Resources/app/. To reference an installed file
in a cross-platform way, use this variable and not sys.installationDir.

@ Help “ Cancel

For both compiler and installer variables install4j offers a fixed set of "system variables" that are
prefixed with "sys.". These variables are not writable and it is discouraged to use this prefix for
your own variables.

Compiler variables

Compiler variables are written as
${ conpi | er: vari abl eNanme}

The value of a compiler variable is a string that is known and replaced at compile time. The
installer runtime or the generated launchers do not see this variable, but just the value that was
substituted at runtime. Compiler variables are defined on the "General Settings->Compiler
Variables" step.

Compiler Variables \N /7

install4j provides a number of predefined compiler variables. In this step, you can define your own compiler variables, Compiler
wvariables can be used in many places in the installdj GUl to customnize your build process.

3k myVariable L Value Description Overrides

Variable value: | my default value »

®
pe

You can use compiler variables for various purposes. The most common usage of a compiler
variable is the possibility to define a string in one place and use it in many other places. You can
then change the string in one place instead of having to look up all of its usages.

An example of this use case is the pre-defined sys. ver si on variable that contains the value of
the text field where you enter the application version. Another usage for compiler variables is
to override certain project settings on a per-media file basis. For example, if you want to include
one directory in the distribution tree for Windows but another one for macOS, you can use a
compiler variable for that directory and override it for each media file.

64

Compiler Variables

installdj provides a number of predefined compiler variables. In this step, you can define your own compiler variables. Compiler
variables can be used in many places in the install4j GUI to customize your build process,

@ myVariable + Value Description Overrides

Compiler variables can be overridden for each media file, either on this tab or on the
"Customize project defaults-= Compiler variables” step of the media wizard.

x Click on cells in the "Variable value" column to override variables,
/Q Media file Variable value

Windows Reset my value for Windows
é{, macO5 Folder my default value

To quickly override multiple variables for a single media file, you can configure overridden values
on the "Customize project defaults->Compiler variables" step of the media wizard.

B3 Media Wizard - Windows X

1. Media file type

Override compiler variables
2. Installer options

3. Data files Compiler variables that have been defined on the "General settings-> Compiler
4, Executable processing wvariables" step can be overridden for this media file.

5. Bundled JRE

) . Click on cells in the "Variable value" column to override variables.
6. Customize project defaults

.) Variable name Variable value
: fnc;r;i?:;re::r::les M my value for Windows
+ Principal language
+ Exclude components
+ Downloadable compeonents
+ Bxclude files
+ Bxclude launchers
« Exclude installer elements
+ Lock & Feel
+ Auto-update options
7. Finished

@ Help 4 Back Next P Finish Cancel

Finally, compiler variables can be overridden from the command line compiler [p. 220] as well as
from the Gradle [p. 225], Maven [p. 230] and Ant [p. 239] plugins.

When you use a compiler variable in your project that is not a system variable, it must be defined
in on the "General Settings->Compiler Variables" step. If an unknown variable is encountered,
the build will fail. You can use other variables in the value of a variable. Recursive definitions are
detected and lead to a failure of the build. It is not possible to define compiler variables with the
name of a system variable.

install4j provides a number of system compiler variables:

65

+ sys.date [Machine-specific variables]
The current date in the format YYYYMVDD (e.g. "20090910"). The value is set at the start of a
build and will not change during a single build.
+ sys.time [Machine-specific variables]
The current time in the format HHWWBS (e.g. "153012") where HH is the hour in 24-hour format,
MM is the minute and SS is the second. The value is set at the start of a build and will not
change during a single build.
+ sys.timestamp [Machine-specific variables]
The current time as the Unix epoch. This is a long value with the milliseconds since January
1st, 1970 (UTC). The value is set at the start of a build and will not change during a single build.
+ sys.install4jHome [Machine-specific variables]
The installation directory of install4j that is used for compiling the media files.

+ sys.install4jVersion [Machine-specific variables]
The version of install4j that is used for compiling the media files.

+ sys.fileSeparator [Machine-specific variables]
The platform-dependent separator for directories in a file path. On Windows, this is a backslash
("\"), on Unix a forward slash ("/"). The value of this variable is intended to refer to files on the
build machine. For a value that is valid at runtime, use sys. nedi aFi | eSepar at or instead.
+ sys.pathlistSeparator [Machine-specific variables]

The platform-dependent separator for lists of directories. On Windows, this is a semicolon
(";"), on Unix a colon (":"). The value of this variable is intended to refer to files on the build
machine. For a value that is valid at runtime, use sys. nmedi aPat hl i st Separ at or instead.

+ sys.version [Project-specific variables]
The version of your application as configured under General Settings->Application Info.

+ sys.shortName [Project-specific variables]
The short name of your application as configured under General Settings->Application Info.

+ sys.fullName [Project-specific variables]
The full name of your application as configured under General Settings->Application Info.

+ sys.publisher [Project-specific variables]
The publisher of your application as configured under General Settings->Application Info.

+ sys.publisherUrl [Project-specific variables]
The publisher URL of your application as configured under General Settings->Application Info.

+ sys.languageld [Project-specific variables]

The 2-letter I1SO 639 code (see https://www.loc.gov/standards/iso639-2/php/code_list.php ")
for the principal language of the installer. This variable can be overridden on the command
line or the ant task which is useful if you build different installers for different languages.

+ sys.javaMinVersion [Project-specific variables]
The minimum Java version as configured under General Settings->Java Version

M https://www.loc.gov/standards/iso639-2/php/code_list.php

66

https://www.loc.gov/standards/iso639-2/php/code_list.php

sys.javaMaxVersion [Project-specific variables]
The maximum Java version as configured under General Settings->Java Version

sys.applicationld [Project-specific variables]
The application ID as configured under Installer->Update Options

sys.updatesUrl [Project-specific variables]

The URL where auto updaters can download the update descriptor file updat es. xm as
configured under Installer->Auto-Update Options. This variable is usually used in the "Update
descriptor URL" property of a "Check for update" action.

sys.mediaFileName [Media-specific variables]

The file name of the currently compiled media file as configured in the Media section and
possibly overridden in "Customize project defaults->Media file name" step of the media wizard.
sys.mediaName [Media-specific variables]

The display name in the install4j IDE of the currently compiled media file as configured in the
Media section. If the default name of the media file is not suitable, you can rename the media
file.

sys.mediald [Media-specific variables]

The ID of the currently compiled media file as configured in the Media section. This corresponds
to the return value of cont ext . get Medi aFi | el d().

sys.platform [Media-specific variables]

The platform descriptor of the currently compiled media file. One of wi ndows- x64,
wi ndows- x32, | i nux, uni x or macos. The value of this variable depends on your choice in
the platform step of the media file wizard.

sys.with)jre [Media-specific variables]

Avariable that contains "_with_jre" if a JRE is statically bundled with a media file and the empty
string if not. This is useful if media files with and without JRE are built.
sys.jreBundleVersion [Media-specific variables]

The Java version of the JRE bundle if a JRE bundle is configured for a media file and the empty
string if not.

sys.jreBundleArch [Media-specific variables]

The architecture of the JRE bundle if a JRE bundle is configured for a media file and the empty
string if not.

sys.mediaFileSeparator [Media-specific variables]

The platform-dependent separator for directories in a file path based on the current media
set. For Windows media sets, this is a backslash ("\"), for all others a forward slash ("/").
sys.mediaPathlistSeparator [Media-specific variables]

The platform-dependent separator for lists of directories based on the current media set. For
Windows media sets, this is a semicolon (";"), for all others a colon (":").

sys.msiProductld [Media-specific variables]

The product GUID if a Windows installer is wrapped in an MSI package, otherwise an empty
string.

67

You can access environment variables on the build machine with the syntax
${ conpi | er: env. envi r onnent Vari abl eNanme}

where "environmentVariableName" is the name of an environment variable. This is resolved at
build time and only works if no compiler variable with the same name is defined on the "General
Settings->Compiler Variables" step.

Compiler variable values in the IDE cannot be multi-line strings. If you need to insert a variable
with a multi-line string, you can use the text file reference syntax

${compiler:file("path/to/file")}

where pat h/to/ fil e is either an absolute file path or a path relative to the config file. All text
areas that have an adjacent variable selector button offer the "Insert contents of text file" action
in its popup menu. The file chooser has an option whether to use a relative or an absolute path
in the variable expression.

In order to debug problems with compiler variables, you can switch on the extra verbose
out put flagin the Build step [p. 11]. All variable replacements will then be printed to the build
console.

The file path can be a variable expression itself, like in
${conpiler:file(${conpiler:nyFile})}

so you can override it for each media file or pass it as a parameter to a command line build.

Installer variables

Installer variables are written as
${installer:variabl eNanme}

The value of an installer variable is an arbitrary object that is not known at compile time. Installer
variables are replaced at runtime in the installer, the uninstaller and in custom installer
applications. They can optionally be predefined in the install4j IDE like compiler variables, but
this is not required.

Undefined installer variables come into existence the first time they are defined at runtime.
However, it is an error to use an undefined variable. For example, if you use an installer variable
in an action, you have to make sure that the installer variable is defined before the action is
executed.

Installer variables are used to wire together actions, screens and form components at runtime.
The user input in screens is saved to variables that can be used in the properties of actions.
Furthermore, installer variables can be used in condition and validation expressions. Some
examples are given in the help topic on form screens [p. 46]. In script properties, you retrieve
variables by invoking

cont ext. get Vari abl e("vari abl eNane")

Variable values can be set with the installer API by invoking

68

cont ext. set Vari abl e("vari abl eName", vari abl eVal ue)

You can analyze the bindings of an installer variable on the "Installer Variables" tab of an installer
application configuration. That tab will show you a list of bound variables together with all

bindings.

b Installer (8 screens) [ID instal..| | 4 £ Properties

+ Uninstaller (5 screens) [ID u...

r=)
@';' Standalone update downloa... /O - Installer Variables
i
{9';' Background update downloa... L i i i
ou can pre-define installer variables in order te document and categorize them orto

e
{9';' Configure greeting [Custom ... assign initial values.
7 Configure Predefined Installer Variables

The following bound installer variables have been detected:

executelauncherAction [type java.lang.Boolean]
P greetingOption [type java.lang.String]
P groupCreated [type java.lang.Boolean]

Bindings for selection:

" Property Variable name [variable of type java.lang.Boolean]
-ﬁ- Execute launcher [Check box] [ID 72]
13 Finish 1D 60)
' Installer [1D installer]

Go To Selection

In order to document and categorize bound installer variables, you can pre-define them and set
descriptions that will be displayed in the installer variable selector in the install4j IDE.

B3 Edit Installer Runtime Variables For "Installer”

P myVariable L Value Description Response File

Value type: String

Variable value: | my value »
Sensitive infermation, do not write values to the log file

Quick Help
Installer variables are replaced at run-time. They can be used
in all text fields in installdj by surrounding the variable name with
Sfinstaller...}, like S{installer.myVariable}.
= in scripts with the syntax context.getVariable("myVariable")

Use the variable selector buttons { ¥) where available to select available
installer runtime variables. Installer variables do not have to be pre-defined,
but come into existence whenever an installer variable is assigned at runtime.

@ Help “ Cancel

A common scenario is the need to calculate a variable value at runtime with some custom code
and use the result as the initial value of a form component. To achieve this, you can add a "Set
a variable" action to the startup screen and set its "Variable name" property to some variable
name. In this context, install4j expects a variable name and you must notuse the ${i nst al | er:

vari abl eName} syntax but specify the plainvar i abl eNane only. The return value of the "Script"

property is written to the variable.

69

Screens 8. Actions N7

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.

4 Installer (5 screens) [0 instal.. EF General
+) Script "Some value"
B supaciond (3¢ | e —— T
@' Request privileges [ID ... p Only if undefined
@ Set a variable [ID 24] Fail if value is null

— Register for response file
ik Welcome (1 action) [ID 2]

Error Handling

For example, if this variable represents the initial directory that is displayed for a "Directory
chooser" form component, you set the "Initial Directory" property of that form component to
${installer:variabl eNane}. In this way you have wired the results of an action with a
behavior of a screen.

Another important use of installer variables is in the names of custom installation roots [p. 14].
In most cases, the name of a custom installation root contains an installer variable that is resolved
at runtime. Often, one of the system installer variables that represent a "magic" folder can be
used, such as ${i nstal | er: sys. syst enB2Di r } for the Windows syst enB2 directory.

When you use installer variables in properties that display text, such as the screen title or the
label properties of form components, a live binding will be created and the displayed text is
updated automatically when the variable values change.

Installer variables can be passed to the installer, uninstaller or custom installer applications from
the command line prefixed with - V:

-VnyVar =t est "-VmyVarWthSpaces=this is a test"

Alternatively, you can specify a property file containing installer variables with -varfile ny.
properties, where the file my. properti es contains one variable definition per line. The
variables that are created will be instances of j ava. | ang. Stri ng.

install4j provides a number of system installer variables:

+ sys.installationDir [Source and Target]

The installation directory for the current installation. The value of this variable can change in
the installer as the user selects an installation directory in the "Installation directory" screen
or the installation directory is set via context.setlnstallationDirectory(File
installationDirectory).

Note that for single bundle installers on macOS, the installation directory is usually just
/ Appl i cati ons, not a separate subdirectory.
+ sys.contentDir [Source and Target]

The directory that holds the installed files. On Windows, Linux and Unix, this is the same as
the installation directory. For single bundle installers on macQS, thisis[Bundl e nane] . app/
Cont ent s/ Resour ces/ app/ . To reference an installed file in a cross-platform way, use this
variable and not sys.installationDir.

+ sys.mediaFile [Source and Target]

The path of your media file. Not available for uninstallers.

70

On Unix and for non-MSI Windows installers this is the same as sys.installerFile. For MSI
installers, this is the MSl file. On macQS, this is the path to the DMG file. If you want to reference
the installer file, use sys.installerFile instead.

sys.mediaDir [Source and Target]

The path of the directory where your installer file is located. Not available for uninstallers.

On Unix and for non-MSI Windows installers this is the same as sys.installerDir. For MSI
installers, this is the directory where the MSI file is located. On macOS, this is the directory
where the DMG file is located. If you want to reference files inside the DMG file, use
sys.installerDir instead.

sys.installerFile [Source and Target]

The path of your installer file. Not available for uninstallers.

On Unix and for non-MSI Windows installers this is the same as sys.mediaFile. For MSl installers,
this is the extracted installer executable. On macOS, this is the path to the installer inside the
mounted DMG. If you want to reference the DMG file, use sys.mediaFile instead.
sys.installerDir [Source and Target]

The path of the directory where your installer file is located. Not available for uninstallers.

On Unix and for non-MSI Windows installers this is the same as sys.mediaDir. For MSl installers,
this is the directory the installer was extracted to. On macOS, this is the path into the mounted
DMG. If you want to reference files in the same directory as the DMG file, use sys.mediaDir
instead.

sys.resourceDir [Installer application state]
The directory where the resource files are present that have been configured on the
Installer->Custom Code & Resources tab.

sys.installationTypeld [Installer application state]

The ID of the selected installation type. This is only relevant if the "Installation Type" screen
has been added to the installer. The value is nul | as long as no installation type has been
selected.

sys.version [Installer application state]

For installers, the version of your application as configured under General Settings->Application
Info. In that case, the variable yields the same value as the compiler variable of the same
name. For custom installer applications, the installed version,which might not be the same as
the version for which the custom installer application was originally compiled.

sys.logFile [Installer application state]

The full path to the currently used log file. This is a path in the TEMP directory. For installers,
this changes after the "Install Files" action, when the log file is moved to a path in the installation
directory.

sys.responseFile [Installer application state]

If a response file is supplied with a - var fi | e command line argument, the full path to the
response file. If no response file is used, the variable value is nul | .

sys.preferredjre [Installer application state]

The home directory of the JRE that will be used by the installed launchers. This variable will
only be set after the "Install files" action has run. It will be the same as System
get Property("java. home") orthe sys. j avaHone installer variable unless a bundled JRE

71

(shared or non-shared) has been installed. This variable is not available in the uninstaller or
custom installer applications, use the sys. j avaHone directory there.

+ sys.languageld [Installer application state]

The 2-letter 1SO 639 code (see https://www.loc.gov/standards/iso639-2/php/code_list.php ")
for the actual language of the installer. For fixed-language installers, this is the same as the
compiler variable of the same name. For multi-language installers, the value is determined at
runtime.

+ sys.installerApplicationMode [Installer application state]

A string that reports the type of the installer application: "installer" for the installer, "uninstaller"
for the uninstaller and "custom" for custom installer applications.

+ sys.programGroupDisabled [Installer application state/Program group]
If the user has disabled program group creation on the "Standard program group" screen.
This applies to both the Windows program group and the Linux/Unix launcher link directory
selection. If no "Standard program group" screen is present, the variable value will be nul I .

+ sys.programGroupName [Installer application state/Program group]
The name of the program group that user has selected on the "Standard program group"
screen. If no program group has been selected, the variable value will be nul I . Only set in
Windows installers.

+ sys.programGroupDir [Installer application state/Program group]
The directory that has been selected as the program group. This is the full path to the actual
location of the program group, not just the name of the program group. If no program group
has been selected, the variable value will be nul I . Only set in Windows installers.

+ sys.programGroupAllUsers [Installer application state/Program group]
If the user has selected to create menu entries for all users on the "Standard program group"
screen. If no "Standard program group" screen is present, the variable value will be nul I .
Only set in Windows installers.

+ sys.symlinkDir [Installer application state/Program group]
The name of the directory for launcher links that user has selected on the "Standard program
group" screen. If no program group has been selected, the variable value will be nul I . Only
set in Linux/Unix installers.

+ sys.fileSeparator [Cross-platform variables]
The platform-dependent separator for directories in a file path. On Windows, this is a backslash
("\"), on Unix a forward slash ("/").

+ sys.pathlistSeparator [Cross-platform variables]
The platform-dependent separator for lists of directories. On Windows, this is a semicolon
(";™), on Unix a colon (":").

+ sys.userHome [Cross-platform variables]

The user home directory, typically something like C: \ User s\ $USER on Windows or / horre/
$USER on Unix platforms.

+ sys.userName [Cross-platform variables]
The user account name.

M https://www.loc.gov/standards/iso639-2/php/code_list.php

72

https://www.loc.gov/standards/iso639-2/php/code_list.php

sys.workingDir [Cross-platform variables]

The working directory. For the installer, this is the temporary directory that the installer was
extracted to.

sys.tempDir [Cross-platform variables]

The temporary directory of the operating system. On all supported platforms, this is the value
of the TEMP environment variable.

sys.javaHome [Cross-platform variables]

The Java home directory of the currently used JRE.

sys.javaVersion [Cross-platform variables]
The Java version of the currently used JRE.

sys.confirmedUpdatelnstallation [Cross-platform variables]

If the user has confirmed an update installation on top of a previous installation. If a previous
installation is detected, the "Welcome" screen asks the user whether to perform an update
installation or choose another installation directory. The result of that question is saved to
this variable. If the "Welcome screen is not shown, this variable is not set and
Cont ext #get Bool eanVari abl e(. . .) returns false for this variable.

sys.desktopDir [Cross-platform variables]

The directory used to physically store file objects on the desktop. On Windows, a typical path
is C:\ User s\ [user nanme]\ Deskt op. On macOSs, this is the ~/ Deskt op directory and on
Unix the freedesktop.org setting for the XDG_DESKTOP_DI Rdirectory is returned.

sys.docsDir [Cross-platform variables]

The directory used to physically store a user's common repository of documents. On Windows,
a typical pathis C: \ User s\ [user nare] \ Docurent s. On macOS, this is the ~/ Docunent s
directory and on Unix the freedesktop.org setting for the XDG_DOCUMENTS_DI R directory is
returned.

sys.downloadsDir [Cross-platform variables]

The directory used to physically store a user's downloads. On Windows, a typical path is C: \
User s\ [user nane]\ Downl oads. On macOS, this is the ~/ Downl oads directory and on
Unix the freedesktop.org setting for the XDG_DOANLQAD_DI Rdirectory is returned.

sys.appdataDir [Platform-specific variables]

The directory that serves as a common repository for application-specific data. On Windows,
a typical path is C:\ Users\[user nane]\ AppDat a\ Roam ng. On macOS, this is the ~/
Li brary/ Appli cation Support directory. On Unix, the value of the XDG_DATA HOVE
environment variable or if not defined ~/ . | ocal / shar e is returned.

sys.localAppdataDir [Platform-specific variables]

The user-specific directory that serves local applications to store computed data. On Windows,
atypical pathisC: \ User s\ [user nane]\ AppDat a\ Local . On macOS, thisisthe~/ Li brary/
Caches directory. On Unix, the value of the XDG_CACHE_HOVE environment variable or if not
defined ~/ . cache is returned.

sys.windowsDir [Platform-specific variables]

The Windows installation directory, typically C: \ W ndows.

73

sys.system32Dir [Platform-specific variables]
The system32 directory of your Windows installation, typically C: \ W ndows\ syst enB2.

sys.commonDir [Platform-specific variables]

The common files directory of your Windows installation, typically C:\ Program Fi | es\
Common Fil es.

sys.programDataDir [Platform-specific variables]

The directory where applications can save data that is not specific to particular users. A typical
path is C: \ Pr ogr anDat a.

sys.startMenuDir [Platform-specific variables]

The directory containing Start menu items. A typical path is C:\ Users\[user nane]\
AppDat a\ Roam ng\ M cr osof t\ W ndows\ St art Menu.

sys.programsDir [Platform-specific variables]

The directory that contains the user's program groups. The groups are themselves file system
directories. A typical path is C \ Users\[user nane]\AppData\ Roani ng\ M crosoft\
W ndows\ St art Menu\ Pr ogr ans.

sys.startupDir [Platform-specific variables]

The directory that corresponds to the user's Startup program group. The system starts these
programs whenever any user logs onto Windows. A typical path is C: \ User s\ [user nane]\
AppDat a\ Roam ng\ M cr osof t \ W ndows\ St art Menu\ Pr ogr ans\ St art up.
sys.sendToDir [Platform-specific variables]

The directory that contains Send To menu items. A typical path is C: \ User s\ [user nane]\
AppDat a\ Roani ng\ M cr osof t \ W ndows\ SendTo.

sys.templatesDir [Platform-specific variables]

The directory that serves as a common repository for document templates. A typical path is
C \ Users\[user nane]\ AppDat a\ Roam ng\ M cr osof t\ W ndows\ Tenpl at es.
sys.favoritesDir [Platform-specific variables]

The directory that serves as a common repository for the user's favorite items. A typical path
isC. \ Users\[user nane]\Favorites.

sys.programGroupDir [Platform-specific variables]

The directory of the program group that will be or was created by the "Create standard program
group" action. If this action is not present, the value will be nul | . The value of this variable
can change in the installer as the user selects a program group on the "Create program group"
screen.

sys.fontsDir [Platform-specific variables]

The folder that contains fonts. A typical path is C: \ W ndows\ Font s. On macQS, the value is
[Library/ Fonts.

sys.programFilesDir [Platform-specific variables]

The directory where programs are installed, typically something like C: \ Progr am Fi | es. On
macOs, the value is / Appl i cati ons.

74

+ sys.date [Cross-platform variables]
The current date in the format YYYYMVDD (e.g. "20090910"). The value is set when the installer
is started and will not change for the current process.

+ sys.time [Cross-platform variables]
The current time in the format HHWWBS (e.g. "153012") where HH is the hour in 24-hour format,
MM is the minute and SS is the second. The value is set when the installer is started and will
not change for the current process.

+ sys.timestamp [Cross-platform variables]

The current time as the Unix epoch. This is a long value with the milliseconds since January
1st, 1970 (UTC). The value is set when the installer is started and will not change for the current
process.

Launcher variables

Launcher variables are written as

${1 auncher : vari abl eNane}

The value of a launcher variable is a string that is not known at compile time. In contrast to
installer variables, they are replaced by the launcher and not by Java code, so the replaced value
is seen by the JVM at startup. Launcher variables can only be used in the "VM parameters" and
"Arguments" text fields on the "Java invocation" step of the launcher wizard [p. 36].

No user-defined launcher variables exist, the available system launcher variables are:

+ sys.launcherDirectory
The directory in which your launcher has been installed at runtime.

* sys.jvmHome

The home directory of the JVM that your launcher is running with. This is useful to put JAR files
from the JRE into your boot classpath. The "home directory" is the directory that contains the
"bin" directory of the JRE.

+ sys.tempDir
The temporary directory for the current user.

118N messages

18N messages are written as
${i 18n: keyName}

The value of an 118N message depends on the language that is selected for the installer. You
can use this facility to localize messages in your installers if they support multiple languages [p. 79].
To do that, you supply key-value pairs in the custom localization file. The variable selection dialog
for 118N messages shows all system messages as well as all messages in the custom localization
file for the principal language of your project.

75

Ed Select 118N Message X

m
2
=

Available 118N messages:

System messages

J AboutSetupMenultemn
J AboutSetupMessage

J AboutSetupTitle

D addTeDock

J AdminGroupRequired

J AdminPrivilegesRequiredExecute
J AlertDontShowAgainLabel
J AppRunningError

J AppRunningErrorAddOn
J ApplelavaMinVersionError
J AskCeontinue

D AskRetrylnstallFile

D BadDirName32

Filter:

Message in Principal Language

You must have administrator privileges to install this program.

@ Help “ Cancel

All standard messages displayed by install4j can be referenced with this syntax as well. You can
locate the key name in one of the message_*. ut f 8 files in the $| NSTALL4J_HOVE/ r esour ce/
nmessages directory and use it anywhere in your project. The standard messages can be
overwritten by your custom localization files.

Default values for missing variables

For the text field syntax of installer and compiler variables there is a mechanism to supply a
default value in case the variable is not defined: After the variable name you add the delimiter
?: and insert the default value before the closing curly bracket.

For example:

${install er:nyVari abl e?: def aul t Val ue}

will resolve to def aul t Val ue if the installer variable "myVariable" is not defined. The default
value can be another variable, also of a different type. For example:

${installer:updatesU | ?: ${conpil er: sys. updatesUrl}}

If the installer variable "updatesUrl" is not defined, the compiler variable "sys.updatesUrl" is
inserted. This is the default value of the "Update descriptor URL" property of the "Check for
update" action.

The chain of default values can be arbitrarily long:

${installer:one?: ${installer:two?: ${installer:three?:${installer:four?:sone plain

text}}}}

This will resolve to the first defined installer variable out of "one", "two", "three", "four" or to
sonme plain text if none of them are defined.

76

Binding variables to non-text properties

Many bean properties do not take text input, for example boolean, integer or enum properties,
so that the variable syntax ${i nstal | er: nyVari abl e} for text fields is not applicable. For
these properties, you can select "Switch to text mode" in the context menu and enter a variable
expression that resolves to the required type. Conversions from string values are important
because compiler variables can only hold string values, unlike installer variables that can hold
arbitrary types.

General

Service [Select a launcher]
Auto Start

Description Switch To Text Mode

Windows

Windows Arguments

Windows Dependencies

Windows Custom Display Mame [Use sef
Windows Prigrity Mormal

Account Local System

The help icon in the property editor tells you what the property type is and also informs about
the supported conversions from other primitive types or strings. For example, "true" or "false"
string values are supported for boolean properties as well, which is what you would use with a
compiler variable. For enum properties, the name of the enum or the ordinal as a number or as
a string will be resolved to the actual enum value. Also, numeric values will be parsed from
strings.

General

Service [Select a launcher]
Auto Start S{installer myAutoStart} 3 O
De]

Wi In text mode, you can use variables to set the value of boolean properties.
W

Wil The value of the expression at runtime must be of type

Wil java.lang.Boolean orthe strings “true” or “false”. Any string whose
Wi| lower-case representation is not equal to "true” is converted to "false”,

Wi
Ae To leave text mode, click on the property name and choese "Switch To

K Direct Mode" from the context menu.
=

Restart on Failure
Interactive

Delayed Auto Start

mac05

macO$ Identifier

Unix

Additional systemd entries

If you develop a custom bean and want to support that functionality as well, you have to enable
it in the property descriptor and insert a call into the property getter as explained in the Javadoc
for AbstractBean.

Using variables in your own applications

Frequently there is a need in the installed applications to access user input that was made in the
installer. The launcher API [p. 216] provides the helper classcom i nst al | 4j . api . | auncher.
Vari abl es to access the values of installer variables.

There are two ways that installer variables can be persisted in the installer: First, installer variables
are saved to the default response file [p. 202] . i nst al | 4j / response. varfi | e thatis created
when the installer exits or if a "Create response file" action is executed. Only response file variables
are saved to that file. Secondly, selected installer variables can be saved to the Java preference
store.com i nstal | 4j . api . | auncher . Vari abl es offers methods to load variables from both
sources.

77

Saving to the Java preference store is interesting if you want to modify those variable values in
your applications and save back the modified values. The Java preference store is available on
a per-user basis so that it is possible to modify settings even if the user does not have write
permissions for the installation directory. com i nstal | 4j . api .| auncher. Vari abl es has
methods for loading and saving the entire map of installer variables that was saved in the installer.
Also, it is possible to specify an arbitrary package to which the installer variables are saved, so
that settings can be shared between different installers.

Screens & Actions N7

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.

Installation (3 actions) [ID... Control Flow

— . . - Condition expression
¢ Finish (1 action) [1D 20
_ ! | Rollback barrier

0 Save installer variables ... a Can be executed multiple times

2 Installer (5 screens) [0 instal... # Configuration
+ Package name ${compilersys.applicationld}
=% Start 2 acti
A Startup (2 actions) x Preference root User specific
ik Welcome (1 action) [ID 7] p Installer variable names
j Installation location (1 ac... Error Handling
— Failure strategy Continue on failure
i¢ Installation components [... Error message
l.

1+ Uninstaller (4 screens) [1D u... Privileges
é:g Action elevation type
o’)

Save installer variables to the Java preference store

Save installer variables to the Java preference store, This can be used to communicate
installer variables to the uninstaller or to installers with different application IDs.

Finally, it is useful to access compiler variables in your own applications. For example, the version
number configured in the install4j IDE can be accessed in your own application through com
i nstall4j.api.launcher. Variabl es.

78

A.13 Localization

On the "General Settings->Languages" step, you configure the languages that are supported by
your project. The following languages are available:

« Arabic [ar]

+ Chinese (Simplified) [zh_CN]
* Chinese (Traditional) [zh_TW]
« Croatian [hr]

« Czech [cs]

« Danish [da]

« Dutch [nl]

+ English [en]

« Finnish [fi]

« French [fr]

+ German [de]

+ Greek [el]

+ Hebrew [he]

* Hungarian [hu]

« ltalian [it]

+ Japanese [ja]

« Korean [ko]

+ Norwegian [no]

+ Polish [pl]

+ Portuguese [pt]

+ Portuguese (Brazilian) [pt_BR]
* Romanian [ro]

* Russian [ru]

+ Spanish [es]

+ Swedish [sv]

o Turkish [tr]

By default, only one language is shipped with the installer. This is called the principal language.
By adding additional languages, you can build multi-language installers. If none of the configured
languages match the locale at runtime, the principal language is used.

79

Languages N7

In this step, you can specify the languages that the generated installers should support. Your installers can have a fixed language
or they can be multi-language installers.

Principal language: English [en] AN 7]
Custom localization file: | \my_en.utfd P Edit 0

Choose additienal languages for the installer:

Language Custom localization file @ L
Danish [da] My_da.utfd
French [fr] My _froutf8

For multi-language installers, a language selection dialog is shown when the installer is started.
By selecting the Ski p | anguage sel ection di al og check box you can choose to show the
language selection only if the installer cannot find a match between a supported language and
the auto-detected locale.

The principal language setting can be overridden for each media file on the "Customize project
defaults->Principal language" step of the media wizard. In this way, you can build multiple
fixed-language installers, each with a different principal language.

B3 Media Wizard - Windows X
1. Media file type Override principal language for installer messages
2. Installer options
3, Data files In this step you can override the default principal language settings for the project.
4, Executable processing
5. Bundled JRE Use project default
6. Customize project defaults £ Override principal language settings
)) Principal language: Spanish [es] hd
+ Compiler variables
+ Media file name Custom localization file: [BEES MNew
+ Principal language
+ Exclude compeonents To override the language externally, you can define the variable sys. language Id with
+ Downloadable compeonents the desired two-letter 150 code.
+ Bxclude files
+ Bxclude launchers
+ Bxclude installer elernents
- Look & Feel
- Auto-update options
7. Finished
© Help 4 Back Next P Finish Cancel

Localization mechanism

In projects, localized messages are obtained in one of two ways;

+ with i18n messages

The i18n variable system [p. 63] gives access to all messages with the syntax

${i 18n: nessagekKey}

To select a message, use the » variable selector button next to text fields and properties. For
messages with one or more parameters of the form {0} to {n}, the variable selector will
insert placeholder values like in

80

${i 18n: Di skSpaceWarni ng("arg 0", "arg 1")}

with the API
In scripts and in your custom code you can call

cont ext . get Message(" messageKey")
For messages with arguments, you pass the arguments with the vararg syntax:
cont ext . get Message(" Di skSpaceWar ni ng", 10000, 100)

The "Insert variable" tool bar button in script editors allows you to insert these calls with the
correct syntax for selected message keys.

B3 Edit X
Settings Edit Search Code Help
% B &2 SR % O
= & &0 e
Insett Inset Code § - Test
Copy Cut Pasie | . o Find Replace st Help
_:E' Please enter an expression (ne trai P Insert Installer Runtime Variable Ctrl+Shift-1 | that consists of
& regular Java code. The following p !:0:‘} Insert Compiler Variable Ctrl+Shift-2
J
- com.installdj.api.context.nstal = Insert Contents Of Text File Ctrl+5hift-F
-—A_F—‘mﬂ‘iﬂstﬂ”“-ti iscreensinstalf) jnsert [18M Message Cirl+Shift-2 |
The expected return type is boolean
Condition expression:
1 .

Custom localization

In addition to the standard messages that are displayed in the generated installer and uninstaller,
you will have your own messages that need to be localized in the same way. To configure these
messages, create a custom localization file for the principal language. A custom localization file
is a text file with key-message pairs in the format of

* a)ava properties file
A Java properties file has a . properti es file extension and must use ISO 8859-1 encoding.
All other characters must be represented as Unicode escape sequences, like \ u0823.

« a properties file with UTF-8 encoding

A properties file with UTF-8 encoding has an . ut f 8 file extension and has the advantage that
you do not have to use escape sequences. However, it might not be supported by some
localization tools.

81

You can create and edit custom localization files externally or directly in the install4j IDE with the
built-in editor:

1 Edit X
Settings Edit Search

$ B & P R

Inset Qverride
= ct Pame Find Repiz
ory Y = Varisble Message " Place

118n key-message pairs (key=message, one pair per line):

1 messageOne=The first message
2 messageTwo=The second message with parameter {0}

For each additional language, add a corresponding custom localization file that contains the
same keys. If a message is missing for an additional language, the message for the principal
language is used. The variable selection dialog for i18n messages will show all keys in the custom
localization file for the principal language.

E3 Select 118N Message X

=

Available 118N messages: Edi

Custom messages

J messageTwo
System messages

Filter:

Message in Principal Language

The first message

@ Help “ Cancel

If any standard message in the installer is not appropriate for your purpose, you can override it
by looking up the corresponding keys in the appropriate message file with the path

<install4j installation directory>/resource/ messages/ nessages_*. utf8

and defining the same key in your custom localization file. The built-in editor has an "Override
message" tool bar button that helps you to find the message of interest and inserts the key-value
pair in the editor.

82

(=]

Settings Edit Search

g’é A."' - /O Q

Insert | Qveride
Copy Cut Pam Find Repizc
Py Y ® Vadsble | Message " eplace

118n key-message pairs (key=message, one pair per line):

1 messageOne=The first message
2 messageTwo=The second message with parameter {0}

E3 Select System Message To Override X

System messages:
SetupAppTitle=Setup
SetupWindowTitle=Setup - {0}
UninstallAppTitle=Uninstall
UninstallAppFullTitle={0} Uninstall
InformationTitle= Information

ConfirmTitle= Confirm

Filter:

OK Cancel

Parameters in i18n messages

If required, you can use parameters for your messages by using the usual{ n} syntaxinthevalue
and listing the parameters with a function-like syntax after the key name. For example, if your
key name is myKey and your message value is

Create {0} entries of type {1}

you can use a variable
${i 18n: nyKey("5", "foo")}

in order to fill the parameters, so that the actual message becomes
Create 5 entries of type foo

However, in the context of localizing an installer this is rarely necessary. Should you need to
include a literal variable expression { n} in the message, you have to quote itlike' {' n"}".

Another way of adding parameters to i18n messages is to use compiler or installer variables.
Compiler variables are replaced at build time and installer variables are replaced at runtime. For
example:

nessageW t hConpi | er Vari abl e=Titl e for ${conpiler:sys.full Nane}
nessageW thlnstal |l erVariable=Installing to ${installer:sys.installationDir}

83

A.14 VM Parameters

VM parameters can be passed to generated launchers [p. 36] in a variety of ways: You can specify
fixed VM parameters, pass them on the command line or add them to a text file where the user
or your application can edit them.

Fixed VM parameters

Fixed VM parameters can be configured in the launcher wizard [p. 36] where you can use compiler
variables [p. 63] to handle platform-specific changes or launcher variables [p. 63] to use
runtime-dependent paths.

E Modify Launcher X
1. Select type Configure Java invocation
2. bxecutable info
3.lcon VM Parameters: | -Dapple.laf.useScreenMenuBar=true r Q@
4. Java invocation
Allow VM passthrough parameters (e.g. -J-Xmx256m) 0
+ Native libraries Configure Version-Specific VM Parameters
+ Preferred VM
+ Qverride Java version o Ll o ez 3pei 9
5. VM optiens file LJ Directory classes o
6. Splash screen
7. Finished
Main class from = Class path ¥ | HelleGui P~ @
Arguments for main class: (K]
¥ Advanced Options
@ Help 4 Back Next P Finish Cancel

install4j has the ability to add specific VM parameters depending on the Java version. To set this
up, click on the Configure version specific VM parameters button. In the dialog, add rows for each
range of Java versions that should receive specific VM parameters. If the Java version of the JVM
that is used at runtime matches a configured version expression, the associated VM parameters
will be appended to the common VM parameters. The search is stopped at the first matching
entry. The syntax for the Java version expressions is explained by the help icon on the table
header.

84

B3 Configure Version-Specific VM Parameters

Java Version Expression @)
17

VM Parameters
-KX:MaxPermSize=256m

18

| -X¥:MaxMetaspaceSize=256m

x

If the Java version of the JVM that is used at runtime matches a configured version expression, the associated VM parameters
will be appended to the common VM parameters. The search is stopped at the first matching entry.

&+

@ Help

Cancel

Passing VM parameters on the command line

When executing a generated launcher, arguments are passed to the main class, so you cannot
pass an argument like - Xmk800mand expect it to be interpreted as a VM parameter. To tell the
launcher that you want to use a specific command line argument as a VM parameter, you have
to prefix it with - J, as in

-J- Xnx800m

If this behavior is not desirable, you can deactivate it on the "Java invocation" step of the launcher
wizard.

*.vmoptions files

A common requirement is the capability to adjust the VM parameters of launchers after the
installation has been completed or to determine the VM parameters at installation time depending
on the environment like the target platform or some user selection in the installer.

For this purpose, a parameter file in the same directory as the executable is read and its contents
are added to the list of fixed VM parameters. The name of this parameter file is the same as the
executable file with the extension . vnopt i ons.

For example, if your executable is named hel | 0. exe, the name of the VM parameter file is
hel | 0. vnopti ons. For GUI launchers on macOS, an additional . viopt i ons file inside the
application bundle with the relative path Cont ent s/ viropt i ons. t xt is read.

In the . vnopt i ons file, each line is interpreted as a single VM parameter and the last line must
be followed by a line feed. install4j adapts your . vinopt i ons files during the compilation phase
so that the line endings are suitable for all platforms. For example, the contents of the VM
parameter file could be:

- Xnk256m
- Xms32m

The . vopt i ons files allow the installer as well as expert users to modify the VM parameters

for your generated launchers.

It is possible to include other . vnopt i ons files from a . viopt i ons file with the syntax

85

-include-options [path to other .vnoptions file]

Recursive includes are supported. You can also add this option to the fixed VM parameters of a
launcher. In that way, you do not have to create . vnopt i ons files for all your launchers, but you
can have a single . viopt i ons file for all of them.

This allows you to to centralize the user-editable VM options for multiple launchers and to have
. vropt i ons files in a location that can be edited by the user if the installation directory is not
writable. You can use environment variables to find a suitable directory, for example

-include-options ${APPDATA}\ My Appli cation\ny.vnoptions
on Windows and
-incl ude-options ${HOVE}/. nyApp/ ny. viopt i ons

on Unix. If you have to decide at runtime where the included . vinopt i ons file is located, use an
installer variable:

-include-options ${installer:vnmOpti onsTargetDirectory}/ my.vnoptions

and add a "Replace installer variables in a text file" action to replace it after you have set the the
vinOpt i onsTar get Di r ect or y installer variable to a suitable path with a "Set a variable" action.

In addition to the VM parameters you can also modify the classpath in the . vimopt i ons files
with the following options:

+ -classpath [classpath]
Replace the classpath of the generated launcher.

+ -classpath/a [classpath]
Append to the classpath of the generated launcher.

+ -classpath/p [classpath]
Prepend to the classpath of the generated launcher.

Instead of adding your own . vnopti ons to the distribution tree, you can set up an initial
. viopt i ons file on the "VM options file" step of the launcher wizard, either with a template or
with your own pre-defined content. Overwrite mode and file rights can also be configured in this
step.

86

E3 Modify Launcher X

1. Select type Generate file for user-editable VM parameters

2. Bxecutable info

3. lcon A VM options file is placed next to the launcher with the same file name and a . vmoptions extension. It
4, Java invocation contains one VM parameter per line for the launcher. If a VM options file is found in the distribution tree,
5. VM options file it takes precedence over the generated file.

6. Splash screen

N See the help topic on VM parameters for more information.
7. Finished

Do not generate a vmoptions file
Copy template file with explanations for user

o Generate with the following contents:

Include the common wmoptions file that is located in a user-writable location
-include-optiens &installervmoptionsTargetDirectoryl/hello.vmoptions

P Insert Variable

Owerwrite mode: | Never hd D
Unix file mode: 644 Reset To Default 0
@ Help 4 Back Next b Finish Cancel

Environment variables

You can use environment variables in the fixed VM parameters and in the . viopt i ons file with
the syntax ${vari abl eNane} replacing vari abl eName with the name of the environment
variable.

This environment variable syntax also works in the arguments text field and the classpath
configuration.

"Add VM options" action

With the "Add VM options" action [p. 169], you can handle VM parameter additions to the
. vropt i ons file in the installer. The action creates a. viopt i ons file if necessary or adds your
options if it already exists.

A number of VM parameters can only occur once, so the action replaces the following parameters
if they already exist:

¢ -Xmx
+ -Xms
+ -Xss

+ -Xloggc

+ -Xbootclasspath

+ -verbose

+ -ea/-enableassertions
+ -da/-disableassertions
+ -splash

as well as the install4j-specific classpath modification options that can be used in . viopt i ons
files.

87

Screens 8. Actions

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.

’ Installer (3 screens) [0 instal... +
* \ Startup (1 action) b 4
ik Welcome (1 action) [ID 2] p
ik Installation location (2 ac...

@ Load a responsefile [1...

) Add VM options [ID 24]

i¢ Installation components [...

k- Installation (3 actions) [ID...

f— a
@k | Finish [ID 20]

1+ Uninstaller (4 screens) [I0 u.. é’g’

o’.’

fa)

To set an - Xnx value to a fraction the total memory of the target system, you can use a "Set a
variable action" that calculates the numeric part of the - Xmx value using the utility method
Syst em nf 0. get Physi cal Menory(). In the second step you use that variable in the "VM
options" property of the "Add VM options" action. For example, if you want to set the maximum
heap size to 50% of the total memory, you do the following after the "Install files" action:

Configuration
Launcher

VM options

mac0S

Target file on macOs

Error Handling

[Select a launcher]

Contained in the application bundle
Failure strategy Continue on failure
Error message

Control Flow

Condition expression

Rollback barrier

Can be executed multiple times

Privileges

Action elevation type

Add VM options
Adds VM optiens for a launcher by modifying or creating a . vmoptions file or by

changing the Info.plist file. This action will be automatically reverted by the 'Uninstall files'

action.

1. Add a "Set a variable" action with variable name "xmx" and a script of

"-Xnx" + Mat h. round(Syst em nfo. get Physi cal Memory() * 0.5 / 1024 / 1024) + "ni

2. Add a "Add VM options" action with VM options

${installer:xnx}

88

A.15 JRE Bundles

When deploying a Java application, it is recommended to bundle a JRE. While a JRE with the
required version may be available in a controlled environment, it is generally far less error-prone
to ship a JRE with each media file. Any JRE bundle that is installed by install4j is private to your
application and will not interfere with other applications.

install4j offers two ways to create JRE bundles. You can either let install4j download JDK archives
from well-known OpenJDK providers and create JRE bundles from them on the fly, or you can
create JRE bundles yourself from installed JREs.

How JRE bundles work at runtime

install4j automatically adjusts the JRE search sequence [p. 36] of all generated launchers and
includes the bundled JRE as the first choice. A bundled JRE is used automatically by the installer,
the uninstaller, custom installer applications and the generated launchers.

A bundled JRE will always be distributed inside the installation root directory [p. 14], on Windows
and Linux/Unix in the directory

<installation directory>/jre
and on macOS in
<content directory>/.install4j/jre.bundle

The content directory is available from the installer runtime variable sys. content Di r and
resolves to the installation directory for folder media file types and Cont ent s/ Resour ces/ app
for archive media file types. The actual location of the JRE installation directory is available from
the installer runtime variable sys. pr ef err edJr e after the "Install files" action has run.

When you update your application and include a new JRE bundle, the old JRE bundle will be
deleted prior to the installation, so that any files left over from the old JRE cannot interfere with
the new JRE. With the "Update bundled JRE" property of the "Install files" action you can disable
updates of JRE bundles.

Generated JRE bundles

On the "General Settings->JRE Bundles" step, you can use the release chooser dialog to select a
release from which you would like to create the JRE bundles. The available platforms are listed
next to each release. The standard platform IDs are

* Wi ndows- antd64 for 64-bit Windows
* wi ndows- x86 for 32-bit Windows

* macos- and64 for macOS on x64

* macos- aar ch64 for macOS on ARM
* |i nux- and64 for 64-bit Linux

* |i nux-x86 for 32-bit Linux

Other platforms may be provided by the DK providers and are usable in the Linux/Unix media
files.

89

By default, AdoptOpen|DK "is set as the JDK provider and is recommended for general purpose
usage. For JavaFX applications, the Liberica® and the Zulu" providers are convenient, because
JavaFX is already included and you don't have to work with separately downloaded JMOD files.
Liberica also offers an especially wide range of Linux architectures. For Swing desktop applications,
the JetBrains Runtime “is the best choice because it contains a lot of fixes that are not included
in the upstream OpenJDK. Finally, Amazon Corretto is an Open)DK distribution that focuses

on including additional fixes and patches from the main branch and other sources into older
releases.

Oh +* 2 =] i —
H o # % & 2 O
Mew Open Save Project Build Dry Test Stop Show
Droject Project Project Repom | Project Run Insaler Buid IDs =3
General Settings JRE Bundles - 7
In this step, you cenfigure the JDK that will be used for generating JRE bundles that can be
Application Info distributed with yeur media files.
4 JRE Bundles
DK release: | AdeptOpenIDK * | 15dk-15.02+7 || @ | Show All Modules
Search Sequence
Included Medules
Languages X X X X
Which modules are included in a JRE bundle is determined from 3
N Show Included Modules
Media File Options sources, separately for each media file.
Code Signing E] The B Select Release X

Compiler Variables
The 15

Merged Projects " jolk-15.0.2+7 [aix-ppctd, linux-aarchBd, linux-amded, linux-arm, linux-ppcé

E] Sel 7 jok-15.0.1+8.1 [ma 4]
Project Options Y jdk-15.0.1+9 [a 2

. |) jdk-15+36 [aix-ppc6d,
Files 14

13
@ Launchers

12
- “ Cancel

Selecting a release folder node in the chooser dialog rather than a node for a specific release
willinsert a key ending in/ | at est . At compile time, the latest release that includes the required
platform will be taken.

To add new JDK providers, an SPI is provided in r esour ce/ j dk- provi der . j ar . The associated
Javadoc in the archive r esour ce/ j dk- pr ovi der - j avadoc. j ar has more information.

Downloaded JDK bundles contain all kinds of modules that you do not need in your distribution.
On the other hand, you may have a set of JMODs that have to be linked into the JRE bundle, such

as JavaFX®. With your configuration in the module selector you can include a base set of modules,

single named modules and additional J]MODs. By default, a "JRE" with commonly used modules
is linked, but the module sets "Minimum" and "All" are also available.

install4j always adds modules that are required by the install4j runtime. This includes the j ava.

deskt op module which is required even if you only want to create console installers or archives.
In addition, install4j scans the module requirements of your generated launchers [p. 36] and
adds them automatically. With the Show included modules button, you can show the actual list

1
2

https://adoptopenjdk.net/

https://bell-sw.com/
3

4
5
6

https://confluence.jetbrains.com/display/JBR/JetBrains+Runtime
https://aws.amazon.com/de/corretto/

)
)
) https://www.azul.com/downloads/zulu-community/?package=jdk
)
)
)

https://openijfx.io/

90

https://adoptopenjdk.net/
https://bell-sw.com/
https://www.azul.com/downloads/zulu-community/?package=jdk
https://confluence.jetbrains.com/display/JBR/JetBrains+Runtime
https://aws.amazon.com/de/corretto/
https://openjfx.io/

of modules that will be added to the JRE bundle. In Java 7 and Java 8 there is no module system,
so the entire JRE is bundled for those versions.

JRE Bundles N7

In this step, you configure the JOK that will be used for generating JRE bundles that can be distributed with your media files.

IDK release: | AdoptOpenlDK odules

Ed Define Module Entry x
Included Modules
Entry Type

Which modules are included ina JREb Es
0 Selected JDK Modules Default JDK modules JMOoD JMOD directory

E] The minimum medule requirem i)

E] The module graph of all include Sl s 4
Exclude modules)

E] Selected additional modules G Add or exclude one or more moedule names from the selected JDK separated by

5 Module set Common JRE commas. Use the chooser button to select modules,

In the "Bundled JRE" step of the media wizard, the "Generate a JRE bundle" option is selected by
default. You can, setitto "Do not bundle aJRE" in order to create media files without JRE bundles.
Furthermore, you can customize the common JRE bundle configuration.

In addition to overriding the JDK provider and the release, you can specify additional modules
and JMOD files that should be included for the current media file. The Show included modules
button on this step uses the JDK bundle for the target platform unlike the corresponding button
on the "General Settings->JRE Bundles" step which uses the JDK bundle for the current platform.
This can lead to slight differences because JDKs contains platform-specific modules.

91

B Media Wizard - Windows >

1. Media file type
2. Installer options

Bundle a JRE with your application

3. Data files You can bundle a JRE with your application. The extracted JRE will be placed in the jre folder below your
4, Executable processing installation root directory. All launchers in this media file will use this JRE as their first choice,
5. Bundled JRE
© Generate a JRE bundle @
- JRE bundle installation Override JDK release
6. Customi ject default:
L Additional modules:
7. Finished

't Module jdk.compiler o
JMOD directory javafx\windows

.y
Use Pack200 (Java 8 and lower) @) Show Included Modules
Use a pre-created JRE bundle @
Do not bundle a JRE
@ Help 4 Back Next b Finish Cancel

For Unix/Linux media files, the actual platform must be defined on the "Bundled JRE" step of the
media wizard. By default, it is set to | i nux- and64 which stands for 64-bit Linux. The chooser
button displays a dialog with all platforms that are available for the selected release.

B3 Media Wizard - Unix/Linux GUI installer X

1. Media file type
2. Installer opticns
3. Data files ou can bundle a JRE with your application. JRE bundles may not werk on specialized Linux distributions
4. Bundled JRE where commen libraries for the selected bitness are not installed.

Bundle a JRE with your application

The extracted JRE will be placed in the jre folder below your installation root directory. All launchers in this

* JRE bundle installation media file will use this JRE as their first choice.

+ JRE Search Opticns
5. Customize project defaults D Generate a JRE bundle &)

E. Finished
Override JDK release

Ij\atform: linux-amdéd » IO

Additional modules:

If Java 8 is bundled, you can optionally deactivate the Pack200 compression for JAR files in the
JRE. In archives, for example, these JAR files are decompressed the first time when a generated
launcher is executed, adding a possibly undesired lag. That is why Pack200 compression is not
selected by default for archive media files. Pack200 compression is unavailable for macOS single
bundle archives where the signature requirements forbid the modification of any included files.

install4j will cache both downloaded JDK bundles as well as generated JRE bundles in the JRE
cache directory

%4 OCALAPPDATA% i nst al | 4j \ v<ver si on>\ cached_jres

on Windows.

92

~/ Li brary/ Caches/instal | 4j / v<ver si on>/ cached_j res

on macOs, and
.caches/install4j/v<version>/cached_jres

on Linux and Unix where the root directory can be modified with the environment variable
XDG_CACHE_HOME.

You can move the contents of this directory including the subdirectories "original" and "generated"
to another machine to avoid downloads and speed up compilation. You can also delete this
directory to force install4j to re-download all JDK bundles and generate new JRE bundles.

Pre-created JRE bundles

You can create a JRE bundle from any installed JRE on your file system. install4j offers the "Create
a JRE bundle" wizard in the "Project" menu to make this task as simple as possible.

B3 Create JRE Bundle For installd X

1. Welcome Select the JRE
2. Select JRE

3. Bundle options
4. Modules created.
5. Create bundle
6. Finished

Please choose the Java heme directory of the JDK for which a JRE bundle should be

The JDK coenfigured on the General Settings-=JRE Bundles step must have the same
majer versicn number, otherwise the downleaded JDK tools that are required to preduce
the JRE bundle will not work.

ChUsershingojdks'jbrsdk-11_0_9_1-b1145.63

© Help 4 Back Next P Cancel

If you wish to automate the process, a command line tool [p. 224] for building JRE bundles is
available with corresponding tasks in the Gradle, Maven or ant integrations.

Packaging your own JRE can be useful if you want to use JDK providers not supported by install4;
(such as the official Oracle JDKs), or if you want to use runtime images that were created by jlink

") The JRE bundle wizard only works for the platform you are running on. That means, to create
a JRE bundle for Windows, you have to run install4j on Windows, to create a bundle for Linux,
you have to run install4j on Linux.

All JREs are saved with at ar . gz extension to the root of the pre-created JRE directory which is

%4 OCALAPPDATA% i nst al | 4j \ v<versi on>\jres

on Windows.

) https://docs.oracle.com/en/java/javase/11/tools/jlink.html

93

https://docs.oracle.com/en/java/javase/11/tools/jlink.html
https://docs.oracle.com/en/java/javase/11/tools/jlink.html

~/ Li brary/ Application Support/install4j/v<version>/jres
on macOs, and
.local /share/install4j/v<version>/jres

on Linux and Unix where the root directory can be modified with the environment variable
XDG_DATA_HOVE.

Pre-created JRE bundles can be selected in the "Bundled JRE" step of the media wizards

B Media Wizard - Windows X

1. Media file type Bundle a JRE with your application
2. Installer options
3. Data files You can bundle a JRE with your application. The extracted JRE will be placed in the jre folder below your

4. Executable processing installation root directory. All launchers in this media file will use this JRE as their first choice.

5. Bundled JRE

Generate a JRE bundle Q
+ JRE bundle installation

6. Customize project defaults

7. Finished

If you would like to put your JRE bundles into a different directory, such as a directory in a
version-controlled location, you can copy the . t ar . gz file to that directory with the Copy Bundle
File button and choose "Manual entry" in the JRE bundle drop-down to enter the path to the
bundle file.

Dynamically downloaded JRE bundles

By default, JRE bundles are statically bundled and are always distributed along with your
application. A dynamic bundle is downloaded on demand. If the user already has a suitable JRE
installed, that JRE will be used. If there is no such JRE available on the target machine, the installer
will download the dynamically bundled JRE from the URL that you have specified on the "Bundled
JRE" step of the media wizard.

To enable the download on demand, you have to make the . t ar. gz JRE bundle archive file
available on a web server so that the configured HTTP downl oad URL will point to that bundle
archive. The URL has to be of the form https://ww. nyserver. coni somrewher e/
wi ndows- x86-11. t ar. gz. The build output displays the location of the JRE bundle file.

94

B Media Wizard - Windows >

1. Media file type
2. Installer options
3. Data files Bundle Type
4, Executable processing
5. Bundled JRE

Choose options for the installation of the JRE bundle

It is recommended to choose the static bundle option to include a JRE directly in the media file. This
guarantees that a suitable JRE is always available.

+ JRE bundle installation Static bundle o

6. Customnize project defaults Io Dynamic bundlel (7}

7. Finished
HTTP download URL:I https://myserver.com/bundles/windows-amdé4-11.0.9.1.tar.gz r @

Start download without user confirmation, if necessary 0

Installation options
Install as a shared JRE o
Install only if ne other suitable JRE is found)

Sharing opticns

Sharing |D for shared JRE installations: » @

@ Help 4 Back MNext P Finish Cancel

If the installer determines that there is no suitable JRE present, it will ask the user whether the
JRE should be downloaded. If the Start downl oad without user confirmation, if
necessary check box has been selected, that confirmation is skipped and the download starts
immediately.

If the download fails or is aborted by the user, the download URL will be displayed together with
instructions on where to place the downloaded bundle archive.

You can override the default JRE search in a Windows installer executable by passing the argument
- manual to theinstaller executable. The installer will then report that no JRE could be found and
offer you to locate one in your file system. If you have set up a dynamic JRE bundle, it will also
offer to start the download. This is a good way to test if your download URL is correct.

Shared JRE bundles

On Windows, Linux and Unix, it is possible to install JRE bundles as "shared", meaning that other
installers generated by install4j will be aware of these bundles. A shared JRE bundle will not be
uninstalled when the application that has installed the bundle is uninstalled itself.

B Media Wizard - Windows >

1. Media file type
2. Installer options
3. Data files Bundle Type
4, Executable processing
5. Bundled JRE

Choose options for the installation of the JRE bundle

It is recommended to choose the static bundle option to include a JRE directly in the media file. This
guarantees that a suitable JRE is always available.

+ JRE bundle installation Static bundle (7]
6. Customize project defaults © Dynamic bundle @
7. Finished
HTTP download URL: r @

Start download without user confirmation, if necessary (7]

Installation options
I Install as a shared JRE Io
Install only if no other suitable JRE is found ﬂ

Sharing opticns

Sharing ID for shared JRE installations: [7]

@ Help 4 Back Next P Finish Cancel

95

Note that installers generated by install4j will never install a JRE on the system path or make
Windows registry changes. The term "shared installation" only applies to applications distributed
with install4j. Other applications will not be able to use such a JRE.

Both the installer that installs the shared JRE as well as the installers that want to use the shared
JRE have to set the "Sharing ID" to the same string. This ensures that there is no sharing between
installers that have different requirements for the JRE, such as the included modules.

If you dynamically bundle a shared JRE for multiple installers, the bundle will only be downloaded
the first time when a user installs one of your installers. Subsequent installations of other installers
will find the shared JRE installation.

JRE bundle format

In special cases you might want to create or modify a JRE bundle programmatically, without using
the install4j IDE or the command line tools. This can be done with the standard GNU tools t ar
and gzi p. A JRE bundle for install4j is simply a file with the naming scheme:

[operating systenj-[architecture]-[JRE version].tar.gz

For windows bundles, the operating system name must be "windows", for macOS "macos", and
for Linux and Unix any name can be used. The . t ar . gz file contains the JREbi nand| i b folders
as top-level entries. The steps to create a bundle are outlined below:

cdjre

tar cvf mnix-x86-11.tar *

gzi p m ni x-x86-11.tar

cp mni x-x86-11.tar.gz $HOVE/ .| ocal /share/.install4j/v<version>/jres

First you change into the top-level directory of the JRE, then you tar all files and directories and
gzip the tar archive.

96

A.16 Services

Many applications have a component that has to runin the background without user interaction.
On Windows, this is called a "service", on Unix a "daemon", in install4j the term "service" is used
exclusively. install4j can generate service launchers for your application on all supported platforms.
On Windows, managing services is a particularly demanding area and so other service executables
that have not been generated by install4j are supported as well.

Generated service launchers

A service launcher will be generated if the selected executable type in the "Executable" step of
the launcher wizard is set to "Service".

Bl Modify Launcher X
1. Select type Configure executable
2. Executable info
Executable type: GUI application (7]
+ Redirection e e e @
+ Windows version info _ _
+ Windows manifest opticns @
+ Unix options Console application (7]
+ macOS options IO Service IO
+ Menu integration
- Auto-update integration Executable name: | hello_service 3 O
3. leon File set: @8 Default file set > 9
4, Java invocation
5. VM options file Directory: bin [7]
6. Splash screen
7. Finished Allow only a single running instance of the application €
Fail if an exception in the main thread is thrown O
(v] Change working directory to: . »| @
w Advanced Options
7] Help 4 Back MNext P Finish Cancel

There are no special requirements and interfaces that have to be used by your code. When the
service is started, the mai n method of the configured main class will be called just like for GUI
or console launchers. Also, there is no special "shutdown" interface that is notified when the
service is stopped. To perform cleanup, use the Runti ne. addShut downHook() method to
register a thread that will be executed just before the JVM is terminated.

If you define a service launcher, it will not run automatically after the installation. A generated
service launcher has to be installed and started explicitly. To do that, you have to add the following
actions to the installer:

* Install a service

This action registers a service with the system, so that it can be executed automatically when
the computer is started. By default, the name of the installed service is the launcher name
that is configured in the launcher section of the install4j IDE. In order to change the service
name you have to rename the launcher.

97

General

Service Hello World Service

Auto Start

Description A service that says hello every 2 seconds
Windows

Windows Arguments

Windows Dependencies

Windows Custom Display Name [Use service name]
Windows Prigrity Mormal
Account Local System

Keep Current Account
Restart on Failure

Interactive

Install a service

Installs a service. On Windows, this is dene by executing the service launcher with the
appropriate arguments. On Unix, if systemd is detected, a config file will be created in
fetc/systemd/ system, otherwise a link will be placed in /etc/init.d. On mac05, a
LaunchDaemon will be created. This action will be autematically reverted by the ‘Uninstall
files' action.

If @ helper process with elevated privileges has been created by the "Request privileges”
action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges” for mere information,

On Windows, if you require a user-configurable service name or if you wish to install the service
multiple times, use the method for external service launchers as described below.

+ Start a service

Installing a service does not start it immediately and you have to add this separate action to
actually run the service.

General

Service Hello World Service
For "Auto start installations” only

Error Handling

Failure strategy Continue on failure
Error message

Control Flow

Condition expression context.getBooleanVariable("installService")
Rollback barrier

Can be executed multiple times

Privileges

Action elevation type

Start a service
Starts a service by executing the service launcher with the appropriate arguments,
If @ helper process with elevated privileges has been created by the "Request privileges”

action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges” for mere information,

When the "Install Files" action runs and a previous installation is being updated, any running
services that are associated with the same executables are stopped.

Windows user accounts

On Windows, you can configure the user account that is used for running the service. There are
a few well-known user accounts, like "Local System" (the default) or "Local Service" that you can
choose directly in the configuration of this action.

In some cases, you might want to create a separate user to run a service. install4j offers API
support for creating new user accounts withthecom i nst al | 4j . api . wi ndows. W nUser class.
If you would like to query the user for details on the user account, itis possible to do that without

98

using the API. On a configurable form, add a "Windows user selector" component and select the
"Show 'Create User' button" property.

cﬁ- Multi-line HTML label [ID 1562] o Configuration
offe Check box [ID 1564] x .
__I Vertical group (3 form components) |... P Variable for user creation flag userCreated
cﬁ Check box [ID 1572] Variable for local group localGroupForCreatedUser
T Y Variable for group creation ... groupCreated
.—-[Vertical group (2 form componen... - Password form component Password field [ID 1570