
The definitive guide to install4j
Building professional installers on the JVM

© 2025 ej-technologies GmbH. All rights reserved.

Index

Introduction ... 4

A Concepts .. 5
A.1 Projects ... 5
A.2 Building projects ... 11
A.3 Distributing files .. 14
A.4 File sets and components .. 20
A.5 Screens and actions .. 24
A.6 Scripts ... 29
A.7 Generated launchers .. 40
A.8 Form screens ... 50
A.9 Layout groups .. 55
A.10 Styles ... 59
A.11 Look & feel ... 65
A.12 Variables ... 67
A.13 Localization .. 85
A.14 VM parameters .. 90
A.15 JRE bundles .. 95
A.16 Services ... 101
A.17 Elevation of privileges .. 106
A.18 Merged projects .. 112
A.19 Auto-update functionality .. 118
A.20 Checking for updates ... 123
A.21 Background auto-updates ... 129
A.22 Version numbers ... 133
A.23 Media files .. 135
A.24 Data files .. 142
A.25 Code signing .. 146
A.26 Apple App Store Submission ... 151
A.27 Styling of DMGs on macOS .. 154

B Configuring installer beans .. 158
B.1 Screens & actions step ... 158
B.2 Custom code .. 163
B.3 Configuring applications .. 165
B.4 Configuring screens .. 174
B.5 Configuring actions .. 180
B.6 Configuring groups ... 192

B.7 Configuring form components .. 195
B.8 Configuring layout groups ... 201
B.9 Configuring styles ... 205

C Generated installers .. 207
C.1 Installer modes .. 207
C.2 Command-line options ... 209
C.3 Response files .. 214
C.4 JRE search ... 216
C.5 HTTP requests ... 217
C.6 Updates .. 219
C.7 Error handling ... 221

D API .. 223
D.1 Installer API ... 223
D.2 Launcher API ... 227
D.3 Extensions .. 229

E Command line tools ... 231
E.1 Command line compiler ... 231
E.2 Pre-Created JRE Bundles ... 235
E.3 Gradle plugin ... 236
E.4 Maven plugin ... 243
E.5 Ant task ... 253

Introduction To Install4j
What is install4j?

install4j is a professional tool for building installers for multiple platforms, especially for
applications that run on the Java Virtual Machine.

Main features that distinguish install4j are:

• Flexible configuration of screens and actions
In your installers you can define your own flow of installer screens and installer actions [p. 24]
to gather user input and initialize your installation with it. Configurable form screens [p. 50]
allow you to create arbitrary forms that work in GUI and console mode [p. 207]. A rich set of
configurable actions handles a variety of tasks and is extensible with the API [p. 223].

• Generation of native launchers
install4j generates native launchers for console, GUI and service executables [p. 101]. These
launchers offer variety of features such as flexible module and classpath configuration,
version-specific VM parameters [p. 90], icons, splash screens and much more. At runtime,
there is launcher API [p. 227] that interacts with some of these features and with the variable
system of the installer.

• Auto-update functionality
The requirements for automatic updates [p. 118] are very individual, so install4j offers a
template-basemechanism forupdate-downloaders.Updatedownloaders are fully configurable
installer applications with their own flow of screens and actions, that can handles interactive
auto-update, mandatory auto-update at startup and background update.

• Bundling of Java Runtime Environments
Bundling a Java runtime [p. 95] is made easy with the pre-build JRE bundles and the bundle
creation tools in install4j. JRE bundles can also be downloaded on the fly if no JRE installation
is found.

The install4j UI is delivered as a desktop application. Building installers is not only possible in
the IDE, but alsowith the command line compiler [p. 231] aswell as the plugins for Gradle [p. 236],
Maven [p. 243] and Ant [p. 253].

How do I continue?

The "Concepts" section is intended to be read in sequence, with later help topics building on
the content of previous ones. The sections at the end are optional readings that should be
consulted if you need certain features.

We appreciate your feedback. If you feel that there's a lack of documentation in a certain area
or if you find inaccuracies in the documentation, please don't hesitate to contact us at
support@ej-technologies.com.

4

mailto:support@ej-technologies.com

A Concepts

A.1 Projects Overview

Project files

A project in install4j is the collection of all information required to build media files, the
deliverables that can be distributed to the target platforms. A project is saved to a single XML
file with an .install4j extension. Project files are platform-independent, you can open and
compile them on any supported platform. The compilation step will produce the media files
from the project definition. All paths that you enter in install4j are saved as absolute paths by
default. This allows you to move the project file to a different location on your computer, and
the compilation will still work. If you wish to use your project file on multiple computers or
platforms or compile your launchers with automatic build agents, it is more convenient to use
relative paths. On the "General Settings->Project Options" step, install4j provides an option to
convert all paths to relative paths when you save your project.

install4j keeps a list of recently opened projects under Project->Reopen. By default, install4j opens
the last project on startup. This behavior can be changed in the preferences dialog by choosing
Project->Preferences from themainmenu. You can pass the name of a project file as a command
line parameter to install4j to open it on startup. Also, the command line compiler [p. 231] expects
the project file name as its argument.

Contents of a project

The following paragraphs give a high-level overview of the elements that you can configure in
install4j. Each of the configuration sections in install4j as shown in the screenshots below
represents a top-level concept in install4j.

Typically, a project defines the distribution of a single application. An application has an
automatically generated application ID [p. 219] that allows installers to recognize previous
installations.

At the core of the project definition is the sequence of installer screens and actions [p. 24]. They
determine what the users see, what information they can enter and what the installer does.
install4j offers a lot of flexibility regarding the configuration of your installer. Besides creating
traditional application installers, install4j is equally suited to create small applications that
modify the target system in some way.

5

The install4j runtime is localized into many languages. You can configure your installers to
support one or multiple languages [p. 85].

Most installers install files to a dedicated directory and optionally to several existing directories
on the target computer. That's what the "Files" section [p. 14] in the install4j IDE is for. Here,
you define a "distribution tree", and optionally "installation components" which can also be
downloaded on demand [p. 142].

6

The actual installation of these files is handled by the "Install files" action which is part of the
default project template. If your installers should not install any files, you can remove that action
and ignore the "Files" configuration section.When the "Install files" action is executed, it creates
an uninstaller. The uninstaller offers the same flexibility as the installer and is configured in the
same way.

Unless the installed files are only static data, you will need application launchers to allow the
user to start your application. You can define one or several application launchers in the
"Launchers" section [p. 40]. Launchers generated by install4j have a rich set of configuration
options including an optional splash screen or advanced features like a single instance mode.
Configured launchers can also be "services" that run independently of logged-on users. install4j
offers special installation screens and actions for services.

7

install4j has many advanced features concerning bundling of JREs or the runtime-detection of
an installed JRE. Bundling of JREs [p. 95] is configured on the "JRE bundles" step and can be
refined on a per-media file basis. If you do not wish to bundle a JRE, you define Java version
constraints and a search sequence [p. 40] for both your installers and your generated launchers.
In this way, you ensure that the launchers run with the same JRE as your installers.

Finally, themedia file definitions define the actual executables that you distribute. They capture
platform-specific information and provide several ways to override project settings. You typically
define onemedia file for each platform.Multiplemedia files for the same platform can be added
as needed. Media files are either installers or archives. Archives simply capture the launchers
and the distribution tree. They are a limited way to create a distribution and might not be
suitable if you rely on the flexibility that is offered by installers.

8

Project reports

install4j projects can become quite complex, especially the definition of the installer can be very
hierarchical with hundreds of nested elements each of whichmay have important configuration
in their properties. To check all your project settings on a single page, or to print out your project
definition, install4j offers a project report. The action to create such a report is available in
the toolbar.When you generate a report, an HTML file is written to disk together with a directory
named install4j_images that holds all referenced image files.

If you are looking for certain text value in a property or a particular piece of code in one of your
scripts, use the search functionality in the browser when viewing the exported report to cover
all parts of the project.

IDs of project elements

All elements in projects that can be referenced at runtime, like installation components,
launchers, screens, actions, form components or media files have an automatically assigned
ID. You can toggle the display of IDs globally in the toolbar. You may need to use IDs when
using the API in scripts. Scripts are written in plain Java in a code editor provided by install4j.

If you would rather not reference automatically generated IDs in your scripts, you can specify
your own custom IDs. Custom IDs can be assigned by using the "Rename" action for the selected
element and selecting the "Custom ID" check box in the rename dialog. Custom IDs must not
start with a number. The numeric internal ID is never discarded. If you disable the custom ID
at a later point, the ID will be reverted to the previous numeric ID.

The "Insert ID" action in the script editor inserts custom IDs instead of the numeric IDs. All get.
..ById() methods in the API accept both the custom ID and the internal numeric ID. This
means that you can set a custom ID without breaking anything in the project.

9

Undo in all views

All changes in the install4j IDE can be undone with the undo toolbar button. The arrow on the
right side opens a list of changes in a popupmenu for inspection. Selecting one of these entries
undoes all changes up to an including the selected change. The same feature is available for
redoing undone changes.

10

A.2 Building Projects
You can build a project from the IDE or from the command line. The command line compiler
executable is bin/install4jc and takes the project name as an argument. On macOS, that
directory is inside the application bundle and can be shown in the Finder with the "Tools" toolbar
button. That same toolbar button also allows you to create symlinks for all command line tools
in /usr/local/bin so they can be directly invoked in a terminal.

There are plugins for Gradle [p. 236], Maven [p. 243] and Ant [p. 253] for configuring the build in
a way that is idiomatic for the respective build systems. In the end, all plugins invoke the
command line compiler and for each command line compiler option there is a corresponding
setting in the build system plugins.

When you start a build, install4j will check if all required information has been entered. If the
build has been started from the install4j IDE, the corresponding step will be activated, and the
offending setting will be focused, so it is recommended to try out your builds in the IDE first.

Build modes

There are three different buildmodes that correspond to different toolbar buttons in the install4j
IDE or different command-line options in the command line compiler.

When a regular build is started, themedia files [p. 135] are built and placed in themedia file
output directory that is configured on the "General Settings->Media File Options" step.

Previous media files are overwritten, but a single build may not produce the same media file
twice. On the "Customize project defaults->Media file name" step of the media wizard, you can
adjust the media file name if the global pattern resolves to the same name for multiple media
files. You can also use a compiler variable [p. 67] for themedia file output directory and override
it for each media file to avoid name clashes.

11

If you just want to check if the build will not produce any errors or warnings, you can start a
dry run. The media files will be built in the temporary directory but not moved to their final

location. For command line builds, use the --test option.

Building media files can take a long time, especially if you package a lot of files that have to be
collected and compressed. To facilitate faster development, install4j offers to build an installer
incrementally. The corresponding command-line option is --incremental.

This build mode is intended for testing changes that you make in the installer
configuration [p. 158] such as adding, removing or modifying screens, actions and form
components.

The action looks for the first media file in the "Media" step that can be run on the current
platform and has an installer media file type [p. 135]. The media file must be already built,
otherwise the action will terminate with an error message.

All scripts are recompiled and the installer configuration files are regenerated. The installed
files are taken from the full build of themedia file. If you change the definition of the distribution
tree [p. 14] and expect to see these changes in the installer, you have to rebuild the media file
with a regular build.

When the build is complete, the installer is started, so you can try out your changes immediately.
With respect to a full build, the compilation time is reduced substantially, typically to a couple
of seconds. A full build can take several minutes, depending on the number of files that are
included and the selected type of compression.

Selective building of media files

Instead of building all media files, you can build only a subset by explicitly selecting the desired
media files on the "Build" step.

This selection is persistent, but the command line build will still build all media files unless you
pass the --build-selected option. This allows you to build a suitable media file in the IDE
for testing without impacting the command line build on your build server.

To specify media files from the command line, pass the --build-ids=ID[,ID] or the
--media-types=T[,T] option. IDs of media files are visible in the "Media" step if the "Show
IDs" toolbar toggle button is selected. Selecting media files by their media type ID is useful if

12

you build differentmedia files on different platforms. The --list-media-types command-line
option prints the full list of supported media types and exits.

Faster builds during development

During development, you can speed up your build by compromising on the size of the produced
media files. By switching off LZMAandPack200 compression [p. 135], builds times canbe reduced
by 50% andmore. By disabling JRE bundling, the generated installer will start up faster, because
the JRE does not have to be unpacked. Finally, disabling code signing will prevent dialogs that
ask for keystore passwords from being shown.

All these options for making builds faster are also available for the command line compiler, the
correspondingoptions are--faster for disablingadvanced compressions,-disable-bundling
for ignoring JRE bundles and --disable-signing for building without code signing.

Trouble-shooting build failures

By default, basic progress information is shown in the build output and warning messages are
highlighted. Any errorwill stop the build, and the command line compiler will exit with a non-zero
return code. For debugging purposes, there are two options that give access to more detailed
information.

With the --verbose option, install4j prints more information about interesting events during
the build. For example, all compiler variable replacements are shown in detail. If the source of
an error message is not clear, switching on verbosemode can give youmore context about the
compilation phase that caused the failure. In addition, a compilation failure that occurs while
verbose mode is enabled will print the entire stack trace to the build output.

Secondly, the install4j compiler prepares its artifacts in a temporary directory which is deleted
after the build completes. With the --preserve option you can ask install4j to keep this
temporary directory so that you can inspect intermediate artifacts.

13

A.3 Distributing Files
In the "Files" step of the install4j IDE, you define your distribution tree, collecting files from
different places to be distributed in the generated media files. In addition, you can optionally
define installation components.

On the "Define Distribution Tree" step, you add and edit the structural elements that make up
the distribution tree. You can create your own directory structure and "mount" directories from
your file system or add single files into arbitrary directories. With drag and drop and
double-clicking on nodes you can modify an existing distribution tree.

On the "View Results" step, you then see the actual file tree as it will be collected and distributed
by the generatedmedia files [p. 135]. Go to this step to checkwhether your actions on the "Define
Distribution Tree" step actually produce the desired results.

Root container nodes

The top-level nodes in the distribution tree are called file sets. There is one "Default file set"
node that cannot be deleted or renamed. The relative paths of all files that are added to a file

14

set must be unique. See the help topic on file sets and installation components [p. 20] for more
information on how to use file sets.

Within a single file set, it causes an error at build time if the installation paths for two files collide.
For example, if you have added the contents of two different directories into the same folder
in the distribution tree and both directories contain a file file.txt, building the project will
fail with a corresponding error message. In this case, you have to exclude the file in one of the
directory entries. This is only an issue for files, subdirectory hierarchies on the other hand are
merged and can overlap between multiple directory entries and explicitly added folders.

You can create new file sets with the New File Set action in the add menu on the right side.
Each file set has its own "Installation directory" root. If you define custom roots that should be
present in multiple file sets, you have to duplicate them.

The child nodes of a file set are called installation roots. Their location is resolved when the
installer runs. There are two types of roots:

• The default root of the distribution tree is labeled "Installation directory" and has a special
icon. This is the directory where your application will be installed on the target system. The
actual directory location is dependent on user actions at the time of installation. In regular
installers, a user can select an arbitrary directory where the application should be installed.
For Linux package media files, a user can override the default directory with command line
parameters. For archives, the files are simply extracted into a common top-level directory.

For installers, the installation directory will only be created if you execute an "Install files"
action in the installer configuration [p. 158]. By default, the "Install files" action is added to
the "Installation" screen. If your installer should not create an installation directory, you can
ignore this root and remove the "Install files" action.

More information on the various installer modes is available in the corresponding help
topic [p. 207].

• If your application needs to install files into directories outside themain installation directory,
you can add custom roots to the distribution tree. This is done with the New Root action
in the add menu on the right side or in the context menu. The actual location of this root
is defined by its name and has to resolve to a valid directory at runtime.

There are several possibilities for using custom roots. The name of a custom root can be

• a fixed absolute path known at compile-time

This works for custom environments where there is a fixed policy for certain locations. For
example, if you have to install some files to D:\apps\myapp, you can enter that path as
the name for your custom root.

15

If you build installers for different platforms, that root is likely to be different for each
platform. In that case, you can use a compiler variable [p. 67] for the name of the custom
root and override its value for eachmedia file on the "Customize project defaults->Compiler
variables" step of the media wizard.

• an installer variable that you resolve at runtime

If you would like to install files into the directory of an already installed application, such
as a plugin for your own application, you can use an installer variable that you resolve at
runtime. Installer variables have an installer: prefix, such as ${installer:rootDir},
and can be set in a variety of ways [p. 67].

The most common case would be to add a "Directory selection" screen to the screen
sequence [p. 158] and set its variable name property to the variable that you have used as
the name of the custom root. For the above example, that would be rootDir, without the
${installer:...} variable syntax.

Alternatively, you could use a "Set a variable" action to determine the location
programmatically.

• a pre-defined installer variable

install4j offers several variables for "magic folders" that point to common directories, such
as ${installer:sys.userHome} which resolves to the user home directory or
${installer:sys.system32Dir}which resolves to thesystem32directory onWindows.
Have a look at the "Cross-platform variables" category in the installer variables selector
for a list of variables that are suitable for all platforms.

If a custom installation root is not bound at runtime or if it points to an invalid directory, the
contained files will not be installed and there will be no error messages. If you require error
handling, you can use a "Run a script" action before the "Install files" action with the
appropriate error message and failure strategy.

For archive media file types, custom installation roots are not installed. If you require these
custom roots for your installation, you cannot use archives.

16

An alternative way to redirect installed files to different directories is to use the "Directory
resolver" property of the "Install files" actions. Also, the "File filter" property of that action
can be used to conditionally install files. The use of these properties is only recommended if
you require their full flexibility. Otherwise, using custom installation roots and installation
components [p. 20] is a better approach.

Content nodes

Adding files to the distribution tree is done with the Add Files And Directories action in the
add menu on the right side or in the context menu. In the first step of the file wizard you

choose the source or the files:

• With a directory entry, you recursively add the contents of a selected directory. You have
the possibility of excluding certain files and subdirectories and exclude files based on their
file suffix. In the configuration wizard you can override the default settings for the overwrite
and uninstall policies as well as the Unix file and directory modes.

• Alternatively, you can add a number of single files, possibly from different locations, into a
single directory. Each selected file will be added as a separate node that has its own settings
and can be moved independently in the distribution tree.

With the Copy action you can add a file list from the system clipboard. The file list must
consist of file entries that are separated by line breaks or the standard path separator (";"
on Windows and ":" on Unix). Each file entry can either be absolute or relative. On the first

17

occurrence of a relative path, a directory chooser is shownwhere you select the root directory
against which all further relative paths should be resolved.

• Finally, files can be passed externally through a compiler variable. This can be useful if you
collect lists of files in your build tool and want to use that information to dynamically build
the distribution tree. The command line compiler [p. 231] as well as the Gradle [p. 236],
Maven [p. 243] andAnt [p. 253] plugins havemechanisms for setting compiler variables for the
build.

The string that separates different files in the variable value is configurable and set to the
platform-specific path separator by default.

Folder nodes

Fixed folder nodes can occur below the root nodes to build nested directory structures. Using
the "Edit entry" action on a fixed folder node allows you to edit the unix mode of the folder.

Usually, a directory structurewill be copied froma staged distribution directory, but fixed folders
are useful under several circumstances. For example, if you want to apply different top-level
prefix directories, you can add corresponding folder.

Also, fixed folders and single files in fixed folders have a higher precedence than folders and
files from directory entries. In this way, you override settings for certain folders or files. For
example, if a "contents of a directory" node includes the file a/b/c.txt, you can manually add
nested folders a and b and then add the single file node c.txt. You could then set a different
overwrite or uninstall policy for the file. Also, you could override theUnixmode of the directories.

Compiler variables as directory or file names

Using compiler variables [p. 67] as directory or file names in the distribution tree allows you to
make compile-time conditional includes. The following rules apply:

18

• if a directory node resolves to the empty string after variable replacement, the directory and
any contained entries will not be included in the distribution.

• if the source directory of a "contents of directory" node resolves to the empty string after
variable replacement, no files will be included by that entry.

• if the file name of a single file node resolves to the empty string after variable replacement,
no file will be included.

For conditions that are evaluated at runtime or for adding platform-dependent files, you should
use files sets [p. 20] instead.

File options

On the "File options" step, a number of settings determine the behavior of the installer and
uninstaller.When files are already present, you can choose a number of strategies for the "Install
files" actions by changing the "Default overwrite policy". Similarly, the "Uninstall files" action
decides what to do for installed files based on the "Default uninstall policy" setting. On Unix,
the "Install files" action assigns permissions to installed files and directories as configured in
the default Unix file and directory modes on this step. All these options can be overridden in
the configuration of the content nodes.

Other available options concern the compilation phase. You can choose the source of the file
modification times, specify a global pattern of files and directories that should be ignoredwhen
collecting files and select a strategy for what should happen if some specified files are missing
at build time.

19

A.4 File Sets And Installation Components
install4j offers two mechanisms to group files: File sets and installation components. File sets
are configured in the distribution tree [p. 14] and can be used in a variety of use cases as building
blocks for your installers. Installation components are presented to the user at runtime and
mark certain parts of the distribution tree that have to be installed if the user chooses an
installation component.

Both file sets and installation components are optional concepts that can be ignored if they are
not required for an installer project: There is always a "Default file set" to which you can add
files in the distribution tree and on the "Installation components" step you do not have to add
any components.

File sets

File sets are a way to group files in the distribution tree. When you need to select files in other
parts of the install4j IDE, you can select the file set node instead of selecting single files and
directories. Each file set has a special "Installation directory" child node that maps to the
installation directory selected by the user at run time. Custom installation roots are defined
separately for different file sets. If you require the same installation root in two different file
sets, you simply define the same root twice.

The installation of file sets can be toggled programmatically at run time. The code snippet to
disable the installation of a file set at run time is

context.getFileSetById("123").setSelected(false);

if the ID of the file set is "123". You could insert this snippet into a "Run script" action that is
placed before the "Install files" action on the Installer->Screens & Actions step [p. 158]. File set
IDs can be displayed by toggling the "Show IDs" toolbar button.

A common use case is to exclude platform-specific files from certainmedia files. You can define
file sets for different platforms and exclude all unneeded file sets in the "Customize project
defaults->Exclude files" step in the media wizard. This is an example of how to use file sets at
design time in the install4j IDE.

Within one file set, all relative paths must be unique. However, the same relative path can be
present in different file sets. Suppose you have different DLL files forWindows 8 and forWindows
10 and higher. You can create two file sets so that the installer contains both alternative versions.
Once you find outwhether you run onWindows 8 or onWindows 10 and higher, you can disable
the file set that should not be installed with the code snippet shown above. By default, all

20

included file sets are installed. If the same relative path occurs twice, it is undefined which
version is used. In this case you have tomake sure to disable the file sets that are not appropriate.

Installation components

If you define installation components, the installer can ask the user which components should
be installed. In the configuration of an installation component, you mark the files that are
required for this component. A single file or directory can be required by multiple installation
components.

Installation components are defined in a folder hierarchy. This means you can have groups of
installation components that are enabled or disabled with a single click. Most options in the
configuration of an installation component are used by the "Installation components"
screen [p. 174]. They decide how the installation component is presented to the user, whether
it should be initially selected or mandatory, and if it has dependencies on other installation
components that should be automatically selected. To internationalize the name of the
component for different media files, use custom localization keys [p. 67].

The user will only be able to choose installation components if an "Installation components
selector" form component is present somewhere in the installer. The "Installation components"
screen that is part of the default project template contains that form component and is only
displayed at runtime if you have defined any installation components.

Another important feature of installation components is that they can be marked as
"downloadable". If you configure the download option [p. 142] in the "Data files" step of the
media wizard, separate data files will be created for the downloadable components.

21

install4j also offers a two-step selection for installation components: In the first step, the user
is asked for the desired "installation type". An installation type is a certain selection of installation
components. Typical installation type sets are [Full, Minimum, Customize] or [Server, Client, All].
The display and the configuration of installation types is handled by the "Installation type"
screen.

For each configured installation type, you can decidewhether the user should be able to further
customize the associated installation component selection in the "Installation components"
screen or not. If the installation type is not customizable, the installer variable sys.

preventComponentCustomization is set to true and a subsequent "Installation components"
screen is not displayed.

22

The IDs of installation components can be used in expressions, scripts and custom code if you
want to check whether the installation component has been selected for installation or not. A
typical condition expression for an action would be

context.getInstallationComponentById("123").isSelected()

if the ID of the component is "123". In this way you can conditionally execute actions depending
on whether a component is selected or not.

23

A.5 Screens And Actions
With screens and actions you configure two separate aspects of the installer: the user interface
that is displayed by your installer and uninstaller on the one hand and the actual installation
and uninstallation on the other hand. Each screen can have a list of actions attached that are
executed when the user advances to the next screen.

install4j offers a wide variety of pre-defined screens and actions that you can arrange according
to your needs. Some of these screens and actions are generic and can be used as programming
elements, such as the "Form" [p. 50] screen and the "Run script" action.

While this chapter presents an overview of the concepts related to the screen and action system,
a later section in the documentation [p. 158] discusses how to configure the related beans in the
install4j IDE in detail.

Installer applications

Building an install4j project createsmedia files which are either installers or archives. An installer
is defined by a sequence of screens and actions and is executed when the user executes the
media file. Installers usually install an uninstaller which removes the installation. The uninstaller,
too, is a freely configurable sequence of screens and actions. Archives do not have an installer
or uninstaller, and the user extracts the contained data with other tools.

In addition to the installer and uninstaller, you can define custom installer applications [p. 165]
that are added to the distribution tree. These custom installer applications can use the same
screens and actions that the installer can use. Unlike installer and uninstaller, they are also
added to archives. They can be used to write separate maintenance applications for your
installations that are either invoked directly by the user or programatically by your application.

The most common use case for custom installer applications is to create auto-updaters.
Auto-updaters are described in detail in a separate help topic [p. 118].

Executing first-run tasks for archives

Another important use-case for custom installer applications is to create a first-run installer for
archives. While there is no need to install files to the installation directory in the case of an
archive, therewill usually be screens and actions that set up the environment of your application.

In order to avoid the duplication of screens and actions, install4j offers the possibility to create
links to screens and actions. In this way, a custom installer application can include a partial set

24

of the screens and actions in the installer. Such a first-run installer should be added to the
.install4j runtime directory so that it is not exposed as part of the application. This is done
by specifying its "Executable directory" property as the empty string.

Such a first-run installer application is invoked programatically with the com.install4j.api.
launcher.ApplicationLauncher utility class. To determine whether any of the generated
launchers of an installed archive are run for the first time, call

ApplicationLauncher.isNewArchiveInstallation()

at the beginning of your main method. If it returns true, call launchApplication or
launchApplicationInProcess to execute the installer application. Check the Javadoc for
detailed information about this API.

Control flow

At runtime, install4j instantiates all screens and actions and organizes the screen flow and action
execution. There are a number of aspects regarding this control flow that you can customize
in the install4j IDE.

Both screens [p. 174] and actions [p. 180] have an optional "Condition expression" property that
can be used to conditionally show screens and execute actions. Screens have a "Validation
expression" property that is invoked when the user clicks on the "Next" button allowing you to
check whether the user input is valid and whether to advance to the next screen. These are the
most commonly used hooks in the control flow for "programming" the installer.

All "expression" properties in install4j can be simple Java expressions or scripts of Java code as
described in the help topic on scripts [p. 29].

Another hook into the control flow regarding screens is the ability to declare every screen as a
"Finish" screen, meaning that the "Next" button will be replaced with a "Finish" button and the
installer will quit after that button is pressed. Consider applying the "Banner" style to the screen
in that case because it alerts the user that a special screen has been reached.

If you use a series of screens to get user input, users expect to be able to go back to previous
screens in order to review or change their input. This is fine as long as no actions are attached

25

to the screen. When actions have been executed, the question arises what should happen if
the user goes back to a screen with actions and clicks on "Next" again.

By default, install4j executes actions only once, but thatmay not bewhat youwant if the actions
operate on the user input in a screen. Because install4j has no way of knowing what should
happen in this case, it applies a "Safe back button" policy by default: if the previous screen had
actions attached, the back button is not visible. You can change this policy for each screen,
either making the back button always visible or always hidden. The "Can be executed multiple
times" property of each action is relevant in the case where you make the back button always
visible for the next screen.

Rollback behavior

At any time in the installation sequence the user can hit the "Cancel" button. The only exception
in the standard screens is the "Display progress" form template screen where the "Cancel"
button has been disabled. install4j is able to completely roll back any modification performed
by its standard actions.

However, the expectation of a user might not be that the installation is rolled back. Consider a
series of post-installation screens that the user doesn't feel like filling out. Depending on the
installer, the user may feel that installation will work even if the installer is canceled at that
point. A complete rollback would then not be desirable. For this purpose, install4j offers the
concept of a "rollback barrier". Any action or screen can be a rollback barrier which means that
any actions before and including that action or screen will not be rolled back if the user cancels
later on.

By default, only the "Installation screen" is a rollback barrier. Thismeans that if the user cancels
while the actions attached to the installation screen are running, everything is rolled back. If
the user cancels on any of the following screens, nothing that was performed on or before the
installation screen is rolled back. With the "Rollback barrier" property of actions and screens
you can make this behavior more fine-grained and customize it according to your own needs.

Error handling

Every action has two possible outcomes: failure or success. If an action succeeds, the next action
is invoked.When the last action of a screen is reached, the next screen is displayed.What should
happen if an action doesn't succeed? This depends on how important the action is to your
installation. If your application is not able to run without the successful execution of this action,
the installer should fail and initiate a rollback. However, many actions are of peripheral

26

importance, such as the creation of a desktop link. Declaring that the installer has failed because
a desktop link could not be created and rolling back the entire installation would be
counterproductive. That's why the failure of an action is ignored by install4j by default. If a
possible failure of an action is critical, you can configure its "Failure strategy" to either ask the
user on whether to continue or to quit immediately.

Standard actions in install4j fail silently, for example, the "Create a desktop link" action will not
display an error message if the link could not be created. For all available failure strategies, you
can configure an error message that is displayed in the case of failure. The "Install files" action
has its own, more granular failure handling mechanism that is automatically invoked after the
installation of each file.

Standard screens and form templates

install4j offers a series of standard screens that are fully localized and serve a specific purpose.
These standard screens have a preferred order. When you insert such a screen, it will insert
itself automatically in the correct position. This order is not mandated, you can re-order the
screens in any way you like, however, they may not yield the desired result anymore. If, for
example, you place the "Services" screen after the screen with the "Install service" actions
(typically the "Installation" screen), the "Services" screen will not be able to modify the service
installations anymore and the default values are used.

The form templates don't have a fully defined purpose, their messages are configurable and
empty by default. For example, the "Display progress" screen is similar to the "Installation"

27

screen, however, the title and the subtitle are configurable. For templates also do not have any
restriction with respect to howmany times they can occur. While the "Installation" screen (and
other screens) can occur only once for an installer, the "Display progress" screen could be used
multiple times.

Form templates are built with form components and can be a starting point for developing your
own screen. Forms allow you to freely define the contents of a screen and are described in a
separate help topic [p. 50].

28

A.6 Scripts
All configurable beans on the Installer->Screens & Actions [p. 158] step have script properties
that allow you to customize their behavior, such as executing some code when a button is
clicked or a custom initialization of a text field. Also, control flow in the screen and action system
is done with scripts and expressions.

Design-time JDK

By default, install4j uses the bundled JRE [p. 95] for compiling scripts up to the Javamajor version
that install4j runs with itself. For JRE bundles with higher Java major versions, install4j uses the
current JRE instead.

For special requirements, you can invoke "Settings->Java Editor Settings" in the script editor
and select a different JDK for that purpose. The list of available design-time JDKs is saved globally
for your entire install4j installation and not for the current project. The only information saved
in your project is the name of the JDK configuration. In this way, you can bind a suitable JDK on
other installations and on other platforms.

The design-time JDK is used for the following purposes:

• Code completion
The Java code editor will show completion proposals for classes and methods in the JDK
runtime library from the design-time JDK.

• Context-sensitive Javadoc help

If the design-time JDK from the bundled JRE configuration is used, the corresponding Javadoc
from the Oracle website is shown.

If you manually configure a design-time JDK, you can enter a Javadoc directory to get
context-sensitive Javadoc help in the code editor for all classes in the JDK runtime library. By
default, context-sensitive Javadoc help is only available for the install4j API.

29

• Code compilation
install4j uses a bundled eclipse compiler, so it does not use the compiler from the design-time
JDK. However, it needs a runtime library against which scripts entered in the installer
configuration [p. 24] are compiled. The version of that JDK should correspond to theminimum
Java version for the project. This is automatically the case if the design-time JDK from the
bundled JRE configuration is used. For a manually selected design-time JRE, if its minimum
Java version is higher than theminimum Java version of the project, runtime errors can occur
if you accidentally use newer classes and method.

The code editor

The Java code editor is shown for script properties on the Installer->Screens & Actions [p. 158]
step for any configurable bean including screens, actions, form components and groups, or
when you edit the code for static fields andmethods on the Installer->Screens&Actions->Custom
Code [p. 163] step.

The box above the text editor shows the available parameters as well as the required return
type. If parameters or return types are classes - and not primitive types - they will be shown as
hyperlinks. Clicking on such a hyperlink opens the Javadoc in the external browser.

30

To get more information on classes from the com.install4j.* packages, choose Help->Show
API Documentation from the menu and read the help topic for the install4j API [p. 223].

A number of packages can be used without using fully qualified class names. Those packages
are:

• java.util.*
• java.io.*
• javax.swing.*
• com.install4j.api.*
• com.install4j.api.beans.*
• com.install4j.api.context.*
• com.install4j.api.events.*
• com.install4j.api.screens.*
• com.install4j.api.actions.*
• com.install4j.api.formcomponents.*
• com.install4j.api.update.*
• com.install4j.api.windows.*
• com.install4j.api.unix.*

You can put a number of import statements as the first lines in the text area to avoid using fully
qualified class names. For example:

import java.awt.Color;
import java.awt.EventQueue;

EventQueue.invokeLater(() -> {
 JTextField textField =
(JTextField)formEnvironment.getFormComponentById("12").getConfigurationObject();
 textField.setBackground(Color.RED);
});

If the gutter icon in the top right corner of the dialog is green, your script is going to compile
unless you have disabled error analysis in the Java editor settings that are accessible in the
menu of the script editor dialog.

In some situations, you may want to try the actual compilation. Choosing Code->Test Compile
from the menu will compile the script and display any errors in a separate dialog. Saving your
script with theOK button will not test the syntactic correctness of the script. When your install4j
project is compiled, the script will also be compiled and errors will be reported.

Expressions or scripts

Java code properties can either be expressions or scripts. install4j automatically detects whether
you have entered an expression or a script.

An expression does not have a trailing semicolon and evaluates to the required return type.
For example:

!context.isUnattended() && !context.isConsole()

31

The above example would work as the condition expression of an action and skip the action for
unattended or console installations.

A script consists of a series of Java statements with a return statement of the required return
type as the last statement. For example:

if (!context.getBooleanVariable("enterDetails")) {
 context.goForward(2, true, true);
}
return true;

The above example would work as the validation expression of a screen. If the variable with
name "enterDetails" is not set to true, it would skip two screens forward, checking the conditions
of the target screen as well as executing the actions of the current screen.

Script parameters

The primary interface to interact with the installer or uninstaller is the context which is nearly
always among the available parameters. The context provides information about the current
installation and gives access to variables, screens, actions and other elements of the installation
or uninstallation. The parameter is of type

• com.install4j.api.context.InstallerContext for screensandactions in the installation
mode

• com.install4j.api.context.UninstallerContext for screens and actions in the
uninstallation mode

• com.install4j.api.context.Context for form components.

Apart from the context, the available parameters include the action, screen or form component
to which the Java code property belongs. If you know the implementation class, you can cast
to it and modify the object as needed.

Many other useful static methods are also contained in the class com.install4j.api.Util,
for example, OS detection methods or methods to display messages in a way that works for all
installer modes:

if (Util.isMacOS()) {
 Util.showWarningMessage("This warning is only shown on macOS");
}

Editor features

The Java editor offers the following code assistance powered by the eclipse platform:

• Code completion

Code->Complete Code or the corresponding keyboard shortcut brings up a popup with code
completion proposals. Also, typing any character shows this popup if the "Show suggestions
as you type" setting is enabled and completions are available.

32

While the popup is displayed, you can continue to type or delete characters with Backspace
and the popupwill be updated accordingly. "Camel-hump completion" is supported,meaning
typing NPE and invoking code completion will propose NullPointerException among
other classes. If you accept a class that is not automatically imported, the fully qualified name
will be inserted unless the "Auto-import classes during code completion" setting is enabled,
in which case an import statement will be added at the top if required.

The completion popup can suggest:

• Variables and default parameters. Default parameters are displayed in bold font.
• Packages (when typing an import statement).
• Classes.When a constructor for an abstract class is completed,method stubs are inserted

if the "Insert method" stubs setting is enabled.
• Fields (when the context is a class).
• Methods (when the context is a class or the parameter list of a method).
• Code templates that expand when the TAB key is pressed. An example is "serr" or "syserr"

for writing to stderr with System.err.println().
• Staticmethods in special utility classes like com.install4j.api.Util, com.install4j.
api.SystemInfo or others. For example, if you start typing "show", then the com.

install4j.api.Util.showMessage(...)methods will be suggested.

You can configure code completion behavior in the Java editor settings.

33

• Parameter info

When the caret is in the arguments of a method call, Code->Parameter Info or the
corresponding keyboard shortcut brings up a popup with information about the various
overloaded signatures. The argument at the caret is shown in bold font. If you just performed
code completion, the selected signature will be selected in the popup.

• Caret highlighting
Other usages of the element at the caret are highlighted in the editor with corresponding
markers in the gutter. Write and read occurrences of fields and variables are colored
differently.

• Code-sensitive selection
With Edit->Extend Selection and Edit->Shrink Selection or their corresponding keyboard shortcuts
you can select containing code blocks. Invoke the actions repeatedly to cycle through larger
and smaller blocks.

• Problem analysis

The code that you enter is analyzed on the fly and checked for errors andwarning conditions.
Errors are shown with red underlines in the editor and with red stripes in the right gutter.

34

Warnings, such as unused variable declarations, are shown with yellow underlines in the
editor andwith yellow stripes in the right gutter. Hovering themouse over an error orwarning
in the editor as well as hovering the mouse over a stripe in the gutter area displays the error
or warning message.

The status indicator at the top of the right gutter is green if there are no warnings or errors,
yellow if there are warnings but no errors and red if there are errors. In the latter case, the
code will not compile and the installer cannot be generated. You can configure the threshold
for problem analysis in the Java editor settings.

For moving between problems, the actions Code->Navigate to Previous Highlighted Problem
and Code->Navigate to Next Highlighted Problemwith separate keyboard shortcuts are available.

When the caret is on a problem location, quick fixes may become available and can be
invoked with Code->Quick Fix or the corresponding keyboard shortcut. A popup will be
displayed with possible actions to fix the problem. When using the mouse, you can click on
the floating lightbulb to show the popup.

Quick fixes include:

• Removing invalid or unused imports
• Terminating unterminated strings
• Declaring unresolved variables
• Adding imports for unresolved types
• Fixing type mismatches
• Adding missing return statements
• Fixing instance access to static members
• Correcting visibility of overridden methods
• Correcting invalid modifiers
• Fixing invalid abstract methods
• Adding unimplemented methods
• Removing unused local variables
• Removing unnecessary casts

35

• Removing dead code

• Context-sensitive Javadoc

Help->Show Javadoc or the corresponding keyboard shortcut opens the browser with the
Javadoc page that describes the element at the cursor position. Javadoc for the Java runtime
library can only be displayed if a design-time JDK is configured and a valid Javadoc location
is specified in the design-time JDK configuration.

• Code formatting

Code->Complete Code or the corresponding keyboard shortcut reformats the selected code
or the entire code if no code is selected. The code style for reformatting can be configured
in the Java editor settings by supplying an Eclipse formatting profile. Eclipse XML profile files
are supported by Eclipse, IntelliJ IDEA and the RedHat Java plugin of VS Code. To export them
from your favorite IDE, perform the steps below:

• Eclipse
In the Eclipse IDE, under Preferences->Java Code Style Formatter, edit the profile and click
on "Export" next to the profile name.

• IntelliJ IDEA
In the IntelliJ IDEA settings, under Editor->Code Style, open the action menu next to the
scheme and choose Export->Export Eclipse XML File.

• VS Code
In VS Code, if you use the RedHat Java plugin, the Eclipse XML file is the way formatting
settings are configured, and you can use the same one as specified in the plugin settings.

If the file contains multiple profiles, the first one will be used. The tab size setting from the
code formatting will be ignored because it is a separate option in the Java editor settings. In
the install4j code editor, tabs are always converted to spaces.

When you are typing a closing brace, the corresponding block will be reformatted. You can
disable this behavior with the "Format block when entering a closing brace" option in the
Java editor settings.

• Import organization
With Code->Organize Imports or the corresponding keyboard shortcut you can clean up the
imports at the top of the script.

• Refactorings

The context-dependent set of available refactorings is invoked with Code->Refactor or the
corresponding keyboard shortcut.

36

A wide range of local refactorings is available including

• Extracting and inlining variables
• Converting between lambdas and anonymous classes
• Converting between var and explicit types
• Adding static imports
• Converting to enhanced for loops
• Surrounding with try-catch
• Adding explicit lambda parameters
• Changing between lambda expression and lambda block
• Converting lambdas to method references
• Converting string concatenations to MessageFormat, StringBuilder or String.format()

constructs or to text blocks
• Converting switch statements to switch expressions
• Joining and splitting variable declarations with variable definitions
• Inverting calls to Object.equals()

The rename refactoring has its own action Code->Renamewith a separate keyboard shortcut.
It is active whenever the element at the caret can be renamed.

Key bindings

All key bindings in the Java code editor are configurable. The keymap editor is displayed by
choosing Settings->Keymap from themenu in the Java code editor dialog. OnmacOS, that menu
is shown as a "hamburger" menu on the right side of the toolbar.

37

The active keymap controls all key bindings in the editor. When you use the code editor for the
first time, you can select which general purpose IDE you are most familiar with and the default
keymapwill be selected accordingly. The default keymaps cannot be edited directly. To customize
key bindings, you first have to copy them. Except for the default keymaps, the name of a keymap
can be edited by double-clicking on it.

When assigning newkeystrokes or removing existing keystrokes froma copiedmap, the changes
to the base keymap will be shown as "overridden" in the list of bindings. The keymap editor
also features search functionality for locating bindings as well a conflict resolutionmechanism.

Key bindings are saved in the file $CONFIG_DIR/install4j/v11/keymap.xml where
$CONFIG_DIR is %USERPROFILE%\AppData\Local onWindows, $HOME/.config on Linux and
$HOME/Library/Application Support onmacOS. This file only exists if a keymap has been
selected. Whenmigrating an install4j installation to a different computer, you can copy this file
to keep your keymaps.

Code gallery

The Java code editor offers a code gallery containing useful snippets that show you how to get
started with using the install4j API. The code gallery is displayed with the "Code gallery" toolbar
button in the script editor.

38

You can either copy a portion of the script with CTRL-C or click OK to insert the entire script at
the current cursor position.

Not all code snippets are directly usable in the script that you are editing. Also, some script
properties have special code snippets that are only shown for this property. If such code snippets
exist, they are displayed in bold in a separate category with the name of the script property.

Installer variables and scripts

Screens, actions and form components are wired together with installer variables that can be
set and retrieved with little code snippets that make use of the context parameter that is
available for most scripts. Any object can be used as the value for a variable, for a condition you
can use boolean values. In a "Run script" action, you could set a boolean variable like this:

boolean myCondition = ...
context.setVariable("myCondition", myCondition);

Instead of calling setVariable in a "Run script" action, you can also use a "Set a variable"
action where the return value of the script is saved to an installer variable.

Getting installer variables is done with the context.getVariable(String variableName)
method. The conveniencemethod context.getBooleanVariable(String variableName)
makes it easier to check conditions and write them as expressions without a return value:

context.getBooleanVariable("myCondition")

To use installer variables with a string value in text properties of actions, screens and form
components, write them as ${installer:myVariableName} or use the variable selector
button that inserts them with the correct syntax.

39

A.7 Generated Launchers
Launchers are responsible for starting your application. There are two types of launchers:

• Generated launchers

install4j can generate native launchers that start your application. For example, onWindows,
an .exe file will be created that among other things takes care of finding a suitable JRE,
displaying appropriate error messages if required and then starts your application. Using
launchers generatedby install4j has numerous advantages as compared to usinghome-grown
batch files and shell scripts.

Each launcher definition is compiled separately for each definedmedia file [p. 135]. Thismeans
that for the majority of all cases, a single launcher definition will be sufficient to start your
application. If, for example, your distribution contains two GUI applications and a command
line application, you have to define three launchers, regardless of howmanymedia files you
define.

When your application is started with a launcher generated by install4j, you can query the
system property install4j.appDir to get the installation directory and and install4j.
exeDir to get the directory where the launcher resides. Use calls like

System.getProperty("install4j.appDir")

to access these values.

• External launchers
If you already have an external launcher for your application, you can let install4j use that
launcher instead of generating one. Because external launchers are most likely
platform-dependent, youwill have to add external launchers for each platform that is targeted
by yourmedia files.Make sure to exclude the irrelevant launchers in yourmedia file definitions
in this case.

If the launcher is a binary file rather than a shell script, make sure to set its Unix mode in the
distribution tree to a value that makes it executable for the owner, such as 755 or 700. This

40

also affects the generated .desktop file whose Exec attributewill start with a shell executable
unless the launcher file is executable itself.

Types of generated launchers

Executables created by install4j can be either GUI applications, console applications or service
applications.

There is no terminal window associated with a GUI application. If stdout and stderr are not
redirected on the "Executable info->Redirection" step of the launcher wizard, both streams are
inaccessible for the user. This corresponds to the behavior of javaw(.exe).

OnWindows, if you launch the executable froma consolewindow, a GUI application can neither
write to nor read from that console window. Sometimes it might be useful to use the console,
for example, for seeing debugoutput or for simulating a consolemodewith the sameexecutable.
In that case you can select the Allow -console parameter check box. If the user supplies
the -console parameter when starting the launcher from a console window, the launcher will
try to acquire the console and redirect stdout and stderr to it. If you redirect stderr and stdout
in the "Executable->Redirection" step, that output will not be written to the console.

A console application has an associated terminal window. If a console application is opened
from the Windows explorer, a new terminal window is opened. If stdout and stderr are not
redirected on the "Executable info->Redirection" step of the launcher wizard, both streams are
printed on the terminal window. This corresponds to the behavior of java(.exe).

Finally, a service runs independently of logged-on users and can be run even if no user is logged
on at all. A service cannot rely on the presence of a console, nor can it open windows. On
MicrosoftWindows, a service executablewill be compiled by install4, onmacOS a launch daemon
will be created, and on Unix-like platforms a start/stop script will be generated.

When a service is started, the mainmethod of the configuredmain class will be called. To handle
the shutdown of your service, you can use the Runtime.addShutdownHook() method to
register a thread that will be executed before the JVM is terminated.

For information onhow services are installed or uninstalled, see the help topic on services [p. 101].

41

Java invocation

The most important configuration of a launcher is done on the "Java invocation" step of the
launcher wizard and revolves around replicating the arguments you would pass to the Java
launcher in a batch file:

• VM parameters

You can provide a fixed list of VM parameters to your launcher and also add version-specific
VM parameters. Fixed VM parameters can contain compiler, launcher and installer
variables [p. 67].

Compiler variables are replaced at build time, launcher variables are replaced by the launcher
so that the VM sees the replaced value from the very beginning, and installer variables are
replaced in the main method. This means that using installer variables is not suitable for
setting certain kinds of VM parameters like -Xmx, but can be useful for replacing system
properties that are only used by your code or by libraries.

See the separate help topic on VM parameters [p. 90] for more information on the various
ways to set VM parameters for launchers.

• Module or class path

On the "Java invocation" step of the launcher wizard you can configure both themodule path
and the class path. These settings correspond to the --module-path and the -cpparameters
of the standard Java launcher. The module path is only applicable for Java 9 and higher. Like
for the standard Java launcher, you can add directories, single archives or directories with

42

archives. In addition, you can add archives from environment variables and from compiler
variables.

The compiler variable entry is useful if the set of JAR files that should be added to themodule
path or class path is calculated in your build system and these JAR files are not staged to a
fixed set of directories that you could reference in install4j. In that case, the the command
line compiler [p. 231] aswell as the plugins for Gradle [p. 236], Maven [p. 243] and Ant [p. 253]
can set a compiler variable externally where the single JAR files are separated by a configurable
separator.

• Main class
For Java 9 and higher, you can choose a main class from either the module or the class path.
If you choose the module path option, the syntax for the main class is <module name>/
<class name> and corresponds to the --module parameter of the standard Java launcher.
The chooser dialog shows all the available main classes and inserts the correct value
automatically.

• Arguments
Like VM parameters, the list of fixed arguments supports compiler, launcher and installer
variables. Arguments on the command line are appended to the fixed list of arguments.

Cross-platform launcher features

Generated launchers optionally support a single instance mode on all supported platforms.
You can use the launcher API [p. 227]to register a startup handler that receives the command
line parameters if the launcher is started more than once. In this way, you can handle file
associations with a single application instance. GUI launchers on macOS are always in single
instance mode because that is a fundamental property of application bundles.

Icons for launchers can be generated from a set of PNG files. OnWindows, an .ico file and on
macOS an .icon file is compiled, on Linux the generated .desktop file references the PNG
images. You can also provide pre-built ICO and ICNS files.

43

A splash screen image can be configured on the "Splash screen" step of the launcher wizard.
The -splash command line parameter does not work for the generated executables, because
it is part of the standard Java launchers and not of the Java runtime itself. An exception is the
argument -J-splash:none which is emulated by install4j Windows launchers to disable the
splash screen from the command. The splash screen supports additional high DPI images with
a @2x suffix in the file name.

In addition to the standard splash screen image, install4j allows you to position two lines of text
on top of the splash screen image, a version line and a status line. The status line can be updated
from your launcher with the launcher API [p. 227].

If your code loadsnative libraries via System.load(...) or if a native library loads dependent
libraries, the native library path has to bemodified to include the directories where these native
libraries are located. In batch or shell scripts you would do this in a platform-specific way,
modifying PATH on Windows, DYLD_LIBRARY_PATH on macOS, LD_LIBRARY_PATH on Linux
and a variety of other variable names on different Unix variants.

44

In install4j, you can use the "Java invocation->Native libraries" step of the launcher wizard to
specify such directories, and the launcher will take care that the appropriate environment
variable is modified. These directories end up in the java.library.path system property in
your launcher. If you need different directories for differentmedia files, use a compiler variable
for the directory name and override it for each media file.

JRE search sequence

By default, launchers use the bundled JRE [p. 95]. In case you do not bundle a JRE, the JRE search
sequence determines how install4j searches for a JRE on the target system. New configurations
get a pre-defined default search sequence.

Apart from searching for previous installations with the same application id, the Windows
registry, well-known standard installation locations and paths in environment variables, you
can also configure a relative directory in your distribution tree. This is useful if you distribute
your own JRE for a launcher that is not provided through a JRE bundle managed by install4j.

install4j has a special mechanism which allows you to bundle JREs with your media files. If you
choose a particular JRE for bundling [p. 95] in one of the media file wizards [p. 135], this JRE will
always be used first, and you do not need to adjust the search sequence yourself.

If you do not bundle a JRE and a launcher has special Java version requirements that differ from
those of the other launchers, you can override them on the "Java invocation->Override Java
version" step of the launcher wizard.

If you have problemswith JRE detection at runtime, see the help topic on error handling [p. 221]
for a description on how to get diagnostic information.

Windows-specific features

A version info resource will enable the Windows operating system to determine
meta-information about your executable. This information is displayed in various locations. For
example, when opening the property dialog for the executable in the Windows explorer, a
"Version" tab will be present in the property dialog if you have chosen to generate the version
info resource.

45

The version info resource consists of several pieces of information. If you check Generate

version info resource on the "Executable->Windows version info" step of the launcher
wizard, there are several fields whose values must be entered. The "original file name", the
"company name", the "product name" and the "product version" fields in the version info
resource are filled in automatically by install4j and cannot be configured.

On the "Executable->Windows manifest options" step you can adjust the contents of the
executable manifest, a static resource in the executable that controls some Windows features.

With an execution level other than "As invoker", you can ask Windows to show a UAC prompt
and run the launcher with elevated privileges.

The DPI awareness controls whether Windows will scale up pixels in a GUI if high DPI is used.
By default, DPI awareness is enabled if theminimum Java version of your project is at least Java
9.

46

OnWindows, executables can be 64-bit or 32-bit. A 64-bit executable can only run with a 64-bit
JVM, and a 32-bit executable can only run with a 32-bit JVM. By default, 64-bit executables are
generated, but you can switch to 32-bit executables in the "Installer options" step of theWindows
media wizard.

macOS-specific features

By default, the generated application bundle for a GUI application uses the "Executable name"
property from the "Executable info" step of the launcher wizard. If you choose compact names
as appropriate for Windows and Unix, youmay not be happy with the appearance in the Finder
on macOS.

On the "Executable info->macOS options" step, you can specify a localizable application bundle
name. If you specify an i18n variable as the application bundle name, such as ${i18n:

myLauncherName}, install4j will name the application bundle directory with the resolved value
for the principal language [p. 85] of your project. In addition, it will take the values for all
additional configured languages and set up the appropriate localization in the application
bundle.

On macOS, file associations and URL handlers are not registered with calls to an API that is
provided by the operating system, but by adding special entries to the Info.plist file of the
application bundle. This is why macOS single bundle archives can handle "Create a file
association" and "Register a URL handler" actions at compile-time. By default, associations for
all such actions that are contained in the installer configuration on the "Installer->Screens &
Actions" step are added to the Info.plist file. Optionally, you can choose that only selected
actions should be included.

Many advanced behavioralmodifications of an application bundle can be done by adding entries
to the Info.plist file. On the macOS Options step you can specify a fragment that is added
to the default Info.plist file. For services, this fragment is written to the launcher plist file.

Modifying launcher shell scripts and secondary start files

Launchers on Unix as well as command line and service launchers on macOS are shell scripts
that invoke the standard Java launcher. To include your own modifications, you can specify a
fragment that is inserted just before the java invocation.

47

On Linux, two conditions require the generation of additional start files for a launcher and in
both cases you can add additional content to them:

• The integration of a GUI launcher into a desktop environment requires the generation of a
.desktop file. Youmaywant to add additional content to that file to customize the interaction
with the desktop environment.

• In the case of a service launcher, a .service file is generated if systemd is detected. To
configure advanced aspects of systemd execution, you can add additional content to that
file.

Auto-update integration

In the Installer->Screens&Actions [p. 158] step, you can add a "Background update downloader"
installer application that runs in the background and automatically downloads an updater
installer. Such a background update downloader will not execute the downloaded update
installer because that would disrupt thework of the user. Instead, it executes a "Schedule update
installation" action to register the downloaded updated installer for later execution.

For GUI launchers, you can select the Execute downloaded updater installers at

startup check box in the "Executable info->Auto update integration" step of the launcher
wizard.When this GUI launcher is started and a downloaded update installer has been scheduled
for installation, the update installer will be executed. By default, the execution mode of the
update installer is set to "Unattendedmodewith progress dialog"with a configurablemessage.

48

For more on auto-update functionality, see the corresponding help topic [p. 118].

49

A.8 Form Screens
Most screens in install4j contain a configurable form. In these screens, you can configure a list
of form components [p. 195] along the vertical axis of the form. install4j provides you with
properties to control the initialization of form components and the way the user selection is
bound to installer variables [p. 67]. With this facility you can easily generate good-looking
installer screens that display arbitrary data to the user and request arbitrary information to be
entered.

Most standard screens are built with form components and form templates are starting points
for your own customizations. Also, you can add empty form screens and add form components
to them. For screens that have a configurable form, a header is shown above the screen
configuration [p. 174] that shows the number of contained form components as well as buttons
for editing them and showing a preview of the form.

The actual configuration of the form components is performed in a separate dialog:

Screens can lay out the contained form in different ways, but for plain form screens, you can
configure this with properties of the containing screen. By default, a form is top-aligned and
fills the entire available horizontal space. For example, for a set of radio buttons that should be
centered horizontally and vertically, the "Fill horizontal space" and "Fill vertical space" properties
of the screen must be set to "false" and the horizontal and vertical anchor properties must be
set to "Center".

50

Form components

install4j offers a large number of form components that represent most common components
available in Java and some other special components that are useful in the context of an installer.

All components that expect user input have an optional leading label. The components
themselves are left-aligned on the entire form. If you leave the label text empty, the form
component will occupy the entire horizontal space of the form.

Every form component has configurable insets. For vertical gaps that are meant to separate
groups of form components, consider using a "Vertical spacer" form component since it makes
the grouping clearer and allows to reorder form components more easily.

You canpreview your format any timewith the Preview Formbutton. The previewdialog performs
all variable replacements of compiler variables and custom localization keys, but not of installer
variables. Also, no initialization scripts or screen activation scripts are run. The preview is intended

51

to give you quick feedback about visual aspects of your form. At runtime, the look and feel may
be different.

Every form component always has its preferred vertical height. For some form components
such as the "List" form component, this preferred vertical size is configurable. If the vertical
extent of the form exceeds the available vertical space, a scroll bar is shown. If you want such
a form component to fill the entire available vertical space, you can select the "Fill vertical space"
property for the form component and deselect the "Scrollable" property of the form screen. In
that case, there will be no scroll bar for the form.

User input

If a form component can accept user input, you need some way to access the user selection
afterward. install4j saves user input for such form components to the installer variable [p. 67]
whose name is specified in the "Variable name" property. That variable can then be used later
on, for example, in condition expressions for screens and actions.

If you have a checkbox that saves its user input to a variable called "userSelection", the condition
expression

context.getBooleanVariable("userSelection")

will skip the screen or action for which that condition expression is used. The user selection in
form components is written to the variables before the validation expression for the screen is
called. If you have a text field that saves its input to the variable "fileName", the validation
expression

52

Util.showOptionDialog("Do you really want to delete " + context.getVariable("fileName"),

 new String[] {"Yes", "No"}, JOptionPane.QUESTION_MESSAGE) == 0

used on the same screen will block the advance to the next screen if the user answers with
"No".

The values of installer variables accommodate the general type java.lang.Object. Every
form component saves its user input in its naturally corresponding data type, for example:

• For check boxes, the type java.lang.Boolean is used. For this special case the context
offers the convenience method getBooleanVariable.

• For text fields, the type java.lang.String is used.
• For drop down lists the type java.lang.Integer is used to save the selected index.
• For date spinners, the type java.lang.Date is used.

The description of the value type for each form component that accepts user input is shown in
the registry dialog when you select the form component.

Initialization

For each form component, install4j offers several properties that allow you to customize its
initial state. However, you may want to access the properties of the underlying UI component
or use a more complex logic for modifying the form component.

For this purpose, the "Initialization script" property is provided. Form components can expose
awell-known component in the initialization script that allows you to perform thesemodifications.
This so-called "configuration object" is usually contained in the form component itself. For
example, a "Check box" form component exposes a configurationObject parameter of type
javax.swing.JCheckBox and a "Text field" form component exposes a javax.swing.

JTextField.

As with actions and screens [p. 24] in general, the possibility that the usermoves back and forth
in the screen sequence presents a dilemma to install4j. Any form component that accepts user
input has a configurable initial value, and any form component can have an initialization script.
This initialization is performed when the user enters the screen for the first time. Should this
initialization be performed again when the user moves back and then enters the screen once
again? Since install4j does not know, it initializes every form component only once by default.
This policy can be changed with the "Reset initialization on previous" property for each form
component.

53

Depending on factors such as the correct platform, user input in the previous screen orwhether
the installer runs in console mode, some form components may not be applicable and should
be hidden. In the "Visibility script", you can detect such conditions and return false to hide
the form components.

54

A.9 Layout Groups
A layout group is an element in a form screen [p. 50]. It contains a number of form components
and other layout groups. With layout groups you can achieve virtually any kind of visual layout.

There are two different kinds of layout groups: vertical and horizontal groups. A horizontal
group puts the contained elements side by side, while a vertical group organizes them from
top to bottom. Essentially, the top-level of a form screen is a vertical layout group itself.

Use case: Side by side

Putting two form components side by side is done with a single horizontal group:

The leading labels of the first form component in the horizontal layout group ("User:") and those
of the form components on the same level as the horizontal group ("Key file:") are aligned.
There is a property on the horizontal layout group to switch off this alignment.

Use case: Two columns

Two columns of form components are realizedwith two vertical layout groups inside a horizontal
layout group:

55

In this case the second column with the buttons takes up a fixed amount of horizontal space,
because buttons do not automatically grow beyond their preferred size. To make all buttons
of equal size, the "Make children same width" property has been selected. Two buttons are
aligned at the top of the column, two buttons at the bottom. This is achieved with a "Spring"
form component after the second button that has its axis set to "Vertical". It pushes all further
components to the bottom.

Use case: Breaking label alignment

Alignment of leading labels can be broken by introducing vertical layout groups:

56

Here, the long leading label of the first form component does not enlarge the leading labels of
the two text field form components. The latter are aligned only among themselves.

Use case: Center and right alignment

Single form components can be centered or right-aligned if you enclose them in a horizontal
layout group and set the "Anchor" property on the layout group accordingly.

57

For the layout group with the radio button group, the anchor has been set to "Center", for that
with the button the anchor has been set to "East". This only works with form components that
do not grow horizontally. Some form components that do grow horizontally can be restricted
to a fixed horizontal size, such as the text field by specifying a non-zero column count.

58

A.10 Styles
Install4j has a flexiblemodel for styling the UI of installer applications that allows you to arrange
content and styling elements in arbitrary ways. While there is an API to do this programatically,
you can configure form styles in the install4j IDE without any custom code. Form styles use the
same foundation as form components [p. 195] for screens. All default styles are created with
form styles, so the details of the default styles can we tweaked very easily and new styles can
be developed by starting with the default styles.

Configuring styles

Styles are configured on a per-project basis. On the "Installer->Screens & Actions->Styles" step
of the install4j IDE, all available styles are listed. When you add a style, it can either be a
configurable form style, or a style implementation from your custom code. Styles are either
standalone or not. A non-standalone style cannot be used directly, but is only available for
nesting into other styles.

One single style is marked as the default style and is shown with a bold font. With the "Set As
Default" action you can change the default style. Styles can be grouped into folders for organizing
them according to your individual preferences. For example, in the default styles, the nested
styles are grouped into a separate folder whereas the standalone styles are located at the top
level.

On the "Installer->Screens & Actions" step of the install4j IDE, you can apply styles. Installer
applications, screen groups and screens all have a "Style" property. For installer applications,
this property is set to "Default". You can change it to any standalone style. For screen groups
and screens, the "Style" property is set to "Inherit from parent". The property also indicates
which style is actually inherited. Alternatively, you can choose to explicitly set a style for the
selected element. Any screen groups and screens below it will now inherit this style.

59

Some screens have a preference for a particular style. For example, the "Welcome" and "Finish"
screens want their style set to "Banner". When adding such a screen, the IDE matches the style
by name. In this example, if no style named "Banner" is available, the default style is used.
Otherwise, install4j keeps track of style associations by ID and you can rename styles without
breaking any associations.

If you delete a style, all its style associations are broken. Compiling the installer will now fail,
and you will have to visit all installer applications, screen groups and screens where this style
was explicitly selected and choose a new style.

Should you want to return to the default styles, there is a "Reset Styles To Default" action for
that purpose. Existing style associations arematched by name in that case, so style associations
with the "Banner" style survive this reset, for example.

Form styles

A restricted set of the form components that are available for building form screens [p. 195] can
be used to build form styles. Form components that take user input are not suitable for styles
because styles have a different life-cycle than screens.

In addition, form styles can use a set of special form components. The "Screen content" form
component contains the UI component of the screen and is changed each time when a screen
is activated. When you preview the style, this content area is shown with a placeholder. The
"Screen Title" form component shows the title or the subtitle of the screen, depending on its
"Title type" property. The "Control button" form component is used for realizing the "Next",
"Previous" and "Cancel" buttons.

60

Finally, the "Nested style" form component allows you to embed another style. In this way, you
can build a set of styles that share common parts. For example, in the default styles, the
navigation buttons at the bottom are the same. With the "Standard Footer" style used by both
the "Standard" and the "Banner" standalone styles, you have a single place to change its settings.

Graphical styling elements

A key concern of styling is the placement of images, either in the foreground or in the
background. Both kinds of placements are handled by layout groups in form styles. For both
vertical and horizontal form groups, setting their "Image file" property shows additional
properties that allow you to place the image in the layout group. If you place the image in the
foreground, it cuts off an entire edge of the rectangle that can get its own background and
border. In that way, the image can blend seamlessly into its surroundings.

61

To place an image into the flow of form components, you can use the "Image insets" property
and set its "Icon" property.

Other important styling elements are borders and separators. Again, this is handled by layout
groups. With their "Border sides" property, you can define which sides of the border should be
drawn. Color and thickness of borders are also configurable.

By default, layout groups and form components are transparent, so that the default background
color of the window shines through. By setting the "Background color" property of a layout
group, you can make it opaque and give it a specific color. The "Foreground color" property
sets the font color for contained form components that do not have their color set explicitly.

Overriding properties

Some styles can have elements that are specific to particular screens or particular installer
applications. For example, the header image in the "Standard" style or the banner image of the
"Banner" style could be required to change for each screen. Instead of duplicating styles in this
scenario, install4j allows you to designate certain properties of selected form components and
layout groups that should be overridable when the style is applied.

When editing the form components of a form style, each form component has an "Allow external
overriding" property. If you select that property, a named overriding entry will be offered when
you explicitly apply the style on the "Installer->Screens & Actions" step. With the "Override title"
property, you specify the displayed name for the override entry and that name is used for saving
the overridden properties. This means that the namemust be unique for a single style and that
overrides are lost if you change the name. The "Property selection mode" property then lets
you select which properties should be overridable, either all properties are overridable, or a list
of properties is included or excluded.

62

When you select a style on the "Installer->Screens & Actions" step, install4j scans the style and
all its nested styles for form components and layout groupswith defined overrides. Each named
override is presented as a checkbox property. If you select the checkbox, the overridable
properties of the form component or layout group are copied and displayed as child properties.
You can now change the properties to different values. Note that the overridable properties
lose their connection to the default values in the original form component or layout group. If
you change a default property value, you have tomanually change it in all overrides, if necessary.

For more complex overriding cases, consider adding a "Nested style" form component and
making its "Style" property overridable.When applying such a style, you can substitute a different
nested style as appropriate.

API

Under some circumstances, styles are more easily implemented with the API. For example, if
you want to have configurable properties that determine the construction of the style or if the
styling cannot be realized with the facilities of the form style.

The sample project "customCode" includes a style class SunnySkyBackgroundStyle and its
associated BeanInfo SunnySkyBackgroundStyleBeanInfo that show such an example style.
It paints a background image that depends on the window dimensions and continues up to the

63

window border. In the "customCode" project, look for the "Configurable form" screen in the
installer and preview the form to see what it looks like.

That example also shows how to implement a style that wraps a user-selectable style. Themain
style is still the standard style, and the "Sunny sky background" style takes the function of a
decorator. Tomake development of such wrappers easier, the API includes a convenience class
com.install4j.api.styles.WrapperStyle.

Merging styles from other projects

Instead of duplicating styles across projects, you can develop them in one project and merge
them into other projects. Themerge projects functionality [p. 112] in install4j includes an option
to merge styles.

If styles are merged, the "Style" property of installer applications, screen groups and screens
shows the merged styles as well, with their names prefixed with the project name that was
assigned in the merge settings.

If you link to screens or screen groups of merged projects, they will use their configured styles
from the merged project only if style merging is enabled. Otherwise, install4j tries to match a
style by name in the main project.

Overriding standard icons

If you would like to change the standard icons in the installer, have a look at the JAR file
resource/i4jruntime.jar in the install4j installationdirectory. Thepackagecom.install4j.
runtime.installer.frontend.icons contains all icons that are used by the installer. To
replace some or all of these icons with your own version, create a JAR file that contains just the
new icon files in the same directory and add it on the "Installer->Screens & Actions->Custom
Code" step. The installer will first try to load an icon from the custom code. Failing that, it will
fall back to the built-in version.

64

A.11 Look & Feel
The GUI of the installer, uninstaller and other installer applications is implemented with Java
Swing. Swing is themeable and so install4j can offer you choices for the look and feel of the
applications that are provided by the runtime. The generated launchers are not affected by
these settings.

Configuring the look & feel

The options for the look & feel can be adjusted on the "Installer->Screens & Actions->Look &
Feel" step.

The default setting is to use the FlatLaf (1) cross platform Look and Feel which is a flat Look and
Feel that works well on all supported platforms and includes a dark mode. Please consider
starring it on GitHub (2) as a token of appreciation for the author.

FlatLaf includes four built-in themes, two for light mode and two for dark mode. By default, the
themes that look like the IntelliJ IDEA light and dark themes are selected. In addition, FlatLaf
supports custom IntelliJ themes. These are based on JSON files and can override UI colors. You
can download an IntelliJ theme (3) from the JetBrains plugin repository and add its JAR files on
the "Installer->Screens & Actions->Custom Code" step. If the themes plugin is packaged in a
ZIP file, you have to extract the ZIP file and add the contained JAR files instead. The contained
themes will then show up in the chooser dialog.

(1) https://www.formdev.com/flatlaf/
(2) https://github.com/JFormDesigner/FlatLaf
(3) https://plugins.jetbrains.com/search?tags=Theme

65

https://www.formdev.com/flatlaf/
https://github.com/JFormDesigner/FlatLaf
https://plugins.jetbrains.com/search?tags=Theme

OnWindows 10+ andmacos 10.14+, the runtime detects whether dark mode is being used and
activates it automatically. If the user switches between light and darkmode, the runtime adjusts
to it on the fly. The look and feel configuration offers options to prevent this auto-detection and
use either light or dark mode.

For backwards compatibility, you can also select the "Java native look and feel". This is a look
and feel that is included the JRE and tries to mimic the native widgets of the operating system
with varying success. In some instances, this look and feel may seem out of place as it shows
the UI from an older version of the operating system. Also, HiDPI resolutions may not be
well-supported by this look and feel. For these reasons, using the native look and feel is
discouraged and the FlatLaf cross-platform look and feel is recommended instead.

Using a custom look and feel

You can apply your own look and feel by extending the com.install4j.api.laf.

LookAndFeelHandler class in the install4j API. After adding the compiled class and its
dependencies on the "Installer->Screens & Actions->CustomCode" step, you can select the class
in the chooser dialog.

Thecom.install4j.api.laf.LookAndFeelHandler implements thecom.install4j.api.
laf.LookAndFeelEnhancer interface that contains methods that help with certain aspects of
creating the UI. You can override these methods to change their default behavior.

For example, a tri-state check box is required by the UI of installer applications. Java Swing does
not include such a component, but some look and feels add this feature. To avoid using a generic
simulation of a tri-state checkbox, the createTriStateCheckboxmethod can be overridden
in your implementation of the com.install4j.api.laf.LookAndFeelHandler.

66

A.12 Variables
With variables you can customize many aspects of install4j. They can be used in all text fields
and text properties in the install4j IDE as well as from the install4j API [p. 223]. The general
variable syntax is

${prefix:variableName}

where prefix denotes the variable type and is one of

• compiler
Compiler variables are replaced by the install4j compiler when the project is built.

• installer
Installer variables are evaluated when the installer or uninstaller is running.

• launcher
Launcher variables are evaluated when a generated application launcher is started.

• i18n
Custom localization keys are evaluated at runtime and depend on the chosen installer
language.

• (no prefix)
Variables with no prefix resolve to runtime environment variables when used in the launcher
configuration.

Text fields in the install4j IDE where you can use variables have a variable selector next to
them. In the popup menu, you first choose a variable system from the available variable types.
In text properties of an installer element [p. 158] or a form component [p. 195], you can use
compiler variables, installer variables and custom localization keys, but not launcher variables.

The variable selection dialog then shows all known variables of the selected variable type.

67

For both compiler and installer variables install4j offers a fixed set of "system variables" that
are prefixed with "sys.". These variables are not writable, and it is discouraged to use this prefix
for your own variables.

Compiler variables

Compiler variables are written as

${compiler:variableName}

The value of a compiler variable is a string that is known and replaced at compile time. The
installer runtime or the generated launchers do not see this variable, but just the value that
was substituted at runtime. Compiler variables are defined on the "General Settings->Compiler
Variables" step.

You can use compiler variables for various purposes. The most common usage of a compiler
variable is the possibility to define a string in one place and use it in many other places. You
can then change the string in one place instead of having to look up all of its usages.

An example of this use case is the pre-defined sys.version variable that contains the value
of the text field where you enter the application version. Another usage for compiler variables
is to override certain project settings on a per-media file basis. There are two ways to do that:
Either, you specify a platform-specific value right below the compiler variable value, or you
override the compiler variable value for specific media files.

68

For example, if youwant to include one directory in the distribution tree forWindows but another
one formacOS, you use a compiler variable for that directory and set the platform-specific value
for macOS.

The common base value can be referenced with the syntax ${compiler:variableName} and
does not lead to a recursive replacement error when used in a compiler variable value override.
This is useful if you want to augment the base value in a platform-specific way, for example in
a compiler variable for VMparameterswhere additional VMparameters are required depending
on the platform.

Alternatively, you can override values for single media files. Media file-specific overrides have
a higher precedence than platform-specific overrides. The commonbase value can be referenced
in the same way as for platform-specific overrides.

69

To quickly override multiple variables for a single media file, you can configure overridden
values on the "Customize project defaults->Compiler variables" step of the media wizard.

Finally, compiler variables can be overridden from the command line compiler [p. 231] as well
as from the Gradle [p. 236], Maven [p. 243] and Ant [p. 253] plugins.

Compiler variables often refer to paths either on the build machine or on the target machine.
install4j has no way of knowing whether the value is actually a path and where it is needed, so
it does not replace file or path separators by default. With the "Separators" drop-down right
below the variable value, you can choose to replace file separators and path separators: You
can either replace them for the build platform where the install4j compiler is running, or for
the target platform associated with the currently compiled media file. This can be much more
readable that using the explicit compiler variables:

70

• ${compiler:sys.fileSeparator} for the file separator on the build platform
• ${compiler:sys.pathSeparator} for the path separator on the build platform
• ${compiler:sys.mediaFileSeparator} for the file separator on the target platform
• ${compiler:sys.mediaFileSeparator}for the path separator on the build platform

With the automatic separator conversion, you can use either Unix-style ('/' and ':') or
Windows-style ('\\' and ';') file and path separators in the value. Both styles are converted in the
same way. If you replace for the target platform and the variable is not used in a media
file-specific context, no conversion will be performed.

When you use a compiler variable in your project that is not a system variable, it must be defined
in on the "General Settings->Compiler Variables" step. If an unknown variable is encountered,
the build will fail. You can use other variables in the value of a variable. Recursive definitions
are detected and lead to a failure of the build. It is not possible to define compiler variables
with the name of a system variable.

install4j provides a number of system compiler variables:

• sys.date [Machine-specific variables]
The current date in the format YYYYMMDD (e.g. "20250210"). The value is set at the start of a
build and will not change during a single build.

• sys.year [Machine-specific variables]
The current year in format YYYYThe value is set at the start of a build and will not change
during a single build.

• sys.time [Machine-specific variables]
The current time in the format HHMMSS (e.g. "153012") whereHH is the hour in 24-hour format,
MM is the minute, and SS is the second. The value is set at the start of a build and will not
change during a single build.

• sys.timestamp [Machine-specific variables]
The current time as the Unix epoch. This is a long value with the milliseconds since January
1st, 1970 (UTC). The value is set at the start of a build and will not change during a single
build.

• sys.install4jHome [Machine-specific variables]
The installation directory of install4j that is used for compiling the media files.

• sys.install4jVersion [Machine-specific variables]
The version of install4j that is used for compiling the media files.

• sys.fileSeparator [Machine-specific variables]
The platform-dependent separator for directories in a file path. OnWindows, this is a backslash
("\"), on Unix a forward slash ("/"). The value of this variable is intended to refer to files on
the buildmachine. For a value that is valid at runtime, usesys.mediaFileSeparator instead.

• sys.newLine
A Unix newline character (\n).

71

• sys.pathlistSeparator [Machine-specific variables]
The platform-dependent separator for lists of directories. On Windows, this is a semicolon
(";"), on Unix a colon (":"). The value of this variable is intended to refer to files on the build
machine. For a value that is valid at runtime, use sys.mediaPathlistSeparator instead.

• sys.version [Project-specific variables]
The version of your application as configured under General Settings->Application Info.

• sys.shortName [Project-specific variables]
The short name of your application as configured under General Settings->Application Info.

• sys.fullName [Project-specific variables]
The full name of your application as configured under General Settings->Application Info.

• sys.publisher [Project-specific variables]
The publisher of your application as configured under General Settings->Application Info.

• sys.publisherUrl [Project-specific variables]
The publisher URL of your application as configured under General Settings->Application
Info.

• sys.languageId [Project-specific variables]

The 2-letter ISO 639 code (see https://www.loc.gov/standards/iso639-2/php/code_list.php (1))
for the principal language of the installer. This variable can be overridden on the command
line or the ant task which is useful if you build different installers for different languages.

• sys.javaMinVersion [Project-specific variables]
The minimum Java version as configured under General Settings->Java Version

• sys.javaMaxVersion [Project-specific variables]
The maximum Java version as configured under General Settings->Java Version

• sys.applicationId [Project-specific variables]
The application ID as configured under Installer->Update Options

• sys.updatesUrl [Project-specific variables]
The URL where auto updaters can download the update descriptor file updates.xml as
configured under Installer->Auto-UpdateOptions. This variable is usually used in the "Update
descriptor URL" property of a "Check for update" action.

• sys.mediaFileName [Media-specific variables]
The file name of the currently compiled media file as configured in the Media section and
possibly overridden in "Customize project defaults->Media file name" step of the media
wizard.

• sys.mediaName [Media-specific variables]
The display name in the install4j IDE of the currently compiled media file as configured in
the Media section. If the default name of the media file is not suitable, you can rename the
media file.

(1) https://www.loc.gov/standards/iso639-2/php/code_list.php

72

https://www.loc.gov/standards/iso639-2/php/code_list.php

• sys.mediaId [Media-specific variables]
The ID of the currently compiled media file as configured in the Media section. This
corresponds to the return value of context.getMediaFileId().

• sys.platform [Media-specific variables]
The platform descriptor of the currently compiled media file. One of windows-x64,
windows-x32, windows-arm64, linux, unix or macos. The value of this variable depends
on your choice in the platform step of the media file wizard.

• sys.withJre [Media-specific variables]
A variable that contains "_with_jre" if a JRE is statically bundled with a media file and the
empty string if not. This is useful if media files with and without JRE are built.

• sys.jreBundleVersion [Media-specific variables]
The Java version of the JRE bundle if a JRE bundle is configured for amedia file and the empty
string if not.

• sys.jreBundleArch [Media-specific variables]
The architecture of the JRE bundle if a JRE bundle is configured for amedia file and the empty
string if not.

• sys.mediaFileSeparator [Media-specific variables]
The platform-dependent separator for directories in a file path based on the current media
set. For Windows media sets, this is a backslash ("\"), for all others a forward slash ("/").

• sys.mediaPathlistSeparator [Media-specific variables]
The platform-dependent separator for lists of directories based on the current media set.
For Windows media sets, this is a semicolon (";"), for all others a colon (":").

• sys.msiProductId [Media-specific variables]
The product GUID if a Windows installer is wrapped in an MSI package, otherwise an empty
string.

You can access environment variables on the build machine with the syntax

${compiler:env.environmentVariableName}

where "environmentVariableName" is the name of an environment variable. This is resolved at
build time and onlyworks if no compiler variablewith the samename is defined on the "General
Settings->Compiler Variables" step.

Compiler variable values in the IDE cannot be multi-line strings. If you need to insert a variable
with a multi-line string, you can use the text file reference syntax

${compiler:file("path/to/file")}

where path/to/file is either an absolute file path or a path relative to the config file. All text
areas that have an adjacent variable selector button offer the "Insert contents of text file" action
in its popupmenu. The file chooser has an option whether to use a relative or an absolute path
in the variable expression.

73

In order to debug problems with compiler variables, you can switch on the extra verbose
output flag in the Build step [p. 11]. All variable replacements will then be printed to the build
console.

The file path can be a variable expression itself, like in

${compiler:file(${compiler:myFile})}

so you can override it for each media file or pass it as a parameter to a command line build.

Installer variables

Installer variables are written as

${installer:variableName}

The value of an installer variable is an arbitrary object that is not known at compile time. Installer
variables are replaced at runtime in the installer, the uninstaller and in custom installer
applications. They can optionally be predefined in the install4j IDE like compiler variables, but
this is not required.

Undefined installer variables come into existence the first time they are defined at runtime.
However, it is an error to use an undefined variable. For example, if you use an installer variable
in an action, you have to make sure that the installer variable is defined before the action is
executed.

Installer variables are used to wire together actions, screens and form components at runtime.
The user input in screens is saved to variables that can be used in the properties of actions.
Furthermore, installer variables can be used in condition and validation expressions. Some
examples are given in the help topic on form screens [p. 50]. In script properties, you retrieve
variables by invoking

context.getVariable("variableName")

Variable values can be set with the installer API by invoking

context.setVariable("variableName", variableValue)

You can analyze the bindings of an installer variable on the "Installer Variables" tab of an installer
application configuration. That tab will show you a list of bound variables together with all
bindings.

74

In order to document and categorize bound installer variables, you can pre-define them and
set descriptions that will be displayed in the installer variable selector in the install4j IDE.

For pre-defined installer variables that take string values, the same file and path separator
replacements as for compiler variables are available.

A common scenario is the need to calculate a variable value at runtime with some custom code
and use the result as the initial value of a form component. To achieve this, you can add a "Set
a variable" action to the startup screen and set its "Variable name" property to some variable
name. In this context, install4j expects a variable name, and youmust not use the ${installer:
variableName} syntax but specify the plain variableName only. The return value of the "Script"
property is written to the variable.

75

For example, if this variable represents the initial directory that is displayed for a "Directory
chooser" form component, you set the "Initial Directory" property of that form component to
${installer:variableName}. In this way you have wired the results of an action with a
behavior of a screen.

Another important use of installer variables is in the names of custom installation roots [p. 14].
In most cases, the name of a custom installation root contains an installer variable that is
resolved at runtime. Often, one of the system installer variables that represent a "magic" folder
can be used, such as ${installer:sys.system32Dir} for theWindows system32 directory.

When you use installer variables in properties that display text, such as the screen title or the
label properties of form components, a live binding will be created and the displayed text is
updated automatically when the variable values change.

Installer variables can be passed to the installer, uninstaller or custom installer applications
from the command line prefixed with -V:

-VmyVar=test "-VmyVarWithSpaces=this is a test"

Alternatively, you can specify a property file containing installer variables with -varfile my.
properties, where the file my.properties contains one variable definition per line. The
variables that are created will be instances of java.lang.String.

install4j provides a number of system installer variables:

• sys.installationDir [Source and Target]
The installation directory for the current installation. The value of this variable can change
in the installer as the user selects an installation directory in the "Installation directory" screen
or the installation directory is set via context.setInstallationDirectory(File

installationDirectory).

Note that for single bundle archives on macOS, the installation directory usually is just
/Applications, not a separate subdirectory.

• sys.contentDir [Source and Target]
The directory that holds the installed files. On Windows, Linux and Unix, this is the same as
the installation directory. For single bundle archives onmacOS, this is [Bundle name].app/
Contents/Resources/app/. To reference an installed file in a cross-platform way, use this
variable and not sys.installationDir.

• sys.mediaFile [Source and Target]
The path of your media file. Not available for uninstallers.

76

On Unix and for non-MSI Windows installers this is the same as sys.installerFile. For MSI
installers, this is the MSI file. On macOS, this is the path to the DMG file. If you want to
reference the installer file, use sys.installerFile instead.

• sys.mediaDir [Source and Target]
The path of the directory where your installer file is located. Not available for uninstallers.

On Unix and for non-MSI Windows installers this is the same as sys.installerDir. For MSI
installers, this is the directory where the MSI file is located. On macOS, this is the directory
where the DMG file is located. If you want to reference files inside the DMG file, use
sys.installerDir instead.

• sys.installerFile [Source and Target]
The path of your installer file. Not available for uninstallers.

On Unix and for non-MSI Windows installers this is the same as sys.mediaFile. For MSI
installers, this is the extracted installer executable. OnmacOS, this is the path to the installer
inside the mounted DMG. If you want to reference the DMG file, use sys.mediaFile instead.

• sys.installerDir [Source and Target]
The path of the directory where your installer file is located. Not available for uninstallers.

OnUnix and for non-MSIWindows installers this is the sameas sys.mediaDir. ForMSI installers,
this is the directory the installer was extracted to. OnmacOS, this is the path into themounted
DMG. If you want to reference files in the same directory as the DMG file, use sys.mediaDir
instead.

• sys.resourceDir [Installer application state]
The directory where the resource files are present that have been configured on the
Installer->Custom Code & Resources tab.

• sys.installationTypeId [Installer application state]
The ID of the selected installation type. This is only relevant if the "Installation Type" screen
has been added to the installer. The value is null as long as no installation type has been
selected.

• sys.version [Installer application state]
For installers, the versionof your application as configuredunderGeneral Settings->Application
Info. In that case, the variable yields the same value as the compiler variable of the same
name. For custom installer applications, the installed version, which might not be the same
as the version for which the custom installer application was originally compiled.

• sys.logFile [Installer application state]
The full path to the currently used log file. This is a path in the TEMP directory. For installers,
this changes after the "Install Files" action, when the log file is moved to a path in the
installation directory.

• sys.responseFile [Installer application state]
If a response file is supplied with a -varfile command line argument, the full path to the
response file. If no response file is used, the variable value is null.

• sys.preferredJre [Installer application state]
The home directory of the JRE that will be used by the installed launchers. This variable will
only be set after the "Install files" action has run. It will be the same as System.

77

getProperty("java.home") or the sys.javaHome installer variable unless a bundled JRE
has been installed. This variable is not available in the uninstaller or custom installer
applications, use the sys.javaHome directory there.

• sys.languageId [Installer application state]

The 2-letter ISO 639 code (see https://www.loc.gov/standards/iso639-2/php/code_list.php (1))
for the actual language of the installer. For fixed-language installers, this is the same as the
compiler variable of the same name. For multi-language installers, the value is determined
at runtime.

• sys.installerApplicationMode [Installer application state]
A string that reports the type of the installer application: "installer" for the installer,
"uninstaller" for the uninstaller and "custom" for custom installer applications.

• sys.programGroupDisabled [Installer application state/Program group]
If the user has disabled program group creation on the "Standard program group" screen.
This applies to both the Windows program group and the Linux/Unix launcher link directory
selection. If no "Standard program group" screen is present, the variable value will be null.

• sys.programGroupName [Installer application state/Program group]
The name of the program group that user has selected on the "Standard program group"
screen. If no program group has been selected, the variable value will be null. Only set in
Windows installers.

• sys.programGroupDir [Installer application state/Program group]
The directory that has been selected as the program group. This is the full path to the actual
location of the programgroup, not just the nameof the programgroup. If no programgroup
has been selected, the variable value will be null. Only set in Windows installers.

• sys.programGroupAllUsers [Installer application state/Program group]
If the user has selected to createmenu entries for all users on the "Standard programgroup"
screen. If no "Standard program group" screen is present, the variable value will be null.
Only set in Windows installers.

• sys.symlinkDir [Installer application state/Program group]
The nameof the directory for launcher links that user has selected on the "Standard program
group" screen. If no program group has been selected, the variable value will be null. Only
set in Linux/Unix installers.

• sys.fileSeparator [Cross-platform variables]
The platform-dependent separator for directories in a file path. OnWindows, this is a backslash
("\"), on Unix a forward slash ("/").

• sys.pathlistSeparator [Cross-platform variables]
The platform-dependent separator for lists of directories. On Windows, this is a semicolon
(";"), on Unix a colon (":").

• sys.userHome [Cross-platform variables]
The user home directory, typically something like C:\Users\$USER on Windows or /home/
$USER on Unix platforms.

(1) https://www.loc.gov/standards/iso639-2/php/code_list.php

78

https://www.loc.gov/standards/iso639-2/php/code_list.php

• sys.userName [Cross-platform variables]
The user account name.

• sys.workingDir [Cross-platform variables]
The working directory. For the installer, this is the temporary directory that the installer was
extracted to.

• sys.tempDir [Cross-platform variables]
The temporary directory of the operating system. On all supported platforms, this is the value
of the TEMP environment variable.

• sys.javaHome [Cross-platform variables]
The Java home directory of the currently used JRE.

• sys.javaVersion [Cross-platform variables]
The Java version of the currently used JRE.

• sys.confirmedUpdateInstallation [Cross-platform variables]
If the user has confirmed an update installation on top of a previous installation. If a previous
installation is detected, the "Welcome" screen asks the user whether to perform an update
installation or choose another installation directory. The result of that question is saved to
this variable. If the "Welcome screen is not shown, this variable is not set and
Context#getBooleanVariable(...) returns false for this variable.

• sys.desktopDir [Cross-platform variables]
The directory used to physically store file objects on the desktop. OnWindows, a typical path
is C:\Users\[user name]\Desktop. On macOS, this is the ~/Desktop directory and on
Unix the freedesktop.org setting for the XDG_DESKTOP_DIR directory is returned.

• sys.docsDir [Cross-platform variables]
The directory used to physically store a user's common repository of documents. OnWindows,
a typical path is C:\Users\[user name]\Documents. On macOS, this is the ~/Documents
directory and on Unix the freedesktop.org setting for the XDG_DOCUMENTS_DIR directory is
returned.

• sys.downloadsDir [Cross-platform variables]
The directory used to physically store a user's downloads. On Windows, a typical path is C:
\Users\[user name]\Downloads. On macOS, this is the ~/Downloads directory and on
Unix the freedesktop.org setting for the XDG_DOWNLOAD_DIR directory is returned.

• sys.appdataDir [Platform-specific variables]
The directory that serves as a common repository for application-specific data. OnWindows,
a typical path is C:\Users\[user name]\AppData\Roaming. On macOS, this is the ~/

Library/Application Support directory. On Unix, the value of the XDG_DATA_HOME

environment variable or if not defined ~/.local/share is returned.

• sys.localAppdataDir [Platform-specific variables]
The user-specific directory that serves local applications to store computed data. OnWindows,
a typical path isC:\Users\[user name]\AppData\Local. OnmacOS, this is the~/Library/
Caches directory. On Unix, the value of the XDG_CACHE_HOME environment variable or if not
defined ~/.cache is returned.

79

• sys.windowsDir [Platform-specific variables]
The Windows installation directory, typically C:\Windows.

• sys.system32Dir [Platform-specific variables]
The system32 directory of your Windows installation, typically C:\Windows\system32.

• sys.commonDir [Platform-specific variables]
The common files directory of your Windows installation, typically C:\Program Files\

Common Files.

• sys.programDataDir [Platform-specific variables]
The directory where applications can save data that is not specific to particular users. A typical
path is C:\ProgramData.

• sys.startMenuDir [Platform-specific variables]
The directory containing Start menu items. A typical path is C:\Users\[user name]\

AppData\Roaming\Microsoft\Windows\Start Menu.

• sys.programsDir [Platform-specific variables]
The directory that contains the user's programgroups. The groups are themselves file system
directories. A typical path is C:\Users\[user name]\AppData\Roaming\Microsoft\

Windows\Start Menu\Programs.

• sys.startupDir [Platform-specific variables]
The directory that corresponds to the user's Startup program group. The system starts these
programswhenever any user logs ontoWindows. A typical path is C:\Users\[user name]\
AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup.

• sys.sendToDir [Platform-specific variables]
The directory that contains Send Tomenu items. A typical path is C:\Users\[user name]\
AppData\Roaming\Microsoft\Windows\SendTo.

• sys.templatesDir [Platform-specific variables]
The directory that serves as a common repository for document templates. A typical path is
C:\Users\[user name]\AppData\Roaming\Microsoft\Windows\Templates.

• sys.favoritesDir [Platform-specific variables]
The directory that serves as a common repository for the user's favorite items. A typical path
is C:\Users\[user name]\Favorites.

• sys.programGroupDir [Platform-specific variables]
The directory of the program group that will be or was created by the "Create standard
program group" action. If this action is not present, the value will be null. The value of this
variable can change in the installer as the user selects a program group on the "Create
program group" screen.

• sys.fontsDir [Platform-specific variables]
The folder that contains fonts. A typical path is C:\Windows\Fonts. On macOS, the value is
/Library/Fonts.

80

• sys.programFilesDir [Platform-specific variables]
The directory where programs are installed, typically something like C:\Program Files.
On macOS, the value is /Applications.

• sys.date [Cross-platform variables]
The current date in the format YYYYMMDD (e.g. "20250210"). The value is set when the installer
is started and will not change for the current process.

• sys.year [Cross-platform variables]
The current year in format YYYYThe value is set when the installer is started and will not
change for the current process.

• sys.time [Cross-platform variables]
The current time in the format HHMMSS (e.g. "153012") whereHH is the hour in 24-hour format,
MM is the minute, and SS is the second. The value is set when the installer is started and will
not change for the current process.

• sys.timestamp [Cross-platform variables]
The current time as the Unix epoch. This is a long value with the milliseconds since January
1st, 1970 (UTC). The value is set when the installer is started and will not change for the
current process.

Launcher variables

Launcher variables are written as

${launcher:variableName}

The value of a launcher variable is a string that is not known at compile time. In contrast to
installer variables, they are replaced by the launcher and not by Java code, so the replaced value
is seen by the JVM at startup. Launcher variables can only be used in the "VM parameters" and
"Arguments" text fields on the "Java invocation" step of the launcher wizard [p. 40].

No user-defined launcher variables exist, the available system launcher variables are:

• sys.launcherDirectory
The directory in which your launcher has been installed at runtime.

• sys.jvmHome
The home directory of the JVM that your launcher is running with. This is useful to put JAR
files from the JRE into your boot classpath. The "homedirectory" is the directory that contains
the "bin" directory of the JRE.

• sys.tempDir
The temporary directory for the current user.

I18N messages

I18N messages are written as

${i18n:keyName}

81

The value of an I18N message depends on the language that is selected for the installer. You
can use this facility to localize messages in your installers if they support multiple
languages [p. 85]. To do that, you supply key-value pairs in the custom localization file. The
variable selection dialog for I18Nmessages shows all systemmessages as well as all messages
in the custom localization file for the principal language of your project.

All standardmessages displayed by install4j can be referenced with this syntax as well. You can
locate the key name in one of the message_*.utf8 files in the $INSTALL4J_HOME/resource/
messages directory and use it anywhere in your project. The standard messages can be
overwritten by your custom localization files.

Default values for missing variables

For the text field syntax of installer and compiler variables there is a mechanism to supply a
default value in case the variable is not defined: After the variable name you add the delimiter
?: and insert the default value before the closing curly bracket.

For example:

${installer:myVariable?:defaultValue}

will resolve to defaultValue if the installer variable "myVariable" is not defined. The default
value can be another variable, also of a different type. For example:

${installer:updatesUrl?:${compiler:sys.updatesUrl}}

If the installer variable "updatesUrl" is not defined, the compiler variable "sys.updatesUrl" is
inserted. This is the default value for the "Update descriptor URL" property of the "Check for
update" action.

The chain of default values can be arbitrarily long:

82

${installer:one?:${installer:two?:${installer:three?:${installer:four?:some plain
text}}}}

This will resolve to the first defined installer variable out of "one", "two", "three", "four" or to
some plain text if none of them are defined.

Binding variables to non-text properties

Many bean properties do not take text input, for example, boolean, integer or enumproperties,
so that the variable syntax ${installer:myVariable} for text fields is not applicable. For
these properties, you can select "Switch to text mode" in the context menu and enter a variable
expression that resolves to the required type. Conversions from string values are important
because compiler variables can only hold string values, unlike installer variables that can hold
arbitrary types.

The help icon in the property editor tells you what the property type is and also informs about
the supported conversions from other primitive types or strings. For example, "true" or "false"
string values are supported for boolean properties as well, which is what you would use with
a compiler variable. For enum properties, the name of the enum or the ordinal as a number or
as a string will be resolved to the actual enum value. Also, numeric values will be parsed from
strings.

If you develop a custom bean andwant to support that functionality as well, you have to enable
it in the property descriptor and insert a call into the property getter as explained in the Javadoc
for AbstractBean.

Using variables in your own applications

Frequently there is a need in the installed applications to access user input that was made in
the installer. The launcherAPI [p. 227] provides thehelper classcom.install4j.api.launcher.
Variables to access the values of installer variables.

83

There are two ways that installer variables can be persisted in the installer: First, installer
variables are saved to the default response file [p. 214] .install4j/response.varfile that
is createdwhen the installer exits, or if a "Create response file" action is executed. Only response
file variables are saved to that file. Secondly, selected installer variables can be saved to the
Java preference store. com.install4j.api.launcher.Variables offers methods to load
variables from both sources.

Saving to the Java preference store is interesting if you want to modify those variable values in
your applications and save back the modified values. The Java preference store is available on
a per-user basis so that it is possible to modify settings even if the user does not have write
permissions for the installation directory. com.install4j.api.launcher.Variables has
methods for loading and saving the entire map of installer variables that was saved in the
installer. Also, it is possible to specify an arbitrary package to which the installer variables are
saved, so that settings can be shared between different installers.

Finally, it is useful to access compiler variables in your own applications. For example, the version
number configured in the install4j IDE can be accessed in your own application through com.
install4j.api.launcher.Variables.

84

A.13 Localization
On the "General Settings->Languages" step, you configure the languages that are supported
by your project. The following languages are available:

• Arabic [ar]
• Chinese (Simplified) [zh_CN]
• Chinese (Traditional) [zh_TW]
• Croatian [hr]
• Czech [cs]
• Danish [da]
• Dutch [nl]
• English [en]
• Finnish [fi]
• French [fr]
• German [de]
• Greek [el]
• Hebrew [he]
• Hungarian [hu]
• Italian [it]
• Japanese [ja]
• Korean [ko]
• Norwegian [no]
• Polish [pl]
• Portuguese [pt]
• Portuguese (Brazilian) [pt_BR]
• Romanian [ro]
• Russian [ru]
• Spanish [es]
• Swedish [sv]
• Turkish [tr]
• Ukrainian [uk]

By default, only one language is shippedwith the installer. This is called the principal language.
By adding additional languages, you can buildmulti-language installers. If none of the configured
languages match the locale at runtime, the principal language is used.

85

Formulti-language installers, a language selection dialog is shownwhen the installer is started.
By selecting the Skip language selection dialog check box you can choose to show the
language selection only if the installer cannot find amatch between a supported language and
the auto-detected locale.

The principal language setting can be overridden for eachmedia file on the "Customize project
defaults->Principal language" step of the media wizard. In this way, you can build multiple
fixed-language installers, each with a different principal language.

Localization mechanism

In projects, localized messages are obtained in one of two ways;

• with i18n messages

The i18n variable system [p. 67] gives access to all messages with the syntax

${i18n:messageKey}

To select a message, use the variable selector button next to text fields and properties.
For messages with one or more parameters of the form {0} to {n}, the variable selector will
insert placeholder values like in

86

${i18n:DiskSpaceWarning("arg 0", "arg 1")}

• with the API

In scripts and in your custom code you can call

context.getMessage("messageKey")

For messages with arguments, you pass the arguments with the vararg syntax:

context.getMessage("DiskSpaceWarning", 10000, 100)

The "Insert variable" toolbar button in script editors allows you to insert these calls with the
correct syntax for selected message keys.

Custom localization

In addition to the standardmessages that are displayed in the generated installer anduninstaller,
you will have your ownmessages that need to be localized in the same way. To configure these
messages, create a custom localization file for the principal language. A custom localization file
is a text file with key-message pairs in the format of

• a Java properties file
A Java properties file has a .properties file extension and must use ISO 8859-1 encoding.
All other characters must be represented as Unicode escape sequences, like \u0823.

• a properties file with UTF-8 encoding
A properties file with UTF-8 encoding has an .utf8 file extension and has the advantage that
you do not have to use escape sequences. However, it might not be supported by some
localization tools.

87

You can create and edit custom localization files externally or directly in the install4j IDE with
the built-in editor:

For each additional language, add a corresponding custom localization file that contains the
same keys. If a message is missing for an additional language, the message for the principal
language is used. The variable selection dialog for i18nmessageswill show all keys in the custom
localization file for the principal language.

If any standard message in the installer is not appropriate for your purpose, you can override
it by looking up the corresponding keys in the appropriate message file with the path

<install4j installation directory>/resource/messages/messages_*.utf8

and defining the same key in your custom localization file. The built-in editor has an "Override
message" toolbar button that helps you find the message of interest and inserts the key-value
pair in the editor.

88

Parameters in i18n messages

If required, you can use parameters for your messages by using the usual {n} syntax in the
value and listing the parameters with a function-like syntax after the key name. For example,
if your key name is myKey and your message value is

Create {0} entries of type {1}

you can use a variable

${i18n:myKey("5", "foo")}

in order to fill the parameters, so that the actual message becomes

Create 5 entries of type foo

However, in the context of localizing an installer this is rarely necessary. Should you need to
include a literal variable expression {n} in the message, you have to quote it like '{'n'}'.

Another way of adding parameters to i18n messages is to use compiler or installer variables.
Compiler variables are replaced at build time, and installer variables are replaced at runtime.
For example:

messageWithCompilerVariable=Title for ${compiler:sys.fullName}
messageWithInstallerVariable=Installing to ${installer:sys.installationDir}

89

A.14 VM Parameters
VM parameters can be passed to generated launchers [p. 40] in a variety of ways: You can
specify fixed VM parameters, pass them on the command line or add them to a text file where
the user or your application can edit them.

Fixed VM parameters

Fixed VM parameters can be configured in the launcher wizard [p. 40] where you can use
compiler variables [p. 67] to handle platform-specific changes or launcher variables [p. 67] to
use runtime-dependent paths.

install4j can add specific VM parameters depending on the Java version. To set this up, click on
the Configure version specific VM parameters button. In the dialog, add rows for each range of
Java versions that should receive specific VM parameters. If the Java version of the JVM that is
used at runtime matches a configured version expression, the associated VM parameters will
be appended to the common VM parameters. The search is stopped at the first matching entry.
The syntax for the Java version expressions is explained by the help icon on the table header.

90

Passing VM parameters on the command line

When executing a generated launcher, arguments are passed to the main class, so you cannot
pass an argument like -Xmx800m and expect it to be interpreted as a VM parameter. To tell the
launcher that you want to use a specific command line argument as a VM parameter, you have
to prefix it with -J, as in

-J-Xmx800m

If this behavior is not desirable, you can deactivate it on the "Java invocation" step of the launcher
wizard.

*.vmoptions files

A common requirement is the capability to adjust the VM parameters of launchers after the
installation has been completed or to determine the VM parameters at installation time
depending on the environment like the target platform or some user selection in the installer.

For this purpose, a parameter file in the same directory as the executable is read and its contents
are added to the list of fixed VM parameters. The name of this parameter file is the same as the
executable file with the extension .vmoptions.

For example, if your executable is named hello.exe, the name of the VM parameter file is
hello.vmoptions. For GUI launchers on macOS, an additional .vmoptions file inside the
application bundle with the relative path Contents/vmoptions.txt is read.

In the .vmoptions file, each line is interpreted as a single VM parameter and the last line must
be followed by a line feed. install4j adapts your .vmoptions files during the compilation phase
so that the line endings are suitable for all platforms. For example, the contents of the VM
parameter file could be:

-Xmx256m
-Xms32m

The .vmoptions files allow the installer as well as expert users to modify the VM parameters
for your generated launchers.

It is possible to include other .vmoptions files from a .vmoptions file with the syntax

-include-options [path to other .vmoptions file]

Recursive includes are supported. You can also add this option to the fixed VM parameters of
a launcher. In that way, you do not have to create .vmoptions files for all your launchers, but
you can have a single .vmoptions file for all of them.

This allows you to centralize the user-editable VM options for multiple launchers and to have
.vmoptions files in a location that can be edited by the user if the installation directory is not
writable. You can use environment variables to find a suitable directory, for example

-include-options ${APPDATA}\My Application\my.vmoptions

on Windows and

91

-include-options ${HOME}/.myApp/my.vmoptions

on Unix. If you have to decide at runtime where the included .vmoptions file is located, use
an installer variable:

-include-options ${installer:vmOptionsTargetDirectory}/my.vmoptions

and add a "Replace installer variables in a text file" action to replace it after you have set the
vmOptionsTargetDirectory installer variable to a suitable pathwith a "Set a variable" action.

In addition to the VM parameters you can also modify the classpath in the .vmoptions files
with the following options:

• -classpath [classpath]
Replace the classpath of the generated launcher.

• -classpath/a [classpath]
Append to the classpath of the generated launcher.

• -classpath/p [classpath]
Prepend to the classpath of the generated launcher.

Instead of adding your own .vmoptions to the distribution tree, you can set up an initial
.vmoptions file on the "VM options file" step of the launcher wizard, either with a template or
with your own pre-defined content. Overwrite mode and file rights can also be configured in
this step.

92

Environment variables

You can use environment variables in the fixed VM parameters and in the .vmoptions file with
the syntax ${variableName} replacing variableName with the name of the environment
variable.

This environment variable syntax also works in the arguments text field and the classpath
configuration.

"Add VM options" action

With the "Add VM options" action [p. 180], you can handle VM parameter additions to the
.vmoptions file in the installer. The action creates a .vmoptions file if necessary or adds your
options if it already exists.

A number of VMparameters can only occur once, so the action replaces the following parameters
if they already exist:

• -Xmx
• -Xms
• -Xss
• -Xloggc
• -Xbootclasspath
• -verbose
• -ea / -enableassertions
• -da / -disableassertions
• -splash

as well as the install4j-specific classpath modification options that can be used in .vmoptions
files.

93

To set an -Xmx value to a fraction the total memory of the target system, you can use a "Set a
variable action" that calculates the numeric part of the -Xmx value using the utility method
SystemInfo.getPhysicalMemory(). In the second step, you use that variable in the "VM
options" property of the "Add VM options" action. For example, if you want to set themaximum
heap size to 50% of the total memory, you do the following after the "Install files" action:

1. Add a "Set a variable" action with variable name "xmx" and a script of

"-Xmx" + Math.round(SystemInfo.getPhysicalMemory() * 0.5 / 1024 / 1024) + "m"

2. Add an "Add VM options" action with VM options

${installer:xmx}

94

A.15 JRE Bundles
When deploying a Java application, you should always bundle a JRE.While a JREwith the required
versionmay be available in a controlled environment, it is generally far less error-prone to ship
a JREwith eachmedia file. Any JRE bundle that is installed by install4j is private to your application
and will not interfere with other applications.

install4j offers twoways to create JRE bundles. You can either let install4j download JDK archives
from well-known OpenJDK providers and create JRE bundles from them on the fly, or you can
create JRE bundles yourself from installed JREs.

How JRE bundles work at runtime

install4j automatically adjusts the JRE search sequence [p. 40] of all generated launchers and
includes the bundled JRE as the first choice. A bundled JRE is used automatically by the installer,
the uninstaller, custom installer applications and the generated launchers.

A bundled JREwill always be distributed inside the installation root directory [p. 14], onWindows
and Linux/Unix in the directory

<installation directory>/jre

and on macOS in

<content directory>/.install4j/jre.bundle

The content directory is available from the installer runtime variable sys.contentDir and
resolves to the installation directory for foldermedia file types and Contents/Resources/app
for archivemedia file types. The actual location of the JRE installation directory is available from
the installer runtime variable sys.preferredJre after the "Install files" action has run.

When you update your application and include a new JRE bundle, the old JRE bundle will be
deleted prior to the installation, so that any files left over from the old JRE cannot interfere with
the new JRE.

Generated JRE bundles

On the "General Settings->JRE Bundles" step, you can use the release chooser dialog to select
a release fromwhich youwould like to create the JRE bundles. The available platforms are listed
next to each release. The standard platform IDs are

• windows-amd64 for 64-bit Windows
• windows-x86 for 32-bit Windows
• windows-aarch64 for 64-bit Windows on ARM
• macos-amd64 for macOS on x64
• macos-aarch64 for macOS on ARM
• linux-amd64 for 64-bit Linux
• linux-x86 for 32-bit Linux
• linux-aarch64 for 64-bit Linux on ARM

Other platforms may be provided by the JDK providers and are usable in the Linux/Unix media
files.

95

By default, Adoptium (1) is set as the JDK provider and is recommended for general purpose
usage. For JavaFX applications, the Liberica (2) and the Zulu (3) providers are convenient, because
JavaFX is already included, and you don't have to work with separately downloaded JMOD files.
Liberica also offers an especially wide range of Linux architectures. For Swing desktop
applications, the JetBrains Runtime (4) is the best choice because it contains a lot of fixes that
are not included in the upstreamOpenJDK. Finally, Amazon Corretto (5) is anOpenJDK distribution
that focuses on including additional fixes and patches from themain branch and other sources
into older releases.

Selecting a release folder node in the chooser dialog rather than a node for a specific release
will insert a key ending in /latest. At compile time, the latest release that includes the required
platform will be taken.

To add new JDK providers, an SPI is provided in resource/jdk-provider.jar. The associated
Javadoc in the archive resource/jdk-provider-javadoc.jar has more information.

Downloaded JDK bundles contain all kinds ofmodules that you do not need in your distribution.
On the other hand, you may have a set of JMODs that have to be linked into the JRE bundle,
such as JavaFX (6). With your configuration in the module selector, you can include a base set of
modules, single namedmodules and additional JMODs. By default, a "JRE" with commonly used
modules is linked, but the module sets "Minimum" and "All" are also available.

install4j always addsmodules that are required by the install4j runtime. This includes the java.
desktopmodulewhich is required even if you onlywant to create console installers or archives.
In addition, install4j scans the module requirements of your generated launchers [p. 40] and
adds them automatically. With the Show included modules button, you can show the actual list

(1) https://adoptium.net
(2) https://bell-sw.com/
(3) https://www.azul.com/downloads/zulu-community/?package=jdk
(4) https://confluence.jetbrains.com/display/JBR/JetBrains+Runtime
(5) https://aws.amazon.com/de/corretto/
(6) https://openjfx.io/

96

https://adoptium.net
https://bell-sw.com/
https://www.azul.com/downloads/zulu-community/?package=jdk
https://confluence.jetbrains.com/display/JBR/JetBrains+Runtime
https://aws.amazon.com/de/corretto/
https://openjfx.io/

of modules that will be added to the JRE bundle. In Java 8 there is no module system, so the
entire JRE is bundled for those versions.

In the "Bundled JRE" step of the media wizard, the "Generate a JRE bundle" option is selected
by default. You can set it to "Do not bundle a JRE" in order to create media files without JRE
bundles. Furthermore, you can customize the common JRE bundle configuration.

In addition to overriding the JDK provider and the release, you can specify additional modules
and JMOD files that should be included for the current media file. The Show included modules
button on this step uses the JDK bundle for the target platformunlike the corresponding button
on the "General Settings->JRE Bundles" stepwhich uses the JDK bundle for the current platform.
This can lead to slight differences because JDKs contain platform-specific modules.

97

For Unix/Linux media files, the actual platform must be defined on the "Bundled JRE" step of
themediawizard. By default, it is set to linux-amd64which stands for 64-bit Linux. The chooser
button displays a dialog with all platforms that are available for the selected release.

If Java 8 is bundled, you can optionally deactivate the Pack200 compression for JAR files in the
JRE. In archives, for example, these JAR files are decompressed the first time when a generated
launcher is executed, adding a possibly undesired lag. That is why Pack200 compression is not
selected by default for archivemedia files. Pack200 compression is unavailable formacOS single
bundle archiveswhere the signature requirements forbid themodification of any included files.

install4j will cache both downloaded JDK bundles and generated JRE bundles in the JRE cache
directory

%LOCALAPPDATA%\install4j\v<version>\cached_jres

on Windows.

98

~/Library/Caches/install4j/v<version>/cached_jres

on macOS, and

.cache/install4j/v<version>/cached_jres

on Linux and Unix where the root directory can be modified with the environment variable
XDG_CACHE_HOME.

You can move the contents of this directory including the subdirectories "original" and
"generated" to another machine to avoid downloads and speed up compilation. You can also
delete this directory to force install4j to re-download all JDK bundles and generate new JRE
bundles.

Pre-created JRE bundles

You can create a JRE bundle from any installed JRE on your file system. install4j offers the "Create
a JRE bundle" wizard in the "Project" menu to make this task as simple as possible.

If you wish to automate the process, a command line tool [p. 235] for building JRE bundles is
available with corresponding tasks in the Gradle, Maven or ant integrations.

Packaging your own JRE can be useful if youwant to use JDK providers not supported by install4j
(such as the official Oracle JDKs), or if you want to use runtime images that were created by
jlink (7). The JRE bundle wizard only works for the platform you are running on. That means, to
create a JRE bundle for Windows, you have to run install4j on Windows, to create a bundle for
Linux, you have to run install4j on Linux.

All JREs are saved with a tar.gz extension to the root of the pre-created JRE directory which is

%LOCALAPPDATA%\install4j\v<version>\jres

on Windows.

(7) https://docs.oracle.com/en/java/javase/11/tools/jlink.html

99

https://docs.oracle.com/en/java/javase/11/tools/jlink.html

~/Library/Application Support/install4j/v<version>/jres

on macOS, and

.local/share/install4j/v<version>/jres

on Linux and Unix where the root directory can be modified with the environment variable
XDG_DATA_HOME.

Pre-created JRE bundles can be selected in the "Bundled JRE" step of the media wizards

If you would like to put your JRE bundles into a different directory, such as a directory in a
version-controlled location, you can copy the .tar.gz file to that directorywith the Copy Bundle
File button and choose "Manual entry" in the JRE bundle drop-down to enter the path to the
bundle file.

JRE bundle format

In special cases you might want to create or modify a JRE bundle programmatically, without
using the install4j IDE or the command line tools. This can be done with the standard GNU tools
tar and gzip. A JRE bundle for install4j is simply a file with the naming scheme:

[operating system]-[architecture]-[JRE version].tar.gz

For windows bundles, the operating system namemust be "windows", formacOS "macos", and
for Linux andUnix any name can be used. The .tar.gz file contains the JRE bin and lib folders
as top-level entries. The steps to create a bundle are outlined below:

cd jre
tar cvf minix-x86-11.tar *
gzip minix-x86-11.tar
cp minix-x86-11.tar.gz $HOME/.local/share/.install4j/v<version>/jres

First you change into the top-level directory of the JRE, then you tar all files and directories and
gzip the tar archive.

100

A.16 Services
Many applications have a component that has to run in the backgroundwithout user interaction.
OnWindows, this is called a "service", on Unix a "daemon", in install4j the term "service" is used
exclusively. install4j can generate service launchers for your application on all supported
platforms. OnWindows,managing services is a particularly demanding area and so other service
executables that have not been generated by install4j are supported as well.

Generated service launchers

A service launcher will be generated if the selected executable type in the "Executable" step of
the launcher wizard is set to "Service".

There are no special requirements and interfaces that have to be used by your code. When the
service is started, the mainmethod of the configured main class will be called just like for GUI
or console launchers. Also, there is no special "shutdown" interface that is notified when the
service is stopped. To perform cleanup, use the Runtime.addShutdownHook() method to
register a thread that will be executed just before the JVM is terminated.

If you define a service launcher, it will not run automatically after the installation. A generated
service launcher has to be installed and started explicitly. To do that, you have to add the
following actions to the installer:

• Install a service

This action registers a service with the system, so that it can be executed automatically when
the computer is started. By default, the name of the installed service is the launcher name
that is configured in the launcher section of the install4j IDE. To change the service name,
you have to rename the launcher.

101

On Windows, if you require a user-configurable service name or if you wish to install the
service multiple times, use the method for external service launchers as described below.

• Start a service

Installing a service does not start it immediately, and you have to add this separate action
to actually run the service.

When the "Install Files" action runs and a previous installation is being updated, any running
services that are associated with the same executables are stopped.

Windows user accounts

On Windows, you can configure the user account that is used for running the service. There
are a few well-known user accounts, like "Local System" (the default) or "Local Service" that you
can choose directly in the configuration of this action.

In some cases, you might want to create a separate user to run a service. install4j offers API
support for creating new user accounts with the com.install4j.api.windows.WinUser

class. If you would like to query the user for details on the user account, it is possible to do that

102

without using the API. On a configurable form, add a "Windows user selector" component and
select the "Show 'Create User' button" property.

The SID of the created or selected user is saved to the configured variable, say "serviceUser".

You also have to query the user for the password of the account. For that purpose, add a
"Password field" form component, set its variable to "servicePassword" and choose that form
component in the "Password form component" property of the user selector form component.

In the "Install a service" action, you can then choose Other in the "Account" property and enter
${installer:serviceUser} in the nested "Account name or SID" property as well as
${installer:servicePassword} in the nested "Password" property.

Command-line options of generated service launchers

Under some circumstances, services must be able to be installed and started manually from
the command line. While this is required functionality on Unix, service executables onWindows
usually offer no command line functionality. Instead, it is expected that there is a special program
that installs and uninstalls the service.

103

This task is handled by the "Install a service" and "Uninstall a service" actions in install4j. In
addition, you can start and stop services in theWindows service manager. install4j includes the
"Start a service" and "Stop a service" actions to do this programatically in the installer.

To improve usability, install4j adds Unix-like arguments to the generated service launchers on
Windows as well. For Unix and Windows service executables, the usual

my_service start | my_service.exe /start
my_service stop | my_service.exe /stop
my_service status | my_service.exe /status
my_service restart | my_service.exe /restart

options for daemon start scripts are supported. The stop commandwaits for the service to shut
down. The exit code of the status command is 0 when the service was running, 3 when it was
not running and 1 when the state cannot be determined, for example, when it is not installed
on Windows.

For debugging purposes, you may want to run the executable on the command line without
starting it as a background service. This can be done with the run parameter.

my_service run | my_service.exe /run

In that case, all output will be printed on the terminal. If you want to keep the redirection
settings, use the run-redirect parameter instead.

To install or uninstall a service on Windows from the command line, call

my_service.exe /install
my_service.exe /uninstall

In this way, your service is always started when Windows is booted. To prevent the automatic
startup of your service, call

my_service.exe /install-demand

instead. As a second parameter after the /install parameter, you can optionally pass a service
name. In that way you can

• install a service with a different service name than the default name.
• Use the same service executable to startmultiple serviceswith different names. To distinguish

several running service instances at runtime, you can query the system property exe4j.
launchName for the service name. Note that you also have to pass the same service name
as the secondparameter if you use the/start,/restart,/status/stop and/uninstall
parameters.

On Windows, all command line switches also work with a prefixed dash instead of a slash, like
-uninstall or with two prefixed dashes, like --uninstall.

External service launchers on Windows

When deploying third-party software, you may want to install and start services that were not
generated by install4j. Both the "Install a service" action and the "Start a service" action provide

104

a way to select other service executables. If you choose [Other service executable] in the
drop-down list of the "Service" property, two new nested properties are shown: In the
"Executable" property you set the path of the external service executable and the "Name"
property allows you to specify the name of the installed service.

Note that this action does not provide "service wrapper" functionality for regular executables.
The selected executable has to be a service executable, otherwise the action will not work.

105

A.17 Elevation Of Privileges
Most operating systems have the concept of normal users and administrators. While regular
applications can run with limited privileges, installers often need full administrator privileges
because they make modifications to the system that are not granted to limited users.

The required privileges depend on two factors: The operating system and the type of operations
that are performedby the installer. The "Request privileges" action that is present in the "Startup"
sequence of the default template for installers takes care of elevating the privileges to the
required level and optionally terminating the installer with an error message if the required
privileges cannot be obtained.

Due to the differences of the different operating systems, this configuration ismade separately
for Windows, macOS and Unix.

If the action fails, you can choose to not display an error message and switch to an installation
directory in the user home directory with the "Fall back to user-specific installation directory"
property. Use Util.hasFullAdminRights() in condition expressions of actions that only
work with elevated privileged in this case.

For the installer and the uninstaller, the privileges should be the same. This is why the default
template for the uninstaller has a "Request installer privileges" action that will request the same
privileges that were obtained in the installer.

106

If you have more complex requirements, you can have multiple "Request privileges" actions
with appropriate condition expressions, each with a link in the uninstaller.

Windows privileges

On Windows, "User Account Control" (UAC) (1) limits privileges for all users by default. An
application can request full privileges, with different effects for normal users and admin users:

• A normal user cannot be elevated to full privileges, so the user has to enter credentials for
a different administrator account. A normal user is not likely to have these credentials, so by
default the "Request privileges" action does not try to obtain full privileges for normal users.

Under some circumstances, for example, if you want to manage services in your installer,
you absolutely require full privileges. In this case, you can select the "Try to obtain full
privileges if normal user" property in the Windows category.

• An admin user can be elevated. A UAC prompt will be shown in this case, and the user simply
has to agree to elevate privileges for the installer. Given that it is not possible to write to the
program files directory without elevated privileges, this elevation is performed by default.
With the "Try to obtain full privileges if admin user" property you can configure this behavior
according to your own needs.

(1) https://en.wikipedia.org/wiki/User_Account_Control

107

https://en.wikipedia.org/wiki/User_Account_Control

By default, the installer will fail if the requested privileges cannot be obtained. You can deselect
the "Show failure if requested privileges cannot be obtained" property in theWindows category
to continue and let the user install into the user home directory or another writable directory.

When you insert a service action and the elevation properties are not selected, youwill be asked
whether the necessary changes should be made automatically.

macOS privileges

Similar toWindows,macOS limits privileges for all users by default and normal users and admin
users behave differently with respect to privilege elevation:

• Anormal user cannot be elevated to full privileges, so the user has to enter the root password.
A normal user is not likely to have the root password, so the "Request privileges" action does
not try to obtain full privileges for normal users by default.

• To elevate an admin user, an authentication dialog will be shown, and users have to enter
their own password. Contrary to Windows, admin users can always write to the
/Applications directory, even without full privileges. That is why on macOS no elevation
of privileges is requested by default.

Like onWindows, the installer will fail by default if the requested privileges cannot be obtained.
In the default setting this has no effect, because privileges are never requested.

Service installations require full privileges, so the "Try to obtain full privileges if admin user"
and the "Try to obtain full privileges if normal user" properties in the macOS category should
be selected in that case. Again, the necessary changes will be suggested when service actions
are inserted into the project.

Linux privileges

install4j supports elevation of privileges with pkexec for GUI installation if available. For console
installations, sudo or su will be called. install4j does not elevate privileges for unattended
installations. In this case, the installer has to be started by the root user if required.

108

Elevation mechanism

install4j does not elevate the entire process, but it starts an elevated helper process with full
privileges.

Elevated
action

Elevated
code

Elevated
helper
process

Original
unelevated
process

Unelevated
code

Unelevated
action

Installer UI

launches pushes
down

pushes
upelevates

displays

All actions have an "Action elevation type" property that can be set to "Inherit from parent",
"Do not elevate" or "Elevate tomaximumavailable privileges". The root element in the hierarchy
or beans is always an installer application whose "Action elevation type" property is set to "Do
not elevate" by default.

109

An action whose "Action elevation type" property results as "Elevate to maximum available
privileges" will run in the elevated helper process. Such an action has full access to all installer
variables as long as the contents of the variables are serializable.

Actions can have a preferred elevation type that is set automatically when you add the action.
Actions that need to be elevated include

• the "Install files" and "Uninstall files" actions
• service actions
• actions that add rights on Windows
• actions that write files
• the "Run executable or batch file" action

Actions that are explicitly not elevated by default include

• the "Show URL" action
• the "Show file" action
• the "Execute launcher" action
• actions that should run as the original user, such as registry actions
• actions that interact with the GUI of the installer application

Elevated code can only interactwith theGUI in a limitedway. Allmethods in thecom.install4j.
api.Util class for displaying message dialogs or option dialogs are supported. You cannot
call context.getWizardContext() or directly display a GUI using the Java Swing API. Also,
calling methods in the com.api.install4j.context.Context that change screens is not
supported.Most importantly, because an elevated action runs in a different process, you cannot
access any static state in custom code. The only means to modify state from elevated actions
are installer variables.

For your own scripts or your custom code, the API offers a way to push a piece of code to the
elevated helper process or to the original process if they exist. This is done by wrapping the
code in a com.install4j.api.context.RemoteCallable and calling context.

runElevated(...) for the elevated helper process and context.runUnelevated(...) for
the original process with the RemoteCallable:

110

context.runElevated(new RemoteCallable() {
 public Serializable execute() {
 // do something in the elevated helper process
 return null;
 }
}, true);

context.runUnelevated(new RemoteCallable() {
 public Serializable execute() {
 // do something in the original process
 return null;
 }
});

The RemoteCallablemust be serializable, so its fields can be transferred to the other process.
Its execute() method that contains the code returns a Serializable so you can return a
result to the calling process.

111

A.18 Merged Projects
There are two basic motivations for merged projects: First, there are large projects where a
monolithic project file is inconvenient because multiple developers work on the same installer.
Secondly, if you have multiple products that share certain components, it is undesirable to
duplicate configuration for their installers.

The "merged projects" feature is a solution for both of these problems. You can create project
files that are separate installers by themselves, such as a "database installer" and reuse them
in multiple projects by adding them on the "General Settings->Merged Projects" step. On the
other hand, you can also create project files that do not install anything by themselves, but just
contain a collection of "Run script" actions that are useful in several of your installers.

Merged projects in install4j are not subprojects thatwill retain their structure at runtime.Merging
inserts selected elements into the main project before the main project is compiled.

Merge options

By default, files, launchers and custom installer applications are inserted. The corresponding
merged elements are only added at compile-time and will not be visible in the main project.
You can change merge options for each merged project individually.

112

Mergingworks across an arbitrary number of levels and is performed in a bottom-to-top fashion:
If the main project A includes a merged project B which in turn includes a merged project C,
then C is first merged into B and the result is merged into A.

All selections are transitive for nested merged projects. For example, if the merged project
contains another merged project for which merging of files is enabled, those files are only
merged if file merging is enabled in the main project.

Merging of files

If you have enabled filemerging for amerged project, files aremerged automatically according
to the following rules:

• All files from the default file set of the merged project are merged into the default file set of
the main project.

• Roots are merged if the main project has roots with the same name, otherwise they are
discarded.

• Files in each file set of the merged project are only merged if the main project has a file set
with the same name.

The contained files in the merged project are not displayed in the main project. When defining
installation components in the main project, you will only be able to select the entire file set.
This means that the file sets in the merged project have to be as granular as required for your
main project.

If there are files with the same relative paths, the main project has the highest precedence and
themost deeply nestedmerged project has the lowest precedence. Formerged projects on the
same level, a project with a lower position in the list has a higher precedence than a project
with a higher position.

There is no merging of installation components. Installation components can only be defined
in the main project. However, with the appropriate definition of file sets in merged projects,
you can easily contribute files to installation components in the main project. For example, if
your merged project installs your database, and you want to ask the user whether to install the
database, define a file set named "Database files" in themerged project and add all files to that
file set. In your main project, you also add a file set named "Database files".

When adding the merged project, you will be asked whether to add that file set automatically
to themain project. If file sets change later on, there is an action to repeat this synchronization.
After invoking the action, the new file sets are displayed in the definition of the distribution
tree [p. 14].

113

In your installation component for the database, choose the file set "Database files". It will not
contain any files in the IDE, but during compilation, the files from the merged project will be
added to it.

Merging of launchers and custom installer applications

All launchers and custom installer applications aremerged if youhave enabled the corresponding
option for a merged project. It is not an error if there are collisions of launchers or custom
installer applications with the same relative paths, and the rules of precedence are the same
as for themerging of files. However, it is recommended not to hide launchers in this way because
this can lead to unexpected problems at runtime.

Both launchers and custom installer applications can be attributed to a particular file set. In
that case, they are only merged if the file set also exists in the main project. The attribution to
a particular installation component in the main project is done in the same way as for files.

Merging of screens and actions

Screens and actions are not merged automatically, but through a selective placement of links
on the "Installer->Screens & Actions" step [p. 158]. If merged projects are configured, the "Add
link into" menu contains an entry for each merged project.

114

You can addmultiple links to single screens and actions, but formore complex tasks it is advisable
to create groups for related beans and add a link to a single group.

When adding links, the install4j IDE, shows special nodes that do not show any structure but
just a button that opens the target of the link in a different window. At compile-time, the target
elements are inlined. This means that at runtime, it appears as if all merged elements were
defined directly in the main project.

115

Merging of styles

If style merging is enabled, all styles from the main project are made available for installer
applications, screen groups and screens. This allows you to centrally manage a set of styles and
re-use it in multiple projects.

See the help topic on styles [p. 59] for more information on how merged styles can be used in
the project.

Flat merging considerations

As a result of flat merging, there are no intermediary artifacts for merged projects and the
result of the compilation is a single monolithic installer. This has the advantage of being
straightforward and flexible, but collisions can occur unless concerns are properly separated
between the main project and its merged projects.

In particular, all elements in the final result share the same namespace for compiler and installer
variables. All custom localization files are merged, so that localization in merged projects is not
impacted unless there is a collision in themessage keys. Such problems can be avoided if unique
prefixes are used for compiler variables and installer variables as well as custom localization
keys. For example, in project A, all variables could be prefixed with "a." and in project B with
"b.".

116

One area where such collisions are not possible is for IDs of any entity in a project, such as
launchers, file sets, actions, screens or form components. When a project is merged, install4j
prefixes all IDs with the application ID of that project.

For example, if the application ID of amerged project is "1406-2150-6354-3051" and a launcher
has the ID "2265", the ID is changed to "1406-2150-6354-3051:2265" aftermerging. This ensures
that all IDs remain unique no matter how many projects are merged. Beans (screens, actions
and form components) in the merged project are passed a special context that automatically
prefixes all unqualified IDs with this application ID. For example, if you have a script in your
merged project that calls

context.getLauncherById("2265")

this will succeed, even though the ID is now actually "1406-2150-6354-3051:2265". If you want
to access that same launcher configuration from a script in the main project, you would have
to call

context.getLauncherById("1406-2150-6354-3051:2265")

Generally, it is recommended to organize merged projects so that they are relatively
self-contained and only interact with their main project through common installer variables. In
that way, the main project can continue to work if the merged project is removed and the
merged project can work as a standalone installer.

117

A.19 Auto-Update Functionality
install4j can help you to include auto-update functionality to your application. Auto-updating
includes two tasks: First, there must be a way to check if there is a newer version available for
download. This check can be initiated by the user in various ways, or the check can be triggered
automatically by your application. Secondly, there must be a way to download and execute an
appropriate installer for the new version.

install4j creates a special file named updates.xml in the media output directory when you
build the project. This file describes the media files of the current version. If you want to use
install4j's auto-update functionality, you have to upload this file to a web server. The file is then
downloaded by deployed installations and delivers information about the current version. The
contents of updates.xml are explained in detail in the next chapter [p. 123].

Downloading and installing the new version is done with a custom installer application [p. 165].
install4j offers several templates for update downloaders that correspond to the different update
strategies. These strategies are explained below and in the chapter on background
auto-updates [p. 129].

Getting started

To get basic auto-update functionality for a GUI application, you should start with a standalone
update downloader that will help you validate the associated concepts. To add a standalone
update downloader to your project, you can follow these instructions:

1. Upload the file updates.xml togetherwith yourmedia files to a directory on yourweb server.
2. Go to the "Installer->Auto-UpdateOptions" step and enter the downloadURL for theupdates.
xml file. This must be the full URL for the file, like https://www.server.com/download/
updates.xml and not just for the containing directory.

3. Go to the "Installer->Screens & Actions" step, click on the "Add" button, choose Add application
from the popup menu and select the "Standalone update downloader" template.

4. For the added update downloader application, enter the "Executable name" property, for
example checkForUpdate.

Users can now execute the checkForUpdate executable to check whether a new update is
available. Optionally, the update can also be downloaded and installed.

For testing, you can set the "URL for updates.xml" value to a file URL like file:///c:/Users/
bob/myProject/media/updates.xml. Note the triple slashes after the colon that arise from

118

the initial slash for the required root directory of the file path in addition to the two slashes that
separate the protocol from the path. With a file URL, you do not need a web server and the
updates.xml file does not have to be uploaded anywhere.

Installers versus archives

Generally, auto-update functionality is available for installers only. This is because the update
downloader downloads the current installer and executes it to perform the actual update.

One exception is the single bundle archive for macOS where auto-updating is fully supported
by the update downloader templates. On macOS, the single bundle archive is the preferred
way to distribute software unlike on other platforms that prefer installers or packages that are
handled by a packagemanager. In the update downloader template you will notice screen and
action groups that deal with the macOS single bundle archives separately.

Automatic invocation of update downloaders

Typically update checks are integrated into the application. An easy way to do so for desktop
applications is to start the update downloader when a particular launcher is started. Activate
the "Launcher integration" tab for the update downloader application and select the "Start
automatically when launcher is executed" check box.

To control how often this update check is performed, you can adjust the "Launch schedule". By
default, it uses the frequency that is set it in the "Update schedule registry". To initialize the
update schedule registry, you can add a "Configurable form" to your installer and add an "Update
schedule selector" form component to it. In the installer, the user will then get the possibility
to choose the frequency of the update checks.

There are two points in the life-cycle of the launcherwhen the update downloader can be started:
At startup or when the first window is shown. In addition, the invocation at startup can be
blocking or non-blocking. This is set with the "Launch mode" drop-down on the "Launcher
integration" tab.

119

Of course your ideas for auto-updates might be different. Maybe you do not have a GUI
application, and you want to perform unattended updates, or you want to notify your users
about updates directly in your application. That is why the auto-update functionality has to be
extremely flexible, with the unavoidable downside that its configuration is not trivial, and there
are a couple of concepts that you have to understand in order to be successful. The bulk of this
flexibility comes from the fact that the update downloader is not a monolithic entity, but is
composed of standard form components and actions that can be adjusted according to your
particular requirements.

Blocking update downloaders

Some applications need to ensure that updates are applied as soon as possible or make it a
requirement that the current update is applied before the application can be started. In that
case, an update check has to be made at startup. If an update is found, the update installer
should be downloaded and executed. The "Standalone update downloader" template is not
directly suitable for this purpose because it informs the user if no new version is available. This
behavior is only appropriate if the user explicitly requested an update check.

The "Blocking update downloader" application template is what is required in this case and is
intended for automatic update checks. It looks for an update in the startup sequence and
terminates the update downloader if no new version is available. This means that if there is no
new version available, your users will not see that a check has taken place. Only if a new version
is available will the update downloader display its window and inform the user of the possibility
to download the update installer.

120

For such an automatic check you may want to invoke the update downloader in a blocking
fashion before the application is actually started. As explained in the chapter about update
checks [p. 123], you can use the ApplicationLauncher class to start update downloaders from
your own code. When calling ApplicationLauncher.launchApplication(...) with the
blocking argument set to true, themethodwill not return until the update installer has exited.
If the user decides to run the installer on the "Finish" screen, your applicationwill be terminated
by the "Shut down calling launcher" action.

Also, this template does not offer the user a directory selection for the downloaded installer,
but downloads to the user-specific download directory by default. You can change this default
directory by passing the argument -VupdaterDownloadLocation=[directory] to the
ApplicationLauncher.launchApplication(...) call.

Typically you will want to restart your launcher after an update has been downloaded in this
way. This cannot be done in the update downloader because it has to terminate right after
starting the installer in order to release locks on installed files. The task to start your launcher
again falls to the installer where you can implement it with an "Execute launcher" action in the

121

"Finish screen". If this should only happen during an update, you can set the "Condition
expression" of the action to context.isUpdateInstallation().

To disable displaying information about a new version in the update downloader template, you
can set the installer variable skipNewVersionAvailable to true or delete the screen named
"New version available". Thismay be necessary because you already notify users about updates
in your own application as explained in the next chapter [p. 123].

Unattended auto-updates

If a user interaction is not desired, the update downloader can work in unattended mode. The
executionmode of the update downloader is set through its "Default executionmode" property.
By default, it is set to "GUI mode". On Unix, access to the X-server is often not available, for
example, when you install in an SSH session. Also by default, the "Fall back to console mode on
Unix" property allows the installer to switch to console mode [p. 207] in that case.

To generally disableGUImode, the "Default executionmode" property can be set to "Unattended
mode". This would be appropriate for a service or for a desktop application that executes the
update downloader in the background. The "Unattendedmodewith progress dialog" is intended
for desktop applications that need to showaprogressUIwhile the update is being downloaded.

For programmatic invocations, it is possible to set the execution mode on the command line
with the "-q" and "-splash" command line parameters [p. 209]. Programmatic invocations of
update downloaders should be done with the ApplicationLauncher API that is explained in
the next chapter [p. 123].

In the default templates for the standalone and blocking update downloaders, the execution
mode is passed on to the "Run executable or batch file" action that executes the downloaded
installer. The "Set a variable" action named "Set installer arguments" analyzes the current
execution mode and prepares the command line parameters. This is a good example for how
the update downloader is actually a composition of actions, screens and scripts.

122

A.20 Checking For Updates
This chapter explains the background behind update checking and introduces you to the API
that allows you to integrate these checks into your application.

The updates.xml file

The updates.xml file is created in the media output directory [p. 135] each time you build the
project. For advanced use cases, you can modify this file before uploading it to the web server.
The file looks like the sample below:

<?xml version="1.0" encoding="UTF-8"?>
<updateDescriptor baseUrl="">
 <entry targetMediaFileId="8" updatableVersionMin="" updatableVersionMax=""
fileName="hello_windows_4_0.exe"
 newVersion="4.0" newMediaFileId="8" fileSize="2014720" bundledJre=""
myCustomAttribute="showWarning">
 <comment language="en">Hello world</comment>
 <comment language="de">Hallo Welt</comment>
 <comment language="it">Ciao mondo</comment>
 </entry>
 <entry targetMediaFileId="9" updatableVersionMin="" updatableVersionMax=""
fileName="hello_linux_4_0.rpm"
 newVersion="4.0" newMediaFileId="9" fileSize="817758" bundledJre="">
 <comment />
 </entry>
 <entry targetMediaFileId="10" updatableVersionMin="" updatableVersionMax=""
fileName="hello_macos_4_0.dmg"
 newVersion="4.0" newMediaFileId="10" fileSize="1359872" bundledJre="">
 <comment />
 </entry>
</updateDescriptor>

Its contents are derived from your input on the "Installer->Auto-Update Options" step where
you define global options and common options that are replicated on all media file entries.

123

On the "Customize project defaults->Auto-update options" step of the media wizard you can
override settings with specific values for each media file.

The root of the updates.xml file is the updateDescriptor element. It has a baseUrl attribute
that can be used to specify an alternate download URL for the installers and contains the value
of the "Base URL for installers" setting on the "Installer->Auto-Update Options" step. By default,
it is emptywhichmeans that the installersmust be located in the samedirectory as the updates.
xml file.

The updateDescriptor element contains one or more entry elements that correspond to
the media files that were created by the build.

When install4j determines whether an entry in the update descriptor is a match for the current
installation, it looks at three attributes of the entry element: Most importantly, the
targetMediaFileId attribute has to match the media file ID of the current installation. You
can show media file IDs by toggling the "Show IDs" toolbar button

Another criterion is the installed version of the application. Depending on that version, you
might want to offer different updates. The updatableVersionMin and the
updatableVersionMax attributes can set lower and upper limits for the installed versions that
should download the associated entry in the update descriptor. By default, these attributes are
empty, so no version restrictions apply. On the "Installer->Auto-Update Options" step, these
versions can be set for all media files.

Attributes that describe the update installer include fileName which is necessary to construct
the download URL, and fileSize which contains the size of the file in bytes. newVersion
contains the available versionwhile newMediaFileId is themedia file ID of the update installer
which is usually the same as targetMediaFileId. Lastly, bundledJre contains the original
file name of the JRE bundle without the .tar.gz extension or the empty string if no JRE is
bundled in the installer.

If you discontinue a media file, you canmigrate users of that media file to a different media file
with the legacy media file setting on the "Customize project defaults->Auto-update options"
step of the media wizard. For each specified legacy ID, the entry for the current media file is
duplicated, but with the targetMediaFileId attribute set to the legacy ID. For more complex

124

scenarios, you can modify the updates.xml file yourself and add additional entry elements as
required.

In addition to the above attributes, the nested comment elements can contain a localized
description that should be displayed to the user. You can populate these elements for all media
files by configuring the "Files with comments" setting in the "Installer->Auto-Update Options"
step. The main use case for this feature is to display release notes in the update downloader.

Finally, you can add any number of arbitrary attributes to the entry element. This is configured
with the "Additional attributes" setting in the "Installer->Auto-Update Options" step. Additional
attributes are useful for custom logic to select a suitable update installer in the update
downloader.

125

The update descriptor API and up-to-date checks

The install4j runtime API [p. 223] contains the com.install4j.api.update.UpdateChecker
utility class that can download the updates.xml file and translate it to an instance of com.
install4j.api.update.UpdateDescriptor. From there, you can get a suitable com.

install4j.api.update.UpdateDescriptorEntry with a single method call:

import com.install4j.api.launcher.Variables;
import com.install4j.api.update.*;

String updateUrl = Variables.getCompilerVariable("sys.updatesUrl");
UpdateDescriptor updateDescriptor = UpdateChecker.getUpdateDescriptor(updateUrl,
ApplicationDisplayMode.GUI);
if (updateDescriptor.getPossibleUpdateEntry() != null) {
 // TODO an update is available, execute update downloader
}

See the Javadoc for more detailed information.

In this way, you can display your own notification that announces the new version and lets the
user decide whether to download it or not. This API is primarily intended for use in your
application. The "hello" sample project shows how to use it in a complex example, see the source
file hello/gui/HelloGui.java in your install4j installation and look for the
checkForUpdateWithApimethod.

In a custom installer application, youwould rather use a "Check for update" action that performs
the same actions as UpdateChecker and saves the downloaded UpdateDescriptor to an
installer variable. All update downloader templates included with install4j execute the "Check
for update" action at some point. Its URL is set to ${installer:updatesUrl?:${compiler:
sys.updatesUrl}} by default. If you start the update downloader with the argument
-VupdatesUrl=<URL>, it will define the installer variable "updatesUrl" and that value will be
used as the URL. Otherwise, it falls back to the compiler variable "sys.updatesUrl" that contains
the URL for updates.xml that you have entered on the "Installer->Auto-Update Options" step.

Instances of UpdateDescriptorEntry expose all attributes of the corresponding entry

element in the updates.xml file. They also provide access to any additional attributes that
were added to the entry element so you can implement custom logic to find a suitable update.
The most important method of the UpdateDescriptorEntry class is the getUrl()method
that constructs the full URL fromwhich the update installer can bedownloaded. If nobaseUrlhas

126

been specified on the updateDescriptor root element, theURL starts with the parent directory
from which the updates.xml file has been downloaded.

Update schedule registry

A common requirement is to check for an update on a regular schedule. install4j comes with a
standard implementation of an update schedule registry that frees you of the task to implement
one yourself. This update schedule registry is fully integratedwith the launcher integration that
starts update downloaders when launchers are executed, but it is also available in the API.

The com.install4j.api.update.UpdateScheduleRegistry class is intended to be used
in your application. You configure a particular UpdateSchedule by calling

import com.install4j.api.update.*;

UpdateScheduleRegistry.setUpdateSchedule(UpdateSchedule.DAILY);

and call

boolean shouldCheckForUpdate = UpdateScheduleRegistry.checkAndReset();

each time your application is started. If you get a positive response, you can start a suitable
update downloader with the ApplicationLauncher class as explained below.

To facilitate the configuration of the update schedule in your installer, install4j offers a special
"Update schedule selector" form component whose initial value is set to the current setting (if
any) and automatically updates the setting for the installed application when the user clicks
"Next".

Starting update downloaders from your own code

If you have a GUI application, you could provide integration with the update downloader by
offering a "Check for update" menu item or similar that invokes the update downloader. One
problem in this scenario is that if the updater downloads and executes the update installer,
your applicationwill still be running and the userwill receive a correspondingwarningmessage
in the installer. The solution to this problem is to use the com.install4j.api.launcher.

ApplicationLauncher class to launch the update downloader. With this utility class, you can
launch the update installer by passing its ID as an argument. IDs of installer applications can
be shown by toggling the "Show IDs" toolbar button.

127

If you launch an installer application such as an update downloader that way, the "Shut down
calling launcher" action will be able to close your application. To react to the shutdown and
perform cleanup operations, you can pass a callback to the ApplicationLauncher.

launchApplication(...) call. After you are notified via the callback, your application will be
terminated with a call to System.exit(). For example, for an update downloader with ID 123:

import java.io.IOException;
import com.install4j.api.launcher.ApplicationLauncher;

try {
ApplicationLauncher.launchApplication("123", null, false, new
ApplicationLauncher.Callback() {
public void exited(int exitValue) {
//TODO update check complete, no update available
}

public void prepareShutdown() {
//TODO update installer will be executed, perform cleanup before the process is
terminated
}
}
);
} catch (IOException e) {
e.printStackTrace();
//TODO handle invocation failure
}

To easily get such a code snippet for invoking the update downloader, select the update
downloader application and click on the Start Integration Wizard button on the right.

128

A.21 Background Auto-Updates
The introductory chapter on the auto-update functionality [p. 118] discussedupdate downloaders
that check for update installers, download them and execute them directly on demand.

Another way to organize auto-updates is to download the update installer in the background
and schedule the update for execution the next time a launcher is executed. Thismode requires
the least involvement of the user during the update process. Depending on how much
information you choose to provide to the user in your application, the only thing the user may
notice is an update dialog when the application is started. No download will take place at that
time, because the update installer was already downloaded during a previous session. The
update will be installed without user interaction and no further user input is necessary.

The "Schedule update installation" action

install4j offers a custom application template that handles such background updates. On the
"Installer->Screens & Actions" step, click on the "Add" button, choose Add application from the
popup menu and select the "Background update downloader" template.

Just like the standalone and blocking update downloader templates, the background update
downloader template uses the "Check for update" action to check if an update is available and
then downloads the update installer with a "Download file" action. There are two differences
with respect to the other update downloader templates: First, a background update downloader
has noUI and automatically downloads an update installer if available. Second, it will not execute
the downloaded update installer directly because that would disrupt the work of the user.
Instead, it executes a "Schedule update installation" action to register the downloaded update
installer for later execution.

In addition to the "Installer file" property that tells the action where the downloaded installer
is located, the "Schedule update installation" action has a "Version" property. This is necessary
so that if multiple installers have been downloaded and not yet been executed, only the most
recent version is actually installed.

To avoid a situation where an installer that terminates with an error or is cancelled by the user
is executed again each time when the launcher is started, the "Maximum retries on error" and
"Maximum retries on cancel" properties limit the number of times that these conditions are
repeated, before the installer is finally ignored and the background update downloader waits
for the next version.

129

To mitigate external issues, such as interrupted internet connectivity, there is a minimum time
between retries of a failed installation. By default, the "Retry inhibition in minutes" property is
set to one day. If you would like to retry more quickly, you can reduce this value. This may be
necessary during developmentwhen youwant to try out the featuremultiple times in succession.
With the default setting, you can only try it once per day.

Executing scheduled installers

There are two options to execute an update installer that is scheduled for execution:

• Programmatic invocation

By calling

com.install4j.api.update.UpdateChecker.executeScheduledUpdate(...);

you can execute the downloaded update installer programatically, usually after checking the
result of

com.install4j.api.update.UpdateChecker.isUpdateScheduled()

to determine whether such a download has been completed. You can do that while the
launcher is running or at startup. Notifying the user about this event or letting the user defer
the installation is handled by your own code. For console and service launchers, this is the
only option.

The "HelloGui" class the in the "hello" sample contains a complete demonstration of how to
use the API to check for updates programatically and uses a background update downloader
to download and install updates.

• Automatic invocation

For GUI launchers, you can edit the launcher, go to the "Executable info->Auto-update
integration" step and select the Execute downloaded update installers at startup
check box. When the GUI installer is started and a downloaded update installer has been
scheduled for installation, the update installer will be executed. See the help topic on
launchers [p. 40] for more information.

Restarting the launcher

In the standalone and blocking update downloader templates, the installer is responsible for
starting a launcher after the installation with an "Execute launcher" action, and you can choose
whether to do that or not.

Installers that have been scheduled by the "Schedule update installation" action are always
executed from a running launcher, so install4j knows which launcher to restart and does so
automatically if you use the automatic auto-update integration for GUI launchers. For
programmatic invocations with the

com.install4j.api.update.UpdateChecker.executeScheduledUpdate(...)

API calls, the restartLauncher argument controls whether the current launcher is restarted.
If you pass false, you should start a launcher at the end of the update installer yourself.

130

Trouble-shooting background auto-updates

A complete background auto-update involves 5 processes that are created in chronological
succession. First, code in the launcher (1) or the automatic launcher integration for an update
downloader detects a newupdate. Then, the update downloader (2) is startedwhich downloads
the update installer and schedules it for execution. At a later point in time, the user starts the
launcher again (3) and install4j detects that a scheduled update installer is available. It then
executes that update installer (4) and terminates itself. At the end of the update installer, the
original launcher is restarted (5).

Launcher Check for update

Update
downloader Schedule installer execution

Update
installer Restart original launcher

Restarted
Launcher Up to date

executes

Launcher Scheduled update found

executes and terminates itself

executes

starts launcher again

If an error occurs at any point in this chain of processes, the auto update will fail. When setting
up your project, this may be due to a misconfiguration, like a wrong URL for the updates.xml
file or a failed download of the update installer. Because the log files of the update downloader
and the update installer are not readily available and API calls that you use the in the launcher
to check for updates or execute scheduled installers do not log at all, it is difficult to find out
where the problem is located.

131

To debug issues during background auto-updates, you can set the systemproperty install4j.
updateLog=true for the launcher that starts the update process. If you pass it on the command
line, remember to prefix it with-J, otherwise it is passed as an argument to the main class:

-J-Dinstall4j.updateLog=true

If this system property is set, install4j will create a file named update.log in the updater cache
directory. The updater cache directory can be found in the following platform-dependent
locations:

• Windows
%LOCALAPPDATA%/install4j/update

• macOS
$HOME/Library/Caches/install4j/update

• Linux/Unix
$XDG_CACHE_HOME/install4j/update or $HOME/.cache/install4j/update if
XDG_CACHE_HOME is undefined

The updater cache directory contains directories whose names are hashes of the application
ID and subsequently directories with hashes of the installation path. You can look for the most
recently modified directories to quickly find the application that you are testing. Inside those
directories is the actual content, including the file update.log, that contains logging output
that will help you determine the location as well as the cause of a failure. Other artifacts in this
directory include the downloaded installers as well as lock files for the update process.

To completely start overwith an auto-update process during testing, you can delete this directory
and install4j will re-create it as necessary.

132

A.22 Version Numbers
Version numbers in install4j should be a sequence of version components separated by dots:

A.B.C...

where A, B, C are composed of alphanumeric characters without dots, for example 1, 112,
5-rc-9 or release.

Version comparisons in the auto-update API

The auto-update [p. 118] API in the com.install4j.api.update package has to determine
whether a new version is greater than an installed version or not. Usually, the
getPossibleUpdateEntry() method of the update descriptor is called to make that
comparison:

UpdateDescriptor updateDescriptor = ...;
if (updateDescriptor.getPossibleUpdateEntry() != null) {
 //TODO an update is available
}

In its implementation, it calls

UpdateDescriptorEntry updateDescriptorEntry = ...;
String installedVersion = context.getVersion();
if (updateDescriptorEntry.checkVersionCompatible(installedVersion)) {
 // TODO This entry has a version that is newer than the installed version
}

The checkVersionCompatiblemethod checks if the supplied version

• is greater or equal than the minimum updatable version in the update descriptor entry (if
defined)

• is less or equal than themaximumupdatable version in the update descriptor entry (if defined)
• is less than the version of the new media file

Internally, it calls

if (UpdateChecker.isVersionGreaterThan(newVersion, installedVersion)) {
 // TODO newVersion is indeed greater than installedVersion
}

to compare the version strings of the installed version with the new version in the update
descriptor entry.

Comparison algorithm for versions

Let us call the two versions that should be compared A and B. A has NA components while B has
NB components. Components are determined by splitting the version string with a java.util.
StringTokenizer and a single dot as a delimiter. The components are denoted as A(0) ...
A(NA-1) and B(0) ... B(NB-1).

The following rules apply when comparing these two versions:

133

1. Before the comparison, the following replacements are performed for both versions in this
order:

• When going from left to right, a boundary between digits and non-digits creates a new
component, for example 2.3a becomes 2.3.a. Boundaries between non-digits and digits
are left intact, for example 2.3.a4. This means that non-numeric characters only appear
as leading characters for each component.

• After dots, any "-" and "_" characters are discarded.
• All characters are converted to lower-case, for example 1.0-HEAD becomes 1.0.head.

2. The version that has fewer components is filled up with components of value 0, so that both
versions have the same number of components N = max(NA, NB).

3. The versions are compared from left to right, component by component. The version
comparison is finished for the first K = 0 ... N-1 for which the components are not equal:

B(K) > A(K) => B > A
B(K) < A(K) => B < A

4. Components that have leading non-numeric characters are considered as less than
components with leading numeric characters. For example 2.3-pre < 2.3, because 2.

3-pre is converted to 2.3.pre and 2.3 is converted to 2.3.0.
5. If both components have a non-numeric part, version comparison is decided by their

lexicographic comparison, as performed by String.compareTo(...). For example, 2.Z3
> 2.X4. If the non-numeric parts are equal, the numeric parts are compared where missing
numeric parts are set to 0.

6. Otherwise the components are both numeric and can be compared numerically.

Some examples from the unit test for the version comparison method are:

1 < 2
1.1 < 2
1.1 < 1.2
1.1.0 < 1.1.1
9.0 < 10
1.6.0_4 < 1.6.0_22
1.6.0 < 1.6.0_22
1.6.0_4 < 1.6.1
1.0beta1 < 1.0beta2
1.0.beta1 < 1.0.beta2
A10 < A11
2.0 beta 1 < 2.0
2.0 beta 1 < 2.0.0
2.0 beta 1 < 2.0 beta 2
1.0rc1 < 1.0
1.0-rc1 < 1.0
1.0.rc1 < 1.0
1.0alpha < 1.0rc1
1.0alpha < 1.0alpha1
1.0alpha9 < 1.0alpha10
1.0alpha100 < 1.0.rc100
1.0.alpha < 1.0-rc
z < 1
DEVELOP-HEAD130714193704 < DEVELOP-HEAD130714193705

134

A.23 Media Files
Media files are the final output of install4j: single artifacts that are used to distribute your
application to your users. The creation of a media file has platform-dependent options, so for
each platform, you have to define a separate media file. It also makes sense to define several
media files for one platform in case you wish to distribute different subsets of your distribution
tree, or if you distribute your application with and without a bundled JRE.

Common options for all media files, such as the destination directory, a pattern for naming the
output file and compression options are defined on the "General Settings->Media File Options"
step.

135

Media files have names and IDs. The name is available elsewhere by using the sys.mediaName
compiler variable but is otherwise not used by the compiler. IDs of media files can be used for
selecting media files when building the project from the command line [p. 231]. You can show
IDs by toggling the "Show IDs" toolbar button.

There are two fundamentally different types of media files: installers and archives. Installers
support the full functionality of install4j while archives are limited in several ways.

Installers

Installers install your application programmatically with the configured sequence of screens &
actions [p. 24]. Optionally, an installer can be executed in unattended or in consolemode [p. 207]
and it can download a JRE [p. 95] if no suitable JRE is found on the target system.

The following installer media file types are available:

• Windows

A media file for Windows is a native setup executable that installs your application with an
installer wizard.

Optionally, you can create anMSI wrapper instead of a regular executable. This is configured
on the "MSI wrapper" advanced options step below the "Installation options". It is not
recommended to use the MSI wrapper without having a specific requirement for it. The MSI
wrapper adds a lot of extra process machinery and additional logic to bridge mismatches
between the concepts of install4j and MSI. This results in additional overhead, increased
temporary disk space requirements, reduced responsiveness and extra considerations for
the non-GUI installer modes.

136

MSI wrappers have a fixed setting for whether an installation will be performed per-machine
or per-user. In install4j, this corresponds to whether the "Request privileges" action is
performed or not. In the "per-machine" MSI installation scope it is your responsibility to
ensure that the "Request privileges" action is always executed and that in the "per-user" MSI
installation scope the "Request privileges" is never executed.

MSI will prevent that an installation is repeated if it has already been performed. The identity
of an installation is defined by the MSI product ID. If an installation with the same product
ID is found, the MSI installer will show an error message and terminate. By default, install4j
creates a unique MSI product ID for each build. You can also tell install4j to create a new
product ID for each application version as configured on the "General Settings->Application
Info" step, or to use a custom MSI product ID that you can change as required.

To change the installation directory, the variable INSTALLDIR can be specified on the
command line. In addition,PARAMETER canbeused topass arbitrary command lineparameters
to the wrapped installer.

• macOS folder
The foldermedia file formacOS is started by the user from the Finder after opening theDMG.
The wizard installs your application as a folder that contains the entire distribution tree and
multiple application bundles for each included GUI launcher.

• Unix/Linux GUI installer
A Unix/Linux GUI installer media file is an executable shell script that extracts an installer
and installs your application with an installer wizard.

Archives

Archives can be extracted by the user to arbitrary locations or are submitted to package
managers for installation. No screens are shown and no actions are executed. If you define
additional installation roots, the files in them are not installed. Also, no installation components
are downloaded.

Apart from the "macOS single bundle" archive that produces the idiomatic deployment mode
for GUI applications on macOS, archives are mainly intended as a fallback or for additional
packages such as documentation bundles.

137

When a launcher is executed for the first time after an extraction, you can call a custom installer
application to perform tasks that would otherwise have been part of the installer. With the
ApplicationLauncher.isNewArchiveInstallation() method you can find out whether
this is the case:

import com.install4j.api.launcher.*;

if (ApplicationLauncher.isNewArchiveInstallation()) {
 ApplicationLauncher.launchApplication("123", null, true, null);
}

where "123" is the ID of the custom installer application that should be run.

The following archive media file types are available:

• Windows archive
An archive media file for Windows is a ZIP-file that contains your application.

• macOS single bundle archive

A single bundlemedia file formacOS is a DMGor .tgz archive that contains a single application
bundle for a selected GUI launcher. Command line launchers and service launchers are
contained in the application bundle. If you wish to support multiple GUI launchers, choose
the "macOS folder archive" media file type instead.

All files in the distribution tree are contained inside the application bundle under the relative
path Contents/Resources/app.

This is the preferredway to distribute aGUI application onmacOS. The corresponding installer
that installs a single application bundle is deprecated because of signature requirements of
modern macOS versions. To make it easier to use the screen and action system in install4j
for installations, the media wizard allows you to select a custom installer application that is
executed the first time the user starts the application bundle.

• macOS folder archive
A folder media file for macOS is a DMG or .tgz archive that contains the distribution tree and
multiple application bundles for each included GUI launcher.

• Unix/Linux archive

AUnix/Linux archivemedia file is a gzipped TAR archive that contains your application. Users
will extract them with a command like

tar xzf archive.tar.gz

• Linux RPM

An RPM archive for Linux can be installed and uninstalled with the rpm command on Linux
distributions that use the Redhat package management.

A basic installation command looks like

rpm -i archive.rpm

138

You can configure custom installer applications to run in the post-installation phase and the
pre-uninstallation phase. Alternatively, default actions for installed launchers canbeperformed
without starting a JVM. These include the installation of services, creating links for non-service
launchers in /usr/local/bin and integrating GUI launchers into the menu of the desktop
environment. In addition, bash scripts for pre-install, post-install, pre-uninstall and
post-uninstall phases can be configured.

• Linux Deb

A Deb archive for Linux can be installed and uninstalled with the dpkg command on Linux
distributions that use the Debian package management.

If you deliver the .deb file as a download, the user will have to install it with

sudo dpkg -i archive.deb

If you specify dependencies for the .deb file in the media wizard, they will not be installed
automatically by the above command. If dependencies are missing, dpkg will simply report
a failure due to themissing dependencies. If you need to install dependencies from configured
repositories with an external .deb file, the installation is a 2-step process:

sudo dpkg -i your_package.deb
sudo apt-get install -f

The second line installs the missing dependencies from the repositories.

Debmedia files have the same functionality for running custom installer applications as RPM
media files.

Customizing project defaults

Many project configuration settings can be overridden for eachmedia file. Settings in text fields
can be overridden by using compiler variables [p. 67] and overriding them in the "Customize
project defaults->Compiler variables" step of the media wizard.

It is also possible to override compiler variables for specific media files from the command
line [p. 231] by prefixing the variable name with the media file ID and a colon, as in

-D 123:key=value

if the media file ID is "123". As a special case, you can change the principal language on a
per-media file basis by setting the compiler variable sys.languageId with the 2-letter ISO
code (1) of the desired language, for example

-D 123:sys.languageId=fr

For some features where text fields are not used, special screens are available in the "Customize
project defaults" category. They let you exclude files, launchers, installation components and
installer elements. In addition, the principal language [p. 85] and auto-update options [p. 118]
can be overridden for the media file.

Because it is often necessary to change the name of the media file from the global media file
pattern configured on the "General Settings->Media File Options" step, a separate customization
(1) https://www.w3.org/WAI/ER/IG/ert/iso639.htm

139

https://www.w3.org/WAI/ER/IG/ert/iso639.htm
https://www.w3.org/WAI/ER/IG/ert/iso639.htm

step is available in the media wizard. For example, you may want to produce two different
variants for the same platform with and without some particular files. To avoid a name clash
of the two media files, you have to adjust the name of one or both of the media files.

Pack200 JAR compression

Pack200 compression (2) is a compression algorithm that was designed for JAR files and achieves
exceptional results, especially for large JAR files.

If you have signed JAR files or JAR files that create a digest, apply the $JDK_HOME/bin/pack200
executable in your build process with

pack200 --repack my.jar

before signing the JAR files. Pack200 rearranges JAR files, but the reordering is idempotent, so
the above pack/unpack sequence creates a stable JAR file.

(2) https://docs.oracle.com/javase/6/docs/technotes/guides/deployment/deployment-guide/pack200.html

140

https://docs.oracle.com/javase/6/docs/technotes/guides/deployment/deployment-guide/pack200.html

While Pack200 compression can be quite slow, Pack200 decompression is relatively fast. Pack200
compression is only used for installers and not for archives.

To avoid problemswith external JAR files, you can check the "Exclude signed JARs or JARs creating
digests" option. If you would like to exclude selected JAR files only, you can place an empty *.
nopack file next to it. For example, if the jar file is named app.jar, then a file app.jar.nopack
in the same directory will disable Pack200 compression for that file.

To pass options (3) to the packer, create a file *.packoptions next to the file and add one option
per line. Currently, only -P and --pass-file are supported.

(3) https://docs.oracle.com/javase/8/docs/technotes/tools/windows/pack200.html

141

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/pack200.html

A.24 Data Files
Typically, installers are single files that contain all data that they can install when they are
executed. There are three common situations where this is not the case:

• DVD installers with large data files
If your application relies on large amounts of data, it is often distributed on a DVD. In that
case, you typically ship a number of external data files that you do not wish to package inside
the installer. The installer should start up quickly, and the data files should not be extracted
from the installer to save time. The user might decide to install only certain components, so
some data files might not be needed at all. If they are included in the installer executable,
all this data would have to be read from disk.

• Installers with large optional components
Some applications have large optional components that are not relevant for the typical user.
To reduce download size for themajority, the optional components should be downloadable
on demand.

• Net installers
Some applications are highlymodular, so it is not feasible to build a set of installers for typical
use cases. A net installer lets the user select the desired components and downloads them
on demand. The download size of the net installer is small because no parts of the actual
application are contained in the installer itself.

To accommodate the above use cases, install4j offers three different ways to handle the installer
data files. The data file mode can be selected in the "Data files" step of the media wizard. By
default, the "Included in media file" option is selected where all data files are included in the
installer, so you can ship it as a single download.

External data files

This mode covers the "DVD installers with large data files" use case.

Next to your installer, a directory for the data files is created with the name of your installer
and the extension .dat. For example, if your media file name is hello_4_0, resulting in a
Windows installer executable hello_4_0.exe, the directory containing the external data files

142

is named hello_4_0.dat. You have to ship this directory in the same relative location on your
DVD.

The number of data files depends on the definition of your installation components. The data
files are generated in such a way that

• the files for an installation component are contained in one or more data files
• there are no files in those data files that do not belong to this installation component

If components do not overlap, there's a one-to-one correspondence between data files and
installation components.

Downloadable data files

Thismode covers the "Installers with large optional components" and "Net installers" use cases.
It can only be used if you define installation components [p. 20].

Data files are generated just like for the "External" mode, but only for installation components
that have been marked as downloadable in the installation component definition [p. 20].

If no installation components are marked as "downloadable", this mode will behave like the
"Included in media file" mode. For a "net installer", all installation components should be
"downloadable".

For this mode, you have to enter a HTTP download URL, so the installer knows from where it
should download the data files at runtime if the user requests downloadable components. The
URL must begin with http:// or https:// and point to a directory where you place the data
files that the compiler produces in the .dat folder next to the installer.

143

The build output will list the data files that belong to downloadable installation components
with a message like

Important: Please make sure that the following files can be downloaded from

 https://www.test.com/components

 hello_windows-x64_8_0.41.dat

This means that the data file must be uploaded to the web server, so that the installer can
download it from the URL

https://www.test.com/components/hello_windows-x64_8_0.41.dat

Any data files that you leave in the data file directory next to the installer will not be downloaded.
This means that if you test your installer directory from the location where it was generated,
the installer finds all data files in the data file directory and does not try to download them.

Naming and partitioning of data files

The naming of data files is stable and only depends on the name of the media file and the
downloadable installation components.

For example, say your installer includes the following 7 files:

file_1.txt
file_2.txt
file_3.txt
file_12.txt
file_13.txt
file_23.txt
file_123.txt

and there are three installation components with IDs 1, 2 and 3 that include the following files:

144

Component 1:
 file_1.txt
 file_12.txt
 file_13.txt
 file_123.txt
Component 2:
 file_2.txt
 file_12.txt
 file_23.txt
 file_123.txt
Component 3:
 file_3.txt
 file_13.txt
 file_23.txt
 file_123.txt

Note that some files are in multiple components, and in the above scheme each component
includes all files whose number contains the ID of the installation component.

If themedia file is named test, the compiler then produces one data file per component named
test.X.dat with the files that are included exclusively by the corresponding component:

test.1.dat
 file_1.txt
test.2.dat
 file_2.txt
test.3.dat
 file_3.txt

Next, data files named test.X.Y.dat for the files that are included in exactly two components
are generated:

test.1.2.dat
 file_12.txt
test.1.3.dat
 file_13.txt
test.2.3.dat
 file_23.txt

Finally, a data file is generated that includes files that appear in all three components:

test.1.2.3.dat
 file_123.txt

When generalizing this partitioning to N installation components, a maximum number of 2N -

1 data files are created. In practice, it is more likely that each installation component only has
exclusive files and that there will be N data files.

For the downloadable data file mode, only the downloadable installation components are
included in this partition. Files that belong to other installation components are included in the
installer and do not play any role in the creation of data files.

145

A.25 Code Signing
Code signing ensures that the installer, uninstaller and launchers can be traced back to a
particular vendor. A third party certificate authority guarantees that the signing organization
is known to them and has been checked to some extent. The certificate authority has the ability
to revoke a certificate in case it gets compromised.

The basis for code signing is a public and private key pair (1) that you generate on your computer.
The private key is only known to yourself, and you never give it to anyone else. The certificate
provider takes your public key and signs it with its own private key. That key in turn is validated
by an official root certificate that is known to the operating system. The private key, the public
key and the certificate chain provided by the certificate provider are all required for code signing.

Code signing is important for installers onWindows andmacOS. For unsigned applications that
require admin privileges, a window will display special warning dialogs to alert the user that
the application is untrusted and may harm the computer. Also, the SmartScreen (2) filter will
make it very difficult for the user to execute unsigned executables.

OnmacOS, the Gatekeeper (3) prevents non-expert users from installing an unsigned application
that was marked as downloaded from the internet, so code signing is practically required.

You need different certificates for code signing on Windows and macOS. While it is technically
possibly to use the same certificate, the recognized root certificates are different on both
platforms.

(1) https://en.wikipedia.org/wiki/Public-key_cryptography
(2) https://en.wikipedia.org/wiki/Microsoft_SmartScreen
(3) https://en.wikipedia.org/wiki/Gatekeeper_(macOS)

146

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Microsoft_SmartScreen
https://en.wikipedia.org/wiki/Gatekeeper_(macOS)

Code signing for Windows

You can purchase a "Microsoft Authenticode" code signing certificate from a certificate provider
such as DigiCert (4).

Keys and certificates can be stored in a .p12 file and directly used by install4j. Otherwise, they
are stored on a token or HSM or in a cloud storage. When signing on Windows, the easiest way
to access these types of keys is to use the "Windows keystore" option in install4j. Drivers for
tokens andHSMs integrate into theWindows keystore and can be used transparently by install4j.

Another option is to use an external executable for code signing according to the instructions
of your certificate authority. In the command line you can use the $EXECUTABLE variable to
reference the full path of the executable that is currently being signed. The working directory
of the executed process is the directory where your project file is located, so you can use relative
file names for key or certificate files. If the signing command cannot replace the executable
directly, but rather needs a separate output file, use the $OUTFILE variable. It will receive a
temporary output file name that will be moved back to the processed executable after the
command has completed.

A third way you can use to access HSMs is using the "Hardware security module PKCS #11
library" option and configure a native library that provides access to the keystore in the HSM
through the PKCS #11 API (5). Libraries can access multiple HSMs that are said to be in different
"slots". By adjusting the slot index, you can switch to a different HSM. By default, the first
available HSM in slot 0 is used. After the library has been configured, a certificate can be chosen
from the keystore in the HSM. Even if you have just one code signing certificate, over time you
will likely add certificate renewals to the same HSM.

Code signing for macOS

This chapter discusses code signing for the standalone distribution of macOS apps outside the
App Store. App Store submission is discussed in a different chapter [p. 151].

Certificates for code signing are only issued by Apple. To get started, open the Keychain Access
app and select Keychain Access->Certificate Assistant->Request a Certificate From a Certificate
Authority. The assistant will save a certSigningRequest file to your file system.

Then, log in to the Apple Developer Network (6) and request a "Developer ID Application" (7)

macOS code signing certificate. Download the certificate and double-click to add it to the
Keychain.

Finally, open the Keychain Access app, select the "Keys" category and export the key that belongs
to your "Developer ID Application" certificate by selecting both the certificate and the private
key and right-clicking on the combined selection. Choose .p12 as the file format. The keychain
tool will ask you for a new password for the exported file. This is the password you will have to
specify during the install4j build to access your key.

install4j will refuse to use certificates for code signing that have a certificate subject name other
than "Developer ID Application". It is technically possible to sign with an arbitrary certificate,
although such a signature will not be considered as valid by Gatekeeper. To enable signingwith
all kinds of certificates, set the compiler variable sys.ext.macosAcceptAllCerts to true.
Expiration times will still be checked in that case, only the constraints on the certificate subject
name will be removed.

(4) https://www.digicert.com
(5) https://en.wikipedia.org/wiki/PKCS_11
(6) https://developer.apple.com
(7) https://developer.apple.com/support/developer-id/

147

https://www.digicert.com
https://en.wikipedia.org/wiki/PKCS_11
https://developer.apple.com
https://developer.apple.com/support/developer-id/

You can find general information about code signing onmacOS in the Apple code signing guide
(8).

To check if a DMG has been signed, execute

codesign -vv /path/to/file.dmg

Notarizing macOS media files

Apple offers a service that checks DMGs for security problems and adds them to their database.
This is called "notarization" and is required starting with macOS 10.15. The exact steps for
notarizing your application are described on the Apple developer web site (9).

However, Apple will only notarize applications that follow certain guidelines. The "hardened
runtime" has to be enabled, which install4j automatically does for you by adding the appropriate
entries to the entitlements file. Also, all binaries in the DMGhave to be signed. This also concerns
binaries that are in a ZIP archive. Because JAR files are ZIP archives, the notarization process
can detect binaries in JAR files. Some popular frameworks and libraries such as SWT or JNA ship
native binaries in their JAR files. These contained binaries have to be signed as well.

For this purpose, install4j lets you configure a list name patterns for binaries. All files in the
distribution tree arematched against these patterns, and if amatch is found, the corresponding
file is signed if it is really aMACH-O binary (10). The reasonwhy install4j cannot just automatically
check all files in this way is that this check is rather expensive.

In addition, you can configure a list of name patterns for JAR files that should be scanned for
binaries with the above name patterns. This only works for unsigned JAR files because the
modification introduced by the signature would break the signature of a signed JAR file and
install4j has no way of regenerating that signature.

The actual notarization of a media file is performed by uploading it with the App Store Connect
API to Apple while identifying yourself with an API key generated for an account matching the
code signing certificate. If the app passes the inspection, install4j "staples" the notarization
signature to the DMG. Stapling is only necessary if amacOSmachine is offline and cannot verify
the notarization of an app by connecting to the internet.

In the install4j IDE, notarization must be enabled on the "General Settings->Code signing" step
and an App Store Connect API key, issuer, and private key file has to be entered. The access
role of the key must be "Developer". You can generate API keys on Apple's App Store Connect
website.

(8) https://developer.apple.com/support/code-signing/
(9) https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution
(10) https://en.wikipedia.org/wiki/Mach-O

148

https://developer.apple.com/support/code-signing/
https://developer.apple.com/support/code-signing/
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution
https://en.wikipedia.org/wiki/Mach-O

To check if notarization has succeeded, execute

spctl -a -t open --context context:primary-signature -vv /path/to/file.dmg

Key store passwords

Private keys contain sensitive information, and if they get into the wrong hands, your identity
is compromised. Because of that, private keys are securedwith a password.When install4j signs
your installers and launchers, it needs to work with the private key.

When you start a build in the install4j IDE, you will be asked for the Windows and macOS key
store passwords as required. install4j does not store those passwords to disk, but they are
cached on a per-project level as long as the install4j IDE remains open.

When you run a command line build, the install4j command line compiler will ask you for the
required passwords. If you want to fully automate a build with code signing, you can pass
passwords on the command line by setting the--win-keystore-password=[password] and
--mac-keystore-password=[password] command line parameters. The plugins for
Gradle [p. 236], Maven [p. 243] and Ant [p. 253] offer the corresponding "winKeystorePassword"
and "macKeystorePassword" attributes. Note that adding these passwords to shell scripts or
ant build files constitutes a security risk.

In a setup where only a restricted number of people can build signed executables, you can use
the --disable-signing command line parameter, the "disableSigning" attribute of the build
system plugins or the corresponding build option in the "Build" step of the install4j IDE to
temporarily disable code signing. In that way, other developers can build fully functional,
unsigned installers without modifying the project file.

Time stamp counter-signing

Code signing certificates issued by certificate providers expire after a certain time. ForWindows
code signing, the expiry time is usually one to three years, after which you have to purchase a
renewal from your certificate provider. Executables that were signed while the certificate was
still valid are trusted indefinitely unless the certificate is revoked.

A computer that validates an executable compares the signing time and the expiry time of your
certificate. Certificate providers have to prevent you from turning back the clock of your computer
to circumvent the expiry of your certificate. This is why the signing time has to be counter-signed
by a certificate provider. Certificate providers offer free web services that will confirm that a
signaturewas performed at a particular time. This counter-signature is not related to a particular
certificate, so you can use the web service of any certificate provider, regardless of where the
certificate came from. install4j uses the DigiCert time stamp signing service at

http://timestamp.digicert.com

and falls back to the GlobalSign time stamp signing service at

149

http://timestamp.globalsign.com/?signature=sha2

if there is a failure.

To use a different service, define the compiler variable

sys.ext.timestampUrl=<URL>

where <URL> can contain multiple URLs separated by semicolons.

If the timestamp service call fails, install4j will retry up to 10 times or whatever the sys.ext.
counterSignRetry compiler variable is set to.

Apple has its own time stamp signature server at

http://timestamp.apple.com/ts01

that can be changed with the compiler variable

sys.ext.macTimestampUrl=<URL>

Setting up a proxy for HTTP calls

The consequence of the time stamp counter-signature scheme is that you need an internet
connection at build time. Many build servers are behind fire walls, and you might need to set
up a proxy to get internet connectivity and whitelist the above time stamp servers. install4j will
try to auto-detect the proxy information. If that fails, the IDE will ask you for proxy information,
but the command line builds will not ask for user-input in order to avoid hanging builds due to
temporary internet connectivity problems.

For command line builds, you can pass the following VM parameters to the command line
compiler:

• -DproxySet=true
• -DproxyHost=[host name]
• -DproxyPort=1234
• -DproxyAuth=true
• -DproxyAuthUser=[user name]
• -DproxyAuthPassword=[password]

The authentication parameters are optional, only the first 3 parameters are required to set up
a proxy.

If you pass these parameters to the command line compiler, you have to prefix them with -J

to mark them as VM parameters, such as

-J-DproxySet=true

The plugins for Gradle [p. 236], Maven [p. 243] and Ant [p. 253] offer way to set VM parameters
without using the -J prefix.

150

A.26 Submitting An App To The Apple App Store
Apps that are submitted to the macOS App Store have to fulfill a number of requirements and
pass a review process by Apple. While install4j can help you to prepare an artifact that will be
accepted by the App Store, you first have tomake yourself familiar with the submission process
by studying the Apple Developer documentation (1).

Configuring a media file for App Store submission

To prepare a package that can be uploaded to App Store Connect (2), start with a media file of
type "macOS single bundle archive" and select the ".pkg for App Store submission" option on
the "Installer options" step of the media wizard.

Right below that option you can select a provisioning profile file to request app capabilities that
have to be allowed by Apple, such as "com.apple.developer.team-identifier",
"com.apple.developer.applesignin" and "com.apple.developer.icloud-service". In addition, using
TestFlight is only possible when a provisioning profile is specified.

This file is created in the "Profiles" section of your Apple Developer account (3) and determines
the Apple distribution channel which must be set to "Mac App Store Connect". When creating
the provisioning profile, you will have to select the App Identifier and a certificate of type "Mac
AppDistribution". The App Identifier and the certificate have to be created in the AppleDeveloper
account before the provisioning profile can be created.

However, the above certificate is not the only certificate that is required. The PKCS #12 certificate
file for code signing in the macOS section of the "General Settings->Code signing" step has to
contain

• a certificate of type "Mac App Distribution" certificate for your app
• a certificate of type "Mac Installer Distribution" for the submitted .pkg installer
• (optional) a certificate of type "Developer ID Application" if you also have media files for

standalone distribution on macOS

(1) https://developer.apple.com/macos/submit/
(2) https://appstoreconnect.apple.com
(3) https://developer.apple.com

151

https://developer.apple.com/macos/submit/
https://appstoreconnect.apple.com
https://developer.apple.com

As explained in the chapter on code signing [p. 146], you can export multiple certificates by
selecting them in the Keychain Access app together with their private keys.

Configuring the launcher for App Store submission

One requirement for macOS App Store submission is that the App icon contains images in the
formats 16x16, 32x32, 128x128, 256x256 and 512x512 as well as their Retina variants with
double the resolution. On the "Icon" step of the launcherwizard, add the files for the non-Retina
formats. The icon compiler will try to pick up Retina files with an "@2x.png" ending and the
same base name.

By default, install4j will generate a bundle identifier for your launcher that is written to the
Info.plist file. In case of an App Store submission, you have to explicitly set the bundle identifier
to the same value that you have configured in the App ID Configuration in your Apple Developer
account. This is done on the "Executable info->macOS options" step of the launcher wizard.

Another requirement for the App Store is that the LSApplicationCategoryType key for the
application category is set in the Info.plist file. You can also do that on the "Executable
info->macOS options" step of the launcher wizard. Possible values for this key are listed in the
Apple Developer documentation (4).

Finally, App Store apps have to run in a sandbox. This is enabled by the
"com.apple.security.app-sandbox" key in the entitlements file that install4j adds automatically.
Your app may need further entitlements, like the ability to read and write user-selected files.
In that case, you have to include an entitlements file on the "Executable info->macOS options"
step of the launcher wizard with content like

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>com.apple.security.files.user-selected.read-write</key>
 <true/>
 </dict>
</plist>

(4)https://developer.apple.com/documentation/bundleresources/information_property_list/lsapplicationcategorytype

152

https://developer.apple.com/documentation/bundleresources/information_property_list/lsapplicationcategorytype

For a list of all available entitlements, see the Apple Developer documentation (5).

Testing the sandboxed App

install4j will create a .pkg file that contains your application bundle. This is the kind of archive
that is required for App Store submission. The App Store will install the .pkg file silently. If you
want to test the sandboxed environment of an app, you will want to install it before submitting
it to the app store. Apple offers the TestFlight app, so you and other beta-testers can run
uploaded builds locally in their final form.

However, if you want to test the app before uploading it and you use an app store provisioning
profile, you cannot install the compiled .pkg file locally. You have to use a "macOS App
Development" provisioning profile instead. A development provisioning profile is associated
with certificates of the type "Apple Development" or "Mac Development". This means that you
have to change both the provisioning profile and the code signing certificate to create a
development build.

In addition, the development provisioning profile must allow your local device and it must be
installed by double-clicking on it in the Finder. When you register your macOS device in the
"Devices" section in the Apple Developer Account, make sure to specify the Provisioning UDID
and not the Hardware UUID, even if the web interface asks you for it. You can find the UDID
from a terminal by executing.

system_profiler SPHardwareDataType | grep UDID

If all these conditions are met, you can double-click the generated .pkg file and follow the
instructions in the wizard to install the application bundle to the /Applications folder. The
installed application bundle will run in a sandbox with the requested entitlements just like the
app that end users will download from the App Store. If some functionality in your application
does not work as expected, it may be missing entitlements. Use the "Console" app to record
logging output and find the cause of a failure.

Submitting the App to the App Store

The most convenient way to upload the generated .pkg file to App Store Connect is through
the "Transporter" app that can be installed from the App store. For signing in, use the Apple ID
of the Apple Developer account where the App is configured.

Before uploading the .pkg file, it is checked for issues that will result in a rejection. After you fix
all these issues in your application, the .pkg file is uploaded and a more thorough check is
performed that may take a couple of minutes. If that check does not pass, you will get an email
with the list of issues that resulted in the rejection. If your app passes these checks, it will be
selectable as a build in the App configuration in App Store Connect.

(5) https://developer.apple.com/documentation/bundleresources/entitlements

153

https://developer.apple.com/documentation/bundleresources/entitlements

A.27 Styling Of DMGs On MacOS
On macOS, software is usually delivered as a DMG. DMG stands for "Disk image" and contains
a file system that can bemounted, rather than an archive that can be extracted. When the user
double-clicks on a DMG file in the Finder, it is mounted to /Volumes/[volume name] and a
new Finder window is opened for the mount point.

The Finder can be styled on a per-directory basis and the information about that styling is saved
to a file named .DS_Store in every directory. This means that you can ship styling information
with a DMG file. Styling includes setting a background image for the Finder window and that
image file can be added to the DMG as well.

For single bundle GUI applications, a styled DMG generally includes a symbolic link to
/Applications in the top-level folder of theDMG, so that user can drag the application bundle
into the default installation directory with minimum effort.

install4j allows you to add any number of files and symbolic links to the DMG. All macOS media
file types have a step named "DMG options and files" as a sub-step of the "Installer options"
step. Here, you can add the top-level .DS_Store files, a background image and the symlink to
/Applications.

Step-by-step instructions

To create your .DS_Store file, follow the steps below on a macOS machine where install4j is
installed.

1. Compile DMG

The first step is to compile your macOSmedia file from install4j without any custom styling.
This DMG will be the template for which we will define the style. You cannot use just any
other DMG, because each media file has a unique ID. When using background images, the
.DS_Store file must have been created for a DMG with the same ID, otherwise the image
will not be found reliably.

When you recompile themedia file in install4j, this ID remains the same, so you can add the
.DS_Store file from a previously compiled DMG to the additional DMG files in the media
wizard.

2. Convert the read-only DMG to a writable DMG

The generated DMG is a read-only image. To make any modifications at all, we have to
convert the DMG to a writable format.

First, make sure that the DMG is not mounted. In a terminal, cd to the directory where the
DMG was created and execute

hdiutil convert hello.dmg -format UDRW -o hello_rw.dmg

where "hello" has to be replaced by the actual name of your media file. Note that the last
argument has "_rw" appended at the end, because the output DMGmust be different from
the input DMG.

3. Enlarge the writable DMG

By default, a DMG generated by install4j is full. It is not possible to add anymore files simply
because the file system in it has no more available space. To enlarge the DMG, we first
determine its current size by executing

154

hdiutil resize hello_4_0_rw.dmg

The "cur" column of the output shows the number 512-byte sectors. To add about 10 MB,
we add 20000 to that number and execute

hdiutil resize -sectors <new number of sectors> hello_4_0_rw.dmg

To check the new size, run

hdiutil resize hello_4_0_rw.dmg

again.

4. Mount DMG

We now mount the read/write DMG by executing

hdiutil attach hello_4_0_rw.dmg

and note themount point /Volumes/[volume name] that is given by the output of the above
command.

5. Copy background image to DMG

To add a background image, we first have to copy the image to the DMG. We do not want
the image file to show up in the finder, so we create a hidden directory in the DMG. To do
that, we execute

cd /Volumes/[volume name]
mkdir .background

To open this hidden directory in the Finder, we execute

cd .background
open .

Now, we open another Finder window, locate our background image and copy it to the
hidden directory that is visible in the original Finder window.

6. Select background image for DMG top-level folder

Because we need the Finder with the hidden directory in a minute, we leave it as it is, and
double-click on the mounted volume on the desktop to open the default Finder window for
the DMG. We position the new Finder window side-by side with the Finder window that
shows the hidden directory.

To start changing styles, we invoke View->Show View Options. This will show a tool window
with styling controls. In the "Background" section, we choose "Picture" and notice the drop
target for a picture file.

155

Now we have to perform a somewhat tricky operation. From the Finder window that shows
the hidden directory, we drag the image to the mentioned drop target in the view options
dialog without activating that Finder window (otherwise the view options dialog would
change its target folder).

Finally, we see can see the background image applied to our read/write DMG.

7. Adjust DMG finder window

Two properties of the Finder window should be adjusted: Invoke View->Hide Toolbar and
resize the window so that it fits the size of the background image.

8. Add link to /Applications for single-bundle archives

If you have a single-bundle archive media file type, you probably want to add a drop-target
for the installation. In the terminal, we execute

cd /Volumes/[volume name]
ln -s /Applications " "

This creates a link with an empty name that immediately shows up in the Finder window.
The empty name is a good strategy to get around localization issues. The Applications folder
has a special icon and is easily recognizable, so a name is not necessary.

9. Adjust icons

Now you can position the icons as needed and adjust the "Icon size" property in the view
options dialog until they fit with your background image.

10. Extract .DS_Store file

The result of your work above is the .DS_Store file in the top-level folder of the DMG. Go
to the terminal and copy it to your project folder so that you can reference it in the install4j
IDE:

cp .DS_Store [project folder]/DS_Store

Note that we have omitted the leading dot before DS_Store in the target path. This makes
it easier to work with the file and prevents confusion with the Finder.

At this point, our work with the read/write DMG is finished. We should now delete it and also
remove it from the Trash. If we don't do this, subsequent tests will automatically mount this
DMG again. This is due to the "alias" feature in macOS. The .DS_Store contains an alias to the

156

configured background image and as long as the original DMG still exists somewhere, it will
open it from the template DMG instead of from the newly generated DMG.

Configuring the media file

In the media file wizard of the install4j project, we can now use the generated .DS_Store file.
On the "Installer Options->DMG options and files" step we enter the [project folder]/

DS_Store and give it the name .DS_Store in the DMG.

The background image is added with the name .background/[image name with file

extension] where the image name must be the same as on the read/write DMG. The
.background folder will be created automatically.

If you have added a symbolic link to /Applications, you can add a corresponding symbolic
link entry here, the name should also be set to the same name as in the read/write DMG. An
empty name is entered as "" (with the quotes).

With the above files and symbolic links a newly generated DMG will look the same as the
read/write DMG where the styling was added. When you tweak your styling in the future, you
don't start from zero but with the styles that are already present in the generated DMG.

157

B Configuring Installer Beans

B.1 The Screens & Actions Configuration Step
The "Installer->Screens&Actions" step shows a tree representation of the installer, the uninstaller
and other installer applications, such as updaters. The nodes in the tree are of the following
types:

• Applications [p. 165]
An application consist of a series of screens.

• Screens [p. 174]
A screens displays information to the user, optionally gathers user input and optionally
executes a series of actions when the user moves to the next screen.

• Actions [p. 180]
An action usually makes a modification to the installation.

In this chapter, the functionality and configuration options on the "Installer->Screens & Actions"
step are discussed, the underlying concepts are discussed in a different help topic [p. 24].

Adding new installer elements

Installer elements are added by clicking the Add button.

In the popup window you can select whether to add

• an action [p. 180], a screen [p. 174] or an application [p. 165]. Actions and screens are made
available by install4j or are contributed by an installed extension [p. 229]. A registry dialogwill
be shown where you can select the desired screen or action. When adding an application,
the application template dialog is displayed.

• an action or a screen contained in your custom code. New types of reusable actions or screens
can be developedwith the install4j API [p. 223]. In your custom code configuration [p. 163] you
can specify code locations that are scanned for suitable classes.

• an action group or a screen group [p. 192]. The new group is initially empty. You can also
create groups directly from a selection in the tree of installer elements.

158

Installer elements can only be added to appropriate parent elements. If no appropriate parent
element is selected, install4j tries to find one by moving in the ancestor hierarchy from the
current selection. If no appropriate parent element can be found, an errormessage is displayed.

• Applications are added at the top level.
• Screens and screen groups can be added to applications or screen groups.
• Actions and action groups can be added to screens or action groups.

Editing installer elements

If you select a single installer element in the tree of installer elements, you can edit its properties
on the right side. Properties that have been modified are shown with an asterisk (*) in front
and can be restored to their default value with the "Reset To Default" action from the context
menu.

Selectingmultiple installer elements is possible on the same tree level, meaning that all selected
elements have to be siblings in the tree.

When the configuration area is focused, you can transfer the focus back to the tree of installer
elements with the keyboard by pressing ALT-F1.

The tree of installer elements provides the following actions in the toolbar on the right that
operate on the current selection. You can also access these actions from the context menu or
use the associated keyboard shortcuts.

• Delete
All selected installer elements will be deleted after a confirmation dialog when invoking the

Delete action. The deleted installer elements cannot be restored. You will be notified if
deleting the selected installer elements would break links.

• Rename
After you add an installer element, the tree of installer elements shows it with its default
name. If you have multiple instances of the same installer element next to each other, a
custom name makes it easier to distinguish these instances. You can assign a custom name
to each installer element with the Rename action. The default name is still displayed in
brackets after the custom name. To revert to the default, enter an empty custom name in
the rename dialog.

• Comment

You can add comments to selected installer elementswith the Add Comments action.When
a comment is added, the affected installer elements will receive a "Comments" tab. After
adding a comment to a single installer element, the comment area is focused automatically.

159

Likewise, you can remove comments from one or more installer elements with the Remove
Comments action.

In order to visit all comments, you can use the Show next comment and Show previous comment
actions. These actions will focus the comment area automatically and wrap around if no
further comments can be found.

• Disable
In order to "comment out" installer elements, you can use the Disable action. The
configuration of the disabled installer elements will not be displayed, their entries in the tree
of installer elements will be shown in gray, and they will not be checked for errors when the
project is built.

• Copy and paste

install4j has a clipboard for installer elements. You can Cut or Copy installer elements
to the clipboard and Paste them in the same project or in a different project. Note that
references to launchers or references to files in the distribution tree might not be valid after
pasting to a different project.

Pasted installer elements are appended to the end of the same level that would be chosen
if you added installer elements of that type. Sequence restrictions with respect to the already
present installer elements may force a different order.

• Reorder
If your selection is a single contiguous interval, you canmove the entire block up or down
in the list. The selection can only be moved within the same level with the reorder actions.
To move the selection to a different parent, you can cut and paste it.

• Group

You can create a screen group or an action group [p. 192] from the selected installer elements
with the Create Group action. The newgroupwill be inserted in place of the selected installer
elements.

You can dissolve a group with the Dissolve Group action. This action is only enabled if the
selection consists of a single screen group or action group. The elements contained in the
group will be inserted in place of the group. Nested groups will not be dissolved.

• Link

You can reuse screens and actions by linking to a single definition. This is particularly useful
if you define an installer maintenance application [p. 165] that should repeat parts of the
installer, such as a number of forms that query the user for initial values to set up your
application. Also, links are the only way to integrate screens and actions from merged
project [p. 112] into the main project.

In order to link to a screen, action, screen group or action group, you click on the "Add"
button and select Add Link Into from the popup menu. The first entry in that popup menu is
always "This project" for links into the current project. If you have set up merged
projects [p. 112], then you get an entry for each merged project. The configuration area of a
link will only contain a button that selects the original definition in the tree of installer
elements. For merged projects, the merged project is opened in a new window, unless it is
already open.

Another way to add a link into the same project is to select the installer element and invoke
the Copy Link action. Then you navigate to the installer element where the link should be
inserted and invoke the Paste Link action.

160

For links into the same project, install4j ensures that there are no broken links in the tree of
installer elements. When you delete an installer element, all links to it will be deleted as well.
If that is the case, the deletion message will tell you howmany links are about to be deleted.
Links into merged projects may be broken, this condition is shown in in the configuration
panel.

Searching for installer elements

In the log files, actions and screens are logged with their IDs. You can navigate to an installer
element if you know their ID by clicking on the search icon and choosing "Search ID" from
the popup menu.

When a match is found the result tree shows the match at the top together with the reverse
chain of installer elements that lead to it. You can either show the match itself or select any
other element in the result tree and show that element instead when closing the dialog with
the Show button. This works even if the target element is in a form component dialog or an
action list or a property. The scope of the search is always rooted in the installer elements that
are reachable from the current view.

A separate action "SearchNames, Comments and Properties" is available to search for arbitrary
patterns. You can disable any of the search types to narrow down the scope of the search.

Display options for installer elements

When using the install4j API, you reference installer elements with IDs. You can show IDs in the
tree of installer elements by toggling the Show IDs tool bar button.

161

In order to adjust the information density in the tree of installer elements, you can change the
icon size by choosing large or small icons in the Icon Size sub-menu in the context menu. The
default setting is to show large icons.

162

B.2 Custom Code & Resources Step
Custom code is configured on the "Installer->Screens & Actions->Custom Code" step.

Entries in the custom code are used for

• specifying additional libraries that can be used in scripts and expressions [p. 29] of
screens [p. 174], actions [p. 180] and form components [p. 195].

• developing new types of actions, screens or form components with the install4j API. See the
help topic on using the API [p. 223] for more information.

Before you start to develop a new action, have a look at the available actions [p. 180] and
screens [p. 174]. If it is just a few lines of code, you can use the "Run script" action to enter
them directly into install4j. If you would like to collect user input, most use cases can be
solved with a form screen [p. 50].

An alternative way of adding your beans to the install4j is packaging them as an
extension [p. 229]. In that case, you can select themdirectly from the standard registry dialogs
instead of having to go through the "Search in custom code" menu entries when adding
beans to the installer.

• including resource files into the installer. Resource files are arbitrary files like DLLs, external
executables or text files that have to be available before the "Install files" action has run. All
class files are packed into a single user.jar file, archives and resource files are extracted
to the user subdirectory in the working directory of the installer. You can access a resource
file named file.txt with the following expression in custom code:

new File("user", "file.txt")

To specify resource files in text fields in the installer configuration, use the sys.resourceDir
installer variable:

${installer:sys.resourceDir}/file.txt

To load native libraries in custom code, do not use System.load(..), but rather Util.
loadNativeFromResources(...) to load the library in the same class loader that loads

163

scripts. For example, if you have added a native library jni.dll to your custom code, you
can load it in a "Run script" action by calling

Util.loadNativeFromResources("jni.dll");

The following types of custom code locations are available:

• Class or resource files

For simple actions, screens or form components that do not depend on other classes, it is
easiest to insert their class files directly, especially if you build your installer extensions
together with your application. Anonymous inner classes will be included automatically. If
you select a resource file, for example, an image, it will be added to the top-level directory
of the custom JAR file and will be available via Class.getResourceAsStream().

• Directories

With this type of entry you can add an entire directory. Make sure to select a classpath root
directory, otherwise your classes cannot be loaded.

• Scan Directories

Use this type of entry to add all JAR and ZIP files in a selected directory.

• Archives

Use this type of entry to add a JAR file. Files that are present in both the custom code as well
as the distribution tree will not be packaged twice. Files that are also present in the
distribution tree can be freely added to your custom code, they will not increase the size of
your installer. The compiler checks the source path of included files to determine if they are
already present in the installer.

164

B.3 Configuring Applications
Applications are configured on the Screens & and actions step [p. 158].

The top-level nodes represent the different applications that can be configured for the project.
There are three types of applications:

• Installer
The installer is the application that is executed when the media file is invoked by the user,
for example, when the user double-clicks on the installer executable in theWindows explorer.
The installer cannot be deleted from the tree of installer elements.

• Uninstaller

The uninstaller is a special application for uninstalling an installation. It is used in various
contexts and can be

• directly invoked by the user
• invoked from the Windows software registry
• invoked by the "Uninstall previous installation" action

The uninstaller cannot be deleted from the tree of installer elements. If you do not wish to
generate an uninstaller, you can disable it [p. 158].

• Custom installer application
You can add any number of custom installer applications that can be invoked after the
installation. install4j comes with several templates for auto-updater downloaders [p. 118].
Custom applications can also be used for writing maintenance applications for your
installation.

You can add a new custom installer application by clicking on the Add button on the right
side of the list and choosing Add Application from the popup. The application templates
dialog will be displayed and lets you choose a starting point for your custom installer
application. Application templates are entirelymade up of existing screens, actions and form
components. You can modify the selected application template after adding it.

Unlike the installer and uninstaller above, custom applications are also created for archive
media files [p. 135]. See the help topic onmedia files [p. 135] for more information on how to
create first-run installers for archives.

Custom installer applications with a non-empty "Executable directory" property are
automatically added to the "Default file set". If you leave the executable directory empty, the
custom installer application is added to the .install4j directory andwill always be included,
regardless of the installation component configuration.

Each installer application has a startup sequence of actions [p. 180]. Those actions are executed
before the installer application presents a user interface. If any of these actions fails and has a
"Quit on failure" failure strategy, the installer application will not be shown.

Properties of installer applications

Common properties of installer applications are:

• Executable icon [Executable]
By default, a standard installer icon is used for the executable. To customize the icon, press
the customizer button in the configuration pane.

165

• Allow unattended mode [Execution Modes]
If selected, the user can pass -q as an argument to run the installer application without a
GUI. No user input is required, the installer applications work with the default values. Please
see the corresponding help topic on installer modes for more information. All standard
actions and standard screens support unattended installations. If your policy forbids
unattended installations or if you include custom code that cannot handle unattended
installations, you can disable them by deselecting this property.

• Progress interface creation script [Configuration]
If you would like to implement your own way of displaying progress information for
unattended installations, you can do so by returning a custom implementation of com.
install4j.api.context.UnattendedProgressInterface from this script. If you return
null, no progress information will be shown just as if this script had not been set. There is
a default implementation com.install4j.api.context.

DefaultUnattendedProgressInterface that does nothing for all its operations. You can
derive from that class if you just need to implement a few particularmethods in the progress
interface.

If you just need a simple dialog that shows progress information in unattendedmode, please
choose the "Unattended mode with progress dialog" execution mode instead.

This property is only visible if "Allow unattended mode" is selected.

• Allow console installations [Execution Modes]
If selected, the user can pass -c as an argument to run the installer application on the console.
The installer asks for user input on the console in that mode. Please see the corresponding
help topic on installermodes formore information. All standard actions and standard screens
support console installations, form screens are also fullymapped to console installers. If your
policy forbids console installations or if you include custom code that cannot handle console
installations, you can disable them by deselecting this property.

• Console screen change handler [Configuration]
By default, a screen in console mode does not show any particular separation. You insert
your own custom display with this script. The title parameter gives you access to the title of
the screen. In console mode, screens display their subtitle only, so the title string will not be
displayed again.

This property is only visible if "Allow console installations" is selected.

• Disable console mode on Windows [Configuration]
Offer console mode only on non-Windows platforms.

This property is only visible if "Allow console installations" is selected.

• Fall back to console mode on Unix [Configuration]
On Unix, users often operate in environments where no X11 server is available and no GUI
can be displayed. The installer will fall back to console mode if console mode execution is
allowed and this option is selected. Otherwise, an error message will be displayed that tells
the user how to invoke the installer in console mode.

This property is only visible if "Allow console installations" is selected.

• Default execution mode [Execution Modes]
The default execution mode for the installer application. By default, a GUI wizard will be
shown, but it is also possible to run in console mode or unattended mode by default.

166

• Title for progress dialog [Configuration]
The title for the progress dialog, for example "Updating installation".This title and the
unattended mode with a progress window can also be set by passing -splash [title] as
an argument from the command line.

This property is only visible if "Default execution mode" is set to "Unattended mode with
progress dialog".

• Show alerts [Configuration]
By default, no alerts are shown in unattended mode. This includes messages boxes, error
alerts and questions. By selecting this property, alerts are enabled for unattended executions
with a progress dialog.

This mode can also be activated by passing -alerts as an argument from the command
line.

This property is only visible if "Default execution mode" is set to "Unattended mode with
progress dialog".

• Windows console executable [Execution Modes]
If selected, a console executable will be created on Windows. A non-hideable console will be
shownwhen the installer is double-clicked in the explorer. This improves the user experience
for a console-only installer (default execution mode set to console) and allows execution
through rsh.

• VM parameters [Execution Options]
If you need to pass special VM parameters to the installer application, you can enter them
here. A common case would be to raise the maximum heap size with a different -Xmx
parameter if your installers require a lot of memory.

• Arguments [Execution Options]
If you need to pass fixed default arguments to the installer application, you can enter them
here. For example, if you want to display a splash screen in unattendedmode by default, you
can set the arguments to -splash "Installing ...". Please note that command line
arguments will be appended to this list, so it is not possible to "override" a fixed argument
from the command line.

• Rollback on failure [Execution Options]
If selected, the installer application will try to restore the state before the last rollback barrier
by rolling back all actions that were executed since the last barrier. Any screen or action can
be selected as a rollback barrier with the property "Rollback barrier". If no rollback barrier
was encountered, all executed actions will be rolled back.

• Help customizer script [General Customization Options]
If the user starts the installer application with one of the arguments -h -help /?, help
regarding the available command-line options will be displayed. If you have your own
command-line options, you can customize this help with this script. The script receives a List
containing String arrays of length 2with the options and explanations. You can add options
like this:options.add(new String[] {"/mySwitch", "Explanation of mySwitch"}}.
You can also delete default options in the list.Attention: The context parameter has not been
initialized at that point.

In order to get extra command line arguments in the installer, call context.

getExtraCommandLineArguments() in any script.

167

• Customize version info [Windows]
If selected, you can customize the fields of theWindows version info in the nested properties.
A Windows version info resource is always generated for the executable with default values
for product name and file version taken from the general settings.

• Copyright [Configuration]
The copyright field in the version resource. If empty, the publisher name from the general
settings is used.

This property is only visible if "Customize version info" is selected.

• File description [Configuration]
The file description field in the version resource. If empty, the full name from the general
settings is used.

This property is only visible if "Customize version info" is selected.

• File version [Configuration]
The file version field in the version resource. If empty, the version from the general settings
is used. The file version must consist of four numbers separated by spaces, commas or dots.

This property is only visible if "Customize version info" is selected.

• Internal name [Configuration]
The internal name field in the version resource. If empty, the short name from the general
settings is used.

This property is only visible if "Customize version info" is selected.

• Product name [Configuration]
The product name field in the version resource. If empty, the full name from the general
settings is used.

This property is only visible if "Customize version info" is selected.

• macOS entitlements file [macOS]
If you have configured code signing formacOS, an entitlements file can unlock certain features
on macOS, such as iCloud storage or push notifications.

• Custom fragment for Info.plist [macOS]
On macOS, you may want to add additional elements to the Info.plist file of the application
bundle in order to customize its behavior in ways that are not directly supported by install4j.

• Custom script fragment [Unix]
On Unix and Linux, the JVM for an installer application is launched by a shell script. To add
your own code to the shell script, you can specify a script fragment that is added immediately
before the java invocation takes place.

• Style [GUI Options]
The default screen style for this installer application. Screens and screen groups can override
this style.

• Window width [GUI Options]
The width of the window displayed by the installer application. The default value is 500. If
the "Size client area" property is selected, this does not include the size of the window frame
border.

168

• Window height [GUI Options]
The height of the window displayed by the installer application. The default value is 390.If
the "Size client area" property is selected, this does not include the size of the window frame
border.

• Size client area [GUI Options]
If selected, the supplied size for the window will not be applied to the outer dimensions of
thewindow, but to the actually usable area inside thewindow.Unusually largewindow frame
borders can occur due to user settings (accessibility, window themes, etc.) andmay interfere
with banner images or introduce unwanted scroll bars to form screens.

• Resizable [GUI Options]
If selected, the window displayed by the installer application is resizable.

• Action elevation type [Privileges]
If any contained actions should run in the elevated helper process, if their "Action elevation
type" property is set to "Inherit from parent".An elevated helper process is available on
Windows and macOS if the process has been started without admin privileges and the
"Request privileges" action has been configured to require full privileges.

Custom applications as well as the uninstaller are added to the distribution tree and have
additional related properties:

• Executable name [Executable]
The name of the executable for the . Please enter a name without any path components and
without a file extension.

• Executable directory [Executable]
The directory to which the executable of the will be written. If empty, it will be placed in the
.install4j runtime directory.

• Use custom application bundle name [macOS]
If selected, a different application bundle name is used on macOS. Executable names on
macOS are localizable. Otherwise, the value of the "Executable name" property is used for
the application bundle name.

• Custom application bundle name [Configuration]
The application bundle name to be used for macOS media files. Bundle names on macOS
are shown in the Finder and are localizable. For example, the executable name could be set
to ${i18n:myLauncherName(${compiler:sys.fullName})}where myLauncherName is
an i18n message with value "Launcher for {0}".

This property is only visible if "Use custom application bundle name" is selected.

• Unix mode [Unix]
The executable mode for the on Unix.

The remaining properties that are specific to the installer are:

• Suppress initial progress dialog [Execution Options]
If selected, the initial native progress dialog of the installer is not displayed.

169

• Replacement script for language code [General Customization Options]
With this script you can replace the language that the installer will run with.

Parameters: The parameter languageCode contains the 2-letter ISO 639 code of the
auto-detected language. If auto-detection has not been enabled on the language step of the
general settings, the parameter will be null.

Return value: If you return null, the language selection dialog will be shown, if you return
a language code, the language selection dialogwill not be shown, and the returned language
will be used. If the returned language code is a language that is not configured for this
installer, the language selection dialog will be shown.

• Create log file for stderr output [Windows]
If selected, and output on stderr is detected, a log file will be created and all output to stderr
will be redirected to that file.

• Log file for stderr [Configuration]
The log file for the stderr output relative to the installer media file.

This property is only visible if "Create log file for stderr output" is selected.

Finally, custom installer applications have the following additional properties:

• Create executable [Executable]
If selected, an executable for this installer application will be created. If not selected, this
application launcher can only be invoked with the com.install4j.api.launcher.

ApplicationLauncher API or an automatic launcher integration.

For macOS single bundles, executables for installer applications are never created.

• Single instance [Configuration]
If checked the application will ensure at startup that there is only one instance running per
user account.

This property is only visible if "Create executable" is selected.

• File set [Executable]
Choose the file set to which the installer application is added. File sets can be defined on the
Files->Define Distribution Tree step.

This property is only visible if "Create executable" is selected.

• Change working directory [Execution Options]
If selected theworking directory will be changed to the value in 'Working directory' at startup.

• Working directory [Configuration]
The working directory to be used when 'Change working directory' is selected.

This property is only visible if "Change working directory" is selected.

• Execution level [Windows]
The execution level for this application. If youwant tomodify files in the installation direction,
youmost likely need administrator rights. This is only relevant forWindows Vista and higher.

• Window title [GUI Options]
The title of the application window.

170

• Show message when user cancels [GUI Options]
If selected, amessagewill be shownwhen the user cancels the installer application by clicking
on the "Cancel" button or closing the application frame.

• Cancel message [Configuration]
The message that is shown if the user cancels the installer application by clicking on the
"Cancel" button or closing the application frame. The options that are presented to the user
are "Cancel" or "Continue".

This property is only visible if "Show message when user cancels" is selected.

Configuring installer variables

The second tab in the configuration area for installer applications is the Installer variables tab.
Here, you can check the bindings for all detected installer variables and pre-define installer
variables. For more information, see the help topic on variables [p. 67].

An additional feature with respect to the variable selection dialog is that you can navigate to a
binding by selecting an element in the binding tree at the bottom and click on theGo To Selection
button.

Launcher integrations

Custom installer applications have a Launcher integrations tab in the configuration area that
helps you to start them when launchers are executed.

171

One way to start an installer application is programmatically, by using the install4j API [p. 223].
To get the code snippet for starting the selected installer application, click on the Start integration
wizard button. The integrationwizardwill present a number of options that control the condition
and possible call backs from the installer application.

Another way to start an installer application is automatically, by defining a launch schedule
and a launch mode. The launch schedule is one of

• Always
Every time you start the launcher, the installer application will be started as well.

• According to update schedule
install4j provides a built-in update schedule registry that can be configured by the user on a
form screen with an "Update schedule selector" form component. Also, you can
programaticallymodify theupdate schedule through the classcom.install4j.api.update.
UpdateScheduleRegistry in the API. The selected installer application will be started only
if the update schedule requires an update check.

• First run of any launcher in archive media file by the current user

For archive media files (such as a Windows ZIP file), no installer is available. To execute a
sequence of screens and actionswhen a launcher is started for the first time after the archive
has been extracted, use this launch schedule. It may be convenient to link to screen groups
in the installer to avoid duplicating configuration in your custom installer application.

In your launcher, you can check for this condition with

com.install4j.api.launcher.ApplicationLauncher.isNewArchiveInstallation()

in case you want to perform some actions outside a custom installer application.

The launch mode is one of

172

• Blocking at start up
When the launcher is started, the selected installer application will be started first. When the
installer application terminates, the launcher will then start up, unless a "Shut down calling
launcher" action has been executed.

• Non-blocking at start up
When the launcher is started, the selected installer application will be started immediately.
The launcher continues to start up in parallel.

• When first window is shown
The selected installer application will be started when the first window is shown. This works
for AWT, Swing and SWT applications. If you have an SWT application, the "Uses SWT" check
box in the "Executable info" step of the launcher wizard [p. 40] must be selected.

Just like with the API, the installer application can be started in the launcher process itself or in
a newprocess. By default, the installer application is started in the same process. If the "Blocking
at start up" or "Non-blocking at start up" launch modes are selected, the look and feel is set to
the system look and feel. For the "When first window is shown" launch mode, the look and feel
is not changed, so your own look and feel will be used.When the installer application is executed
in the same process, the "Shutdown calling launcher" action has a different effect: The whole
process will be terminated when the installer application exits.

By default, the selected installer application is started for all launchers in your project. If this is
not desired, you can restrict the integration to selected launchers. Note that if "All launchers"
is selected and the project is merged into another project, the integration will be performed
for all launchers in the main project as well.

173

B.4 Configuring Screens
Screens are configured on the Installer->Screens & Actions step [p. 158]. A screen is a single step
in an installer application. It displays information to the user or gathers user input.

If a screen has attached actions [p. 180], there will be an expansion control to the left of the
screen icon that allows you to show the associated actions.

Some screens only make sense when corresponding actions are used later on in the installer
or uninstaller. For example, the "Services" screen will only be displayed at runtime if there are
"Install a service" actions present on a subsequent screen. If such a dependency is not fulfilled
after adding a screen, a corresponding notification is displayed.

Properties of screens

Common properties of screens are:

• Action elevation type [Privileges]
If any contained actions should run in the elevated helper process, if their "Action elevation
type" property is set to "Inherit from parent".An elevated helper process is available on
Windows and macOS if the process has been started without admin privileges and the
"Request privileges" action has been configured to require full privileges.

• Style [GUI Options]
The default screen style for this installer application. Screens and screen groups can override
this style.

• Condition expression [Control Flow]
This expression is evaluated to decide whether the screen is displayed. If the expression or
script returns false, the current screen will be skipped. This expression or script should not
have any side-effects, it will be called while another screen is still being displayed.

• Rollback barrier [Control Flow]
If the screen should be a rollback barrier. When a rollback barrier is completed, none of the
preceding actions will be rolled back. You can use this property to prevent an incomplete
rollback of complex changes or to protect actions from rollback when the user hits "Cancel"
in the post-install phase.

174

• Exit code [Control Flow]
If the "Rollback barrier" property is selected, and a rollback terminates at this screen, this
property determines the exit code of the installer. By default, reaching a rollback barrier
during a rollback is considered a success, but you can signal a failure by specifying a non-zero
exit code here.

This property is only visible if "Rollback barrier" is selected.

• Validation expression [Control Flow]
This expression or script is called when the user clicks the next button. If it returns false, the
current screenwill be displayed again. You can use this to validate user input. Errormessages
are not displayed automatically, you can use theUtil.showErrorMessage(String errorMessage)
method in your script.

• Quit after screen [Control Flow]
If the screen should have a "Finish" button instead of a "Next" button. The installer or
uninstaller will quit after this screen. The "Cancel" button will not be visible if this option is
checked.

• Back button [Control Flow]
Allowing the user to go back to previous screens can be problematic if the previous screen
has actions attached that cannot be executed multiple times. By default, every action is just
executed once, all actions have a property to allow multiple execution. The default behavior
is the "Safe back button", where the back button is hidden if the previous screen has actions
attached that cannot be executed multiple times.

• Wizard index [Screen Activation]
Every screen can set or change the current wizard index. The wizard index is an optional
panel on the left side of the wizard that shows overall installation progress. You can leave
the index unchanged as it was set by a previous screen, change the step in the current wizard
index, removed the current wizard index ot configure a new wizard index. For conditional
construction of awizard index, please use the com.install4j.api.context.WizardIndex
class in the "Pre-activation" script.

• Step key
The key for the step in the wizard index that should be activated.

This property is only visible if "Wizard index" is set to "Activate another step".

• Steps
The steps that are displayed by the wizard index. Each step has a key that you can use to
switch to that step later on by setting the wizard index property to "Activate another step"
and specifying that key.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Initial key
The key of the step in the wizard index that should be initially selected. Leave empty to select
the first step.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Partially defined
If selected, the list of wizard index steps will be partially defined. This means that a "..." entry
will be appended at the bottom.

175

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Numbered
If selected, the steps in the wizard index are numbered.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Maximum width
The maximum width of the wizard index in pixels. The preferred with is determined by the
longest step name, the maximum width is an upper bound for the actual width.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Minimum width
The minimum width of the wizard index in pixels. The preferred with is determined by the
longest step name, the minimum width is a lower bound for the actual width.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Background color
The background color for the index panel. Set to "None" to restore the default color.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Foreground color
The foreground color for the index panel. Set to "None" to restore the default color.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Background image
The image file for the background of the wizard index panel. Leave empty if no background
image is required.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Image anchor
The anchor for the background image. The default value is "North".

• Pre-activation script [Screen Activation]
This script is called each time just before the screen is displayed.

• Post-activation script [Screen Activation]
This script is called each time just after the screen has been displayed. It is not invoked in
console or unattended mode.

Available screens

The following standard screens are available in install4j:

Empty form

An empty form to which form components can be added. By default, form components are
layouted along the vertical axis, but you can use layout groups for greater flexibility. Form
components with user input are bound to installer variables that can by referenced by other
elements in the installer, for example by actions.

176

Category: Form templates

Banner with header at the top

A form that has "Banner" as the default style and a configurable header label at the top.

Directory selection

A form that asks the user to select a directory. All displayed messages are configurable.

Display PDF file

A form that displays a PDF file in an embedded cross-platform PDF viewer.

Display progress

A form that displays a progress bar with a status line capturing the progress information of
associated actions. The default post-activation script executes any associated actions
immediately when the screen is activated. All displayed messages are configurable.

Display text

A form that displays text to the user, either plain text or HTML. All displayed messages are
configurable.

Program group selection

A screen that allows the user to select a programgroup onMicrosoftWindows. All displayed
messages are configurable.

Category: Standard screens

Welcome

A screen that welcomes the user to the installation of your application. This screen should
be placed at the beginning of the installation

Display license agreement

A screen that displays a license agreement to the user, either plain text or HTML. The license
agreement must be accepted before the installation continues.

Installation location

The screen that asks the user where to install the application. This determines the principal
installation directory.

Installation type

A screen that displays a list of installation types that correspond to configurable set of
installation components. The default types "Full","Standard" and "Customize" are provided
by default, with localized names and descriptions. Installation components are configured
in the install4j IDE on the "Files->Installation Components" step

The "Installation components" screen may be hidden by this screen, depending on the
installation type selected by the user. This screen will not be shown if no installation
components are defined.

177

You can choose for each installation type if it should be customizable or not. If the installation
type that is selected by the user is customizable, the "Installation components" screen will
be shown if present, otherwise that screenwill be skipped. This condition can also be checked
by inspecting the boolean value of the installer variable sys.

preventComponentCustomization.

Installation components

A screen that displays all installation components and asks the user which components
should be installed. This screen will not be shown if no installation components are defined.

Create program group

A screen that allows the user to select the default program group. Under Windows, this
screen sets installer variables that influence "Create programgroup" and "Create startmenu
entry" entry actions. Under Unix, the screen asks the user whether andwhere symbolic links
to launchers should to be created. Under macOS, the screen is not shown.

File associations

A screen that displays a list of all subsequent file association actions and asks the user which
associations should be made. This screen will not be shown if there are no corresponding
file association actions after this screen.

Additional confirmations

A screen that displays a list of confirmations as check boxes whose results can be used in
condition expressions for actions. While other types of form components can be added to
this screen, only check boxes and other simple elements are consistent with the displayed
text. For arbitrary forms, use the "Configurable form" screen instead.

Installation

The screen that displays the installation progress.Where possible, installation actions should
be added to this screen.

Display information

A screen that displays text to the user, either plain text or HTML. In contrast to the "Display
text" form template, all messages on this screen are pre-defined and localized.

Finish

A screen that tells the user that the installation is finished. This screen should be placed at
the end of the installation.

Uninstall Welcome

A screen that welcomes the user to the uninstallation of your application. This screen should
be placed at the beginning of the uninstallation.

Uninstallation

The screen that displays the uninstallation progress. Where possible, uninstallation actions
should be added to this screen.

Uninstallation failure

178

The screen that is displayed if the uninstallation was not completed successfully. Further
information regarding the uninstallation problems is displayed to the user. This screen is
not shown if the uninstallation was completed successfully or if it is placed before the
uninstallation screen. The uninstaller will terminate after showing this screen in case of
failure.

Uninstallation success

The screen that is displayed if the uninstallation was completed successfully.

179

B.5 Configuring Actions
Actions are configured on the Installer->Screens & Actions step [p. 158]. An action performs a
configurable unit of work in the installer application.

Actions are attached to screens [p. 174] or they are part of the "Startup sequence" that allows
you to performactions before the installer or uninstaller is displayed. If any one of these actions
fails and has a "Quit on failure" failure strategy, the installer application will not be shown.

Most often, actions are added to the "Installation" or "Uninstallation" screens. The advantage
of those screens is that they have a progress bar and a status display that is utilized by actions.
If a screen does not expose a progress interface, the status and progressmessages of attached
actions are lost. This is no problem for near-instantaneous actions such as setting an environment
variable, but for time-consuming operations the user should be informed about progress, even
if it is only an indeterminate progress bar. As an alternative to the "Installation" or "Uninstallation"
screens, you can use "Display progress" screens to create additional installation phases.

Some actions have an "affinity" to a particular screen and will suggest to add themselves to
that screen, such as the actions in the "Final options" category which would like to go to the
"Finish" screen. However, this is only a suggestion to guide you for themost commonuse cases.

Some actions have an associated screen that allows the user to modify the behavior of the
action. For example, the "Install a service" action has a corresponding "Services" screen where
the user can decide whether the service should be installed and started when booting. If such
a relationship exists, a corresponding notification is displayed after adding an action.

Properties of actions

Common properties of actions are:

• Action elevation type [Privileges]
If the action should run in the elevated helper process.An elevated helper process is available
on Windows and macOS if the process has been started without admin privileges and the
"Request privileges" action has been configured to require full privileges.

180

• Condition expression [Control Flow]
This expression is evaluated to decide whether the action is executed. If the expression or
script returns false, the current action will be skipped. This expression or script should not
have any side-effects, it will be called while another screen is still being displayed.

• Rollback barrier [Control Flow]
If the action should be a rollback barrier. When a rollback barrier is completed, none of the
preceding actions will be rolled back. You can use this property to prevent an incomplete
rollback of complex changes or to protect actions from rollback when the user hits "Cancel"
in the post-install phase.

• Exit code [Control Flow]
If the "Rollback barrier" property is selected, and a rollback terminates at this action, this
property determines the exit code of the installer. By default, reaching a rollback barrier
during a rollback is considered a success, but you can signal a failure by specifying a non-zero
exit code here.

This property is only visible if "Rollback barrier" is selected.

• Can be executed multiple times [Control Flow]
If the action can be executed multiple times. If unselected, the action will only be executed
once and do nothing for subsequent invocations of the containing screen. The default settings
for screens ensure that a screen with actions that cannot be executed multiple times is only
shown once. However, if the "Back button" property is changed of if you skip screens
programmatically, a screen might be shown multiple times.

• Failure strategy [Error Handling]
If an action fails (i.e. returns false), the installer or uninstaller can continue, quit, or ask the
user what to do. If you select something other than "Continue on failure", you should enter
an error message in the "Error message" property unless the action displays the error itself.

For "Return to the parent screen", no further actions will be executed and the previous screen
will be displayed again. If the action is contained in the "Startup" node, the first screen will
be shown and in unattended mode the application will quit.

• Ask whether to retry the action
If the action fails, ask the user whether to retry the action.

This is one button in amessage dialog that shows the errormessage and the available options
to react to the failure.

This property is only visible if "Failure strategy" is set to "Ask user".

• Ask whether to quit
If the action fails, ask the user whether to quit the installer application.

This is one button in amessage dialog that shows the errormessage and the available options
to react to the failure.

This property is only visible if "Failure strategy" is set to "Ask user".

• Ask whether to ignore the failure
If the action fails, ask the user whether to ignore the failure and continue.

This is one button in amessage dialog that shows the errormessage and the available options
to react to the failure.

181

This property is only visible if "Failure strategy" is set to "Ask user".

• Error message [Error Handling]
If the action fails, this error message is displayed to the user. Otherwise the action fails
silently.

Available actions

The following standard actions are available in install4j:

Category: Control

Change cancel button state

Changes the visibility and the enabled state of the cancel button. This action works in GUI
mode as well as in unattended mode when the -splash option has been passed on the
command line and the simple unattended progress dialog with a cancel button is shown.

Run script

Runs a custom script. The scriptmust return a boolean value. If it returns false, the installation
will be canceled.

Set a variable

Sets a variable by running a custom script. The script can return any java.lang.Object.

Set messages

Sets the messages in the progress interface.

Set the progress bar

Change the value of the progress bar or set it to indeterminate mode.

Sleep

Sleep a specified number of milliseconds. This is useful to ensure that a progress screen is
displayed for at least a certain period of time.

Category: Desktop integration

Add a desktop link

Create a link on the desktop to an installed executable or file. This actionwill be automatically
reverted by the 'Uninstall files' action.

Add a startup executable on Windows and macOS

Add an installed executable to the startup folder onWindows or to the login items onmacOS
so that it will be started automatically when the user logs in. This actionwill be automatically
reverted by the 'Uninstall files' action.

Add an executable to the dock

Add an installed executable to the dock onmacOS. This action will be automatically reverted
by the 'Uninstall files' action.

182

Create a Windows URL link

Create a URL link on Windows. This is a special text file with a .url link that is supported by
theWindows desktop, startmenu, and explorer. To create links in the startmenu, the "Create
program group" action can be used as well. This action will be automatically reverted by the
'Uninstall files' action.

Create a file association

Create an association between a file extension and a launcher, so that the launcher is invoked
when the user double-clicks a file with the selected extension.

If the application has not yet been started, the arguments to the main method will contain
the file name. Subsequent invocations can be intercepted with the com.install4j.api.
launcher.StartupNotification class. This action will be automatically reverted by the
'Uninstall files' action.

For macOS, file associations have to be defined on the "Executable info->macOS options"
step of the launcher wizard.

Create program group

Create standard program group entries onWindows and freedesktop.org compatible UNIX
desktops. This action will be automatically reverted by the 'Uninstall files' action.

Create start menu entry

Create a single startmenu entry onWindows andUnix. For creatingmultiple programgroup
entries, please see the "Create program group" action. This action will be automatically
reverted by the 'Uninstall files' action.

Register Add/Remove item

Register an Add/Remove item in the Windows software registry.

If this action runs with elevated privileges, the uninstaller will be started with elevated
privileges by Windows and no unelevated actions can be performed. In the event that you
need to execute processes without elevation, set the "Action elevation type" property to "Do
not elevate". Note that the Add/Remove item will be registered for the current user only in
that case.

This action will be automatically reverted by the 'Uninstall files' action.

Register a URL handler

Register a URL handler for a custom scheme, so that the launcher is invoked when the user
clicks on a link with the specified scheme.

OnWindows and Linux, the arguments to themainmethodwill contain the URL. OnmacOS,
the arguments are available from the com.install4j.api.launcher.

StartupNotification class. If the "Allow only a single running instance of the application"
check box is selected on the "Java invocation" step of the launcher wizard, subsequent
invocations are interceptedby thecom.install4j.api.launcher.StartupNotification
class on all platforms.

This action will be automatically reverted by the 'Uninstall files' action.

For macOS, URL handlers have to be defined on the "Executable info->macOS options" step
of the launcher wizard.

183

Category: File operations

Change Windows file rights

Changes access rights to files and directories on Windows.

If a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges" for more information.

Copy files and directories

Copy files and directories. This action will be automatically reverted by the 'Uninstall files'
action.

Create a symbolic link

Creates a symbolic link. On Windows, symlinks can by default only be created with elevated
privileges.

Delete files and directories

Deletes files and directory. Directories can be deleted recursively.

Move files and directories

Moves files and directories. The newly created files are subject to removal by the 'Uninstall
files' action.

Set the UNIX access mode of files and directories

Sets the UNIX access mode of files and directories. This action has no effect on Windows.

Set the modification time of files

Sets the modification time of files.

Set the owner of files and directories

Sets the owner and optionally the group of files and directories. This action has no effect
on Windows.

Category: Final options

Execute launcher

Execute an installed launcher and return immediately. This action is intended to be placed
on the "Finish" screen. A confirmation can be added automatically to the "Finish" screen.

If the main installation process has been elevated by the "Request privileges" action, this
action is pushed to the original process with limited rights. Please see the help topic on
"Elevation Of Privileges" for more information.

Open PDF viewer

Displays a PDF file in a cross-platform PDF viewer. A separate window will be opened.

Reboot computer

184

Reboot the computer on Windows and macOS. This action will trigger a reboot that takes
place at the end of installation or uninstallation. By default, the user will be asked whether
to reboot or not.

Show URL

Show a URL in the default browser. This action is intended to be placed on the "Finish" or
the "Uninstallation success" screen.

If the main installation process has been elevated by the "Request privileges" action, this
action is pushed to the original process with limited rights. Please see the help topic on
"Elevation Of Privileges" for more information.

Show file

Show a file with the associated application. Usually, a text file or an HTML file is appropriate.
This action is intended to be placed on the "Finish" screen. A confirmation can be added
automatically to the "Finish" screen.

If the main installation process has been elevated by the "Request privileges" action, this
action is pushed to the original process with limited rights. Please see the help topic on
"Elevation Of Privileges" for more information.

Category: HTTP and network

Add a Windows firewall rule

Add aWindows firewall rule. This action will be automatically reverted by the 'Uninstall files'
action.

Download file

Download a URL and save it to a file

HTTP request

Make anHTTP request to a specified URL. All commonHTTP requestmethods are supported
for REST calls. For mime types starting with text or containing "charset" information, the
response body can be saved to an installer variable. To download large files, use the
"Download file" action instead.

The action will succeed if an HTTP response code in the 2xx range is received, otherwise it
will fail. You can save the response code to a variable to inspect it in a later action.

Upload file

Upload a file to an HTTP server with a POST request.

Wait for HTTP server

Wait until an HTTP or HTTPS port becomes available. This is useful if you start a server, for
examplewith a "Start a service" action, and need towait until the server is operational before
proceeding with the installation.

Wait for Socket

Wait until a socket can be connected to. This is useful if you start a non-HTTP server. For
HTTP and HTTPS, use the "Wait for HTTP server" action instead.

185

Category: JDBC

Check JDBC connection

Check if a connection can be made to the configured JDBC database. If no connection can
bemade, the actionwill fail. If the action is attached to a form screen that queries a database
location, set its "Error message" property to an appropriate error message and the "Failure
strategy" property to "Return to the parent screen".

Execute SQL query

Execute a single SQL query and store the result in an installer variable. If only the first row
is taken, the row value is stored directly. Otherwise, the variable will contain an instance of
java.util.List with the row values. If the query is for a single column, the row value is
the Java object representation of the return type, e.g. java.lang.String for VARCHAR or
java.lang.Long for INT.

Execute SQL script

Execute a single SQL statement or a script of SQL statements.

JDBC container action

This action allows you to configure connection properties just once and then execute a list
of JDBC actions with the same connection.

Category: JSON files

Count occurrences in a JSON file

Count the occurrences of a JSONPath (1) expression in a JSON file and save the result to an
installer variable.

Modify JSON files

Modify parts of JSON files specified by a JSONPath (2) expression. Several modification types
are available.

Read value from a JSON file

Read one or multiple values from a JSON file as specified by a JSONPath (3) expression and
save the result to an installer variable.

Category: Java preference store

Delete a node or key in the Java preference store

Delete an entire package node or a key-value pair in the Java preference store.

Load installer variables from the Java preference store

Load installer variables from the Java preference store that have been previously saved by
the "Save installer variables to the Java preference store" action.

(1) https://jsonpath.com/
(2) https://jsonpath.com/
(3) https://jsonpath.com/

186

https://jsonpath.com/
https://jsonpath.com/
https://jsonpath.com/

Read a key from the Java preference store

Read the value of a key from the Java preference store and save it to an installer variable.
Only string values can be read.

Save installer variables to the Java preference store

Save installer variables to the Java preference store. This can be used to communicate
installer variables to the uninstaller or to installers with different application IDs.

Set a key in the Java preference store

Set a key-value pair in the Java preference store. The package node is created if necessary.
This is the most convenient way to communicate settings to related installers. Only string
values can be set.

Category: Miscellaneous

Add VM options

Adds VM options for a launcher by modifying or creating a .vmoptions file or by changing
the Info.plist file. This action will be automatically reverted by the 'Uninstall files' action.

Check for running processes

Check for installed launchers and additional running processes on Windows and macOS.

Modify an environment variable on Windows

Sets, appends to, prepends to or removes an environment variable onWindows. This action
can be automatically reverted by the 'Uninstall files' action.

Modify classpath

Changes the classpath of a launcher by modifying or creating a .vmoptions file or by
changing the Info.plist file. This action will be automatically reverted by the 'Uninstall files'
action.

Request privileges

Requests configurable administrator privileges. OnWindows Vista and higher and onmacOS,
the installer will be restartedwith the requested privileges or a helper process will be created
that can perform certain actions in a privileged context. When you restart the installer, you
should not install files before this action.

Please see the help topic on "Elevation Of Privileges" for a detailed discussion of this action.

Require installer privileges

Require the same privileges as the ones that were obtained during the installation. On
Windows Vista and higher and onmacOS, the uninstaller or custom installer application will
be restarted with the requested privileges if necessary. This action only has an effect if a
"Load response file" action is executed previously.

Please see the help topic on "Elevation Of Privileges" for a detailed discussion of this action.

Run executable or batch file

Runs an executable or a Windows batch file. The action can optionally wait for termination
of the executable.

187

Category: Persistence of installer variables

Create a response file

Create a response file at an arbitrary location to save user input for subsequent installations.
This file can be used with the -varfile command-line option.

Load a response file

Load a response file that has previously been saved with the "Create a response file" action.

Modify a response file

Update all variables in an existing response file. The action does not delete variables in the
response file for which no installer variables are defined, but keeps them as they are.

This action is useful for updating a response file from a custom installer application, where
not all installer variables are available.

Category: Properties files

Read a properties file

Read a properties file and save a java.util.Map object with the properties to an installer
variable. If you use a "Write properties to file" action to write the variable back to disk, the
comments on the existing property definitions will be preserved.

Remove keys from properties file

Remove selected keys from a properties file. The line separator of the properties file is
conserved.

Write properties to file

Write property definitions to a properties file. The properties can come from an installer
variable with a java.util.Map object, another properties file or from direct entry.

If the "Merge into existing file" property is selected, the new property definitions will be
added to the existing ones.

Category: Services

Install a service

Installs a service. On Windows, this is done by executing the service launcher with the
appropriate arguments. OnUnix, if systemd is detected, a config file will be created in /etc/
systemd/system, otherwise a link will be placed in /etc/init.d. On macOS, a
LaunchDaemon will be created. This action will be automatically reverted by the 'Uninstall
files' action.

If a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges" for more information.

Start a service

Starts a service by executing the service launcher with the appropriate arguments.

188

If a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges" for more information.

Stop a service

Stops a service by executing the service launcher with the appropriate arguments.

If a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges" for more information.

Category: Text files

Fix line feeds

Changes the line feeds of text files to the platform-specific type.

Modify text files

Modify installed text files by replacing a search value in the selected files. This action does
not read the entire file into memory and can work on arbitrarily large text files.

Modify text files with regular expressions

Modify installed text files by applying a regular expression.

Read text from file

Read the content of a text file and save it to an installer variable. The variable value will be
of type String.

Replace installer variables in text files

Modify installed text files by replacing all occurrences of installer variables of the form
${installer:myVariable}with their current values. The action also replaces i18n variables
like ${i18n;myKey} and compiler variables like ${compiler:myCompilerVariable}

Write text to a file

Write text to a new file or append text to an existing file.

Category: Update

Check for update

Load the update descriptor from a URL and save it to a variable. If successful, the variable
will contain an instance of com.install4j.api.UpdateDescriptor

Schedule update installation

Schedule a downloadedmedia file to be started upon the next start of a launcher configured
accordingly or by calling UpdateChecker.executeScheduledUpdate().

Shut down calling launcher

Shut down the launcher that called this application if it was startedwith the com.install4j.
api.launcher.ApplicationLauncher API.

189

Category: Windows registry

Change access rights for a key in the Windows registry

Changes access rights for a key in the Windows registry.

If a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges" for more information.

Delete a key or value in the Windows registry

Delete a key or value in the Windows registry.

Read a value from the Windows registry

Read a value from the Windows registry and save it to an installer variable. The type of the
value depends on the type in the registry, it will be an instance of one of the following classes:
String, Integer, String[], byte[], WinRegistry.ExpandString.

Set a value in the Windows registry

Set a value in the Windows registry. This action can also create the appropriate key if
necessary.

Category: XML files

Apply an XSLT transform

Transform an installed file by applying an XSLT stylesheet.

Count nodes in XML file

Count the occurrences of an XPath expression in an XML file and save the result to an installer
variable.

Insert XML fragment into XML files

Insert an XML fragment into the position defined by an XPath expression. The fragment can
replace an existing element node, or it can be inserted as a child or a sibling.

Read value from XML file

Read a string value from an XML file specified by an XPath expression and save the result
to an installer variable.

Remove nodes from XML files

Remove selected nodes from XML files by specifying an XPath expression.

Replace text in XML files

Modify installed XML files by selecting nodeswith an XPath expression and applying a regular
expression on the selected values.

Category: ZIP files and archives

Create a ZIP file

190

Create a ZIP file from the specified source files and directories.

Extract a DMG file on macOS

Extracts the content of a DMG file to an arbitrary location on macOS.

Extract a TAR file

Extracts the content of a tar or tar.gz file to an arbitrary location.

Extract a ZIP file

Extracts the content of a ZIP file to an arbitrary location.

Install content of a ZIP file

Installs the content of an external ZIP file to an arbitrary location. This action will be
automatically reverted by the 'Uninstall files' action.

Modify a ZIP file

Modify the contents of a ZIP file with a configurable list of actions.

Download and install component

Download a specified downloadable component and install it. This action only works for
installation components that have been marked as "downloadable" on the "Options" tab of
the installation component configuration.

Note: The "Install Files" action already downloads and installs all selected downloadable
installation components. This action is intended for scenarios where an installation
component has to be downloaded after the "Install files" action has run. For example, you
could use this in a custom installer application to install optional files.

Execute previous uninstaller

Uninstalls the previous installation of this application in the selected installation directory
by executing the previous uninstaller.

Install files

Install all files in the distribution tree that are contained in the selected installation
components.

Uninstall files

Uninstall all installed files.

191

B.6 Configuring Screens And Actions Groups
Screen and action groups can be configured on the "Installer->Screens & Actions" step [p. 158].

Actions and screens can be grouped in the tree of installer elements. Groups of the same types
can be nested, meaning that you can put a screen group into a screen group or an action group
into an action group.

You can nest as many levels of groups as you wish. Next to the label of the screen or action
group in the tree of installer elements the number of all contained screens or actions is shown
in bold where elements in nested groups are counted as well.

Grouping offers the following benefits:

• Organization
If you have many screens or actions, groups emphasize which elements belong together.
You can add a common comment to the group.

• Common condition
Groups have a "Condition expression" property that allows you to skip the group with a
common condition instead of having to repeat the condition for each contained element.

• Single link target
If you want to reuse a set of adjacent screens or actions in a different part of your project,
you can put them in a group and add a single link to that group instead of linking to each
element separately.

• Looping
A group has a "Loop expression" property that allows you to execute the group repeatedly
until the loop expression returns false.

• Jump targets (screen groups only)
When you jump to a screen programmatically with context.gotoScreen(...), it is more
maintainable to jump to a group instead of to a single screen. You can think of the group as
a label in this case.

192

Properties of screen and action groups

The common properties of screen and action groups are:

• Condition expression [Control Flow]
This expression is evaluated just before the screen is displayed. If the expression or script
returns false, the entire screen group will be skipped.

• Loop [Control Flow]
If selected, the screen groupwill be looped.With the child properties you can set an expression
that terminates the loop and configure a loop index that is available inside the loop.

Note: If actions should be repeated in a loop, their "Can be executedmultiple times" property
has to be selected. If form components in a screen should be re-initialized on each loop, their
"Reset initialization on previous" property has to be selected.

• Loop expression [Configuration]
This expression is evaluated when the end of the screen group is reached. If it returns true,
all screens will be repeated. If you leave the expression empty, no loop will be performed.

This property is only visible if "Loop" is selected.

• Loop index start value [Configuration]
The start value for the loop index variable that is passed to the "Loop expression"

This property is only visible if "Loop" is selected.

• Loop index step [Configuration]
The step for the loop index variable that is passed to the "Loop expression". At the end of
each loop, this step is added to the loop index. It is added before the "Loop expression" is
evaluated. To decrement, specify a negative value.

This property is only visible if "Loop" is selected.

• Loop index variable name [Configuration]
If youwant to use the loop index in a screen that is contained in the group, you can optionally
save the value to an installer variable. Specify the variable name to which the value should
be saved as a java.lang.Integer.

This property is only visible if "Loop" is selected.

• Style [GUI Options]
The default screen style for this installer application. Screens and screen groups can override
this style.

• Action elevation type [Privileges]
If any contained actions should run in the elevated helper process, if their "Action elevation
type" property is set to "Inherit from parent".An elevated helper process is available on
Windows and macOS if the process has been started without admin privileges and the
"Request privileges" action has been configured to require full privileges.

In addition, action groups have the following properties:

193

• On error break group [Error Handling]
If selected, and one of the contained actions returns with an error, the control flow will step
out of the action group and continue with the next element after the group. This behavior
only takes effect if the problematic action has its failure strategy set to "Continue on failure".

• Error message [Configuration]
If the action group fails, this error message is displayed to the user. Otherwise, the action
group fails silently.

This property is only visible if "On error break group" is selected.

• Failure strategy [Configuration]
The failure strategy that should be chosen if the action group fails. The "Error message"
property will be used for the option dialog. If you also define a "Default error message", you
will get two option dialogs, the first one from the action that causes the failure.

This property is only visible if "On error break group" is selected.

• Ask whether to ignore the failure [Configuration]
If an action fails, ask the user whether to ignore the failure and continue.

This is one button in amessage dialog that shows the errormessage and the available options
to react to the failure.

This property is only visible if "Failure strategy" is set to "Ask user".

• Ask whether to quit [Configuration]
If an action fails, ask the user whether to quit the installer application.

This is one button in amessage dialog that shows the errormessage and the available options
to react to the failure.

This property is only visible if "Failure strategy" is set to "Ask user".

• Ask whether to retry the action [Configuration]
If an action fails, ask the user whether to retry the action.

This is one button in amessage dialog that shows the errormessage and the available options
to react to the failure.

This property is only visible if "Failure strategy" is set to "Ask user".

• Retry expression [Configuration]
If this expression is set and returns true, the action group is repeated. If the action group
is configured to loop, the loop index will not be incremented.

This property is only visible if "On error break group" is selected.

• Default error message [Error Handling]
A default error message used by all actions that have no dedicated error message.

194

B.7 Configuring Form Components
Form components are configurable units that can be added to a form screen. In this chapter,
the functionality and configuration options of the form components dialog are discussed. The
underlying concepts are discussed in a different help topic [p. 50].

Form elements are added by clicking the Add button.

In the popup window you can select whether to add

• a form component. Form components are made available by install4j or are contributed by
an installed extension [p. 229]. A registry dialogwill be shownwhere you can select the desired
form component.

• a form component that is contained in your custom code. New types of reusable form
components can be developed with the install4j API [p. 223]. In your custom code
configuration [p. 163] you can specify code locations that are scanned for suitable classes. A
class selector will be shown where you can select the desired class.

• a layout group [p. 201], either a vertical group or a horizontal group. The new layout group is
initially empty. You can also create layout groups directly from a selection in the tree of
installer elements.

You can preview a form screenwith the Preview buttonwhich is also available on the property
page of a screen. For screens that embed forms, the preview may not show the actual screen.
However, the layout of the form itself will be the same at runtime.

Properties of form components

Common properties of form components are:

• Insets [Layout]
This insets around the formcomponent. The format is top;left;bottom;right, use thedrop-down
button at the right side to show the insets editor.

• Initialization script [Initialization]
A script that initializes the form component. To configure the contained principal component,
such as a JCheckBox, use the configurationObject parameter (if available). This script will run
after the internal initialization of the form component, just before the component appears
on the screen. It will not be invoked in console mode.

195

• Reset initialization on previous [Initialization]
If set, the component will be initialized each time the user enters in the forward direction.
Otherwise, the initializationwill be performed only once. This setting affects both the internal
initialization as well as the initialization script.

• Visibility script [Initialization]
A script that determines whether the form component will be visible or not. This works for
both GUI and console modes. In GUI mode, the script will be invoked each time just before
the form component is initialized.

Available form components

The following standard form components are available in install4j:

Category: Action components

Button

A standard button with an optional leading label. When the user clicks on the button, an
action script is executed.

Dark mode switcher

A button that switches between dark and light mode. If the current look and feel does not
support switching between dark and light mode, the button is invisible.

Hyperlink URL label

A label that displays a hyperlink. When the user clicks on the hyperlink, the appropriate
action is performed, depending on the protocol of the URL.

Hyperlink action label

A label that displays a hyperlink. When the user clicks on the hyperlink, an action script is
executed

Category: Labels and spacers

Horizontal separator

A horizontal separator with an optional label.

Key value pair label

A pair of labels. The first ('key') label aligns with other leading labels on the form, the second
('value') label consumes the remaining horizontal space,

Label

A single label. It is left-alignedwith leading labels from other form components and extends
beyond other leading labels.

Leading label

A form component that only has a leading label and no central component. This can also
be used to create standalone help tooltips.

Multi-line HTML label

196

A multi-line label that wraps text as needed and displays simple HTML. In particular, you
can include HTML links that open a browser.

Multi-line label

A multi-line label that wraps text as needed.

Spring

An invisible spring that can be used in horizontal and vertical layout groups to push
subsequent components to the right or to the bottom

Vertical spacer

An invisible vertical spacer of configurable height.

Category: Option selectors

Check box

A check box with an optional leading label. The user selection (Boolean.TRUE or Boolean.
FALSE) is saved to a variable.

Combo box

A combo boxwith an optional leading label. The user can enter arbitrary text into the combo
box. The user selection (the selected item as a string) is saved to a variable.

Drop-down list

A drop-down list with an optional leading label. The user selection (the selected index as a
java.lang.Integer) is saved to a variable.

List

A list with an optional leading label. The user selection (the selected indices) is saved to a
variable.

Radio button group

A number of radio buttons in a common button group with an optional leading label. The
user selection (the selected index as a java.lang.Integer) is saved to a variable.

Single radio button

A single radio button with an optional leading label. If selected, a specified string is saved
to a variable. If you place multiple instances of this form component on a form screen and
give them the same variable name, they will form a radio button group.

Category: Sliders and spinners

Slider

A slider with an optional leading label. The user input (a java.lang.Integer) is saved to
a variable.

Spinner of dates

197

A spinner with date and time values with an optional leading label. The user input is saved
to a variable.

Spinner of enumerated values

A spinner with enumerated values with an optional leading label. The user input is saved to
a variable.

Spinner of integer values

A spinner with integer values with an optional leading label. The user input is saved to a
variable.

Category: Special selectors and displays

Directory chooser

A directory chooser with an optional leading label. The user selection is saved to a variable.

File associations selector

A form component that displays a list of all subsequent file association actions and asks the
user which associations should be made. This form component will be empty if there are
no corresponding file association actions after this screen.

File chooser

A file chooser with an optional leading label. The user selection is saved to a variable.

HTML or text display

A scroll panel that displays HTML or plain text. The HTML or plain text is easily localizable
because the file selection allows you to enter separate files for all supported languages.

Installation components selector

A form component that displays all installation components and asks the user which
components should be installed.

Installation directory chooser

An installation directory chooser with an optional display of required and free space. The
user selection is set as the installation directory.

License agreement

A form component that displays a license agreement to the user, either plain text or HTML.
The license agreement must be accepted before the next screen can be shown.

Log file viewer

A text area that shows the contents of a text file. The viewer follows additions to the file like
the UNIX command tail -f, with a configurable maximum number of displayed lines.

The log file does not have to exist when the form is shown, it can be created later on. Also,
the file can be deleted and re-created. Modifications before the previously observed end of
the file will not be picked up by the viewer unless the length of the file decreases.

PDF display

198

Displays a PDF file in an embedded cross-platform PDF viewer.

Program group selector

A form component that allows the user to select a program group on Microsoft Windows.

Progress display

An progress display that can show the progress of the actions attached to the containing
screen.

Update alert

A pair of radio buttons offering the user a choice whether to update an existing installation
or not. If the existing installation should be updated, the installer variable
sys.confirmedUpdateInstallation is set to true. Several standard screens use that installer
variable in their default condition expression.

Update schedule selector

Drop-down box that lets the user select an update schedule for your application. You can
use thecom.install4j.api.update.UpdateScheduleRegistry class in your application
to check if you should launch an updater. Please see the Javadoc for more information.
Please note that simply adding this form component does not automatically launch an
updater at regular intervals.

Windows user selector

A component for selecting Windows users or groups in the native Windows user dialog.
Optionally, you can display a button to create a new user. The selection is saved as a SID (1)

to a string variable. If multiple selection is enabled, the result is a string array of SIDs.

This component does not do anything in consolemode, since it requires the nativeWindows
dialog for selecting users and groups.

Category: Text fields

Password field

A password text field with an optional leading label. The user input is displayed with '*'
characters. The user input is saved to a variable.

Text area

A text area with an optional leading label. The user input is saved to a variable.

Text field

A text field with an optional leading label. The user input is saved to a variable.

Text field with date format

A text field with an optional leading label and a date format. The user input (a java.util.
Date) is saved to a variable.

Text field with format mask

(1) https://en.wikipedia.org/wiki/Security_Identifier

199

https://en.wikipedia.org/wiki/Security_Identifier

A text field with an optional leading label and an arbitrary format mask. The user input is
saved to a variable. The default mask is that of an SSN. For more information, please see
the javadoc of javax.swing.text.MaskFormatter.

Text field with integer format

A text field with an optional leading label and an integer format. The user input is saved to
a variable with type java.lang.Long.

Text file editor

A text area for editing a file. If the file does not exist, a configurable initial text is presented
to the user and the file is created. The file is savedwhen the user clicks on the "Next" button.

Console handler

Allows you to interact with the user in a console installer. All standard form components
expose appropriate behavior in console mode, however, there are situations where you
need to fine-tune your console installer with additional messages or questions. In GUI or
unattended mode, this form component does not have any effect.

200

B.8 Configuring Layout Groups
Layout groups can be configured in the form components [p. 195] configuration dialog. This
chapter discusses the configuration options for layout groups, for more information on layout
groups, see the corresponding help topic [p. 55].

You can create a layout group [p. 201] fromselected formcomponentswith the CreateHorizontal
Group and Create Vertical Group actions. The newgroupwill be inserted in place of the selected
elements.

You can dissolve a groupwith theDissolve Group action. This action is only enabled if the selection
consists of a single layout group. The elements contained in the group will be inserted in place
of the group. Nested groups will not be dissolved.

Grouping features

Form components can be grouped in horizontal and vertical layout groups, and you can nest
groups to an arbitrary depth.

Grouping offers the following benefits:

• Custom layout

Instead of a simple sequence of form components on a form screen, you can use horizontal
layout groups to put form components side-by-side. Nesting vertical and horizontal form
components allows you to achieve virtually any layout.

Sometimes, enclosing groups and sibling groups create a cell that cannot be entirely filled
by a layout group. With the "Anchor" property you determine where the group should be
placed in that case. By default, horizontal layout groups are anchored at "West" and vertical
layout groups are anchored at "North-West".

Layout groups have a configurable cell spacing. For vertical layout groups, this is the vertical
gap between two form components (0 pixels by default), for horizontal layout groups this is
the horizontal gap between two adjacent form components (5 pixels by default)

For each layout group, you can specify insets that are inserted around the entire layout
group. By default, the insets are zero in all directions.

By default, a horizontal layout group aligns a leading label of its first form component with
the leading label of the first form component from a direct vertical parent group. This is
usually appropriate when horizontal groups are used to attach additional form components
to the right side. If this alignment is not desired, you can use the "Align first label" property
of a horizontal layout group to switch off the alignment.

201

Vertical layout groups always break the alignment of leading labels: Within a vertical group,
leading labels are aligned, but between vertical groups, thewidth of leading labels is unrelated.

• Organization
If you have many form components on a screen, vertical groups emphasize which form
components belong together. You can add a common comment to the group.

• Common visibility script
Groups have a "Visibility script" property that allows you to hide the entire group with a
common condition instead of having to repeat the condition for each contained form
component.

• Single target for coupled form components
If a set of form components should be coupled to the selection state of a checkbox or a single
radio button, you can select the containing layout group as the target instead of selecting
all coupled form components separately.

• Styling
Layout groups have properties for setting background images and borders, as well as
background and foreground colors. Styles [p. 205] use layout groups to achieve visual effects.

Properties of layout groups

Common properties of horizontal and vertical layout groups are:

• Image File [Configuration]
An image that is shownon the edge or as a background. Apart froman image that is anchored
to the center of the group, the image can optionally cut off an entire edge from the group.
In that case, it is possible to set a background color for the edge stripe so that the image can
blend into the surroundings. Can be empty.

To add a high-resolution image, create a file with double the resolution and an additional
@2x after the name (e.g. image.png and image@2x.png) next to the selected image. To use
different images in dark mode, add files with an additional _dark suffix (e.g. image_dark.
png and image@2x_dark.png)

The install4j runtime JAR file i4jruntime.jar contains a number of image files that you can
reference here by prefixing the icon file namewith "icon:". For example,icon:lock_open_32.
png loads a 32x32 icon showing an open lock.

• Image anchor [Configuration]
The anchor where the image will be attached to in the layout group. If Center is chosen, the
image is always displayed in the background.

• Image edge [Configuration]
For corner anchors, you have to select either the horizontal or the vertical edge that will
optionally be filled with the image edge background color and that will be cut of from the
layout group if the image is not displayed in the background.

• Image edge background color [Configuration]
The background color that the image edge should be filled with. If the image terminates with
the same color, the image will blend with the background and the entire edge will look like
a single visual element.

202

Not available if the anchor is set to "Center"

• Image edge border [Configuration]
If selected, the image edge will be separated by a line border from the content area.

Not available if the image overlaps the contained components.

• Image edge border color [Configuration]
The color of the image edge border. Leave empty to choose the default separator color of
the current look and feel.

This property is only visible if "Image edge border" is selected.

• Image edge border width [Configuration]
The width of the image edge border in pixels.

This property is only visible if "Image edge border" is selected.

• Image insets [Configuration]
The insets around the image. The format is top;left;bottom;right, use the drop-down button
at the right side to show the insets editor.

• Overlap with contained components [Configuration]
If selected, the image will be used as a background image and form components contained
in the layout group will overlap with the image. Otherwise, the image edge will be cut off
from the layout group and form components will not overlap with the image. In that case,
the insets of the layout group will be applied to the actual content area that excludes the
image edge.

Not available if the anchor is set to "Center"

• Background color [Configuration]
The background color of the layout group. Can be empty.

• Foreground color [Configuration]
The foreground color of the layout group. Can be empty. If set, all contained form components
will use this foreground color except those that have an explicitly configured foreground
color.

• Border sides [Configuration]
On which sides a line border should be painted around the form component, a list of "top",
"right", "bottom" and "left", separated by semicolons. Use the drop-down button to select
the sides visually.

• Border color [Configuration]
The color of the drawn border sides. Leave empty to choose the default separator color of
the current look and feel.

• Border title [Configuration]
A title that is displayed in the top-left corner of the border. Leave empty if no title should be
displayed.

• Border width [Configuration]
The width of the drawn border sides in pixels.

203

• Visibility script [Initialization]
A script that determines whether form components in the group (and all descendant
components in nested groups) will be visible or not. This works for both GUI and console
modes. In GUI mode, the script will be invoked each time just before the form components
are initialized. Visibility scripts of nested form components can further hide single form
components, but they cannot show them if a parent layout group is already hidden.

• Insets [Layout]
The insets around the entire group. The format is top;left;bottom;right, use the drop-down
button at the right side to show the insets editor.

• Anchor [Layout]
The position in the available space where the group is anchored in the layout. This is only
relevant if the group takes less space than the cell that is created by the surroundings.

• Cell spacing [Layout]
The cell spacing determines how many pixels are inserted between single components in
the layout group.

Vertical layout groups have the additional properties:

• Make children same width [Layout]
If all contained elements should have the same width.

and horizontal layout groups have the following specific properties:

• Align first label [Layout]
If the horizontal group is directly added to a vertical group or to the top-level of a form, the
leading label in the horizontal group is alignedwith other leading labels in the vertical parent
group. If this alignment is not desired, you can deselect this property.

• Make children same height [Layout]
If all contained elements should have the same height.

Tabbed panes

In addition to horizontal and vertical layout groups, you can add tabbed panes to a form. A
tabbed pane is added by choosing Tabbed Panes->Add Tabbed Pane from the dropdown menu
displayed by the Add button. Below the tabbed pane, you have to add one or more single
tabs by choosing Tabbed Panes->Add Single Tab For Tabbed Pane. Each single tab can then contain
arbitrary form components or layout groups.

204

B.9 Configuring Styles
Styles determine how screens look like in GUI installers. For more information on styles, see
the corresponding help topic [p. 59].

Styles are added by clicking the Add button.

In the popup window you can select whether to add

• a configurable style. Styles can be constructed with a restricted set of the form
components [p. 195] for screens that donot takeuser input and somespecial formcomponents
that are relevant in a styling context.

• a style that is contained in your custom code. New types of reusable styles can be developed
with the install4j API [p. 223]. In your custom code configuration [p. 163] you can specify code
locations that are scanned for suitable classes. A class selector will be shown where you can
select the desired class.

• a group for organizing styles, so you have a better overview of which styles belong together.

For organizing styles in your project, you can create a group from selected styles with the Create
group from selection action and dissolve groups with the Dissolve Group action. This action is
only enabled if the selection consists of a single layout group. The elements contained in the
group will be inserted in place of the group. Nested groups will not be dissolved.

You can preview a style with the Preview button which is also available on the property page
of a style.

Properties of styles

Form styles have the following properties:

• Standalone style
If selected, the style can be selected for installer applications, screen groups and screens. If
a style is not standalone, it can only be used in other styles.

• Fill horizontal space
If selected, all available horizontal space is filled by this style. This setting is also used when
it is nested in another style by a "Nested style" form component.

• Horizontal anchor
If "Fill horizontal space" is not selected, the style can be placed at different locations in the
available space.

205

This property is only visible if "Fill horizontal space" is selected.

• Fill vertical space
If selected, all available vertical space is filled by this style. This setting is also used when it
is nested in another style by a "Nested style" form component.

• Vertical anchor
If "Fill vertical space" is not selected, the style can be placed at different locations in the
available space.

This property is only visible if "Fill vertical space" is selected.

206

C Generated Installers

C.1 Installer Modes
Installers generated by install4j can be run in three modes:

• GUI mode
The default mode for installer applications is to display a GUI installer or uninstaller.

• Console mode
If the installer application is invoked with the -c argument, the interaction with the user is
performed in the terminal from which the installer was invoked.

• Unattended mode
If the installer is invoked with the -q argument, there is no interaction with the user and the
installation is performed automatically with the default values.

The flow of screens and action sequence is executed in the same way for all three modes. If
some actions or screens should not be traversed for console or unattended installations, you
can set their "Condition expression" properties to

!context.isConsole()

or

!context.isUnattended()

GUI mode

In GUI mode, the keyboard shortcut CTRL-SHIFT-L shows the log file in the Explorer on
Windows, in the Finder on macOS and in the file manager on Linux/Unix. This shortcut is not
advertised to the user, but you can communicate it to the user for debug purposes.

Console mode

Installers generated by install4j can perform console installations, unless this feature has been
disabled in the application configuration [p. 165] of the "Installer->Screens & Actions" step. To
start a console installation, the installer has to be invoked with the -c argument.

All standard screens and form components in install4j present their information on the console
and allow the user to enter information as in the GUI installer. Not all messages in the style are
displayed in the console installer. By default, only the subtitle of a screen is displayed as the
firstmessage, but you can change this behavior with the "Console screen change handler" script
of the installer application.

The subtitle is appropriate to display in console mode, because all standard screens in install4j
have a question as their subtitle. If you add your own forms to the screen sequence [p. 158], you
should phrase their subtitles as questions to create a consistent user experience for the console
installer.

On Windows, the information of whether an executable is a GUI executable or a console
executable has to be statically compiled into the executable. Installers are GUI executables,
otherwise a console would be displayed when starting the installer from the explorer. This is

207

also the reason why the JRE supplies both the java.exe console executable and the javaw.
exe GUI executable on Windows.

However, a GUI executable can attach to a console from which it was started. GUI executables
are started in the background by default, whichmeans that you have to use the start command
to put it in the foreground and be able to enter information:

start /wait installer.exe -c

If you develop new screens or form components, you have to override the method

boolean handleConsole(Console console) throws UserCanceledException

to implement the behavior for console mode. Displaying default data on the console and
requesting user input is made easy with the Console class that is passed as a parameter.

Unattended mode

Installers generated by install4j can perform unattended installations, unless this feature has
been disabled on the application configuration [p. 165] of the "Installer->Screens&Actions" step.
To start an unattended installation, the installer has to be invoked with the -q argument. The
installer will perform the installation as if the user had accepted all default settings.

There is no user interaction on the terminal. In all cases, where the installer would have asked
the user whether to overwrite an existing file, the installer will not overwrite it. You can change
this behavior by passing -overwrite as a parameter to the installer. In this case, the installer
will overwrite such files. For the standard case, it is recommended to fine-tune the overwrite
policy in the distribution tree [p. 14] instead, so that this situation never arises.

The installer will install the application to the default installation directory, unless you pass the
-dir parameter to the installer. The parameter after -dir must be the desired installation
directory, for example:

installer.exe -q -dir "D:\MyApps\My Application"

For the unattendedmode of an installer, response files [p. 214] are an important instrument to
pre-define user input.

On Windows, the output of the installer is not printed to the command line for unattended
installation. If you pass the -console parameter after the -q parameter, the executable will
try to connect to the invoking console and display output to the user. This is useful for debugging
purposes.

If the installation was successful, the exit code of the installer will be 0, if no suitable JRE could
be found it will be 83 and for other types of failures it will be 1.

If you develop new screens or form components, you have to override the method

boolean handleUnattended()

in order to support unattended installations.

208

C.2 Command Line Options For Generated Installers
Installers generated by install4j recognize the following command line parameters:

ExplanationName

Showhelp for common command line parameters.
This will be shown in a message box, regardless

-h or -help or /?

of the default execution mode. If the GUI display
fails, it will be printed on the console.

This option only applies toWindows. InGUImode,
the default JRE search sequence [p. 216] will not be

-manual

performed and bundled JREs will not be used
either. The installer will act as if no JRE has been
found at all and display the dialog that lets you
choose a JRE. If you locate a JRE, it will be used for
the installed application.

On Unix, you can define the environment variable
INSTALL4J_JAVA_HOME_OVERRIDE instead to
override the default JRE search sequence.

Executes the installer in console mode [p. 207].-c

Executes the installer in unattendedmode [p. 207].-q

Forces the installer to be executed in GUI mode.
This is only useful if the default execution

-g

mode [p. 165] of the installer has been configured
as console mode or unattended mode.

If the installer is executed in unattended mode
and -console is passed as a second parameter,

-console

status messages will be printed on the console
from which the installer was invoked.

Only valid if -q is set. In the unattended installation
mode, the installer will not overwrite files where

-overwrite

the overwrite policy [p. 14] would require it to ask
the user. If -overwrite is set, all such files will be
overwritten. The default value for this option can
be changed with the system property
-Dinstall4j.quietOverwrite=true

Only valid if -q is set. In the unattended installation
mode, the installer will not fail if an error occurs

-nofilefailures

during a file installation. The default value for this
option can be changed with the system property
-Dinstall4j.noFileFailures=true

Only valid if -q is set. In unattended installation
mode, the installer will perform the installation

-wait <timeout in seconds>

immediately. OnWindows, this can lead to locking
errors if the installer is called by an updater or by

209

ExplanationName

a launcher. If -wait is specified, the installer
application will wait until all installed launchers
and installer applications (including the updater)
have shut down. If this does not happen within
the specified timeout, the installer application exits
with an error message.

Only valid if -q is set. Sets a different installation
directory for the unattended installation mode.

-dir <directory>

The next parameter must be the desired
installation directory.

The directory can be absolute or relative. If it is
relative, it will be resolved relative to the media
file.

Only valid if -q is set. Instead of being completely
quiet in unattended installation mode, a small

-splash <title>

windowwith a progress bar and the specified title
will be shown to inform the user about the
progress of the installer application. This is useful
if you start the installer application
programmatically and do not require user input.

Only valid if -q and -splash are set. By default,
in unattended mode, no alerts are shown. This

-alerts

includes messages boxes, error alerts and
questions. By setting this command line
parameter, alerts are enabled for unattended
executions with a progress dialog.

Change the temporary directory for the installer
application on Windows. An installer may extract

-temp <directory>

a lot of files, and it also extracts executables to its
temporary directory. If the default temporary
directory of the system is not suitable for this
purpose, you can change the directory with this
parameter. The specified directorymust exist and
must bewritable. This is useful for troubleshooting
problems caused by antivirus software.

Do not set the native look and feel but use the
default. In some rare cases, the native look and

-Dinstall4j.nolaf=true

feel is broken and prevents the use of the installer
or any other Java GUI application.

By default, install4j catches all exceptions, creates
a "crash log" and informs the user about the

-Dinstall4j.debug=true

location of that log file. Thismight be inconvenient
when debugging an installer, so this system
property switches off the default mechanism and
lets exceptions be printed to stderr.

210

ExplanationName

install4j creates a log file prefixed with i4j_log
in the temporary directory when an installer

-Dinstall4j.log=<path>

application is executed. This log file can be helpful
for debugging purposes. If your installer contains
an "Install files" action and terminates successfully,
the log file is copied to <installation dir>/.
install4j/installation.log, otherwise it will
be deleted after the installer application
terminates.

With the -Dinstall4j.log=<path> the log file
will be written to the file specified with <path>
instead and will not be deleted in any case. If a
relative path is specified, it will be resolved relative
to the installermedia file for installers and relative
to the working directory for uninstallers and
custom installer applications.

As an alternative to -Dinstall4j.log=<path>,
you can ask the installer or the installer application

-Dinstall4j.keepLog=true

to not delete the temporary log file under any
circumstances.

For situations where you cannot modify the
command line arguments, you can set the
environment variable INSTALL4J_KEEP_LOG=
true.

If set, each message in the log file is prepended
with a time stamp.

-Dinstall4j.logTimestamps=true

In addition to the log file created by the installer
application, you can duplicate all log messages to
stderr with this argument.

-Dinstall4j.logToStderr=true

By default, the installer will write the log file in the
default encoding of the systemwhere the installer

-Dinstall4j.logEncoding=<character set
name>

is running. If you wish to choose a different
encoding, you can pass this VM parameter to the
installer. Some common character set names are

• UTF-8
• UTF-16
• ISO-8859-1

The class java.nio.charset.
StandardCharsets lists the encodings that are
guaranteed to be available in any JRE.

In unattended mode, status messages of actions
that are displayed in the installer are printed on

-Dinstall4j.suppressStdout=true

211

ExplanationName

stdout. To suppress these messages, you can set
this VM parameter.

In unattendedmode, detailedmessages regarding
file installations are not printed on stdout. To

-Dinstall4j.detailStdout=true

enable these messages, you can set this VM
parameter.

In unattendedmode, a rebootmaybeundesirable.
To prevent reboots, you can set this VMparameter.

-Dinstall4j.suppressUnattendedReboot=true

Overrides the language selection for a
multi-language installer. The language selection

-Dinstall4j.language=<ISO code>

dialog will not be displayed in this case, unless the
specified language is not included in the installer.

Debugging the installer application can be done
by passing -agentlib:jdwp=transport=

-Dinstall4j.helperDebugPort=<port>

dt_socket,server=y,suspend=n,address=

<port> on the command line, on Windows this
argument has to be prefixed with -J.

However, this will not debug the elevated helper
process started by the "Request privileges" action.
By setting the install4j.helperDebugPort VM
parameter, the same -agentlib parameter is
passed to the JVM of the helper process, and you
can then attach to it with a debugger. If you debug
both the unelevated and the elevated JVM at the
same time, you have to assign different ports and
start two separate debugging sessions.

Forces the installer locale to be detected from the
"Format" language setting and not from the

-Dsun.locale.formatasdefault=true

"Display language" setting in theWindows "Region
and Language" control panel.

Specifies a VM parameter, for example
-J-Xmx512m. Can be specified more than once.

-J<VM parameter>

You can set further arbitrary system properties
with standard command line parameters. There
is no need to prefix them with -J on Windows.

-DpropertyName=value

You can set arbitrary installer variables with the
-V parameter. If you pass -VvariableName=

-VvariableName=value

value, you can use the variable value by inserting
${installer:variableName} in text fields in
the install4j IDE. The variable valuewill be a java.
lang.String object.

212

ExplanationName

Instead of repeatedly using the >-V command-line
option, you can specify a property file containing

-varfile <fileName>

the variables you want to set. This option shares
the same mechanism with response files [p. 214].

On macOS, you can use the INSTALL4J_ARGUMENTS environment variable to pass arguments
to the installer.

On Unix, the environment variable INSTALL4J_TEMP determines the base directory for
self-extraction. If the environment variable is not set, the parent directory of the installermedia
file is used.

213

C.3 Response Files
With a response file, you can change the default user selection in all screens. A response file is
a text file with name-value pairs that represent installer variables. All screens and form
components provided by install4j ensure that user input is bound to appropriate installer
variables that are registered for being written to the response file.

Installer variable values are of the general type java.lang.Object. In a response file, only
variables with values of certain types can be represented: In addition to the default type java.
lang.String, the typesjava.lang.Boolean,java.lang.Integer,java.util.Date,java.
lang.String[] and int[] are supported.

In order to let the installer runtime know about these non-default types, the variable name in
the response file is followed by a '$' sign and an encoding specifier like 'Integer' or 'Boolean'.

Response file variables are variables that have been registered with

String variableName = ...;
context.registerResponseFileVariable(variableName);

in the installer. All variables that are bound to form components are automatically registered
as response file variables. Also, system screens register response file variables as needed to
capture user input.

All installer variables live in the same name space. If you use an installer variable more than
once for different user inputs, the response file only captures the last user input. If you would
like to optimize your installers for use with a response file, you have to make sure that the
relevant variable names are unique within your installer.

A response file can be used to

• Configure the installer for unattended execution mode
• Change the default settings in the GUI and console installer
• Get additional debugging information for an installation

When applying a response file to an installer, all variable definitions are translated into installer
variables [p. 67]. The response file shares the same mechanism with the variable file offered
by the -varfile [p. 209] command-line option. You can add the contents of a response file to a
variable file and vice versa.

Generating response files

There are two ways to generate a response file:

• A response file is generated automatically after an installation is finished. The generated
response file is found in the .install4j directory inside the installation directory and is
named response.varfile. When you request debugging information from a user, you
should request this file in addition to the installer log file.

• install4j offers a "Create a response file" action [p. 180] that allows you to save the response
file to a different file in addition to the automatically generated response file. Here, you can
also specify variables that you would not like to be included in the response file.

214

Applying response files

When an installer is executed, it checks whether a file with the same name and the extension
.varfile can be found in the same directory and loads that file as the response file. For example,
if an installer is called hello_setup.exe on Windows, the response file next to it has to be
named hello_setup.varfile.

You can also specify a response file explicitly with the -varfile [p. 209] installer option.

Response files work with all three installer modes [p. 207], GUI, console and unattended.

Response file variables

The variables that you see in the response file are realized as installer variables as soon as the
response file is loaded. You can use these installer variables to access or change user selections
on system screens. For example, the "Create program group" screen on Windows binds the
user selection for the checkbox that asks the user whether to create the program group for all
users to the variable sys.programGroup.allUsers. To access the current user selection from
somewhere else, you can use the expression

context.getBooleanVariable("sys.programGroup.allUsers")

To change that selection, you can invoke

context.setVariable("sys.programGroup.allUsers", Boolean.FALSE)

215

C.4 How Installers Find A JRE
Installers generated by install4j are native executables or shell scripts and can start running
without a JRE. However, the installer itself requires a JRE to perform its work and so the first
action of the installer is to locate a JRE that is suitable for both the installer and your application.
In this process it performs the following steps:

1. Look for a statically bundled JRE. If a statically bundled JRE is included with the installer, it
will unpack it and use it. First, this JRE is unpacked to a temporary directory. Later it is copied
to the jre directory in the installation directory of your application. No other installer
generated by install4j with a different application id will find this JRE. It will not be made
publicly available, for example, in the Windows registry.

2. Look for a suitable JRE in the configured search sequence. The installer uses the same search
sequence and Java version constraints as your launchers which are configured for the entire
project [p. 40]. The "Previous installations" search is only performed by the installer and
searches for installations with the same application id. If it finds a JRE from a different
installation directory, the "Install files" action will copy it as a private JRE to the current
installation directory.

3. If no JRE has been found, the installer notifies the user. If the "Search Windows registry and
standard locations" entry is part of the search sequence, it will display information on how
to alternatively provide a JRE or provide a "Locate" button on Windows.

216

C.5 HTTP Requests

Actions that perform HTTP requests

install4j includes several actions that can perform HTTP or HTTPS requests:

• The "Install files" action downloads installation components that have been marked as
"Downloadable" if the data files option has been set to "Downloadable" as well in the media
file wizard.

• The "Check for updates" action downloads the update descriptor updates.xml from the
specified web server to check if there is a new version available.

• The "Download file" action downloads the specified file from the web server.
• the "Upload file" action uploads a specified file with a POST request.
• The "HTTP request" action performs generic HTTP requests.
• The "Wait for HTTP server" actionwaits until a specifiedHTTP orHTTPS port becomes available.

When creating an HTTP/HTTPS connection to the requested resource there are three different
concerns that may require user interaction: Proxy selection, proxy authentication and server
authentication.

Proxy selection and authentication

On Windows, installer applications use native code to perform HTTP requests, so the native
Windows proxy dialog will be shown. The proxy configuration of the operating system is used,
and the systemproperties for setting anHTTP proxy in Java do not apply. This has the advantage
that a previously saved proxy password does not have to be entered by the user.

On other platforms, HTTP requests are made through the Java HttpClient for Java 11+ or a
URLConnection for lower Java versions. If a proxy can be auto-detected from the system settings,
it is used automatically. If the proxy requires credentials, an authentication dialogwill be shown.
User input in this dialog will be cached for the duration of the process. If the proxy uses basic
authentication, then HTTPS connections can only be tunneled if the VM parameter

-Djdk.http.auth.tunneling.disabledSchemes=

is set with an empty value as shown above. This is done automatically for installer applications,
but not for generated launchers where you would have to set this VM parameter explicitly. If
you do that, you should read about its security impact (1) in case you develop your own
implementation of java.net.Authenticator.

Entering proxy data is supported in consolemode as well. In unattendedmode, there is no user
interaction, so the proxy information has to be provided to the installer via command line
arguments. The following system properties for proxy configuration can be used:

-DproxyHost=<host name>
-DproxyPort=<port number>

If the proxy requires credentials, you also have to specify

-DproxyAuthUser=<user name>
-DproxyAuthPassword=<password>

(1) https://bugzilla.redhat.com/show_bug.cgi?id=1386103

217

https://bugzilla.redhat.com/show_bug.cgi?id=1386103

Except for the native Windows network connection, the above properties can also be used to
configure the proxy from outside. Furthermore, the global Java proxy properties

-Dhttp.proxyHost=<host name>
-Dhttp.proxyPort=<port number>
-Dhttp.proxyUser=<user name>
-Dhttp.proxyPassword=<password>

and the corresponding properties with the "https" prefix are also used for HTTP and HTTPS
connections respectively. If you would like to use these properties onWindows as well, you can
disable the native Windows network connection with the system property -Dinstall4j.

noWinInetConnection=true.

Server authentication

The download URL can be password-protected with basic HTTP authentication. In this case, the
user has to supply a username and a password.

Neither the username nor the password is cached by install4j. In unattended mode you have
to pass the arguments

-DserverAuthUser=<user name>
-DserverAuthPassword=<password>

You can set these system properties via

System.setProperty("serverAuthUser", "<user name>");
System.setProperty("serverAuthPassword", "<password>");

programmatically.

218

C.6 Updates
On the "Installer->Update Options" step, you can configure how an installer should behave in
the event of an update. An update occurs when the user installs an application into a directory
where an installation with the same application ID already exists.

Typically, minor upgrades of an application should be installed into the same directory as earlier
installations. The default behavior of install4j is to suggest the previous installation directory
and program group, so that the user is guided into installing the application into the same
directory. If this behavior is not desired, you can switch off these suggestions or change the
application ID on the "Installer->Update Options" step.

Updates into the same installation directory

The following points are of interest with respect to updates into the same installation directory:

• Generated installers will refuse to install on top of installations with a different application
ID by default. You can change this behavior with the "Validate application id" property of the
installation directory chooser on the "Installation location" screen.

• Generated installers will detect if any of the previously installed launchers are still running
and will ask the user to shut down these applications. This happens when the "Install files"
action or a "Check for running processes" action is executed.

• Deployed serviceswill be stopped and uninstalled before the installation. This happenswhen
the "Install files" action is executed. You can optionally stop your services earlier with the
"Stop a service" action if your update process requires it.

• During an update, the installation databases will be merged, so that files, menu entries, file
associations and other modifications from old installations can still be uninstalled when the
uninstaller is executed.

• After an update, only the uninstallation actions of the newer installation will be executed
when the uninstaller is executed. However, the auto-uninstall actions from previous

219

installations will be executed, too, for example, the uninstallation of a service that was
registered by an "Install service" action during the installation.

If you would like to uninstall the previous installation before installing any new files, you can
add the "Execute previous uninstaller" action before the "Install files" action. In this context,
the uninstallation policies [p. 14] that exclude updates are important. With these uninstallation
policies, you can preserve certain files for updates, but uninstall them when the user manually
invokes the uninstaller. The uninstaller invoked by the "Execute previous uninstaller" action is
running in unattended mode. You can use

!context.isUninstallForUpgrade()

to exclude certain actions for an update uninstaller.

Add-on installers

install4j offers two types of installers that can be selected on the "Installer->Update options"
step:

• Regular installers
This option generates standalone installers. If the "Detect previous installation directory"
check box is selected and a previous installation can be detected on the computer, the installer
will suggest the directory of that previous installation. In that case, the "Update alert" form
component on the "Welcome" screen will ask the user if the previous installation should be
updated.

• Add-on installers

This generates an installer that can only be installed on top of an installation with a specified
application ID. An add-on installer does not have a separate uninstaller. This is useful to
distribute additional files that do not change the version number of the installation.

If the add-on installer type is selected, you have to specify the application ID for the base
application.

220

C.7 Error Handling

Debugging on Windows

On Windows, when an installer is executed it always generates a log file in the temp directory
that contains information about the JRE search sequence and can be used for debugging
purposes. The name of the log file starts with i4j_nlog_. If you have a problem with JRE
detection or the installer startup, send this log file along with your support request.

It is also possible to generate this native debug log file for the generated Windows launchers.
To switch on logging, define the environment variable

INSTALL4J_LOG=yes

and look for the newest text file whose name starts with i4j_nlog_ in the temp directory. This
is done silently, without notifying the user and is also suitable for situations where launchers
are called automatically or repeatedly.

An easier way for a user to create a log file is to start the launcher with the argument

/create-i4j-log

The launcher will notify the user where the log is created and will offer to open an explorer
window with the log file selected. After the message box is closed, the launcher will continue
to start up.

Debugging on macOS

Similar to Windows, macOS launchers also support the INSTALL4J_LOG=yes environment
variable definition for debug logging. Rather than writing a log file, they write to the system
log. You can display the system log by starting the "Console" application which is located in
/Applications/Utilities.

Setting the environment variable can be done by opening a terminal and executing

launchctl setenv INSTALL4J_LOG=yes

Then all newly started applications in the Finder will have this environment variable set. The
current terminal will not be affected until you quit the Terminal application and start it again.

Rather than setting the environment variable for all install4j launchers, you can set it for a
particular invocation only. To do that, call the Contents/MacOS/JavaApplicationStub inside
the application bundle and prefix the call with the definition of the environment variable. For
an application bundle "MyApp.app", the call looks like this:

INSTALL4J_LOG=yes MyApp.app/Contents/MacOS/JavaApplicationStub

In this case, the log output will also be written to the terminal. Using /usr/bin/open will not
work with this technique, because the latter gets the environment variables from the Finder.

Note that logging onlyworks for GUI launchers and not for command line and service launchers
which are implemented as Unix shell scripts. There is no command line argument that activates
logging, like on Windows.

221

Error logs

If an exception is thrown in the installer, it prepares an error log and informs the user about
its location

You can force the installer to print exceptions to stderr for debugging purposes with the
-Dinstall4j.debug=true command-line option [p. 209].

Installation log

All installer applications generate an installation log that can be used for debugging purposes.
After a successful installation the log file is saved to

<installation dir>/.install4j/installation.log

For an uninstaller or if the installer exited before the "Install files" action was run, you can find
it in the temporary directory if you pass -Dinstall4j.keepLog=true to the installer or
uninstaller. The file is prefixed i4j_log.

If youwould like the installer to log to stderr aswell, you can pass -Dinstall4j.logToStderr=
true to the installer. Both arguments can also be useful for debug installers and uninstallers,
where they have to be passed as VM parameters.

Error handling of Actions

You can define the error handling for every installation or uninstallation action separately. Mor
information is available in the DMG options and files on screens and actions [p. 24].

Return values

The process of an installer returns 0 if the installation was completed successfully, 1 if the
installation fails and 83 if the installer could not find a suitable JVM to run. These exit codes are
useful when checking the result of an unattended installation [p. 207].

222

D API

D.1 API For Installer Applications
There are two different use cases where the install4j API is required: Within expression/script
properties [p. 29] in the configuration GUI and for the development of custom elements in
install4j. The development of customelements in install4j is rarely necessary for typical installers,
most simple custom actions can be performed with a "Run script" action, and most custom
forms can be realized with a "Customizable form" screen.

If you would like use your IDE while writing more complex custom code, you can put a single
call to custom code into expression/script properties. The location of your custom code classes
must be configured on the "Installer->Screens & Actions->Custom Code" step, so install4j will
package it with the installer and put in into the class path. In this way you can completely avoid
the use of the interfaces required to extend install4j.

Expression/script properties

Using expression/script properties in install4j is required for wiring together screens and
actions [p. 24] aswell as for the conditional execution of screens and actions. Themost important
element in this respect is the context which is an instance of

• com.api.install4j.context.InstallerContext
in an installer

• com.api.install4j.context.UninstallerContext
in an uninstaller

The context allows you to query the environment and the configuration of the installer as well
as to perform some common tasks.

See the documentation of the com.install4j.api.context package for the complete documentation
of all methods in the context. Some common applications include:

• Setting the installation directory
Byusingcontext.setInstallationDirectory(File installationDirectory) in the
installer context, you can change the default installation directory for the installer. Typically,
this call is placed into a "Run script" action on the "Startup" screen.

• Getting and setting installer variables
The getVariable(String variableName) and setVariable(String variableName,
Object value)methods allow you to query andmodify installer variables. Note that besides
the "Run script" action, there is also a "Set a variable action" where you don't have to call
setVariable yourself.

• Conditionally executing screens or actions
Often, condition expressions for screens and actions check the values of variables. In addition,
the context provides a number of boolean getters that you can use for conditionally executing
screens and actions depending on the installer mode and environment. These methods
include isConsole(), isUnattended() and others.

223

• Navigating between screens
Depending on the user selection on a screen, you might want to skip a number of screens.
The goForward(...), goBack(...) and goBackInHistory(...) methods provide the
easiest way to achieve this.

Many other context methods are only useful if you develop custom elements for install4j.

Also have a look at thecom.install4j.api.Util classwhich offers a number of utilitymethods
that are useful in expression/script properties.

Development environment

To develop custom elements in your IDE, you have to add the install4j API to the compilation
class path. The entire install4j API is contained in the single artifact with maven coordinates

group: com.install4j
artifact: install4j-runtime
version: <install4j version>

where the install4j version corresponding to this manual is 11.0.5.

Jar, source and javadoc artifacts are published to the Maven Central repository. You can either
add the API to your development class path with a build tool like Gradle or Maven, or use the
JAR file

resource/i4jruntime.jar

in the install4j installation.

To browse the Javadoc, go to

javadoc/index.html

For a general overview on how to start developing with the install4j API, how to set up your IDE
and how to debug your custom elements, see the API overview in the javadoc.

Developing custom elements for install4j

install4j provides four extension points: actions, screens, form components and styles

All actions, screens and form components in install4j use this API themselves. To make your
custom elements selectable in the install4j IDE, you first have to configure the custom code
locations on the "Installer->Screens & Actions->Custom Code" step. When you add an action,
screen or form component, the first popup gives you the choice on whether to add a standard
element or search for suitable elements in your custom code.

224

If you want to ship your custom code to third parties, consider packaging an install4j
extension [p. 229], which displays your custom elements alongside the standard elements that
are provided by install4j and allows you to add dependency JAR files that are included in the
installers if any of the contained elements are used in a project.

Serialization

install4j serializes all instances of screens, actions and form components with the default
serialization mechanism for JavaBeans.

To learn more about JavaBeans serialization, visit

• https://docs.oracle.com/javase/8/docs/api/java/beans/XMLEncoder.html (1) for API
documentation on the long-term persistence mechanism for JavaBeans.

• https://www.oracle.com/technical-resources/articles/java/persistence4.html (2) for information
on how to write your own persistence delegates. In your beaninfos for screens, actions and
form components, you can specify a list of additional persistence delegates for non-default
types. Writing custom persistence delegates will generally not be necessary unless you want
to serialize special types from third party libraries.

Compiler variables are replaced in the serialized representation of a bean. In this way, compiler
variable replacement is automatically available for all properties of type java.lang.String.
The values of installer variables and localization keys are determined at runtime, so you have
to call the utility methods in com.install4j.api.beans.AbstractBean before you use the
values in the installer or uninstaller. For more information on variables, see the separate help
topic [p. 67].

Internationalization

install4j offers custom localization files in the install4j IDE to localize your ownmessages. com.
install4j.api.context.Context.getMessage(String key)gives access to allmessages.

If you develop your ownuser-configurable screens, actions or form components, you can replace
all custom localization keys and installer variables in property values with calls to the com.

(1) https://docs.oracle.com/javase/8/docs/api/java/beans/XMLEncoder.html
(2) https://www.oracle.com/technical-resources/articles/java/persistence4.html

225

https://docs.oracle.com/javase/8/docs/api/java/beans/XMLEncoder.html
https://www.oracle.com/technical-resources/articles/java/persistence4.html

install4j.api.beans.AbstractBean.replaceVariables(...) methods. All abstract
base classes for beans extend com.install4j.api.beans.AbstractBean.

The locale of the installer will always be set to the language selected by the user or configured
for themedia file, not the locale of the system that the installer is running on. You can call com.
install4j.api.context.Context.getLanguageId() to find out what language your
installer is running with.

Testing and debugging

To test and debug screens, actions and form components for your installer, enable the Create
additional debug launcher build option in the "Build" section. After the build, your media
file output directorywill contain directorieswith the name debug_[name of the media file
without the file extension] for each media file that you have built.

The debug directories contain

• theWindowsbatch filesdebug_installer.bat anddebug_uninstaller.bat forWindows
media files

• the shell scripts debug_installer.sh and debug_uninstaller.sh for media files of
Unix-based platforms

These scripts start the installer and the uninstaller with a plain java invocation. All exceptions
are directly printed to stderr, and no separate error log files are created.

The file user.jar in the debug directory contains all your custom code. For interactive
development, you will not want to rebuild the project after each modification of your custom
code. You can set up the installer or the uninstaller in your IDE by

• setting the working directory to the debug directory
• including your own code in the class path
• including i4jruntime.jar in the class path
• including user.jar in the class path. Your own code will also be contained in user.jar, but the

IDE typically places project code at the beginning of the class path so it will override equivalent
classes in user.jar.

• using themain class com.install4j.runtime.installer.Installer for the installer or
com.install4j.runtime.installer.Uninstaller for the uninstaller

• passing the VM parameter -Dinstall4j.debug=true

Note that the working directory for the executed java process must be the debug directory,
otherwise both the installer as well as the uninstaller will not work.

This procedure allows for an edit-compile-debug cycle that is much faster than building the
media file and running the installer. In addition, output on stderr and stdout can be captured,
and you can debug your screens, actions and form components this way.

226

D.2 API For Generated Launchers
Generated launchers in install4j have some features that you can interact with from your own
code. The corresponding API is contained in the com.install4j.api.launcher package.
This chapter gives an overview of the most important use case, the detailed documentation is
contained in the Javadoc.

install4j's launcher API is automatically available to an application deployed with install4j. For
compiling your application, you have to add the runtime classes to your class path. You can
learn how to set up a dependency in build systems in the API overview.

Receiving Startup Events in Single Instance Mode

If you have enabled the single instance mode [p. 40] for your executable, the application can
only be started once. For a GUI application, the existing application window is brought to front
when a user executes the launcher another time.

The scope of the single instance check can be per-user or globally across all users. For the
per-user scope, the "Per session on Windows" setting controls whether multiple RDP sessions
for the sameuser onWindows can support one instance per session or only one instance across
all sessions.

In single instancemode, youmaywant to receive notifications aboutmultiple startups together
with the command line parameters. If you have associated your executable with a file extension,
you will likely want to handle multiple invocations in the same instance of your application.
Alternatively, you might want to perform some action when another startup occurs.

To do that, create a class that implements the com.install4j.api.launcher.

StartupNotification.Listener interface and register it with com.install4j.api.

launcher.StartupNotification.registerStartupListener(listener). Your listener
will then be notified when another startup occurs. See the Javadoc for more information.

Startup notifications only work when the same user starts the executable again.With the global
scope, a startup of a different user will not produce a startup notification. OnmacOS, this setting
only applies to console launchers, for GUI launchers, the macOS operating system enforces
single instance mode if the user starts and application bundle from the Finder. With the /usr/
bin/open command line tool and the -n option, the user can circumvent single instancemode.

Controlling the Splash Screen from your Application

If you have enabled a splash screen [p. 40] for a launcher, you will want to hide it once the
application startup is finished. The splash screen will be hidden automatically as soon as your
application opens the first AWT, JavaFX or SWT window. See the Javadoc for more information.

However, youmightwant to hide the splash screenprogrammatically by callingcom.install4j.
api.launcher.SplashScreen.hide() or update the contents of the status text line on the
splash screen with com.install4j.api.launcher.SplashScreen.writeMessage(...)

during the startup phase to provide more extensive feedback to your users. Also, if the UI
subsystem is not loadedby the systemclass loader, install4j cannot automatically detect displayed
windows and you have to hide the splash screen automatically. For example, this is the case
for eclipse RCP applications.

Reading compiler and installer variables from response files

All installer variables that are registered for response files will be saved to the file .install4j/
response.varfile just before the installer exits. This includes all variables that are bound to
form components and variables for which you have called context.

registerResponseFileVariable(variableName).

227

Some of these variables will contain user input that you need at runtime. You can use the com.
install4j.api.launcher.Variables class to access the variable values. The variable values
from the response file are fixed, and its backing file is usually not writable by the user. If you
want to update the variable values at runtime, you can save variables to the preference store
with a "Save installer variables to the preference store" action. The com.install4j.api.

launcher.Variables class has methods for reading and saving these variables from the
preference store.

In addition, all compiler variable values can be retrieved at runtime. See the Javadoc for detailed
information.

Starting installer applications from your launchers

Installer applications like update downloaders are separate executables and can be started
manually by the user. Most often, however, they will be launched by one of the generated
launchers. install4j offers a configurable launcher integration mechanism that automatically
executes an installer application when a launcher is started. For greater flexibility, you may
want to execute the installer application from your code programmatically. On the
"Installer->Screens & Actions" step, when an installer application is selected, the integration
wizard on the "Launcher integration" tab produces code that uses the com.install4j.api.
launcher.ApplicationLauncher class.

There are twoways to start installer applications: In-process andout-of-process. For an in-process
invocation, the installer application will use the look and feel of your JVM. The AWT subsystem
will be initialized which may be undesirable if you use a different UI toolkit like JavaFX. For
greater isolation, out-of-process invocations are recommended. The ApplicationLauncher API
offers both options. In both cases you can supply a callback that is notified when the installer
application exits or if a "Shutdown calling launcher" action in the installer application request
a shutdown of the launcher.

In addition, the ApplicationLauncher class provides a mechanism to run an installer
application the first time a launcher from an archive installation is started. Archives do not have
an installer, but you may still want to run some install4j actions, for example, to configure a file
association. With the ApplicationLauncher.isNewArchiveInstallation() method you
can check at startup if this is the first time that the launcher is being executed.

228

D.3 Extensions

Introduction

All standard actions, screens and form components in install4j use the installer API [p. 223]
themselves. With this API you can create new elements that are displayed in the standard
registries by packaging a JAR file with a few special manifest entries and putting that JAR file
into the extensions directory of your install4j installation.

Configurability

An extension to install4j will likely need to be configurable by the user. install4j uses the JavaBean
specification (1) to control the user presentation of properties in the install4j IDE. Screens, actions
and form components correspond to beans in this context.

Optionally, you can add BeanInfo classes. A BeanInfo class next to the bean itself describes
which properties are editable and optionally gives details on how they should be presented.
See thedocumentationof the com.install4j.api.beaninfopackage for the complete documentation
onhow todevelopBeanInfo classes. Also,samples/customCode/src in the installationdirectory
contains sample beans with associated BeanInfo classes.

JAR manifest

In order to tell install4j which classes are screens, actions or form components, you have to use
the following manifest keys:

• Install-Action
for actions implementing com.install4j.api.actions.InstallAction

• Uninstall-Action
for actions implementing com.install4j.api.actions.UninstallAction

• Installer-Screen
for screens implementing com.install4j.api.screens.InstallerScreen

• Uninstaller-Screen
for screens implementing com.install4j.api.screens.UninstallerScreen

• Form-Component
for formcomponents implementingcom.install4j.api.formcomponents.FormComponent

• Style-Component
for formcomponents implementingcom.install4j.api.formcomponents.FormComponent
that should also be available in styles. Such form components should not take any user input
because they will have a different life-cycle in styles than in screens.

Note that usually you do not implement these interfaces yourself, but rather extend one of the
abstract base classes.

A typical manifest with one action and one screen looks like this:

(1) https://www.oracle.com/technetwork/articles/javaee/spec-136004.html

229

https://www.oracle.com/technetwork/articles/javaee/spec-136004.html
https://www.oracle.com/technetwork/articles/javaee/spec-136004.html

Depends-On: driver.jar common.jar

Name: com/mycorp/actions/MyAction.class
Install-Action: true

Name: com/mycorp/screens/MyScreen.class
Installer-Screen: true
Uninstaller-Screen: true

If you only have named sections and no global section in your manifest file, the first line must
be an empty line since it separates the global keys from the named sections.

The Depends-On manifest key can specify a number of relative JAR files separated by spaces
that must be included when the extension is deployed. That key can also occur separately for
each named section.

As you see in the example for the screen, each class can have multiple keys if the appropriate
interfaces are implemented.

Localization

Extensions can provide localizedmessages. During development, you can keep thesemessages
in the custom localization file of the project that you use for testing purposes. When packaging
the extensions, these custom localization files have to be given special names and be put into
a particular location in the extension JAR file.

The names of the extension localization files have to be the same as those of the system
localization files in the resource/messages directory, for example messages_en.utf8 and
similarly for other languages. The java.util.Properties file encoding is also supported if
the file name has a .properties extension, like messages_en.properties.

When creating the extension JAR file, all extension localization files have to be put into the
directory messages. No special directives in the manifest are required. Dependencies included
with the Depends-Onmanifest key are not scanned for extension localization files.

Extension deployment

On startup, install4j will scan the manifests of all JAR files that it finds in the extensions

directory. Any screens, actions or form components that are found in the manifests are added
to the standard registries. If a bean cannot be instantiated, the exception is printed to stderr
which is captured in <temp directory>/install4j_error.log and no further error is
displayed.

If any of those screens, actions or form components are selected by the user, the required JAR
files are deployed with the generated installers. This means that installing extensions does not
create an overhead for installers that do not use them.

230

E Command Line Tools

E.1 Install4j Command Line Compiler
install4j's command line compiler install4jc[.exe] can be found in the bin directory of
your install4j installation. It operates on project files with extension .install4j that have been
produced with the install4j IDE. (install4j[.exe]). The install4j command line compiler is
invoked as follows:

install4jc [OPTIONS] [config file]

A quick help for all options is printed to the terminal when invoking

install4jc --help

In order to facilitate usage of install4jc with automated build processes, the destination directory
for the media files and the application version can be overridden with command-line options.
Furthermore, you can achieve internationalization and powerful customizations with compiler
variables [p. 67]. As a last resort, since the file format of install4j's config files is xml-based, you
can achieve arbitrary customizations by replacing tokens or by applying XSLT stylesheets to the
config file.

Options for the install4j command line compiler

The command line compiler has the following options:

• -h or --help
Displays a quick help for all available options.

• -V or --version
Displays the version of install4j in the following format:

install4j version X.Y, built on YYYY-MM-DD

• -v or --verbose
Enables verbose mode. In verbose mode, install4j prints out information about internal
processes. If you experience problemswith install4j,make sure to include the verbose terminal
output with your bug report.

• -q or --quiet
Enables quiet mode. In quiet mode, no terminal output short of a fatal error will be printed.

• -t or --test
Enables test mode. In test mode, no media files will be generated in the media file directory.

• -i or --incremental
Enables incremental test execution. A test installer [p. 11] for the current platform is updated
with the latest screens, actions and form components and executed immediately. Because
the files are taken from a previously built media file, the compilation is very fast.

231

• -g or --debug
Create additional debug installers for each media file. For each built media file, a directory
named like the media file will be created in the media file output directory.

• -p or --preserve
Donot delete the temporary directory that the compiler uses for staging all files and launchers.

• -w or --fail-on-warning
If a warning is printed and this option is specified, the build will fail at the end. It does not
fail immediately, so you can see all warnings and fix them all at once. The exit code in this
case is 2 instead of 1 for an actual error and 0 for a successful execution.

• -n or --faster
Disable LZMA and Pack200 compression. If you have enabled LZMA or Pack200 compression
on the "General Settings->Media File Options" step, this allows you to create development
builds much faster, since LZMA and Pack200 are expensive compression algorithms.

• -u or --disable-signing
Disable code signing. If you have configured code signing [p. 146], this allows you to skip code
signing for a build. In that case you do not have to enter the passwords for the key stores.

• -j or --disable-bundling
Disable JRE bundling. If you have configured JRE bundles [p. 95] for any media files, those
bundles will not be used and the installer will be built without a contained JRE. This speeds
up the build and the installation.

• --win-keystore-password=<password>
Set the Windows keystore password for the private key that is configured for code
signing [p. 146]. If code signing is enabled for Windowsmedia files and this option is not set,
the command line compiler will prompt you for the password.

• --mac-keystore-password=<password>
Set themacOSkeystore password for theprivate key that is configured for code signing [p. 146].
If code signing is enabled for macOSmedia files and this option is not set, the command line
compiler will prompt you for the password.

• --disable-notarization
Disable notarization of macOS media files. If you have enabled notarization for code
signing [p. 146] , this option allows you to skip notarization.

• -L or --license=<key>
Update the license key on the command line and exit. This is useful if you have installed
install4j on a headless system and cannot start the GUI. <key> must be replaced with your
license key. If you use floating licenses, replace <key> with FLOAT:server where "server"
is the host name or IP address where the floating license server is installed. For floating
licenses, you can choose the requested edition by passing --windows-edition or
--multi-platform-edition.

The config file that contains the license key has a platform-specific location:

• Windows: %LOCALAPPDATA%\install4j\v<version>\config.xml
• macOS: ~/Library/Application Support/install4j/v<version>/config.xml

232

• Linux/Unix: .config/install4j/v<version>/config.xml, the root directory may be
modified by the environment variable XDG_CONFIG_HOME

Note that you can also set the environment variable INSTALL4J_LICENSE_KEY to set the
license key just for the current invocation.

• -r <string> or --release=<string>
Override the application version defined in the "General Settings->Application Info" step.
<string> must be replaced with the actual version number. Version number components
can be alphanumeric and should be separated by dots, dashes or underscores.

• -d <string> or --destination=<string>
Override the output directory for the generated media files. <string> must be replaced
with the actual directory. If the directory contains spaces, you must enclose <string> in
quotation marks.

• -s or --build-selected
Only build the media files which have been selected in the install4j IDE. By default, all media
files are built regardless of the selection in the "Build" step.

• -b <list> or --build-ids=<list>
Only build the media files with the specified IDs. <list> must be replaced with a comma
separated list of numeric IDs. The IDs for media files can be shown in the install4j IDE by
choosing Project->Show IDs from the main menu. Examples would be:

-b 2,5,9
--build-ids=2,5,9

• -m or --media-types=<type>[,<type>]...
Only build media files of the specified type. <type>must be replaced with a media file type
recognized by install4j. To see the list of supported media types, execute

install4jc --list-media-types

. Examples would be:

-m win32,macos,macosFolder
--media-types=win32,macos,macosFolder

• -D <name>=<value>[,<name>=<value>]...
Override a compiler variable [p. 67] with a different value. You can overridemultiple variables
by specifying a comma separated list of name value pairs. <name> must be the name of a
variable that has been defined on the "General Settings->Compiler Variables" step. The value
can be empty.

To override the platform-specific value for a variable add the prefix windows:, macos: or
unix: before the variable name. To override a variable for a specific media file definition,
you can add the prefix ID: to specify the ID of the media file. The IDs for media files can be
shown in the install4j IDE by choosing Project->Show IDs from the main menu.

233

Examples would be:

-D MYVARIABLE=15,OTHERVARIABLE=
-D windows:MYVARIABLE=winValue,macos:MYVARIABLE=macValue
"-D MYVARIABLE=15,OTHERVARIABLE=test,8:MEDIASETTITLE=my title"

A special system variable that you can override from the command line is sys.languageId.
sys.languageId must be set to the ISO code of the language displayed in the language
selection dialog and determines the principal installer language [p. 85] for the project or the
media file.

• -f <file> or --var-file=<file>
Load variable definitions from a file. This option can be used together with the -D option,
which takes precedence if a variable occurs twice. The file can contain

• variable definitions
One variable definition per line of the form NAME=VALUE.

• blank lines
blank lines will be ignored.

• comments
lines that start with # will be ignored.

The file is assumed to be encoded in theUTF-8 format. Should you require a different encoding
you can prefix the filename with CHARSET:, where CHARSET is replaced with the name of
the encoding.

Instead of a single variable file you can also specify a list of files separated by semicolons.
The optional charset prefix must be specified for each file separately.
Examples would be:

-f varfile.txt
--var-file=ISO-8859-3:varfile.txt
--var-file=one.txt;two.txt
--var-file=ISO-8859-3:one.txt;ISO-8859-1:two.txt

• -M or --list-media-types
Prints out a lists of supported media types for the --media-types option and quits.

234

E.2 Command Line Tool For Pre-Created JRE Bundles
To automate the creation of pre-created JRE bundles [p. 95], you can use the command line
utility createbundle[.exe] in the bin directory of your install4j installation. The bundle
creation tool is invoked as follows:

createbundle [OPTIONS] [JRE home directory]

The available options are:

-h, --help Displays this help.
-o, --output Output directory, default is the current directory.
-v, --version=<VERSION> JRE version to be used in the bundle file name.
 The default is the version as reported by the JRE.
-i, --id Sets custom id for bundle file name.
 The default is the empty string.
-u, --unpacked Create bundle with unpacked JAR files as required
 for the macOS single bundle archive.
-r, --jdk-release Release of JDK that provides the JDK tools. Only
 =<RELEASE> required if the JRE does not contain the jlink tool
 and if the JRE version is 9 or higher. This is not a
 version number, but a release string as shown on the
 "JRE Bundles" step in the install4j IDE.
-p, --jdk-provider-id JDK provider ID for the JDK that is specified with
 =<ID> --jdk-release. By default, "Adoptium" is used.
-m, --add-modules Add a comma-separated list of modules to the JRE
 bundle. Can be passed more than once.
-s, --add-module-set Add a set of modules to the JRE bundle, either a
 =min|jre|all|none minimum set, a typical JRE, all modules, or none.
 The default is "jre".
-j, --add-jmod=<path> Add a JMOD file to the JRE bundle. Can be passed
 more than once.
-d, --add-jmod-dir Add a directory with JMOD files to the JRE bundle.
 =<path> Can be passed more than once.

There are Ant [p. 253] andGradle [p. 236] tasks aswell as aMavenMojo [p. 243] tasks that you can
use to call this command line application from your build system.

235

E.3 Using Install4j With Gradle
You can execute the install4j compiler from gradle (1) with the install4j Gradle plugin. To make
the Gradle plugin available to your build script, you have to apply the install4j Gradle plugin:

plugins {
 id "com.install4j.gradle" version "X.Y.Z"
}

If you do not want to use the Gradle plugin repository for this purpose, the Gradle plugin is
distributed in the file bin/gradle.jar.

The plugin has two parts: The global configuration with the top-level install4j {...}
configuration block and tasks of type com.install4j.gradle.Install4jTask.

The global configuration block can specify defaults for task properties that are applied to all
install4j tasks, for example, the optional install4j installation directory, if no auto-provisioning
is desired:

install4j {
 installDir = file("/path/to/install4j_home")
}

Task parameters

The install4j task supports the following parameters,many of which are explained in greater
detail for the command line compiler [p. 231].

GlobalRequiredDescriptionAttribute

YesNoThe install4j installation directory. If
this parameter is omitted, an install4j

installDir

installation with the same version as
the used plugin will be
auto-provisioned. Auto-provisioned
install4j distributions will be saved
under <Gradle use home>/
install4j/dist.

On macOS, the installation directory
is the path of the application bundle,
for example /Applications/
install4j.app. Theactual command
line compiler is located under
/Applications/install4j.app/

Contents/Resources/app/bin/

install4j in that case.

YesNoIf the installDir parameter is omitted,
amatching distribution of install4j will

autoProvisioningCacheDir

be auto-provisioned. By default, the
auto-provisioned install4j distributions

(1) https://gradle.org

236

https://gradle.org

GlobalRequiredDescriptionAttribute

will be saved to <Gradle use
home>/install4j/dist.

To override the cache directory,
specify this property.

NoYesThe install4j project file that should be
built.

projectFile

NoNoCorresponds to the --var-file
command-line option. Specify the list

variableFiles

of variable files with variable
definitions.

NoNoA map of variable definitions. These
definitions override compiler

variables

variables [p. 67] in the project and
correspond to the -D command-line
option. Definitions with variable
elements take precedence before
definitions in the variable file
referenced by the variableFiles
parameter.

The names of the variablesmust have
been defined on the "General
Settings->Compiler Variables" step.
The values can be of any type,
toString() will be called on each
value to convert the value to a java.
lang.String. For example:
[variableOne: "One",

variableTwo: 2].

NoNoCorresponds to the --release
command-line option. Enter a version

release

number like "3.1.2". Version number
components canbealphanumeric and
should be separated by dots, dashes
or underscores.

NoNoCorresponds to the --destination
command-line option. Enter a

destination

directory where the generatedmedia
files should be placed.

NoNoCorresponds to the --build-ids
command-line option. Enter a list of

buildIds

media file ids. The IDs for media files
can be shown in the install4j IDE by
choosing Project->Show IDs from the

237

GlobalRequiredDescriptionAttribute

main menu. For example: [12, 24,
36].

YesNo, verbose
and quiet

Corresponds to the --verbose
command-line option. Either true or
false.

verbose

cannot both
be true

YesCorresponds to the --quiet
command-line option. Either true or
false.

quiet

YesCorresponds to the --license
command-line option. If the license

license

has not been configured yet, you can
set the license key with this attribute.

Note that you can also set the
environment variable
INSTALL4J_LICENSE_KEY to set the
license key just for the current
invocation.

YesNo, test and
incremental

Corresponds to the --test
command-line option. Either true or
false.

test

cannot both
be true

YesCorresponds to the --incremental
command-line option. Either true or
false.

incremental

YesNoCorresponds to the --debug
command-line option. Either true or
false.

debug

YesNoCorresponds to the --preserve
command-line option. Either true or
false.

preserve

YesNoCorresponds to the --faster
command-line option. Either true or
false.

faster

YesNoCorresponds to the
--disable-signing command-line
option. Either true or false.

disableSigning

YesNoCorresponds to the
--disable-bundling command-line
option. Either true or false.

disableBundling

238

GlobalRequiredDescriptionAttribute

YesNoCorresponds to the
--win-keystore-password

command-line option.

winKeystorePassword

YesNoCorresponds to the
--mac-keystore-password

command-line option.

macKeystorePassword

YesNoCorresponds to the
--disable-notarization

command-line option.

disableNotarization

YesNoCorresponds to the
--build-selected command-line
option. Either true or false.

buildSelected

YesNoCorresponds to the --media-types
command-line option. Enter a list of

mediaTypes

media types. To see the list of
supported media types, execute
install4jc --list-media-types.

YesNoA list of VM parameters for the
install4j command line compiler

vmParameters

process. For example:
["-DproxySet=true",

"-DproxyHost=myproxy",

"-DproxyPort=1234",

"-DproxyAuth=true",

"-DproxyAuthUser=buildServer",

"-DproxyAuthPassword=

iq4zexwb8et"] sets an HTTP proxy
that is required for code signing.

The "Global" column shows if a parameter can also be specified in the global install4j {..
.} configuration block. Definitions in the task override global definitions.

Examples

Simple example:

install4j {
 installDir = file("/opt/install4j")
}
task media(type: com.install4j.gradle.Install4jTask) {
 projectFile = file("myProject.install4j")
}

More complex example:

239

if (!hasProperty("install4jHomeDir")) {
 File propertiesFile =
file("${System.getProperty("user.home")}/.gradle/gradle.properties")
 throw new RuntimeException("Specify install4jHomeDir in $propertiesFile")
}

boolean dev = hasProperty("dev")

install4j {
 installDir = file(install4jHomeDir)
 faster = dev
 disableSigning = dev
 winKeystorePassword = "supersecretWin"
 macKeystorePassword = "supersecretMac"

 if (dev) {
 mediaTypes = ["windows"]
 }
}

task media(type: com.install4j.gradle.Install4jTask) {
 dependsOn "dist" // example task that prepares the distribution for install4j

 projectFile = "myProject.install4j"
 variables = [majorVersion: version.substring(0, 1), build: 1234]
 variableFiles = ["var1.txt", "var2.txt"]
}

The "hello" sample project includes a Gradle build script that shows how to set up the install4j
task. To install the sample projects, invoke Project->Open Sample Project from the install4j IDE.
When you do this for the first time, the sample projects are copied to the "Documents" folder
in your home directory.

In the samples/hello directory, execute

gradle media

to start the build. If you have not defined install4jHomeDir in gradle.properties next to
build.gradle, the build will fail with a corresponding error message.

Configuration cache

By default, the install4j tasks in the install4j Gradle plugin are never up to date and will run on
every execution. This is because the task would have to perform a dry run to get a list of input
files.

However, once you add file inputs to the install4j task, regular up-to-date checkingwill be done.
File inputs are specified with method calls on the inputs property of a task:

task media(type: com.install4j.gradle.Install4jTask) {
 inputs.dir(stagingDir)
 inputs.files(file1, file2)
 ...
}

Then the task will be up to date if the inputs of its properties and your custom inputs are up to
date with respect to the last task execution. In this way you can use the Gradle configuration
cache which is otherwise supported by the install4j task.

240

Creating JRE bundles

To create a JRE bundle from your Gradle build script, use the com.install4j.gradle.

CreateBundleTask and and set its javaHome property to the JRE that you want to create a
bundle for.

The CreateBundleTask invokes the createbundle command line executable [p. 235] in the
install4j installation and has the following properties:

RequiredDescriptionAttribute

YesThe home directory of the JRE that should be
bundled

javaHome

NoCorresponds to the --output command-line
option.

outputDirectory

NoCorresponds to the --version command-line
option.

version

NoCorresponds to the --id command-line option.id

NoCorresponds to the --unpacked command-line
option.

unpacked

NoCorresponds to the--jdk-release command-line
option.

jdkRelease

NoCorresponds to the --jdk-provider-id
command-line option.

jdkProviderId

NoCorresponds to the--add-modules command-line
option.

addModules

NoCorresponds to the --add-module-set
command-line option.

addModuleSet

NoCorresponds to the --add-jmod command-line
option.

jmodFiles

NoCorresponds to the --add-jmod-dir
command-line option.

jmodDirs

NoLike the vmParameters property of the
Install4jTask

vmParameters

Example:

241

task createBundle(type: com.install4j.gradle.CreateBundleTask) {
 javaHome = "/usr/lib/jvm/jre-11/jre"
 outputDirectory = "/home/build/projects/myProject/jreBundles"
 version = "11"
 id="j3d"
 jmodDirs = ["jmods"]
 jmodFiles = ["one.jmod", "two.jmod"]
}

242

E.4 Using Install4j With Maven
You can execute the install4j compiler from maven (1) with the install4j Maven plugin.

The install4j maven plugin is available from the Maven Central repository.

Compile Mojo parameters

The compileMojo supports the following parameters, many of which are explained in greater
detail for the command line compiler [p. 231].

RequiredDescriptionParameter

YesThe install4j project file that should be built.

User property of type java.io.File:
install4j.projectFile

projectFile

NoAttach generated installers. Uses themedia file ID
as the classifier.

User property of type boolean: install4j.attach

attach

NoThe locationwhere auto-provisioned distributions
of install4j will be stored. This is only used if the
installDir is not set.

By default, the auto-provisioned install4j
distributionswill be saved to theOS-specific cache
directory which is

autoProvisioningCacheDir

• $LOCALAPPDATA%/install4jDistonWindows
• %HOME/Library/Caches on macOS
• $XDG_CACHE_HOME/install4jDistor$HOME/
.cache/install4jDist on Linux

To override the cache directory, specify this
property.

User property of type java.io.File:
install4j.autoProvisioningCacheDir

NoOnly build the media files with the specified IDs,
separated by commas.

Corresponds to the --build-ids command-line
option.

buildIds

User property of type java.lang.String:
install4j.buildIds

NoOnly build the media files which have been
selected in the install4j IDE.

Corresponds to the --build-selected
command-line option.

buildSelected

(1) https://maven.apache.org/

243

https://maven.apache.org/

RequiredDescriptionParameter

User property of type boolean:
install4j.buildSelected

NoCreate additional debug installers for each media
file.

Corresponds to the--debug command-lineoption.

debug

User property of type boolean: install4j.debug

NoThe output directory for the generatedmedia files.
By default, this is set to ${project.build.

destination

directory}/media, so this flag is always passed
to the install4j compiler.

Corresponds to the--destination command-line
option.

User property of type java.io.File:
install4j.destination

NoDisable JRE bundling.

Corresponds to the --disable-bundling
command-line option.

disableBundling

User property of type boolean:
install4j.disableBundling

NoDisable Notarization for macOS media files.

Corresponds to the --disable-notarization
command-line option.

disableNotarization

User property of type boolean:
install4j.disableNotarization

NoDisable code signing.

Corresponds to the --disable-signing
command-line option.

disableSigning

User property of type boolean:
install4j.disableSigning

NoIf a warning is printed and this option is specified,
the build will fail at the end.

Corresponds to the --fail-on-warning
command-line option.

failOnWarning

User property of type boolean:
install4j.failOnWarning

244

RequiredDescriptionParameter

NoDisable LZMA and Pack200 compression.

Corresponds to the --faster command-line
option.

faster

User property of type boolean: install4j.faster

NoEnables incremental test execution. The
parameters "test" and "incremental" cannot both
be true.

Corresponds to the--incremental command-line
option.

incremental

User property of type boolean:
install4j.incremental

NoThe location of the install4j installation. If not
specified, an install4j distribution with the same

installDir

version as this plugin will be auto-provisioned.
Auto-provisioned install4j distributions will be
saved in an OS-specific cache directory. See the
autoProvisioningCacheDir property for more
details.

User property of type java.io.File:
install4j.home

NoPass JVM arguments to the install4j command line
compiler.

jvmArguments

Noinstall4j license key. If the license has not been
configured yet, you can set the license key with
this attribute.

Corresponds to the --license command-line
option.

license

User property of type java.lang.String:
install4j.license

NoSet the macOS keystore password for the private
key that is configured for code signing.

Corresponds to the --mac-keystore-password
command-line option.

macKeystorePassword

User property of type java.lang.String:
install4j.macKeystorePassword

NoOnly build media files of the specified types,
separated by commas.

Corresponds to the --build-ids command-line
option.

mediaTypes

245

RequiredDescriptionParameter

User property of type java.lang.String:
install4j.mediaTypes

NoPreserve the temporary staging directory.

Corresponds to the --preserve command-line
option.

preserve

User property of type boolean: install4j.preserve

NoEnables quiet mode. The parameters "verbose"
and "quiet" cannot both be true.

Corresponds to the--quiet command-lineoption.

quiet

User property of type boolean: install4j.quiet

NoOverride the application version. By default, this
is set to ${project.version}, so this flag is

release

always passed to the install4j compiler unless you
set it to the special string #project.

Corresponds to the --release command-line
option.

User property of type java.lang.String:
install4j.release

NoSkip execution.

User property of type boolean: install4j.skip

skip

NoEnables test mode. In test mode, no media files
will be generated in the media file directory. The

test

parameters "test" and "incremental" cannot both
be true.

Corresponds to the --test command-line option.

User property of type boolean: install4j.test

NoLoad variable definitions from files.

Corresponds to the --var-file command-line
option.

variableFiles

NoOverride compiler variables with different values.

Corresponds to the -D command-line option.

variables

NoEnables verbosemode. The parameters "verbose"
and "quiet" cannot both be true.

Corresponds to the --verbose command-line
option.

verbose

User property of type boolean: install4j.verbose

246

RequiredDescriptionParameter

NoSet theWindows keystore password for the private
key that is configured for code signing.

Corresponds to the --win-keystore-password
command-line option.

winKeystorePassword

User property of type java.lang.String:
install4j.winKeystorePassword

Example

A minimal example is:

<build>
 <plugins>
 <plugin>
 <groupId>com.install4j</groupId>
 <artifactId>install4j-maven</artifactId>
 <version>11.0.5</version>
 <executions>
 <execution>
 <id>compile-installers</id>
 <phase>package</phase>
 <goals>
 <goal>compile</goal>
 </goals>
 <configuration>

<projectFile>${project.basedir}/src/main/installer/myProject.install4j</projectFile>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

Compilation can be skipped by setting the install4j.skip property on the command line:

mvn -Dinstall4j.skip

Using profiles for configuring parameters

If you do not wish to auto-provision an install4j installation, it is recommended to configure the
installation location in settings.xml with the install4j.home user property:

247

<profiles>
 <profile>
 <id>development</id>
 <properties>
 <install4j.home>/path/to/install4j</install4j.home>
 </properties>
 </profile>
</profiles>

<activeProfiles>
 <activeProfile>development</activeProfile>
</activeProfiles>

Further parameters that are recommended to be configured in settings.xml are the license
key and the passwords for code signing. The license key configuration is only required if it was
not configured manually in advance for the user that is running the build.

Note that you can also set the environment variable INSTALL4J_LICENSE_KEY to set the license
key just for the current invocation.

<profiles>
 <profile>
 <id>development</id>
 <properties>
 <install4j.license>CHANGEME</install4j.license>
 <install4j.winKeystorePassword>SECRET</install4j.winKeystorePassword>
 <install4j.macKeystorePassword>SECRET</install4j.macKeystorePassword>
 </properties>
 </profile>
</profiles>

<activeProfiles>
 <activeProfile>development</activeProfile>
</activeProfiles>

Passing the build class path to the project

A common use case is the need to add all dependency JAR files from the build class path to the
distribution tree. To do that, you first have to execute the "build-classpath" goal of the
"maven-dependency-plugin" to set a property with the class path:

<plugin>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>3.1.2</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>build-classpath</goal>
 </goals>
 <configuration>
 <outputProperty>my.classpath</outputProperty>
 </configuration>
 </execution>
 </executions>
</plugin>

In the configuration of the install4j plugin, you then pass this property as a compiler variable:

248

<configuration>
 ...
 <variables>
 <externalClassPath>${my.classpath}</externalClassPath>
 </variables>
</configuration>

On the "Files->Define distribution tree" step in the install4j step, you can add entries of type
"Compiler variable" [p. 14]. This type of entry will split the variable value with a configurable
path separator and add all contained files. Continuing the above example, you have to add a
compiler variable entry with the compiler variable name "externalClassPath" and the default
path list separator ${compiler:sys.pathlistSeparator} to add all the dependency JAR
files to the selected location in the distribution tree.

Attaching media files

Media files compiled by install4j can be attached to the Maven project when the "attach"
parameter is set to true.

Attached files will be installed into the local repository and will also be deployed. The classifier
for each deployed media file is the media file ID.

Creating JRE bundles

To create a JRE bundle fromyourMaven build, use the createbundleMojo and set its javaHome
property to the JRE that you want to create a bundle for.

The createbundle Mojo supports the following parameters, many of which are explained in
greater detail for the command line compiler [p. 231].

RequiredDescriptionParameter

YesThe home directory of the JRE that should be
bundled.

User property of type java.io.File:
install4j.bundleJavaHome

javaHome

NoAdd a set of modules to the JRE bundle, one of
"MIN", "JRE", "ALL", "NONE". Corresponds to the
--add-module-set command-line option.

User property of type com.install4j.
buildtools.ModuleSet: install4j.addModuleSet

addModuleSet

NoComma-separated list of modules to be added to
the JRE bundle. Corresponds to the
--add-modules command-line option.

User property of type java.lang.String:
install4j.addModules

addModules

249

RequiredDescriptionParameter

NoThe locationwhere auto-provisioned distributions
of install4j will be stored. This is only used if the
installDir is not set.

By default, the auto-provisioned install4j
distributionswill be saved to theOS-specific cache
directory which is

autoProvisioningCacheDir

• $LOCALAPPDATA%/install4jDistonWindows
• %HOME/Library/Caches on macOS
• $XDG_CACHE_HOME/install4jDistor$HOME/
.cache/install4jDist on Linux

To override the cache directory, specify this
property.

User property of type java.io.File:
install4j.autoProvisioningCacheDir

NoOptional custom ID for the bundle. Corresponds
to the --id command-line option.

User property of type java.lang.String:
install4j.bundleId

id

NoThe location of the install4j installation. If not
specified, an install4j distribution with the same

installDir

version as this plugin will be auto-provisioned.
Auto-provisioned install4j distributions will be
saved in an OS-specific cache directory. See the
autoProvisioningCacheDir property for more
details.

User property of type java.io.File:
install4j.home

NoJDK provider ID for the JDK that is specified with
jdkRelease. Corresponds to the
--jdk-provider-id command-line option.

User property of type java.lang.String:
install4j.jdkProviderId

jdkProviderId

NoRelease of a JDK that provides the JDK tools.
Required only if the bundled JRE does not contain

jdkRelease

the jlink tool. Corresponds to the --jdk-release
command-line option.

User property of type java.lang.String:
install4j.jdkRelease

250

RequiredDescriptionParameter

NoDirectories with JMOD files to be added to the JRE
bundle. Corresponds to the --add-jmod-dir
command-line option.

jmodDirs

NoJMOD files to be added to the JRE bundle.
Corresponds to the --add-jmod command-line
option.

jmodFiles

NoPass JVM arguments to the install4j command line
compiler.

jvmArguments

NoOutput directory for the bundle. Corresponds to
the --output command-line option.

User property of type java.io.File:
install4j.bundleOutputDir

outputDirectory

NoSkip execution.

User property of type boolean: install4j.skip

skip

NoCreate a bundle with unpacked JAR files, required
formacOS single bundle archives. Corresponds to
the --unpacked command-line option.

User property of type boolean:
install4j.bundleUnpacked

unpacked

NoJRE version to be used, if different from the
detected version. Corresponds to the --version
command-line option.

User property of type java.lang.String:
install4j.bundleVersion

version

An example that shows the usage of this Mojo is:

251

<build>
 <plugins>
 <plugin>
 <groupId>com.install4j</groupId>
 <artifactId>install4j-maven</artifactId>
 <version>11.0.5</version>
 <executions>
 <execution>
 <id>create-jre-bundle</id>
 <phase>package</phase>
 <goals>
 <goal>createbundle</goal>
 </goals>
 <configuration>
 <javaHome>/usr/lib/jvm/jre-11/jre</javaHome>
 <outputDirectory>/home/build/projects/myProject/jreBundles</outputDirectory>

 <jmodFiles>
 <param>one.jmod</<param>
 <param>two.jmod</<param>
 </jmodFiles>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

252

E.5 Using Install4j With Ant
To integrate install4j with your Ant script (1) use the Install4JTask that is provided in
$INSTALL4J_HOME/bin/ant.jar and set theCreateBundleTask projectFile parameter to
the install4j project file that you want to build.

To make the install4j task available to Ant, you must first insert a taskdef element that
tells Ant where to find the task definition. Here is an example of using the task in an Ant build
file:

<taskdef name="install4j"
 classname="com.install4j.Install4JTask"
 classpath="C:\Program Files\install4j\bin\ant.jar"/>

<target name="media">
 <install4j projectFile="myapp.install4j"/>
</target>

OnmacOS, the ant.jar file is inside the application bundle, for the default application directory
the full path is /Applications/install4j.app/Contents/Resources/app/bin/ant.jar

The taskdef definition must occur only once per Ant build file and can appear anywhere on
the top level below the project element.

Note that it is possible to copy the ant.jar archive to a location outside the install4j installation
directory. In that case, an install4j installation with the same version as the ant.jar file will be
auto-provisioned. Auto-provisioned install4j distributions will be saved under $HOME/.

install4jDist.

Task parameters

The install4j task supports the following parameters:

RequiredDescriptionAttribute

YesThe install4j project file that should be built.projectFile

NoIf the ant.jar that is referenced in the taskdef is
not contained in an install4j installation, a

autoProvisioningCacheDir

matching distribution of install4j will be
auto-provisioned.

By default, the auto-provisioned install4j
distributionswill be saved to theOS-specific cache
directory which is

• $LOCALAPPDATA%/install4jDistonWindows
• %HOME/Library/Caches on macOS
• $XDG_CACHE_HOME/install4jDistor$HOME/
.cache/install4jDist on Linux

To override the cache directory, specify this
property.

(1) https://ant.apache.org

253

https://ant.apache.org

RequiredDescriptionAttribute

No, verbose and
quiet cannot
both be true

Corresponds to the --verbose command-line
option. Either true or false.

verbose

Corresponds to the--quiet command-lineoption.
Either true or false.

quiet

Corresponds to the --fail-on-warning
command-line option. Either true or false.

failOnWarning

YesCorresponds to the --license command-line
option. If the license has not been configured yet,
you can set the license key with this attribute.

license

Note that you can also set the environment
variable INSTALL4J_LICENSE_KEY to set the
license key just for the current invocation.

No, test and
incremental

Corresponds to the --test command-line option.
Either true or false.

test

cannot both be
trueCorresponds to the--incremental command-line

option. Either true or false.
incremental

NoCorresponds to the--debug command-lineoption.
Either true or false.

debug

NoCorresponds to the --preserve command-line
option. Either true or false.

preserve

NoCorresponds to the --faster command-line
option. Either true or false.

faster

NoCorresponds to the --disable-signing
command-line option. Either true or false.

disableSigning

NoCorresponds to the --win-keystore-password
command-line option.

winKeystorePassword

NoCorresponds to the --mac-keystore-password
command-line option.

macKeystorePassword

NoCorresponds to the --disable-notarization
command-line option.

disableNotarization

NoCorresponds to the --release command-line
option. Enter a version number like "3.1.2".

release

Versionnumber components canbe alphanumeric
and should be separated by dots, dashes or
underscores.

254

RequiredDescriptionAttribute

NoCorresponds to the--destination command-line
option. Enter a directory where the generated
media files should be placed.

destination

NoCorresponds to the --build-selected
command-line option. Either true or false.

buildSelected

NoCorresponds to the --build-ids command-line
option. Enter a list of media file ids. The IDs for

buildIds

media files can be shown in the install4j IDE by
choosing Project->Show IDs from the main menu.

NoCorresponds to the--media-types command-line
option. Enter a list of media types. To see the list

mediaTypes

of supported media types, execute install4jc
--list-media-types.

Contained elements

• The Install4JTask can contain variable elements. These elements override compiler
variables [p. 67] in the project and correspond to the -D command-line option. Definitions
with variable elements take precedence before definitions in the variable file referenced
by the variablefile parameter.

The variable element supports the following parameters:

RequiredDescriptionAttribute

YesThe name of the variable. This must be the
name of a variable that has been defined on

name

the "General Settings->Compiler Variables"
step.

YesThe value for the variable. The value may be
empty.

value

NoThe ID of themedia file for which the variable
should be overridden. The IDs formedia files

mediaFileId

can be shown in the install4j IDE by choosing
Project->Show IDs from the main menu.

Example:

<install4j projectFile="myapp.install4j">
 <variable name="MY_VARIABLE" value="15"/>
 <variable name="OTHER_VARIABLE" value="test" mediaFileId="8"/>
</install4j>

• The install4j task can contain variablefile elements. These elements read text files
containing compiler variables definitions. They correspond to the --var-file command-line
option

255

The variablefile element supports the following parameters:

RequiredDescriptionAttribute

YesThe path of the variable
file.

file

• The install4j task can contain vmParameter elements. These elements set VMparameters
for the install4j command line compiler process.

The vmParameter element supports the following parameters:

RequiredDescriptionAttribute

YesThe value of the VMparameter.value

Example for setting an HTTP proxy (an internet connection is required for Windows code
signing):

<install4j projectFile="myapp.install4j" winKeystorePassword="Kajjs7sgLg22">
 <vmParameter value="-DproxySet=true"/>
 <vmParameter value="-DproxyHost=myproxy"/>
 <vmParameter value="-DproxyPort=1234"/>
 <vmParameter value="-DproxyAuth=true"/>
 <vmParameter value="-DproxyAuthUser=buildServer"/>
 <vmParameter value="-DproxyAuthPassword=iq4zexwb8et"/>
</install4j>

Complete example

The "hello" sample project includes an Ant build script that shows how to set up the install4j
task. To install the sample projects, invoke Project->Open Sample Project from the install4j IDE.
When you do this for the first time, the sample projects are copied to the "Documents" folder
in your home directory.

In the samples/hello directory, execute

ant media

to start the build. If you have not defined install4jHomeDir in build.xml, the build will fail
with a corresponding error message.

Creating JRE bundles

To create a JRE bundle from your Ant build script, use the CreateBundleTask that is provided
in $INSTALL4J_HOME/bin/ant.jar and set the javaHome parameter to the JRE that youwant
to create a bundle for.

The CreateBundleTask invokes the createbundle command line executable [p. 235] in the
install4j installation. Just like for the Install4JTask above, a taskdef element is required:

256

<taskdef name="createbundle"
 classname="com.install4j.CreateBundleTask"
 classpath="C:\Program Files\install4j\bin\ant.jar"/>

<target name="media">
 <createbundle javaHome="c:\Program Files\Java\jre"/>
</target>

The CreateBundleTask task supports the following parameters:

RequiredDescriptionAttribute

YesThe home directory of the JRE that should be
bundled

javaHome

NoCorresponds to the --output command-line
option.

outputDirectory

NoCorresponds to the --version command-line
option.

version

NoCorresponds to the --id command-line option.id

NoCorresponds to the --unpacked command-line
option.

unpacked

NoCorresponds to the--jdk-release command-line
option.

jdkRelease

NoCorresponds to the --jdk-provider-id
command-line option.

jdkProviderId

NoCorresponds to the--add-modules command-line
option.

addModules

NoCorresponds to the --add-module-set
command-line option.

addModuleSet

The CreateBundleTask task can contain vmParameter elements like the Install4JTask as
well as jmod elements with the following parameters:

RequiredDescriptionAttribute

Either file or dir
must be set, but

not both

Corresponds to the --add-jmod command-line
option.

file

Corresponds to the --add-jmod-dir
command-line option.

dir

Example:

257

<createbundle javaHome="/usr/lib/jvm/jre-11/jre"
 outputDirectory="/home/build/projects/myProject/jreBundles"
 version="11"
 id="j3d">
 <jmod dir="/home/build/projects/myProject/jmods">
 <jmod file="/home/build/projects/myProject/otherJmods/one.jmod">
 <jmod file="/home/build/projects/myProject/otherJmods/two.jmod">
</createbundle>

258

	Introduction
	Concepts
	Projects
	Building projects
	Distributing files
	File sets and components
	Screens and actions
	Scripts
	Generated launchers
	Form screens
	Layout groups
	Styles
	Look & feel
	Variables
	Localization
	VM parameters
	JRE bundles
	Services
	Elevation of privileges
	Merged projects
	Auto-update functionality
	Checking for updates
	Background auto-updates
	Version numbers
	Media files
	Data files
	Code signing
	Apple App Store Submission
	Styling of DMGs on macOS

	Configuring installer beans
	Screens & actions step
	Custom code
	Configuring applications
	Configuring screens
	Configuring actions
	Configuring groups
	Configuring form components
	Configuring layout groups
	Configuring styles

	Generated installers
	Installer modes
	Command-line options
	Response files
	JRE search
	HTTP requests
	Updates
	Error handling

	API
	Installer API
	Launcher API
	Extensions

	Command line tools
	Command line compiler
	Pre-Created JRE Bundles
	Gradle plugin
	Maven plugin
	Ant task

