@Jtechnologies

exe4j Manual

© 2025 ej-technologies GmbH. All rights reserved.

Index

INEFOAUCTION et 3
CONFIGUIAtION WIZArd ...c..ouieeieieieteieee ettt ettt ettt et a e b sbe s bt et et et e s e e ee 4
SEIVICE OPTIONS ettt sttt b b s a e s e e s b e b e s b s e sae e besnesnnes 9
RUNTIME AP vttt b e s b b 10
CommMANd 1IN COMPIIET ..ttt et ettt et bt sttt et e e e saesres 11

YN 0 A = 1] RS ORRRRRRRNE 13

What Is Exedj?

exedj creates Windows executables that invoke your Java applications.

The use of exe4j is not time-limited, but restricted to evaluation purposes. Evaluation warnings

are removed after purchasing a license . You can enter a permanent license key in the
"Welcome" step of the exe4j wizard.

How do | continue?

+ Togetanoverview of exedj's features, have a look at the sample projects in the deno directory
of your exedj installation.

* When starting exedj, a wizard [p. 4] will guide you step by step through collecting the
necessary information to create your executable.

* A command line compiler [p. 11] is available to facilitate the inclusion of exe4j into an
automated build process like ant [p. 13].

(M https://www.ej-technologies.com/redir?product=exe4j&target=order

3

https://www.ej-technologies.com/redir?product=exe4j&target=order

Exedj Wizard

When invoking exe4j from the start menu, the desktop icon or by executing bi n\ exe4j . exe
in the exed4j installation directory, the exe4j wizard is started. It guides you step by step through
completing the required information for building the executable. You can click on step names
in the wizard index to navigate quickly to a selected step.

By default, the wizard starts with an empty configuration, if you would like to load a config file
at startup, you can pass the path of the desired config file on the command line.

To try out exedj, the denp directory in the exe4j installation directory contains three sample
applications:

* a GUI application in the gui directory
+ acommand line application in the cl i directory

* aservice application in the ser vi ce directory

Project types

An exe4j project can be compiled in one of two modes:

* Regular mode

In the regular mode, exedj is a pure launcher and relies on all JAR files and resources to be
present in the distribution. In other words, the exe4j executable is an addition to your
distribution, and not a replacement for it.

On the "Application info" step, you enter the distribution source directory . The distribution
source directory is the topmost directory under which all other directories of your application
reside. When you select directories and files in the wizard through a file chooser, the paths
will be converted to paths relative to the distribution source directory. One of those relative
directories is the executable directory in the "Application info" step is the directory below
the distribution source directory where the executable is to be placed.

* JAR in EXE mode

In "JAR in EXE" mode, exedj includes the JAR files specified in the class path configuration of
the "Java invocation" step into the executable. In this way, you can distribute your application
as a single executable - provided it does not need additional support files and directories.
In this mode, you can only select "archive" and "environment variable" in the classpath entry
dialog. The JAR files are extracted to a temporary directory at runtime and deleted after use.

Executable types

Executables created by exe4j can be one of the following three types:

* GUI application

There is no terminal window associated with a GUI application. If stdout and stderr are not
redirected, both streams are inaccessible for the user. This corresponds to the behavior of
j avaw. exe.

If you launch the executable from a console window, a GUI application can neither write to
or read from that console window. Sometimes it might be useful to use the console, for
example, for seeing debug output or for simulating a console mode with the same executable.
In this case you can select the Al | ow - consol e par anet er check box. If the user supplies

the - consol e parameter when starting the launcher from a console window, the launcher

will try to acquire the console window and redirect stdout and stderr to it. If you redirect
stderr and stdout in the "Executable info->Redirection" step, that output will not be written
to the console.

+ Console application

A console application has an associated terminal window. If a console application is opened
from the Windows explorer, a new terminal window is opened. If stdout and stderr are not
redirected, both streams are printed in the terminal window. This corresponds to the behavior
of j ava. exe.

+ Service

A Windows service runs independently of logged-in users and can be run even if no user is
logged on. The nai n method will be called when the service is started.

To handle the shutdown of the service, you can use the Runti ne. addShut downHook()
method to register a thread that will be executed before the JVM is terminated.

For information on how services are installed or uninstalled, see the help on service start
options [p. 9].

Executable options

In the "Executable info->32 bit or 64-bit" step of the wizard, you can configure whether your
executable should be a 32-bit executable or a 64-bit executable.

Note thatitis not possible to create launchers that work with both 64-bit and 32-bit JREs. Because
the launcher starts the JVM with the JNI interface by loading the JVM DLL, the architecture has
to be the same. If you target both 32-bit and 64-bit JREs, you have to generate different
executables for them.

In other sub-steps of the "Executable info" step, you can optionally configure redirection of
stdout and stderr, a version info resource for the executable and options for the executable
manifest. On the "Executable info->Manifest options", a non-standard execution level can be
configured as well as the DPI awareness of your process which is important for High-DPI screens.

If your application can deal with different DPI settings, you can tell exe4j to add the manifest
entry to the executable that enables DPI-awareness. If that entry is not added, the GUI will be
scaled up automatically and may look blurry.

VM parameters

In the "Java invocation" step of the wizard, you enter the information required to start your
application, including a list of VM parameters. There are several runtime-variables you can use
to specify runtime directories in the VM parameters:

* %EXE4)_EXEDIR%
This is the directory where the executable is located.

* %EXE4)_JVM_HOME%
This is the directory of the JRE that your executable is running with.

* %EXE4)_TEMPDIR%

For the "JAR in EXE" mode, this variable will contain the location of the temporary directory
for the JAR files. In "regular mode" this variable is not used.

exedj can add specific VM parameters depending on the Java version. To set this up, click on
the Configure version specific VM parameters button. In the dialog, add rows for each range of
Java versions that should receive specific VM parameters. If the Java version of the JVM that is
used at runtime matches a configured version expression, the associated VM parameters will
be appended to the common VM parameters. The search is stopped at the first matching entry.
The syntax for the Java version expressions is explained by the help icon on the table header.

In addition to these VM parameters, a parameter file in the same directory as the executable
is read and its contents are added to the existing VM parameters. The name of this parameter
file is the same as the exe file with the extension *. viopt i ons. For example, if your exe file is

named hel | 0. exe, the name of the VM parameter file is hel | 0. vnopt i ons. In this file, each

line is interpreted as a single VM parameter. For example, the contents of the VM parameter
file could be:

- Xnx128m
- Xms32m

It is possible to include other . viopt i ons files from a . viopt i ons file with the syntax

-include-options [path to other .vnoptions file]

You can use multiple includes in a single file, recursive includes are also supported. You can
also add this option to the fixed VM parameters. In that way, you can prevent having to use the
. viopt i ons file right next to the executable.

This allows you to centralize the user-editable VM options for multiple launchers and to have
. vropt i ons files in a location that can be edited by the user if the installation directory is not
writable. You can use environment variables to find a suitable directory, for example

-include-options ${APPDATA}\ My Appli cation\ny.vnoptions

or

-incl ude-opti ons ${ USERPROFI LE}\ . myapp\ ny. vinopt i ons

In addition to the VM parameters you can also modify the classpath in the . viopt i ons files
with the following options:

+ -classpath [classpath]
Replace the classpath of the generated launcher.

+ -classpath/a [classpath]
Append to the classpath of the generated launcher.

+ -classpath/p [classpath]
Prepend to the classpath of the generated launcher.

You can use environment variables in the VM parameters with the following syntax:
${ VARl ABLE_NANME} where you replace VARIABLE_NAME with the desired environment variable.

Java invocation

On the "Java invocation" step of the launcher wizard you can configure both the module path
and the class path. These settings correspond to the - - nodul e- pat h and the - cp parameters

of the standard Java launcher. The module path is only applicable for Java 9 and higher. Like
for the standard Java launcher, you can add directories, single archives or directories with
archives. In addition, you can add archives from environment variables and from compiler
variables.

For Java 9 and higher, you can choose a main class from either the module or the class path. If
you choose the module path option, the syntax for the main class is <nodul e name>/ <cl ass
nane>and corresponds to the - - nodul e parameter of the standard Java launcher. The chooser
dialog shows all the available main classes and inserts the correct value automatically.

Like VM parameters, the list of fixed arguments supports launcher variables. Arguments on the
command line are appended to the fixed list of arguments.

The launcher needs a runtime JAR file which is automatically added to the executable and
extracted to a temporary directory at runtime. If you use the regular mode and not the "JAR in
EXE" mode, you can prevent the extraction of files at runtime by deselecting the "Bundle runtime"
option. In that case, you have to distribute the runtime file exe4j | i b. j ar and add it to the

classpath or module path.

JRE selection

In the "JRE" step of the wizard, you enter the version requirements for the JRE or |DK that your
application will be started with on the target system.

The minimum Java version must be specified, but the maximum Java version can be left empty,
so that any JRE or JDK with a higher version than the minimum version is acceptable.

In the "JRE->Search sequence" step, you can configure the way the exe4j executable looks for
an appropriate JRE or DK to start your Java application.

The following types of search sequence entries are available:

« B Search registry
Search the Windows registry for installed JREs and JDKs by Oracle.

. Directory

Look in the specified directory. This is especially useful if you distribute your own JRE along
with your application. In that case, be sure to supply a relative path. Note that for path
selections through the file chooser (... button), exe4j will try to convert the path to be relative
to the distribution source directory.

« H4 Environment variable

Look for a JRE of JDK in a location that is defined by an environment variable like JAVA_HOVE
or MYAPP_JAVA HOME.

To distribute your own JRE, put the JRE in your distribution and define a = directory search
sequence entry with the appropriate relative path (for example j r e) as the first item.

Itis possible to generate a log file that contains information about the JRE search sequence and
any potential problems. To switch on logging, start the executable with the/ creat e-i 4j -1 og
argument. The launcher will notify the user where the log is created and will offer to open an
explorer window with the log file selected. After the message box, the launcher will continue
to start up. If it is not possible to pass arguments, define the environment variableEXE4J _LOG=

yes and look for the newest text file whose name starts withi 4j _nl og_ in the Windows %@ EMP%
directory.

If the entire search sequence fails, exe4j will try the location defined by the environment variable
EXE4J_JAVA HOME. If that fails too, an error message will be displayed asking the user to define

this variable. To supply a custom variable, define an appropriate environment variable search
sequence entry and customize the corresponding error message in the "Messages" step of the
wizard.

Splash screen

Splash screens for executables generated by exe4j cannot be configured with the - spl ash VM
parameter, but must be configured on the "Splash screen" step.

In addition, you can overlay lines of text for status and version information on the splash screen,
by configuring them on the "Splash screen->Text lines" step. The St at us | i ne and Ver si on
| i ne sections allow you to position the text lines on the splash screen and configure their font.
The status line is dynamically updatable with exe4j's launcher API [p. 9]. If you include the
variable %/ERSI ON%in the version line text, it will be replaced with the product version defined
in the "Executable info->Version info" step of the wizard. With the - r flag, you can override this
setting for the command line compiler [p. 11].

Messages

In the "Messages" step of the wizard you can configure all messages that may be displayed by
the generated executable. Default message sets for the exe4j executable are available in several
languages. You can double-click on any message to edit it. If a message is modified from its
default, a customization indicator and a Reset button is displayed in the table row.

Services

On the "Executable info->Service options" step of the wizard you can configure further options
for executables whose type has been set to "Service" on the "Executable info" step.

Windows services are installed by passing /i nst al | to the generated service executable. The
default start mode of the service can be set as:

+ start on demand

In start on demand mode, your service must be manually started by the user in the Windows
service manager. Use this option if you're not sure if your users will actually want to run your
application as a service, but you want to give them an easy way to do so. This installation
mode can be forced if the user passes/ i nst al | - denand to the generated executable instead

of/install.

« auto start
In auto start mode, your service is always started when Windows is booted. This installation
mode can be forced if the user passes/ i nst al | - aut o to the generated executable instead
of/install.

Windows services are always uninstalled by passing / uni nstal | to the generated service

executable. All command line switches also work with a prefixed dash instead of a slash (like
-uni nst al |) or two prefixed dashes (like - - uni nstal I').

To start or stop the service, the/ start,/ stopand/ rest art options are available. In addition,
a/ st at us argument shows if the service is already running. The exit code of the status command

is 0 when the service is running, 3 when it is not running and 1 when the state cannot be
determined (for example, when it is not installed).

As a second parameter afterthe/i nst al | parameter, you can optionally pass a service name.
In that way you can

* install a service with a different service name than the default name.

+ Use the same service executable to start multiple services with different names. To distinguish
several running service instances at runtime, you can query the system property exe4j .
| aunchNane for the service name. Note that you also have to pass the same service name
as the second parameter if you use the/uninstal | ,/start and/ st op parameters.

For debugging purposes, you may want to run the executable on the command line without
starting it as a service. This can be done with the / r un parameter. In that case, all output will

be printed on the console. If you want to keep the redirection settings, use the/ run-r edi r ect
parameter instead.

If your service depends on another service, say a database, you can enter the service name of
the other service in the Dependenci es text field. You do not have to enter core OS services
such as filesystem or network, these services will always be initialized before your service is
launched. If you have dependencies on multiple services, you can enter a list of these service
names separated by commas.

Runtime API

Controlling the splash screen from your application

If you have enabled a splash screen [p. 4] for your exe4j executable, you usually want to hide
it once the application startup is finished. The splash will be hidden automatically as soon as
your application opens the first window.

However, you might want to hide the splash screen programmatically or update the contents
of the status text line on the splash screen during the startup phase to provide more extensive
feedback to your users.

With the exe4j launcher API you can

* Hide the splash screen programatically

Invoke the static method com exed4j . Control | er. hi de() as soon as you wish to hide the
splash screen.

+ Update the status text line

Invoke the static method com exe4j . Control l er. witeMessage(Stri ng nessage) to
change the text in the status line.

The launcher API of exed4j is contained in exe4j | i b. j ar which can be found in the top level
directory of your exedj installation.

Note: you do not have to add it to the classpath of your application and distribute it along with
it, since that file is always contained in the executable.

Receiving startup events in single instance mode

If you have enabled the Al | ow only a single running instance of the application

checkbox on the "Executable info->Single instance mode" step, the application can only be
started once. For a GUI application, the existing application window is brought to front when
a user executes the launcher another time.

The scope of the single instance check can be per-user or global across all users. For the per-user
scope, the "Per session" setting controls whether multiple RDP sessions for the same user can
support one instance per session or only one instance across all sessions.

Insingle instance mode, you may want to receive notifications about multiple startups together
with the command line parameters. If you have associated your executable with a file extension,
you will likely want to handle multiple invocations in the same instance of your application.
Alternatively, you might want to perform some action when another startup occurs.

With the exedjlauncher APIyou can write a class that implements the com exe4j . Control | er.
St art upLi st ener interface and register it with com exed4j.Controller.
regi sterStartupLi stener(StartupListener startupListener).Yourimplementation
of startupPerfornmed(String paraneters) of the StartupLi stener interface will then
be notified if another startup occurs.

Startup notifications only work when the same user starts the executable again. With the global
scope, a startup of a different user will not produce a startup notification.

The launcher API of exedj is contained in exe4j | i b. j ar which can be found in the top level
directory of your exed4j installation.

Note: you do not have to add it to the classpath of your application and distribute it along with
it, since that file is always contained in the executable.

10

Exed4j Command Line Compiler

exedj's command line compiler exe4j c. exe can be found in the bi n directory of your exe4;j
installation. It operates on any config file with extension . exe4j that has been produced with
the exedj wizard. (exe4j . exe). The exedj command line compiler is invoked as follows:

exedjc [OPTIONS] [config file]

A quick help for all options is printed to the terminal when invoking

exedjc --help

A typical run of the exe4j command line compiler looks like this:

exedj version X. Y, built on 20YY- M} DD
Unr egi stered eval uation version

Loadi ng config file nyapp. exe4j
Del eting tenmporary directory
Conpi | ed executable for myapp in 0.8 seconds.

Command line compiler options

The exe4j command line compiler [p. 11] has the following options:

-h or --help
Displays a quick help for all available options.

-V or --version
Displays the version of exe4j in the following format:

exedj version 1.0, built on 2002-10-05

-v or --verbose

Enables verbose mode. In verbose mode, exe4j prints out information about internal
processes. If you experience problems with exe4j, please make sure to include the verbose
terminal output with your bug report.

-q or --quiet

Enables quiet mode. In quiet mode, no terminal output short of a fatal error will be printed.

-t or --test

Enables test mode. In test mode, no executable will be generated in the directory for the
executable.

-w or --fail-on-warning

If a warning is printed and this option is specified, the build will fail at the end. It does not
fail immediately, so you can see all warnings and fix them all at once. The exit code in this
case is 2 instead of 1 for an actual error and 0 for a successful execution.

11

* -L or --license=KEY

Update the license key on the command line. This is useful if you have installed exe4j on a
headless system and cannot start the GUIL KEY must be replaced with your license key.

* -Xor --require-license

By default, exe4j will fall back to evaluation mode if the license key is not valid. If you want
the compilation to fail instead, you can specify this option.

* -r STRING or --release=STRING

override the application version defined in the "Executable info->Version info" step. STRI NG

must be replaced with the desired version number. The version number can only contain
numbers and dots.

+ -d STRING or --destination=STRING

override the destination directory for the executable. STRI NG must be replaced with the

desired directory. If the directory contains spaces, you must enclose STRING in quotation
marks.

Note that this option does not affect the interpretation of relative paths defined by the
distribution source directory and the output directory as specified in the "Application info"
step of the exe4j wizard.

Overriding settings at build time

In order to facilitate the use of exe4j in automated build processes, the destination directory
for the executable and the version text line of the splash screen can be overridden with
command-line options. Because the file format of exe4j's config files is in XML format, you can
achieve arbitrary customizations by replacing tokens [p. 13] or by applying XSLT stylesheets to
the config file.

Relative resource paths

If you would like to use relative paths for the distribution directory, the bitmap and icon files
(for example, for automated build processes in distributed environments) you can change these
values manually in the config file.

If the mentioned paths are relative, they are interpreted relative to the location of the config
file.

12

Using Exe4j With Ant

For integrating exe4j with your Ant script ", use the exe4j task that is provided in { exe4j
installation directory}/bin/ant.jar andsettheprojectfileparameterto the exedj
config file that you want to build.

To make the exe4j task available to Ant, you must first insert at askdef element that tells Ant
where to find the task definition. Here is an example of using the task in an Ant build file:

<t askdef nane="exe4j"
cl assnane="com exe4j . Exe4JTask"
cl asspat h="C:.\ Program Fi | es\exed4j\bin\ant.jar"/>

<t arget nanme="I| auncher">

<exedj projectfile="nyapp.exedj"/>
</target>

The t askdef definition must occur only once per ant-build file and can appear anywhere on
the top level below the pr oj ect element.

Note thatitis not possible to copy theant . j ar archivetothel i b folder of your ant distribution.
You have to reference a full installation of exe4j in the task definition.

Task properties

The exe4j task supports the following parameters:

Attribute Description Required
projectfile The exe4j config file for the launcher that should Yes
be generated.
verbose Corresponds to the - - ver bose command-line No, verbose and
option. Eithertrue or f al se. quiet cannot

both betrue

quiet Corresponds tothe - - qui et command-line option.
Eithertrue orfal se.

failOnWarning Corresponds to the - - f ai | - on- war ni ng
command-line option. Either t r ue or f al se.

test Correspondstothe - -t est command-line option. No
Eithertrue orf al se.

release Corresponds to the - - r el ease command-line No
option. Enter a version number like "3. 1. 2". The
version number may only contain numbers and
dots.

requirelicense Correspondstothe--require-1icense No
command-line option.

(M https://ant.apache.org

13

https://ant.apache.org

Attribute Description Required

license Corresponds to the - - 1 i cense command-line No

option. If the license has not been configured yet,
you can set the license key with this attribute.

destination Correspondstothe- - dest i nat i on command-line No

option. Enter a directory where the generated
launcher should be placed.

Modifying project files at build time

To customize aspects of the exedj build that cannot be overridden with the above parameters,
you can add appropriate tokens in the config file and use the copy task with a nestedfi | t er set
element. For example, if the main class in

<j ava mai nCl ass="com nycor p. \/App" ...

should by dynamically adjusted by Ant, edit the line to

<java mai nC ass=" @Al N_CLASS@ ...

and copy the template config file (here nyapp_t enpl at e. exe4j) with

<copy tofile="nyapp.exedj" file="nyapp_tenpl ate. exedj">
<filterset>
<filter token="MAI N CLASS" val ue="com nycorp. MyQt her App" />
</filterset>
</ copy>

before running the exe4j compiler as before.

14

	Introduction
	Configuration wizard
	Service options
	Runtime API
	Command line compiler
	Ant task

