
exe4j Manual

© 2025 ej-technologies GmbH. All rights reserved.

Index

Introduction .. 3

Configuration wizard .. 4

Service options ... 9

Runtime API .. 10

Command line compiler .. 12

Ant task ... 14

What Is Exe4j?
exe4j creates Windows executables that invoke your Java applications.

The use of exe4j is not time-limited, but restricted to evaluation purposes. Evaluation
warnings are removed after purchasing a license (1). You can enter a permanent license
key in the "Welcome" step of the exe4j wizard.

How do I continue?

• To get an overview of exe4j's features, have a look at the sample projects in the demo
directory of your exe4j installation.

• When starting exe4j, a wizard [p. 4] will guide you step by step through collecting the
necessary information to create your executable.

• A command line compiler [p. 12] is available to facilitate the inclusion of exe4j into an
automated build process like ant [p. 14].

(1) https://www.ej-technologies.com/redir.php?product=exe4j&target=order

3

https://www.ej-technologies.com/redir.php?product=exe4j&target=order

Exe4j Wizard
When invoking exe4j from the start menu, the desktop icon or by executing bin\exe4j.
exe in the exe4j installation directory, the exe4j wizard is started. It guides you step by step
through completing the required information for building the executable. You can click
on step names in the wizard index to navigate quickly to a selected step.

By default, the wizard starts with an empty configuration, if you would like to load a config
file at startup, you can pass the path of the desired config file on the command line.

To try out exe4j, the demodirectory in the exe4j installation directory contains three sample
applications:

• a GUI application in the gui directory
• a command line application in the cli directory
• a service application in the service directory

Project types

An exe4j project can be compiled in one of two modes:

• Regular mode

In the regular mode, exe4j is a pure launcher and relies on all JAR files and resources
to be present in the distribution. In other words, the exe4j executable is an addition to
your distribution, and not a replacement for it.

On the "Application info" step, you enter the distribution source directory . The
distribution source directory is the topmost directory under which all other directories
of your application reside. When you select directories and files in the wizard through
a file chooser, the paths will be converted to paths relative to the distribution source
directory. One of those relative directories is the executabledirectory in the "Application
info" step is the directory below the distribution source directory where the executable
is to be placed.

• JAR in EXE mode
In "JAR in EXE" mode, exe4j includes the JAR files specified in the class path configuration
of the "Java invocation" step into the executable. In this way, you can distribute your
application as a single executable - provided it does not need additional support files
and directories. In this mode, you can only select "archive" and "environment variable"
in the classpath entry dialog. The JAR files are extracted to a temporary directory at
runtime and deleted after use.

Executable types

Executables created by exe4j can be one of the following three types:

• GUI application
There is no terminal window associated with a GUI application. If stdout and stderr are
not redirected, both streams are inaccessible for the user. This corresponds to the
behavior of javaw.exe.

If you launch the executable from a console window, a GUI application can neither write
to or read from that console window. Sometimes it might be useful to use the console,
for example, for seeing debug output or for simulating a console mode with the same

4

executable. In this case you can select the Allow -console parameter check box. If
the user supplies the -console parameter when starting the launcher from a console
window, the launcher will try to acquire the console window and redirect stdout and
stderr to it. If you redirect stderr and stdout in the "Executable info->Redirection" step,
that output will not be written to the console.

• Console application
A console application has an associated terminal window. If a console application is
opened from the Windows explorer, a new terminal window is opened. If stdout and
stderr are not redirected, both streams are printed in the terminal window. This
corresponds to the behavior of java.exe.

• Service
A Windows service runs independently of logged-in users and can be run even if no
user is logged on. The main method will be called when the service is started.

To handle the shutdown of the service, you can use the Runtime.addShutdownHook()
method to register a thread that will be executed before the JVM is terminated.

For information on how services are installed or uninstalled, see the help on service start
options [p. 9].

Executable options

In the "Executable info->32 bit or 64-bit" step of the wizard, you can configure whether
your executable should be a 32-bit executable or a 64-bit executable.

Note that it is not possible to create launchers that work with both 64-bit and 32-bit JREs.
Because the launcher starts the JVM with the JNI interface by loading the JVM DLL, the
architecture has to be the same. If you target both 32-bit and 64-bit JREs, you have to
generate different executables for them.

In other sub-steps of the "Executable info" step, you can optionally configure redirection
of stdout and stderr, a version info resource for the executable and options for the
executable manifest. On the "Executable info->Manifest options", a non-standard execution
level can be configured as well as the DPI awareness of your process which is important
for High-DPI screens.

If your application can deal with different DPI settings, you can tell exe4j to add the manifest
entry to the executable that enables DPI-awareness. If that entry is not added, the GUI will
be scaled up automatically and may look blurry.

VM parameters

In the "Java invocation" step of the wizard, you enter the information required to start your
application, including a list of VM parameters. There are several runtime-variables you
can use to specify runtime directories in the VM parameters:

• %EXE4J_EXEDIR%
This is the directory where the executable is located.

• %EXE4J_JVM_HOME%
This is the directory of the JRE that your executable is running with.

• %EXE4J_TEMPDIR%
For the "JAR in EXE" mode, this variable will contain the location of the temporary directory
for the JAR files. In "regular mode" this variable is not used.

5

exe4j can add specific VM parameters depending on the Java version. To set this up, click
on the Configure version specific VM parameters button. In the dialog, add rows for each
range of Java versions that should receive specific VM parameters. If the Java version of
the JVM that is used at runtime matches a configured version expression, the associated
VM parameters will be appended to the common VM parameters. The search is stopped
at the first matching entry. The syntax for the Java version expressions is explained by the
help icon on the table header.

In addition to these VM parameters, a parameter file in the same directory as the
executable is read and its contents are added to the existing VM parameters. The name
of this parameter file is the same as the exe file with the extension *.vmoptions. For
example, if your exe file is named hello.exe, the name of the VM parameter file is hello.
vmoptions. In this file, each line is interpreted as a single VM parameter. For example, the
contents of the VM parameter file could be:

-Xmx128m
-Xms32m

It is possible to include other .vmoptions files from a .vmoptions file with the syntax

-include-options [path to other .vmoptions file]

You can use multiple includes in a single file, recursive includes are also supported. You
can also add this option to the fixed VM parameters. In that way, you can prevent having
to use the .vmoptions file right next to the executable.

This allows you to centralize the user-editable VM options for multiple launchers and to
have .vmoptions files in a location that can be edited by the user if the installation directory
is not writable. You can use environment variables to find a suitable directory, for example

-include-options ${APPDATA}\My Application\my.vmoptions

or

-include-options ${USERPROFILE}\.myapp\my.vmoptions

In addition to the VM parameters you can also modify the classpath in the .vmoptions
files with the following options:

• -classpath [classpath]
Replace the classpath of the generated launcher.

• -classpath/a [classpath]
Append to the classpath of the generated launcher.

• -classpath/p [classpath]
Prepend to the classpath of the generated launcher.

You can use environment variables in the VM parameters with the following syntax:
${VARIABLE_NAME} where you replace VARIABLE_NAME with the desired environment
variable.

6

Java invocation

On the "Java invocation" step of the launcher wizard you can configure both the module
path and the class path. These settings correspond to the --module-path and the -cp
parameters of the standard Java launcher. The module path is only applicable for Java
9 and higher. Like for the standard Java launcher, you can add directories, single archives
or directories with archives. In addition, you can add archives from environment variables
and from compiler variables.

For Java 9 and higher, you can choose a main class from either the module or the class
path. If you choose the module path option, the syntax for the main class is <module
name>/<class name> and corresponds to the --module parameter of the standard Java
launcher. The chooser dialog shows all the available main classes and inserts the correct
value automatically.

Like VM parameters, the list of fixed arguments supports launcher variables. Arguments
on the command line are appended to the fixed list of arguments.

The launcher needs a runtime JAR file which is automatically added to the executable
and extracted to a temporary directory at runtime. If you use the regular mode and not
the "JAR in EXE" mode, you can prevent the extraction of files at runtime by deselecting
the "Bundle runtime" option. In that case, you have to distribute the runtime file exe4jlib.
jar and add it to the classpath or module path.

JRE selection

In the "JRE" step of the wizard, you enter the version requirements for the JRE or JDK that
your application will be started with on the target system.

The minimum Java version must be specified, but the maximum Java version can be left
empty, so that any JRE or JDK with a higher version than the minimum version is acceptable.

In the "JRE->Search sequence" step, you can configure the way the exe4j executable looks
for an appropriate JRE or JDK to start your Java application.

The following types of search sequence entries are available:

• Search registry
Search the Windows registry for installed JREs and JDKs by Oracle.

• Directory
Look in the specified directory. This is especially useful if you distribute your own JRE
along with your application. In that case, be sure to supply a relative path. Note that for
path selections through the file chooser (... button), exe4j will try to convert the path to
be relative to the distribution source directory.

• Environment variable
Look for a JRE of JDK in a location that is defined by an environment variable like
JAVA_HOME or MYAPP_JAVA_HOME.

To distribute your own JRE, put the JRE in your distribution and define a directory search
sequence entry with the appropriate relative path (for example jre) as the first item.

It is possible to generate a log file that contains information about the JRE search sequence
and any potential problems. To switch on logging, start the executable with the
/create-i4j-log argument. The launcher will notify the user where the log is created
and will offer to open an explorer window with the log file selected. After the message box,

7

the launcher will continue to start up. If it is not possible to pass arguments, define the
environment variableEXE4J_LOG=yes and look for the newest text file whose name starts
withi4j_nlog_ in the Windows %TEMP% directory.

If the entire search sequence fails, exe4j will try the location defined by the environment
variable EXE4J_JAVA_HOME. If that fails too, an error message will be displayed asking the
user to define this variable. To supply a custom variable, define an appropriate environment
variable search sequence entry and customize the corresponding error message in the
"Messages" step of the wizard.

Splash screen

Splash screens for executables generated by exe4j cannot be configured with the -splash
VM parameter, but must be configured on the "Splash screen" step.

In addition, you can overlay lines of text for status and version information on the splash
screen, by configuring them on the "Splash screen->Text lines" step. The Status line and
Version line sections allow you to position the text lines on the splash screen and
configure their font. The status line is dynamically updatable with exe4j's launcher
API [p. 9]. If you include the variable %VERSION% in the version line text, it will be replaced
with the product version defined in the "Executable info->Version info" step of the wizard.
With the -r flag, you can override this setting for the command line compiler [p. 12].

Messages

In the "Messages" step of the wizard you can configure all messages that may be displayed
by the generated executable. Default message sets for the exe4j executable are available
in several languages. You can double-click on any message to edit it. If a message is
modified from its default, a customization indicator and a Reset button is displayed in the
table row.

8

Services
On the "Executable info->Service options" step of the wizard you can configure further
options for executables whose type has been set to "Service" on the "Executable info" step.

Windows services are installed by passing /install to the generated service executable.
The default start mode of the service can be set as:

• start on demand
In start on demand mode, your service must be manually started by the user in the
Windows service manager. Use this option if you're not sure if your users will actually
want to run your application as a service, but you want to give them an easy way to do
so. This installation mode can be forced if the user passes /install-demand to the
generated executable instead of /install.

• auto start
In auto start mode, your service is always started when Windows is booted. This
installation mode can be forced if the user passes /install-auto to the generated
executable instead of /install.

Windows services are always uninstalled by passing /uninstall to the generated service
executable. All command line switches also work with a prefixed dash instead of a slash
(like -uninstall) or two prefixed dashes (like --uninstall).

To start or stop the service, the /start, /stop and /restart options are available. In
addition, a /status argument shows if the service is already running. The exit code of the
status command is 0 when the service is running, 3 when it is not running and 1 when the
state cannot be determined (for example, when it is not installed).

As a second parameter after the /install parameter, you can optionally pass a service
name. In that way you can

• install a service with a different service name than the default name.
• Use the same service executable to start multiple services with different names. To

distinguish several running service instances at runtime, you can query the system
property exe4j.launchName for the service name. Note that you also have to pass the
same service name as the second parameter if you use the /uninstall, /start and
/stop parameters.

For debugging purposes, you may want to run the executable on the command line without
starting it as a service. This can be done with the /run parameter. In that case, all output
will be printed on the console. If you want to keep the redirection settings, use the
/run-redirect parameter instead.

If your service depends on another service, say a database, you can enter the service
name of the other service in the Dependencies text field. You do not have to enter core
OS services such as filesystem or network, these services will always be initialized before
your service is launched. If you have dependencies on multiple services, you can enter a
list of these service names separated by commas.

9

Runtime API
Controlling the splash screen from your application

If you have enabled a splash screen [p. 4] for your exe4j executable, you usually want to
hide it once the application startup is finished. The splash will be hidden automatically as
soon as your application opens the first window.

However, you might want to hide the splash screen programmatically or update the
contents of the status text line on the splash screen during the startup phase to provide
more extensive feedback to your users.

With the exe4j launcher API you can

• Hide the splash screen programatically
Invoke the static method com.exe4j.Controller.hide() as soon as you wish to hide
the splash screen.

• Update the status text line
Invoke the static method com.exe4j.Controller.writeMessage(String message)
to change the text in the status line.

The launcher API of exe4j is contained in exe4jlib.jar which can be found in the top
level directory of your exe4j installation.

Note: you do not have to add it to the classpath of your application and distribute it along
with it, since that file is always contained in the executable.

Receiving startup events in single instance mode

If you have enabled the Allow only a single running instance of the application
checkbox on the "Executable info->Single instance mode" step, the application can only
be started once. For a GUI application, the existing application window is brought to front
when a user executes the launcher another time.

The scope of the single instance check can be per-user or global across all users. For the
per-user scope, the "Per session" setting controls whether multiple RDP sessions for the
same user can support one instance per session or only one instance across all sessions.

In single instance mode, you may want to receive notifications about multiple startups
together with the command line parameters. If you have associated your executable with
a file extension, you will likely want to handle multiple invocations in the same instance
of your application. Alternatively, you might want to perform some action when another
startup occurs.

With the exe4j launcher API you can write a class that implements the com.exe4j.
Controller.StartupListener interface and register it with com.exe4j.Controller.
registerStartupListener(StartupListener startupListener). Your implementation
of startupPerformed(String parameters) of the StartupListener interface will then
be notified if another startup occurs.

Startup notifications only work when the same user starts the executable again. With the
global scope, a startup of a different user will not produce a startup notification.

The launcher API of exe4j is contained in exe4jlib.jar which can be found in the top
level directory of your exe4j installation.

10

Note: you do not have to add it to the classpath of your application and distribute it along
with it, since that file is always contained in the executable.

11

Exe4j Command Line Compiler
exe4j's command line compiler exe4jc.exe can be found in the bindirectory of your exe4j
installation. It operates on any config file with extension .exe4j that has been produced
with the exe4j wizard. (exe4j.exe). The exe4j command line compiler is invoked as follows:

exe4jc [OPTIONS] [config file]

A quick help for all options is printed to the terminal when invoking

exe4jc --help

A typical run of the exe4j command line compiler looks like this:

exe4j version X.Y, built on 20YY-MM-DD
Unregistered evaluation version

Loading config file myapp.exe4j
Deleting temporary directory
Compiled executable for myapp in 0.8 seconds.

Command line compiler options

The exe4j command line compiler [p. 12] has the following options:

• -h or --help
Displays a quick help for all available options.

• -V or --version
Displays the version of exe4j in the following format:

exe4j version 1.0, built on 2002-10-05

• -v or --verbose
Enables verbose mode. In verbose mode, exe4j prints out information about internal
processes. If you experience problems with exe4j, please make sure to include the
verbose terminal output with your bug report.

• -q or --quiet
Enables quiet mode. In quiet mode, no terminal output short of a fatal error will be
printed.

• -t or --test
Enables test mode. In test mode, no executable will be generated in the directory for
the executable.

• -w or --fail-on-warning
If a warning is printed and this option is specified, the build will fail at the end. It does
not fail immediately, so you can see all warnings and fix them all at once. The exit code
in this case is 2 instead of 1 for an actual error and 0 for a successful execution.

12

• -L or --license=KEY
Update the license key on the command line. This is useful if you have installed exe4j
on a headless system and cannot start the GUI. KEYmust be replaced with your license
key.

• -x or --require-license
By default, exe4j will fall back to evaluation mode if the license key is not valid. If you
want the compilation to fail instead, you can specify this option.

• -r STRING or --release=STRING
override the application version defined in the "Executable info->Version info" step.
STRING must be replaced with the desired version number. The version number can
only contain numbers and dots.

• -d STRING or --destination=STRING
override the destination directory for the executable. STRINGmust be replaced with the
desired directory. If the directory contains spaces, you must enclose STRING in quotation
marks.

Note that this option does not affect the interpretation of relative paths defined by the
distribution source directory and the output directory as specified in the "Application
info" step of the exe4j wizard.

Overriding settings at build time

In order to facilitate the use of exe4j in automated build processes, the destination directory
for the executable and the version text line of the splash screen can be overridden with
command-line options. Because the file format of exe4j's config files is in XML format, you
can achieve arbitrary customizations by replacing tokens [p. 14] or by applying XSLT
stylesheets to the config file.

Relative resource paths

If you would like to use relative paths for the distribution directory, the bitmap and icon
files (for example, for automated build processes in distributed environments) you can
change these values manually in the config file.

If the mentioned paths are relative, they are interpreted relative to the location of the
config file.

13

Using Exe4j With Ant
For integrating exe4j with your Ant script (1), use the exe4j task that is provided in {exe4j
installation directory}/bin/ant.jar and set the projectfile parameter to the
exe4j config file that you want to build.

To make the exe4j task available to Ant, you must first insert a taskdef element that tells
Ant where to find the task definition. Here is an example of using the task in an Ant build
file:

<taskdef name="exe4j"
 classname="com.exe4j.Exe4JTask"
 classpath="C:\Program Files\exe4j\bin\ant.jar"/>

<target name="launcher">
 <exe4j projectfile="myapp.exe4j"/>
</target>

The taskdef definition must occur only once per ant-build file and can appear anywhere
on the top level below the project element.

Note that it is not possible to copy the ant.jar archive to the lib folder of your ant
distribution. You have to reference a full installation of exe4j in the task definition.

Task properties

The exe4j task supports the following parameters:

RequiredDescriptionAttribute

YesThe exe4j config file for the launcher that should
be generated.

projectfile

No, verbose
and quiet

Corresponds to the --verbose command-line
option. Either true or false.

verbose

cannot both be
trueCorresponds to the --quiet command-line

option. Either true or false.
quiet

Corresponds to the --fail-on-warning
command-line option. Either true or false.

failOnWarning

NoCorresponds to the --test command-line
option. Either true or false.

test

NoCorresponds to the --release command-line
option. Enter a version number like "3.1.2". The

release

version number may only contain numbers and
dots.

NoCorresponds to the --require-license
command-line option.

requirelicense

(1) https://ant.apache.org

14

https://ant.apache.org

RequiredDescriptionAttribute

NoCorresponds to the --license command-line
option. If the license has not been configured

license

yet, you can set the license key with this
attribute.

NoCorresponds to the --destination
command-line option. Enter a directory where
the generated launcher should be placed.

destination

Modifying project files at build time

To customize aspects of the exe4j build that cannot be overridden with the above
parameters, you can add appropriate tokens in the config file and use the copy task with
a nested filterset element. For example, if the main class in

<java mainClass="com.mycorp.MyApp" ...

should by dynamically adjusted by Ant, edit the line to

<java mainClass="@MAIN_CLASS@" ...

and copy the template config file (here myapp_template.exe4j) with

<copy tofile="myapp.exe4j" file="myapp_template.exe4j">
 <filterset>
 <filter token="MAIN_CLASS" value="com.mycorp.MyOtherApp" />
 </filterset>
</copy>

before running the exe4j compiler as before.

15

	Introduction
	Configuration wizard
	Service options
	Runtime API
	Command line compiler
	Ant task

